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The three-dimensional local density of stat8® LDOS), which determines the radiation dynamics of a
point-source, in particular the spontaneous emission rate, is presented here for finite two-dimensional photonic
crystals composed of cylinders. The 3D LDOS is obtained from the 3D Green’s tensor, which is calculated to
high accuracy using a combination of a Fourier integral and the Rayleigh-multipole methods. A comprehensive
investigation is made into the 3D LDOS of two basic types of PCs: a hexagonal cluster of air-voids in a
dielectric background enclosed by an air-jacket in a fiberlike geometry, and a square cluster of dielectric
cylinders in an air background. In the first of these, which has a complete in-plane band gap, the 3D LDOS can
be suppressed by over an order of magnitude at the center of the air-voids and jumps sharply higher above the
gap. In the second, which only has a TM gap in-plane, suppression is limited to a factor of 5 and occurs at the
surface of the cylinders. The most striking band gap signature is the almost complete suppression of the
radiation component of the 3D LDOS when the complete in-plane gap is sufficiently wide, accompanied by a
burst into the radiation component above the gap.
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I. INTRODUCTION lasers, diodes, and solar celB, and possibly to new tech-

Spontaneous emission may be regarded as one of the Coﬂglogigs like Iovy-threshold lasers, uItrafa;t optical swi_tches,
sequences of vacuum fluctuations, which Purggllorigi-  &/l-optical transistors, and memory devicgsg]. Despite
nally recognized were not immutable, but could be radically"€S€ Prospects, theory and experiment on spontaneous emis-
modified inside a cavity. Spontaneous emission can be botfion are far from being reconciled. Experiments on sponta-
enhanced on-resonangg] inside a cavity and suppressed N€OUs emission havg been conducted using luminescent dye
off-resonancd2,3], relative to its rate in free-space. In fact, impregnated in colloidal crysta[26-2§ and opalq29-31,
all that is required to modify spontaneous emission is for thédut the interpretation of the results has been impeded by a
density of photon state€DOS) to be altered, as has been lack of applicable theory31]. Furthermore, these experi-
demonstrated near a reflecting interfdded). ments probe the DOS, which characterizes spontaneous

Originally proposed by Yablonovitci6] and John[7], emission averaged over a unit cell. PCs redistribute the DOS
photonic crystalgPC9 are an area of rapidly growing inter- both in frequency and space, and the spatially resolved or
est, offering new possibilities for controlling the propagationlocal density of statesLDOS) [32,33 is the fundamental
of light [8]. Bragg scattering in the periodic dielectric struc- quantity that determines radiation dynamics. Non-Markovian
ture of a PC can yield a photonic band g&BG) that pro-  effects were somewhat contentious as the isotropic and an-
hibits propagation over a range of frequencies. The existenGeotropic band edge models adopted are not supported by the
of the PBG is now well established by band structure calcugyadratic behavior for the DOS usually observed in 3D PCs
lations and the reconciliation of theory and experiment in[34]. However, recent accurate modeling of radiation dynam-
reflection and transmission spec{®. A PC also dramati- jcs using the LDOS in real absolute gap PCs has demon-

cally rearranges the DOS about a P&}, transforming the  strated the nonexponential decay phenomena predicted by
emission characteristics of an embedded radiating sourcgzese band edge moddls9].

The modified DOS can lead to inhibited spontaneous emis- An experimental probe of the LDOS would require the
sion[6], the localization of photonf7], photon-atom bound  measurement of radiation from a pointlike souteeg., Iu-
states[10], and an anomalous Lamb shift0-13. A sharp  minescent atom or molecule, quantum dot or dipolar an-
band edge jump in the DOS also leads to novel nontenny at a particular location inside a finite-sized P&5).
Markovian effects that include fractionalized steady-staterg-date, LDOS calculations have been limited to idealized
and oscillatory spontaneous emissifi?,14-19, spectral  pCs. The LDOS can be calculated for infinitely periodic two-
splitting and subnatural linewidtfl4], low threshold and  dimensional2D) and three-dimension&BD) PCs using the
rapid atomic switching[18,20, superradiancg15,21,22,  Bloch method. This has been done for an array of cylinders
and coherent phenomef23-23. [33], an array of spherei83,34, and the cylindrical wood-
Control of spontaneous emission has immediate applicaijle [36]. The LDOS has also been calculated for finite one-
tion to improved efﬁciency in Semiconductor deViceS ||ke dimensional structures using mu|t|p|e Scattering thq@ﬂ
and the transfer matrix methd@8]. Spontaneous emission
rates in finite-sized PCs can be inferred from the classical
*Email address: fussell@physics.usyd.edu.au dipole radiation power using the finite-difference time-
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domain(FDTD) method[39], by first assuming exponential testing. In Sec. V, the 3D LDOS is calculated as a function of
decay. The main deficiency of this approach is computationaboth position and frequency and compared to the band struc-
inefficiency. The whole field across the structure is requiredure. The sensitivities of the 3D LDOS to cylinder radius and
to be evaluated for a single dipole orientation and typicallyrefractive index contrast are also examined, along with the
only the emission rate for a few dipole orientations and PO-3D-projected-LDOS(3D PLDOS. Finally, in Sec. VI, the

sitions is obtained. This has been done in 2D PCs compose&gdsults are summarized and their significance discussed.
of dielectric cylinderg40], the 2D slab structurgt0,41, and

the 3D inverted opal42]. Large-scale investigations would
be computationally prohibitive. Furthermore, the LDOS is!l.- SPONTANEOUS EMISSION, THE LDOS AND GREEN'S
the fundamental quantity that determines radiation dynamics TENSOR

and inferring the LDOS from the emission rate would need The radiation dynamics of a fluorescent source embedded

to be justified. . R . )
The preferred approach is to obtain the LDOS in a finite-N & hOSt. medium involves the_source coupling to and inter-
cting with the electromagnetic mode structure of the me-

sized PC via the Green’s tensor. An accurate and efficierf, ; - o
um. The role of mode structure in radiation dynamics is

approach has been demonstrated for calculating the Gree N ) X ,
tensor in finite stratified medigd3]. The Green’s tensor in cOompletely embodied in a single quantity—the local density

more general finite-sized dielectric structures can be obtaine®f States(LDOS) [15]. The focus here is on spontaneous

by solving Dyson’'s equatiofd4]. Like the FDTD method, €mission, where a two-level atom decays from an excited

the structure is required to be discretized, limiting computastate (a)) into a ground staté|b)) by making an electric-

tional efficiency. Although this can be improved significantly dipole transition, and emitting a photon of enefgy,, in the

by adapting the approach to the geometry of the medium, agrocess. In 2D PCs, the LDOS is a sufficiently smooth func-

has been done for a dielectric digk5]. tion of frequency for the usual Weisskopf-Wigner theory of
Recently, it was shown that a Rayleigh-multipole methodspontaneous emissigf4] to apply. The decay is then expo-

can be used to calculate the Green’s tensor accurately armintléﬂ a_nd the spontaneous emission rate Is given in the

efficiently in an arbitrary arrangement of aligned circular cyl- electric-dipole approximation by Fermi's golden ryigs],

inders of infinite lengtt{46]. This was used to calculate the o .

2D Gregn’s tensor qnd the_ 2D LDOS, whiqh apply to an F(f)=—22 (F| e - E(r)]1)[28(w; — o), (1)

infinite line-source, in a finite cluster of cylinders. It has he s

?8(:5 aggefgrsz? %Vgir:]tt_gitutr?: 3 ;ﬁ;ozcg Oi?inerbient%g]ded o tOv%ereh) and|fy are the initial and final state vectors of the
Although 3D PCs with complete 3D PBGs exhibit the atom-field system, anfl andE(r) are the electric dipole and

strongest PBG effects, 2D PCs with complete 2D PBGs anglectric field operators, respectively. As shown by Sprik, van

partial 3D PBGs hold both substantial theoretif@¥7,4g  Tiggelen, and Lagendij{32], the LDOS arises naturally

and experimenta[49,50 interest. They have taken many upon splittingI’(r) into its atomic and field components,

forms, including alumina cylinders in the microwa9,57] hao 2|(al |b>|2

and air-cylinders in glas§52], photonic crystal fibef53], I(r)= ﬂ)—"‘z

and 2D PC slab[54-564. However, macroporous silicon 2 &t

[50], composed of a hexagonal array of cylindrical aIrPOreSyhere (aji|b) is the dipole transition moment anfilis the

in a silicon background, remains the best example of an €SS rientation of the dinole. In Eq2), p(r .@.p) is the LDOS

sentially ideal 2D PC system with a robust complete 2D . pole. n t T, @,0) 1S

PBG. This system is fabricated with an aspect régore for a partlcul_ar dlpole orientation, or projected-LDOS

height to pore diametgiof 100—-500 and a pore separation (PLDOS, and is defined as

leading to a PBG in the technologically important LB Ay — 5 WE(H) 28w — 3

wavelength range. While interest in 2D PCs is in part be- plr,@,p) E, B WP e = ). ®

cause of the relative ease of their fabrication, they also have . _ . _

numerous potential applications in their own right. TheseThe PLDOS is determined by the eigenfrequencies and

applications are usually based on 2D structures that contafigenfunctionsw and W(r), of the Helmholtz equation in

defects[49,50 or a degree of stratification in the third di- the host medium

mension for confinemetjis4,57, and include basic optoelec- 2

tronjc; components like Wavegui'd.@§4,58,'59 and rgsongnt VXV X ‘I’F(r) - %n(r)Z\plE(r) =0, (4)

cavities [58,6(0, and more specific applications like fibers c

[53], lasers[61,63, and fiber laser$63], among others. wheren(r) is the spatially dependent refractive index. The
This paper begins with a short description of the connec-

. o o ) normalization condition applying to the eigenfunctions con-
tion between radiation dynamics, in particular spontaneous, i« the weighting(r)

emission, the LDOS, and Green'’s tensor in Sec. Il. In Sec. '
11, the multipole method is detailed and extended to treat the 5 - £

more general geometry of a cluster of cylinders enclosed by fd re(r)Wp (r) - we(r)=4,. (5)
a jacket. The computationally delicate treatment of a key

Fourier integral is also addressed. In Sec. IV, the numericalhe PLDOS is usually defined without this weightitgg.,

implementation of this approach is validated by convergenc®&ef. [33]) so that at positions in material it has a material

p(r,®,p), (2)
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component in addition to the radiative component given by

Eqg. (3) [32]. However, it is the radiative component that ngy
appears explicitly in Eq(2), and it is thus considered the

more appropriate definition for determining spontaneous a
emission rates. The LDOS for a randomly oriented dipole n
source is obtained by averaging Eg) over dipole orienta-

tion and absorbing the resulting 1/3 factor into the atomic U
part, giving Py

p(r, o) :E| (WE(r) 28w = a). (6)

In a periodic structure, the usual DOS can be obtained by
integrating Eq(6) over a unit cell and using the normaliza-

tion condition, Eq.(5), which gives FIG. 1. The cross section of the scattering geometry composed
of an arbitrary arrangement of cylinders with radaysand refrac-
pw) =2 8= w). () tive index n;, embedded in a background with refractive indgx
! and enclosed by a jacket with inner radiysand refractive index
The LDOS describes the local availability of modes toNo.
which a source can couple and emit a photon. It is clear from
Eg. (6) that in general it varies with position. The DOS is Using this in Eq.(8) then yields the familiar expression for
still an important component in the LDOS, and in a completethe DOS in a homogeneous medium(w)=nw?/ 72c?
band gap where the DOS is zero, the LDOS is also every=np.(w) [70], wherep, is the DOS in free-space.
where zero. However, the modes in a PC have nodes and
antinodes separated by distances of the order of the wave-
length of light[8]. This is typically three orders of magnitude I1l. FORMALISM
greater than the size of an atom, so the LDOS and spontane- )
ous emission rate can vary strongly with position when the The 3D LDOS in a 2D PC composed of a cluster of cyl-
DOS is nonzero. If modes have a preponderance of nodes Kders is obtained here from the 3D Green’s tensor, which is
a certain position, then the LDOS can still be heavily sup-Calculated using a combination of a Fourier integral and a
pressed. This is particularly relevant to the 2D PCs considRayleigh-multipole method. This involves a 3D full-vectorial
ered here, which have 3D pseudo gaps, but do not have 3featment of EM wave scattering9,71,73. The 3D Green's
complete gaps. Spontaneous emission can also be enhand88sor is a X 3 matrix (or dyadig, G(r,r’), where the ele-
when the DOS is enhanced, and E6) suggests that the mentGy,(r,r’) is the u coordinate of the field at for a
enhancement is largest at locations where the relevant modéé#ole point-source oriented in the direction of theoordi-
tend to have antinodes. nate located at’. Both the electricGF, and magneticG",
In periodic structures, the LDOEQ. (6)] can be evalu- Green’s tensors are evaluated in a piecewise_ homogeneous
ated directly by solving the eigenvalue proble [33]. In  dielectric medium with refractive inde(r)=\/e(r). This is
finite structures, the preferred approach is via Green’s funcdone by solving the vector EM wave equations for a point-
tion, or tensol[66,67. The 3D Green'’s tensor describes the source in the fornj69]
response of a medium to a point-source, as opposed to the , N ,
2D Green’s tensor for an infinite line-sour¢és]. It is a VXV X GHEr,r) = kn(n)? GE(rr) = =1 &r =),
powerful tool in electromagnetisifEM) that can be used in
wave scattering from arbitrary source distributi¢as], per- VXV XG(r,r')-kn (r)’G"(r,r")
turbation analysis{_67], or simply to produce t_he emission =V X1 8r-r"), (10)
pattern from a point-source. For a dipole point-source, the

3D LDOS is given by the trace of the electric Green's tensowherek=2m/A=w/c is the vacuum wave number armds
(GF) [66], the dyadic identity. Note tha&® and G are coupled by the

5 boundary conditions, to be discussed in Sec. Il B.
__ o E .. The general scattering geometry considered is a dipole
plr,@) = Wczlm{Tr[G (ol ® point-source embedded in a finite clusterNyf circular cyl-
) , , ) inders of infinite length, enclosed by a cylindrical jacket
NoteEthat the 3D LDOS is determined by the imaginary parfgig 1) The radius of théth cylinder is denoted by, and
of G* at the location ofEthe source. The 3D PLDOS is 0b-jis efractive index byn,. The cylinders are embedded in a
tained after contractinG™ by p, background of refractive index,, which is in turn enclosed
20 by a jacket of infinite extent that has a refractive indexgf
p(r,@,p) == —Im{p"-[GE(r,r;w)] - p}. (9 and an inner cylindrical boundary of radiag The cluster is
mc arranged in a cylindrical coordinate syste,p)=(z,p, ¢),
It is easy to show that in a homogeneous medium with rewith the cylinder axes aligned with trecoordinate and the
fractive index n, Im{G5,(r,r)}=-nw/6mc; Oue{x,y,z.  jacket centered on the origin. The point-source coordinates
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are denoted’ =(Z', p’) and the coordinate of tHéh cylinder e iB _
by p, :(p! ,_¢>|). Car'Fesian coordinatep,:.(x,y), are also used. Dy =6yt W v
The addition of a jacket allows for cylinders to be embedded

in a background dielectric of finite exterih,>1 with n,  are differential operators. For in-plane propagatjgr0 and
=1), extending the previous work in Ref35], which only ~ EQ. (15) reduces to the wave equations for the 2D Green’s
allowed for a background of infinite extent. In summary, tensor addressed by Asatryanal.[46]. The transverse com-
while this scattering geometry is 2D, the wave propagatiorPonents of the fields are straightforwardly obtained from the

from a point-source is 3D, leading to a 2.5D EM problemz-components using Maxwell's equatiof9].
[69]. A multipole formulation is employed to solve E@L5)

exactly. This is essentially an extension of the treatment of
wave propagation in microstructured optical fibers by White
A. Homogeneous Green'’s tensor et al.[73] to wave scattering from an embedded source. The
The 3D Green’s tensor in an infinite homogeneous mereader is referred to Ref73] for more discussion on the
dium, wheren(r)=n for all r, is first examined to find an important features of this method. The multipole method
appropriate source-field expression. The homogeneougses a field expansion in the vicinity of thé cylinder in a
Green's tensorG,(r,r’), can be obtained from the scalar Fourier-Bessel basis
Green’s functiong,, using[69]

and DI/=Z-V x1

c

Vi= X [Adnkp) + B HD (kp) €™,  (16)

\AY
Grlrr) = {I ' (kn)Z}gn(r,r'), M=o
whereJ,(2) is the Bessel function used to describe the con-
Gﬂ(r,r’): vV X1 g (r.r), (11) v%gent. or source-free pgrt of the field ngﬁmo, and
_ _ _ H. (2) is the Hankel function used for the divergent part.
whereg, is the solution to the Helmholtz equation, The local field expansioiil6) only applies in the annulus
[V2+ (kn)?] gu(r.r') = (. ). (12) from thelth cylinder surface to the nearest neighboring cyl-

inder or source. The global fielgbr Wijngaard expansion,
There are several different expressions ¢prthat follow  which applies throughout the background, can be obtained
from adopting particular spectral decompositions of theusing Green’s second theorem,

source. The expression adopted here, using cylindrical coor-

dinates, ig69] f [V(p".p")VoGo(p.p") = Tolp. ") Vo,V (p",p")] dA,
A

(7 e
0n="g- f dBeP=?) HP (klp-p'), (13 v e,
= :ff; Vip'.p )ng(PaP)
IA n

WhereHgl)(z) is the zeroth order Hankel function of the first

i = 2-32 in- = 1 4 /AN
kind, kp—\/(kr_1) B is the in- plane comp(_)nent of th_e wave ~To(p.p")—=V(p"\p )} ds,, 17)
vector, andg is the propagation constant in tkeoordinate. an

Note that Eq(13) is simply the inverse Fourier transform of whereA is the area of the backgroundh is the boundary of

_ i ) this area, and” denotes the outward unit normal &8 at p".

Oh="- ZHO (kp|P— p'D, (14 Upon evaluating Eq17) [46], the global expansion is given
by

and is the reason it is considered to be the most easily |

adapted source-field expression to the multipole approach ébv( p)=——=x(p)DYIHY (k |p - p'])}

below. The components @&, obtained by using Eq13) in 2P 4X PPt pIp a

Eqg. (11), are given in Appendix A.

©

NC
+3 3 Bkl - pliem I

B. Multipole method =1 m=—=
The wave equationd.0) in the configuration of Fig. 1 can VO im &
be solved fully by exploiting the cylindrical geometry of the * mz'm Aumrdm(Kp)€™ 7, (18)

problem. A Fourier transformation in treecoordinate is first b ) ) )
made, giving wave equations for conical propagation. Thevherex“(p’) is a function, with value 1 in the background
z-components of the fields for a source oriented in the direcand O elsewhere, used to denote the presence of a point-

tion of the unit vectofli are given by source in the background. The first term on the right-hand
_ side(RHS) of Eq. (18) gives the field from the point-source.
(Vf, + kf)) Gy (p.p')=D) 8p-p'), (150  The second term gives the field scattered from the cylinders,

_ while the third gives that from the jacket. In the absence of
where G is the Fourier transform of the Green's tensdr, scattering objects, only the point-source term remains, and
e {E,H}, k,=+[kn(r)]*~ 8% and Eq. (18) is simply the Fourier transform dB, (r,r").
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The local[Eq. (16)] and globalEq. (18)] field expansions ~ ) [ ) ,
are required to be consistent about each cylinder. This is GouP:P )=‘ZXI(P )Dy{HG (K lp = p')}
enforced using Graf’s addition theoreird],

H2(k |p = pgl ™ 2dpra) + 2 Cldm(k,p)e™ 4
m=—o
= > HW (k |pq = pi|) €M Pardeg-p) * .
i = X [QUHD(K,p0) + Cltd(k, o) 1™ 4,
. m=—%
X‘Jm(kp|p - p||)elm argp—m), (19) (24)

to transform the global expansion into the local coordinategyhere the function(p’) indicates the presence of a point-
of thelth cylinder. Equating Eqg16) and (18) then yields  soyrce in the cylinder an@Y. is defined similarly tok"! in

the Rayleigh identity, Appendix B. The field expansion in the jacket is given by
N, ® % ~ i
oV, N — — — 0 V(D) o
VEKAE S S S9BY+ S SOA (20) Gzulp.p) == X (P)DiHy (o~ p')}
=1%| p=— p=—oe B
where + 2 DL/mH%)(kpp)eim P
m=—o

S0 = HL, (K, p 0%, . |
= 2 [Kindn(kp) + DinHE (k) 1™ ¢,

m=—o
Smp= (= D™ I (ko) P, (25
The multipole coefficients are also constrained by the
undary conditions, which require the tangential compo-

and

andK! follow from the point-source term and are given in bo
Appendix B. The Rayleigh identity20) relates the converg-  ontq of the electric and magnetic fields to be continuous at

ing field at each cylinde(LHS) to the diverging fields from  yho o rfaces of the cylinders and jacket. For the cylinders, the
all other source bodig®RRHS) [73]. By the same approach, a boundary conditions yield the relation
second Rayleigh identity is obtained for the jacket,

|:BE:| |:REE REH:||:AE:| |:-|—EE TEH:||:QE
Ne = +
C BH RHE RHH AH THE THH QH ’
Bym= Qi+ > 2 SaBlS, (22)
q:]_ p=—o (26)
where or
B=RA+7Q, (27

Sob= Jn-plkpo)€ P,
whereREE=diad REF] is a block diagonal matrix composed
which relates the diverging field at the jacket to the divergingof the diagonal matriceREE':diaQRﬁE'}, and the otheR
fields from the background sources. Introducing matrix nomatrices and thel matrices are defined similarly. In Eq.
tation whereA=[A}'] is a partitioned column vector com- (27), R and T are the external reflection and transmission
posed of vectors of multipole coefficientAl‘,":[A\nQ'u], Eg.  matrices, respectively, with their components given in Ap-
(20) then condenses to pendix C. For the jacket, the boundary conditions yield

0— 0420 0
Al\J/: Ktl/+ SBL/"'SIOAL/O. (22) A =R"B +TO’C , (28)
v v ) . v VO AVO where R? and Z° are the internal reflection and transmis-
Ky alnd B, are defined similarly toA,, while A"=[An].  sion matrices, respectively, also defined in Appendix C.
S=[S9] is a block matrix composed of Toeplitz matrices, Using the matrix notation of Eq27), identity (22) be-
[S9]=[S¢,], andSP is defined similarly. In this notation, Eq. ¢omes
(21) becomes

A=K, +8B,+8°AY (29
VO _ A VO InV
By’ =Qy +S"By. (23) whereS=diadgS, S}. Similarly, identity (23) becomes
The field expansions inside a cylinder and in the jacket _
p y | Bl=K.+S"B,. (30)

are obtained similarly to that in the background. With only
the presence of the point-source in these two regions, thRlote that the boundary conditions couple fhandH fields,
field expansions simplify greatly with no need for Rayleigh while they remain independent in the Rayleigh identi{R®)
identities. The field expansion inside thk cylinder is given  and(30). Note also that théR andZ matrices contain the
by material properties of the medium while ti8ematrices con-
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tain the underlying lattice structure. This separation of me- 0.08 ]
dium and lattice parameters is advantageous for perturbation o 0.06 |
theory[75]. 2 |
The Rayleigh identitieg29) and(30), and boundary con- s 0 }
ditions (27) and (28), combine to form a complete linear % 002 ‘
system. This system can be written as a single field identity, T |
~ 0
[Z-R(S+8"R°’S®)]B o |
— R[SOA(RO’CO + TOQO) + ’C] + TQ ] (31) @ 0 2 4ﬂ 6 8

The point-source terms are confined to the RHS and the ei-
genvalues of the medium can be obtained by setting the RHS —n/4
to zero[73]. In the presence of a point-sourds,is obtained

. . g ) . . 0.06
with a single matrix inversion. The remaining multipole co- .
efficients can then be obtained using the Rayleigh identities % 0.04
and boundary conditions. <
= 0.02
RN
)
C. Fourier integral ,§ @
The full 3D Green'’s tensor is finally obtained by perform- -0.02
ing the inverse Fourier transformation, ®)
1 (" e o
GE(r,r') = er dg €7 GE(p,p’). (32 FIG. 2. Integrand of the Fourier inverse integral, E8R). (a)

Integrand on a radial contour withl =-1075, along with the loca-

The integrand in Eq(32) Containskp=i\,(kn)2—,82 terms, tion of the bound modeslight-gray vertical lines The vertical

which for a lossless medium lead to branch point singulari—daShecI line delineates radiation modgs-k) from bound modes

. . _ (B>K). (b) Integrand on Eq(33) usingR’'=1.1kn, and §' =—=/4,
ties in complexs-space on the Rg}-axis at=+kn, where with the Cg part(solid line, top scalpand theC, part(dashed line,

=Ny, Np, No. Fora r_nedium With loss or gain these singul_ari- bottom scalg The structure is a hexagonal cluster with parameters
ties shift off the axis. Depending on the geometry, the |nteNC=7 a,/d=0.45,n,=1.0,n,=3.4,8,/d=2.0, andn,=1.0. The fre-

grand also has poles on the {Bgaxis in the range quency iswd/2mc=0.4 and the position ip=(x,y)/d=(0.0,0.0.
k min(n;,ny,Ng) <|Bl <k max(n;,n,,ny), corresponding to
bound modes, or near the axis, corresponding to leaky

modes. The integration around these singularities is admodes and Mﬁs (p,p)}=0 on the RéB}-axis.

v

dressed by ensuring that the Sommerfeld radiation condition The Fourier integral is required to be performed numeri-

is satisfied, which is done on a contour above singularitie%a"y, but it would be computationally inefficient to do so

for Re[B} <0, and below for RE8}>0 [69]. . close to the RE8}-axis. By invoking the Cauchy integral
For the numerical demonstrations in this section and th%heorem, the integrand can be evaluated along a contour off

subseqpent seg:tlon., a small hexagqnal cluster is used withe Rd8}-axis that is appropriately confined to the second

N.=7 circular air-voidsn=1.0) of radiusa,/d=0.45(where 414 fourth quadrants of the compl@xplane to comply with

d is the lattice constaptn a silicon background of refractive tne Sommerfeld radiation condition. For {@>0, a conve-

index n,=3.4, enclosed by an air-jackéty=1.0 of radius  pient choice, after setting=Ré?, is a contour of the form
ap/d=2.0. This is a simple 2D PC with a fiberlike geometry

that is most relevant to the important 3D LDOS results that
follow. The focus will also be on the components of
Im{Tr[GE(r,r;w)]} required in the calculation of the 3D C=CrU CyU Co
LDOS [Eqg. (8)].
The modes in the cluster are classified according to wave- ={Bl0<SR<R,0TU{BR,¢' <o<0}U{BR' <R
guide theory[76,77 and determine the behavior of the inte- - » o}, (33)

grand. To demonstrate this, the integrand{@Jyp,p)} is

shown in Fig. 2a) for Re[B}>0 on a radial contour just

below the R¢B}-axis. The ranggB| < kn contains a continu- _ _

ous spectrum of radiation modes wi real in all regions. composed of a radial componefitz) with k max(n;,ny, no)

In this range the integrand is smooth and continuous. The<R’, an arc componen(,), and an axial componeriti),
rangekn <|B| <kn, contains a discrete spectrum of bound shown in Fig. 3. A similar contour above the axis is used for
modes withk, real in the dielectric background and imagi- Re{} <0.

nary in the air-voids and air-jacket. The integrand contains For calculating IiGE(r ,r)}, only theCrUC, part of Eq.
singularities on the R@}-axis at these bound modes and (33) is required. It is also easy to show that only the{Re
varies sharply in their vicinity. FofB|>kn,, there are no >0 part is needed for the diagonal components in
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FIG. 3. The complex contoui33) for Re{8}
>0, with the branch point singularities g
=kn;,kn, shown, along with the poles at the
bound modes on the Re}-axis.

Im{Tr[GE(r,r)]}, while both parts are required for the off- large order limit whereN,, significantly exceeds the argu-

diagonal components of KfGE&(r,r)]}. The dramatic im-
provement in the behavior of the integrand on B) using
0’ =—m/4 andR’ =1.1X kn, is shown in Fig. ). These two

ment in the Bessel functions. This is the regime of electro-
statics where the largest order terms behave™agp(im6)
and rMexp(imé). Figure 4 shows that the rate of conver-

contour parameters are generally found to optimize the corgence is accordingly slightly more rapid at low frequencies,
vergence of the numerical evaluation of the Fourier integralPut depends primarily on the position in the cluster. For the
A contour of the formCgU C, can also be used to isolate the Structure modeled, the rate of convergence is most rapid at

radiation component by usirgy <R’ < 8y, wherep is the
propagation constant of the bound mode closestkip

(Fig. 3 .

IV. NUMERICAL VALIDATION

The field expansiong18), (24), and(25), contain infinite
sums derived from the local field expansid6) and Graf’s
addition theoren{19). The numerical evaluation of the field
expansions requires these to be truncatedNg,~.. ,N,, so
that each sum has in totaNg,+1 multipole terms. The con-
vergence ofG with respect td\,, is demonstrated in Fig. 4,
where the relative differencey=|Gy .1-Gy |/|Gy, |, is

the center of cylinders in the low-index region where close to
six figure accuracy is achieved witl,,~ 10. Between two
cylinders in the high-index region, the rate of convergence is
slowest and limited to about four figure accuracy Nt
~18. ForN,,=< 20, convergence is approximately exponen-
tial in accord with the electrostatic regime, while beyond this
range machine precision begins to affect results abegins

to fluctuate wildly. Convergence is slower in structures with
a higher refractive index contrast and larger cylinder radii,
again because the argument in the Bessel functions is then
larger.

The Fourier integrak32) is evaluated on the complex
contour (33) using numerical quadrature. Simpson’s rule is
adopted and involves the abscissa of the integrand being de-
composed intd\;, intervals. The convergence of integration
along both components of the contour with respeditds

plotted versusNy,,. In general, the rate of convergence of a demonstrated in Table I. In the low index region, the contri-
field expansion in Bessel functions becomes rapld n th%ution of theC19 Component is much smaller than tm

log,[7]

5 10 15 20
N’n

FIG. 4. The convergence of elements of the 3D Green’s tensofines. For a 3D LDOS calculation over a range of coordinates

with respect to the truncation paramelgy. The relative difference
7=|Gn +1~Gn |/|Gy,| s plotted for I{G,} at (x,y)/d
=(0.0,0.0 for frequencies wd/27c=0.2 (solid line) and 0.6
(dashed ling and for I{G, ¢} at(x,y)/d=(0.5,0.0 for frequencies
wd/2m7c=0.2 (dotted ling and 0.6(dash-dot ling The structure is
the small hexagonal cluster used in Fig. 2.

component, while in the high index region, the contribution
of both is similar. Accuracy better than four significant fig-
ures is assured faN,=16 and six figures foN,=32. This
demonstrates that when the Fourier integral is evaluated on
the complex contour, a high level of accuracy is achieved
with relatively few abscissa points. This is important and
leads to very high computational efficiency because almost
all of the computation time goes into evaluating the multi-
pole expansion at each abscissa point. Similar results are
found for other coordinates, frequencies, and geometries
where the essential behavior of the integrand shown in Fig. 2
is maintained. It is therefore adequate to use Simpson’s rule
with Ny, fixed rather than more sophisticated adaptive rou-

and frequencies in a given 2D PC, it is also adequate to use
a fixedN,, Clearly,N,, andN;, should be chosen so that the
accuracy in the multipole sums and the quadrature are com-
mensurate. Here, they are generally chosen to achieve 4-6
figure accuracy to ensure that at the very worst, the variation
in convergence with position and frequency yields 2—4 figure
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TABLE I. The convergence of the radiéllg) and(C,) contour components of IfGEU(r ,1)} with respect
to N, at the frequencywd/27¢c=0.4. The structure is the small hexagonal cluster used in Fig. 2.

Ny Im{G;/(0.0,0.0/d,(0.0,0.0/d]} Im{G,{(0.0,0.5/d,(0.0,0.5/d]}
Cr Gy Cr Cp

6 0.100 252 172 0.007 499 401 -0.459 822 761 0.911 654 546
8 0.098 555 853 0.007 499 095 -0.459 814 136 0.912 114 488
12 0.098 769 214 0.007 498 962 -0.459 815 784 0.912 363 219
16 0.098 773 924 0.007 498 937 ~0.459 815 908 0.912 401 820
24 0.098 788 139 0.007 498 927 -0.459 815 911 0.912 409 352
32 0.098 787 173 0.007 498 925 -0.459 815 913 0.912 409 606
48 0.098 786 956 0.007 498 924 -0.459 815 914 0.912 409 621

accuracy. The results in Sec. VA were obtained usingnain emphasis is on macroporous silig&d] with a silicon

Nn=14 andNy=16, and the results in Sec. V B were ob-

tained usingN,=5 andN,,=16.

V. LOCAL DENSITY OF STATES (LDOS)

A. Hexagonal cluster of cylindrical air-voids in dielectric
(PC1)

1. Band structure

As is clear from Eq(6), the LDOS in a periodic structure

background of refractive index,=3.4. The focus will be on

an air-void radius o&/d=0.45, which was found to produce
the most interesting results. Macroporous silicon can, how-
ever, be fabricated with a broad range of values for the air-
void radius, and other values will be considered, along with
other values for the background refractive index. The in-
plane band structure for the underlying lattice is shown in
Fig. 5. TE gaps are favored in this type of 2D P&], and it
has a wide TE-gap in the frequengnormalized range
wd/27c=0.303-0.495(Aw/ wy=48.0%. There is also a

is determined by its band structure and modal field patternsarrower TM gap in the frequency ranged/2mc=0.405
Even though the structures considered here are finite, they0.445 (Aw/ wy=9.4%), which lies wholly within the TE
are sufficiently large for there to be a strong correspondencgap to form a complete in-plane gap.

between the LDOS and band Structure, and Comparing the The in_p'ane Component of the wave vector is given by

two is useful for understanding the LDOS results. For the 3D
LDOS in 2D PCs, both the in-plane and out-of-plane band
structures are relevant. These essentially characterize the
DOS, and to a significant extent the LDOS as a function of
frequency. An understanding of the modal field patterns

would provide insight into the spatial variation of the 3D
LDOS, but is beyond the scope of this paper.

The first general structure examined is a hexagonal cluste 04

of cylindrical air-voids in a dielectric backgrouBC21. The

0.6

0.5

0.4

0.3

wd/2rc

0.2

0.1

FIG. 5. 2D band structure for a hexagoigai triangulaj array
of air-voids in a dielectrigPC1. The array parameters agg/d
=0.45, n=1.0, andn,=3.4 (i.e., macroporous silicon The T™M

0.6 =
ory—n
- P
05| ——" =
e //
seudo—gay
pseudo—gap _
[3) //
& ///
S 03 | IR
3
0.2
0.1
0
0 0.2 0.4 0.6 0.8 1
Bd[2nc

FIG. 6. Out-of-plane band structure for PCdee Fig. . The
dark-gray region to the left of the light-line in aiw=p) indicates
oscillatory modes withk, real in air, while the light-gray region
between the light-line in air and the light-line in the dielecttic
=pB/ny) indicates evanescent modes withimaginary in air. The
pseudogap indicates th@,8)-region where there are no modes.
The horizontal line indicates the frequency where the pseudogap
covers the largest range gfvalues. The dashed lines indicate the
bands emanating from the in-plane TE gap. The bold upward slop-

modes are shown as solid lines and the TE modes are shown &gy line indicates the band emanating from the in-plane TM

dashed lines.

I'-point.
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2
=\ = B2 (34)

where B is the propagation constant, so that for in-plane
propagationg=0, and for out-of-plane propagatiof>0.
The out-of-plane band structure for macroporous silicon is
shown in Fig. 6. For clarity, only the out-of-plane band seg-
ments emanating from the edges of the in-plane TE and TM
band gaps are shown. The segment fromlthmode on the
first TM band is also shown and is indicative of tBeof the
fundamental mode at each As the propagation angle in-
creases out-of-plane, indicated by increasthip the figure,

the bands shift to higher frequencies. Whers small near
the in-plane band gaps, multiple scattering effects remain

important and the band structure for a giv@value is =4 -2 0 2 4

mostly determined by the in-plane band structure at the pro- x/d

jected frequency, indicated ty. The in-plane band structure 10g10lp/po] B

effectively anchors,, and Eq.(34) with k, fixed is a rough

guide to dispersion in thg-direction. As a result, the out-of- FIG. 7. 3D LDOS across the plane of a macroporous silicon

plane bands slope upward with low dispersion in thecluster enclosed by an airjacket. The frequency uid/2mc
B-direction wheng is small, and get steeper @sincreases. =0.445 and the cluster parameters bie=37, a/d=0.45,n,=1.0,
When 8 is large, index-guiding takes over witlh~ B/n,,  ny,=3.4, anday/d=4.0. The 3D LDOS is normalized to its free-
and the out-of-plane bands are correspondingly near parallepace valuepy=w?/ 7.

to the light-line in the dielectric background.

For 3D wave propagation in a 2D PC, it is not possible toessentially the same across each unit cell inside the two outer
have a complete band gap that covers all propagation dire¢ings of air-voids, is suppressed by one order of magnitude at
tions. However, as shown in Fig. 6, a pseudogap, dwa the center of the air-voids, and is slightly enhanced in the
- B)-region where there are no modes, emanates from thieackground. Outside the cluster in the jacket, the 3D LDOS
complete in-plane gap. There is also a lafge- B)-region in  rapidly falls to its free-space value.
the figure that emanates from the TE gap where there is a The 3D LDOS is shown at the center of the cluster as a
dearth of modes. Along with the out-of-plane bands, thefunction of frequency in Fig. 8, both with and without an
pseudo gap is upward sloping in the- B)-diagram. As a  air-jacket for comparison. This again shows the effect of the
result, the pseudogap covers the widest rangg-shlues jacket to be small. With the jacket, the 3D LDOS exhibits the
just below the top of the complete in-plane gap. The out-ofSame band gap signature with an increase in suppression
plane diagram is also delineated by the light-line=B) into ~ With frequency inside the in-plane band gaps, strongest sup-
modes that are oscillatory in aito> 8) and modes that are Pression at the top of the complete in-plane band gap, fol-
evanescent in aifw< f). As frequency increases inside the lowed by a sharp jump above the gap. The jacket does, how-
complete in-plane gap, the pseudogap covers a widenin§’e" sha_rpen_ the _features in the 3D LD_OS. The maximum
range of oscillatory modes. If the complete in-plane gap isSUPPression is slightly stronger and jgp,=1/12.5 at
sufficiently wide, the pseudogap may cover all oscillatory®d/2m¢=0.449 with the jacket, compared #8p,=1/10.4 at
modes near the top of the in-plane gap. At the top of thevd/2mc=0.441 without. The band-edge jump is sharper and
complete in-plane gap, the first mode encountered is a radia-

tion mode withB=0. Above the in-plane gap, the pseudogap 0.4 ‘
rapidly goes from covering oscillatory modes to covering a 0.2 ‘
narrowing range of evanescent modes. 0 \
s -02 }
2. Local density of states 52 -0.4
=0
The 3D LDOS in macroporous silicon was originally ex- = 06 .
amined for a cluster of air-voids in an infinite silicon back- -0.8 | }
ground [35] (i.e., without an air-jacket In Fig. 7, the 3D -1 \ |
LDOS is shown across the plane of a macroporous silicon 02 03 04 03 06

cluster enclosed by an air-jacket. The cluster is composed of
N.=37 hexagonally packed air-voids with an air-jacket of
radiusap/d=4.0. The frequencywd/2mc=0.443 is just be- FIG. 8. 3D LDOS vs frequency in macroporous siliq@ee Fig.

low the top of the complete in-plane gépee Fig. 6. En-  7) at (x,y)/d=(0.0,0.0 with an air-jacket(solid line) and without
closing the cluster by a jacket appears to have little impactdashed ling The inner pair of vertical lines indicates the edges of
on the spatial distribution of the 3D LDOS inside the cluster.the in-plane TM gap and the outer pair indicates the edges of the TE
As for an infinite silicon backgroun{B5], the 3D LDOS is  gap.

wd[2mc
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is 6p=1/19.2 overd wd/27c=0.0065 with the jacket, com-
pared todp=1/7.6 over§ wd/27c=0.0155 without. The
jacket also generally sharpens the oscillations in the 3D
LDOS.

The minor impact of the jacket on the 3D LDOS is largely
attributable to the size of the cluster. The 3D LDOS was
earlier shown to saturate rapidly with cluster size and is the
same inside the two outermost rings of air-voids regardless
of cluster sizg35]. This is because the 2D periodicity of the
2D PC only partially affects the 3D emission from a point-
source. As a consequence of the upward sloping out-of-plane
band structurgFig. 6), emission from the source at small

propagation angles is affected by the in-plane band structure s o9 Radiation component of the 3D LDOS &t,y)/d

at frequencies at and immediately below the frequency of g 0.9 in macroporous silicorFig. 7). The radiation compo-
interest. Summing over these propagation anglesn-plane  pent forN.=37 is plotted as a solid line, along with the total 3D
frequenciestends to dilute the impact of the 2D periodicity. | pos, plotted as a dashed line. The radiation component near the

The 2D periodicity has no impact at large propagationcomplete gap foN,=61 is also plotted as a dotted line.
angles, and summation over the index-guided modes pro-

vides a foundation to the 3D LDOS that is more concentrated his is attributable to the finite size of the structure, and
in the background than in the air-voids as the index-guide@btaining further suppression requires a larger structure. The
modes concentrate in the high dielectric region. The potentididdiation component foN:=61 cylinders(i.e., 4 rings is
suppression of the 3D LDOS in 2D PCs is thus limited. The2!S0 shown in the figure for frequencies near the complete
cluster examined is sufficiently large for the 3D LDOS to be9@P- Suppression continues to grow inside the gap with a

robust and therefore for the presence of the jacket to hav%:aximum suppression qi/ p,=1/5000 near the middle of
only a minor effect. the gap. Stronger suppression is likely in a larger structure.

The iacket radius for a aiven cluster also needs to bWhile the radiation component does not saturate rapidly with
€ . or a g . ; Cluster size like the total 3D LDOS, these two results are not
considered. With the air-jacket, there is a discrete spectru

) ) . consistent because the radiation component is making a
of bound modes whose number increases with the jacket ra- L
) . . S ery small contribution to the total.
dius. Clearly, the larger the jacket radius, the less significan

. : : The suppression of the radiation component is strongest
IS t_he g:hange in the 3D LDOS..However, given that a CIOSGIXNhen the pseudogap covers all radiation modes. The 2D PC
fitting jacket on a moderately sized cluster has been shown

have a minor impact, it is reasonable to expect that the 3 en behaves like an omnidi're_ctiorjal mirgig] and only
LDOS rapidly conver’ges to that in the infinite silicon back- supports bound modes. Omn|d|rect|onal reflect_ance hgs been
ground case with increasing jacket radius s_tud|ed both theoreUcaIIy_and experl_mentally in multilayer
' film [78] and the Bragg fibef79], which is composed of

alternating dielectric rings to achieve periodicity in the radial
direction. Omnidirectional mirror behavior in spontaneous

The 3D LDOS is indicative of the angle-integrated spon-emission where only emission into bound modes is sup-
taneous emission rate. Spontaneous emission rates in PG§rted has also been studied in multilayer f{ia8].
also depend on emission angle because associated with the At the top of the complete in-plane gap, a high density of
Bloch modes are directional Bloch vectors. Although the air-radiation modes wittB=0 (Fig. 6) is suddenly encountered
jacket does not significantly change the 3D LDOS, it allowsand the radiation component rises rapidly. Dispersion is low
3D LDOS to be Separated into its radiation and bound COMin thelg_direction at the top of the Comp|ete gap, resumng in
ponents. The radiation component is for emission into radiathelg content in the radiation component fanning out rapidly
tion modes that are oscillatory in dsee Fig. §. Experimen-  from g~0 as frequency increases. Above the complete gap,
tally, this component gives the spontaneous emission ratge radiation comprises nearly the total 3D LDOS, while the
integrated over all angles outside the cluster in the air'jaCkebound Component becomes Suppressed as the pseudogap
The bound component is for emission into bound modes thahoves from the oscillatory region into the evanescent region.
are evanescent in air and gives the spontaneous emission rﬁgwever, the pseudogap 0n|y ever covers a narrow range of
at the two opposing ends of the fiberlike structure. The rasyanescent modes and the impact on the bound component is
diation component at the center of the cluster is shown imot as significant as it is on the radiation component. The
Fig. 9, along with the total 3D LDOS for comparison. The yery heavy suppression of the radiation component of the 3D
difference between these two is indicative of the bound com{ pOS at the top of the complete gap, followed by the sud-
ponent. As all emission in free-space is into radiation modesgen burst of emission into radiation modes propagating near

the free-space LDOS remains an appropriate reference f@k-plane is perhaps the most striking band gap effect in spon-
the radiation component. Inside the TE gap, the radiationgneous emission in 2D PCs.

component drops rapidly with frequency and is suppressed _ )

by p/po=1/500 at the bottom of the complete in-plane gap. 4. Projected local density of states

Although almost all of the radiation modes are covered in- The 3D PLDOS for dipoles oriented in the x, andy
side the complete gap, suppression ceases to grow furthefirections [i.e., p(r,»,z), p(r,o,X), and p(r,w,y)] are

log;y[p/pol

.O —
wn

0.2 0.3 0.4
wd/2mc

0.6

3. Bound and radiation components
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FIG. 10. The 3D LDOS@a) and 3D PLDOS for anx-oriented dipole(b), a z-oriented dipole(c), and at ay-oriented dipole(d) in an
hexagonal cluster of air-void$ig. 7) at (x,y)/d=(0.0,0.0 (solid line) and(0.5,0.0 (dashed ling Also shown are the 3D LDOS and 3D
PLDOS at the center of a single isolated air-void in a silicon backgrqdotted ling and at(x,y)/d=(0.5,0.0, directly between two
adjacent air-voids positioned ét,y)/d=(0.0,0.0 and(x,y)/d=(1.0,0.0 in a silicon backgrounddash-dot ling

shown in Fig. 10. The 3D PLDOS at the center of the clustefollows. By Eq. (3), p(r,w,2) is determined by the
is plotted along with the 3D PLDOS at the center of a singlez-component of the modal fields, while(r,w,X) and
air-void in an infinite silicon background, but otherwise with p(r,»,y) are determined by theandy-components, respec-
the same parameters, to isolate band gap effects from singtively. For in-plane propagatio3=0), the former corre-
scatterer effects. The 3D LDOS is included and is simply thesponds to TM modes, while the latter corresponds to TE
sum of these three 3D PLDOS values at the coordinatesodes. For3>0, the modes are no longer decoupled, and
shown. At the center of the cluster, the 3D PLDOS for allthe modes emanating from the in-plane TM modes acquire
three dipoles exhibits the same band gap signature as the 3hdy-components, while the modes emanating from the in-
LDOS, falling smoothly and continuously inside the TE gapplane TE modes acquirezacomponent. As shown in Fig. 6,
with maximum suppression at the top of the complete gapthe integration ovep effectively draws in the in-plane band
The maximum suppression pf po=1/29.1 forp(r ,»,2) is,  structure at and below the frequency of interest. However,
however, significantly higher than the/p,=1/9.7 for for 8 small near the in-plane band gaps, dispersion in@he
p(r,m,X). Due to the symmetry of the structure(r,w,X)  direction is low, and it is reasonable to expect that the in-
and p(r,w,y) are virtually identical. Above the complete plane band structure immediately below will have the most
gap, p(r,w,?) jumps sharply higher bysp=129 over significant impact on the 3D PLDOS. Consequently,
Swd/2mc=0.0066, whilep(r ,»,%) climbs gradually. Above p(r,,2) remains closely tied to the in-plane TM band struc-
the TE gap,p(r,®,X) jumps higher, bup(r ,w,?) is unaf-  ture, whilep(r,w,%) andp(r ,w,¥) remain closely tied to the
fected. Thus, the 3D PLDOS at the center of the clustein-plane TE band structure.
undergoes both relatively strong suppression and modulation The 3D PLDOS in the background &t,y)/d=(0.5,0.0,
with frequency because its three 3D PLDOS componentbetween two adjacent air-voids at the center of the cluster, is
each undergo similar changes and reinforce each other. Foradso shown in Fig. 10. Along with this, the 3D PLDOS is
single isolated air-void in a dielectric background, singleplotted between the two adjacent air-voids without the sur-
scatterer effects are minor and comparing the 3D PLDOSounding cluster and jacket, again to isolate band gap effects
and 3D LDOS in the cluster with those in the isolated air-from local field effects. In the clustep(r ,w,2) is enhanced
void shows the suppression inside the in-plane gaps to beia the background with a band gap effect comparable to that
genuine band gap effect. Outside the gaps, the 3D PLDO# the center, but far less dramatic. There is little difference
and 3D LDOS in the cluster return to varying moderatelybetweenp(r ,w,y) in the cluster and between two isolated
around those of the single air-void. air-voids, and it is enhanced with no discernable band gap
The connection betweep(r,»,z) and TM modes, and effect. In contrastp(r , w,X) is heavily suppressed, again like
p(r,w,X) andp(r,w,y), and TE modes, can be explained asit is between two isolated air-voids, with a small superim-
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FIG. 12. Maximum suppression in the 3D LDOS aqre. Fig.
0.35 11) for givenn,.
0.3 inside the two outermost rings of air-voids, regardless of
0.42 0.44 0.46 0.48 cluster size, and the jacket has a minor effect, a cluster of
a;/d N.=19 air-voids in an infinite silicon background is used for
log,oLp/ ool E] efficient modeling. The gap map, which shows the TM and
~08-06-04-02 0 02 04 TE band gaps as a function af/ d, is also plotted. The band

gap signature observed in Fig. 8 is essentially reproduced for

FIG. 11. 3D LDOS vs frequency argj in macroporous silicon  varyinga,/d. When the top of the TE gap is above the top of
at(x,y)/d=(0.0,0.0. The cluster is composed &f;=19 air-voids  the TM gap, the 3D LDOS also exhibits a second minor
in an infinite silicon background. The plot is overlaid with the cor- trough. Although the TM gap continues to expand vathd
responding gap mapwhite lineg, with thick lines indicating the  gnd the complete gap is widest &fd=0.473, the greatest
edges of the TM gap and thin lines indicating the edges of the TEsuppression occurs ap/d=0.45 where the TE gap is widest.
gap. The most distinct feature of the 3D LDOS in macroporous

silicon is the strong suppression of approximately one order

posed band gap effect so that at the top of the completef magnitude at the top of the complete in-plane gap. Figure
in-plane gapp/py,=1/280. As a consequence of these three12 shows how this feature depends on the background refrac-
results, the 3D LDOS is moderately enhanced in the backive index. The maximum suppression for a givaid is
ground similarly top(r ,,2), but with smaller variations.  plotted for refractive indices of several important PC mate-

While band gap effects are most significant in the air-rials. Plots are shown for the refractive indices of glasses that
voids, local field effects are most significant in the back-have been used to fabricate fibeng=1.45 (silica glasses
ground. The highly polarized results in the background are2.0 (high lead concentration glasgeand 2.5(chalcogenide
due to the very narrow dielectric vein between two closeglassey [81]; and for materials that have been used or may
adjoining air-voids. This leads to a strong anisotropy in thebe used to fabricate PCs: 3(81,05 [49]), 3.4 (silicon [50]
depolarization factors for the field parallel to tkeriented and GaAs, and 4.0(germaniumy. The maximum suppression
dipole and the fields parallel to tlze andy-oriented dipoles. and thea/d at which this occurs are also shown in Table II.
It is beyond the scope of this paper to evaluate these depa@s n, increases, the maximum suppression increases, and the
larization factors. However, spontaneous emission in elliptig;/d at which this occurs are also increases. This result is
cal particles was examined recen80], and the results bear again closely tied to the band structure. Asincreases in
some consideration. The limiting depolarization factor forthis type of structure, both the width of the in-plane gaps and
eccentricitye— 1 (i.e., infinite semimajor axjsfor the field  the a/d at which these are widest on the gap map also in-
parallel to the semiminor axis i§— 1/n% while for the
semimajor axisf—1. This suggests that the spontaneous TABLE II. Minima in the 3D LDOS shown in Fig. 12. The
emission rate for a dipole oriented parallel to the narrow sidejr-void radius(a,/d) and the maximum suppressiéng[p/ po]) for
of a highly elongated dielectric region will be heavily sup- eachny is tabulated, along with the frequenéy,/27c) at which it
pressed, while for a dipole parallel to the long side, the sponeccurs.
taneous emission rate will be relatively unchanged. It is alse
consistent with heavy suppression in tk@riented dipole No al/d lodlp/ pol wd/27mc
while the z-oriented dipole is relatively unaffected.

1.45 0.4300 -0.0724 0.506

5. Exploration of parameter space 2.00 0.4125 -0.2800 0.496
Macroporous silicon has so far been considered with a 2.50 0.4250 -0.5777 0.472
fixed air-void radius of,/d=0.45. Figure 11 shows how the 3.00 0.4375 -0.8246 0.454
3D LDOS changes whea/d is varied. The plot depicts the 3.40 0.4500 -0.9551 0.440
3D LDOS at the center of the cluster as a function of fre- 4 g 0.4650 -1.0718 0.424

quency, as in Fig. 8. As the 3D LDOS is essentially the same
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The section of Fig. 14 atwd/2mc=0.48 with N.=49 is shown
(solid-bold ling along withN;=1 (dotted ling, 9 (dashed ling and
E25 (dash-dot ling but otherwise using the same parameters.

FIG. 13. 2D band structure for a square array of dielectric cyl-
inders in air(PC2. The array parameters aesg/d=0.15,n,=3.0,
andn,=1.0. The TM modes are shown as a solid line and the T

modes are shown as a dashed line. )
2. Local density of states

crease. However, with only 2D confinement, maximum sup- 1he 3D LDOS across the plane of a clusterhf=49
pression is not significantly stronger when the refractive in-dielectric cylinders is shown in Fig. 14. The frequency is

dex contrast is high, and is effectively limited to/p, ©d/27C=0.48, and lies just below the top of the TM gap.
~1/15in a 2D PC. Like PC1(see Fig. J, the 3D LDOS is essentially the same

across each unit cell in the cluster, particularly inside the
outermost square-ring of cylinders. It is also suppressed in-
B. Square cluster of dielectric cylinders in air (PC2) side the cylinders, but the most significant effects occur at
the cylinder surface. The 3D LDOS is suppressed by a factor
of p/py=1/2.7 at the center, strengthening a little dbpg
The second structure examined is a square cluster of dk1/4.2 just inside the cylinder surface. At the surface, the
electric cylinders in an air backgrourﬁBCZJ. The main em- 3D LDOS then jumps sharply by almost one order of mag-
phasis is on a cluster of cylinders of radiggd=0.15 and  nitude and is enhanced Iy p,=2.1 just outside, before fall-
refractive indexn=3.0 in an air backgroun¢h,=1.0. The ing to near-zero between the cylinders.
in-plane band structure for the underlying lattice is shown in  The dependence of the 3D LDOS on cluster size is dem-
Fig. 13. In contrast to the previous 2D PC, TM gaps areonstrated in Fig. 15 where it is shown in one cylindik,
favored in this type of 2D P{8] and it has a wide TM gap =1) and clusters of onéN,=9), two (N,=25), and three
in the frequency rangewd/2mwc=0.375-0.481 (Aw/wy  (N,=49) square rings of cylinders. The variation of the 3D
=24.9%, but no TE gaps. LDOS with position inside the cluster shown in Fig. 14 is
also made clearer. The figure shows that the 3D LDOS in a
single cylinder is significant, and it is suppressed by a factor
of p/pp=1/1.5 at the center, growing o/ pp=1/2.4 inside
the cylinder surface and then jumping just outside to be en-
hanced byp/py=2.3. Adding square rings of cylinders re-
sults in stronger suppression inside the cylinders, but again
the suppression saturates rapidly with cluster size, and the
maximum suppression is achieved once there are two or
more rings. The 3D LDOS is also essentially the same with
distance from the outer boundary, regardless of cluster size.
The significance of cluster size is also demonstrated in
Fig. 16 where the 3D LDOS is shown at the surface of the
central cylinder of the cluster as a function of frequency. This
is done for the same clusters as in Fig. 15. The result for a
single cylinder is again shown to be significant, and the 3D
LDOS is suppressed at low frequencies, rises approaching
-4 -2 0 2 4 the bottom of the TM gap, falls inside the gap with a mini-
x/d mum near the top of the gap, then rises again above the gap.
Ly In a cluster of cylinders, the band structure manifests itself as
- S suppression in the 3D LDOS relative to that in the single
FIG. 14. 3D LDOS across the plane of a square cluster of dicylinder inside the TM gap, and enhancement surrounding
electric cylinders in air. The frequency isd/27c=0.48 and the the gap. The band gap signature is similar to that for PC1,
cluster parameters an¢.=49, a/d=0.15,n,=3.0, andn,=1.0. with growing suppression inside the in-plane gap and maxi-

1. Band structure

e o

© o o 0o 0 o o
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© © 0 0o 0 o o
© © o 0 0 0 o
© 0 0 0o 0 o o

066608-13



FUSSELL, McPHEDRAN, AND MARTIJN de STERKE

-0.2

logyy[0/po]

-0.6

-041,

0.1

0.2 0.3 0.4

wd/[2nrc

0.5 0.6 0.7

PHYSICAL REVIEW EO, 066608(2004)

Above the TM gap, this size effect is far less significant, and
at high frequencies the 3D LDOS in a cluster is close to that
in a single cylinder.

3. Projected local density of states

In Fig. 17, the 3D LDOS is shown along with the 3D
PLDOS for dipoles oriented in the x, andy directions. The
3D LDOS and 3D PLDOS on the surface of a single isolated
dielectric cylinder are also shown to isolate band gap effects
from single cylinder effects. The close connection between
p(r,w,2) and TM modes described earlier for PC1 is again

FIG. 16. 3D LDOS vs frequency for varying cluster sizes. TheeVidem' The band gap effect pir, ,2) is strongest in the

3D LDOS is taken atx,y)/d=(0.15,0.0 (re. Fig. 14 for N,=49

(solid-bold ling, N.=1 (dotted ling, N.=9 (dashed ling and N, '
=25 (dash-dot ling The pair of vertical lines indicates the edges of =1/6.1 at the top of the gap. With no TE gap, there are no
the in-plane TM gap.

background atx,y)/d=(0.5,0.0 wherep(r ,w,2) drops sig-
nificantly inside the TM gap and is suppressed p,

significant band structure effects jitr , w,X) andp(r,,9).
Both are heavily suppressed pyp,=1/18.6 inside the cyl-

mum suppression at the top. However, with a gap in only onénders atwd/27c=0.1, but this is a single cylinder effect.

polarization, the maximum suppression is well below the one

In the long wavelength regime in a single cylinder, there

order of magnitude obtained in macroporous silicon. Thes strong polarization anisotropy between dipoles oriented
rapid saturation in the suppression of the 3D LDOS at the tofparallel and perpendicular to the cylinder axis. This is again
of the TM gap with cluster size is also again clear.
At low frequencies below the TM gap, the 3D LDOS tion factors, discussed earlier for PC1. In fact, this result
exhibits significant and rapid oscillations whose number andoncurs with recent experime[82]. The polarized photolu-
density depend on the cluster size. These are attributed torainescence(PL) in indium phosphide nanowireg,=3.5
long-wavelength regime where the whole cluster behavewas measured using a polarized pump beam. This was done
like a single homogenized scatterer, possessing a frequencipr polarization parallel to the cylinder axis, probing
dependent effective refractive index. The local peaks in the(r,w,z), and perpendicular, probingr,w,X), in the long
3D LDOS represent resonances, whose number and locatiomavelength regime. Order-of-magnitude polarization aniso-
depend upon the size and effective index of the structureropy was observed, consistent with the results in Fig. 17.
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FIG. 17. 3D LDOS(a) and 3D PLDOS for arx-oriented dipole(b), a z-oriented dipole(c), and ay-oriented dipole(d) at (x,y)/d

=(0.15,0.0 (solid line), (0.0, 0.0 (dashed ling and (0.5, 0.0 (dash-dot ling Also shown are the 3D LDOS and 3D PLDOS for one
dielectric cylinder a{0.15,0.0 (dotted ling.

066608-14



THREE-DIMENSIONAL GREEN’S TENSOR, LOCAL.. PHYSICAL REVIEW E 70, 066608(2004)

Similar to PC1, band gap effects in PC2 are most signifiinanifests itself as a distinct signature in the 3D LDOS at the
cant in the low dielectric region, while the most significant center of the air-voids. The suppression in the 3D LDOS, and
local field effects occur in the high dielectric region. The spontaneous emission, get progressively stronger with fre-
interesting features in the 3D LDOS in PC2 are largely at-quency inside the TE gap and reach a maximum of one order
tributable to the TM band structure througir , ,2). While ~ of magnitude at the top of the complete gap. The 3D LDOS
the suppression inp(r,w,?) is strongest at(x,y)/d then jumps sharply higher above the gap. Enclosing the clus-
=(0.5,0.0, this does not occur in the 3D LDOS because!®’ With an air-jacket to form a fiberlike 2D PC does not
there is no support from(r ,w,%) and p(r ,®,§). The sup- significantly change this signature. However, the jacket is an

S . . important extension because it is a more realistic geometry
pression In theA 3D. LDO.S Is strongest at the cylinder Surfac‘?han an infinite silicon background, and it means that PC
where p(r,w,z) is still significantly suppressed, and '

fibers, which are an important class of 2D PC, can be mod-

p(r,»,%) andp(r,w,y) are also suppressed. eled. Furthermore, the jacket allows the 3D LDOS to be
separated into its radiation and bound components. Experi-
VI. DISCUSSION AND CONCLUSIONS mentally, the radiation component is detected outside the

cluster in the transverse direction, while the bound compo-

The 3D Green'’s tensor is a versatile tool that can be usegent is detected at the ends of the 2D PC. In 2D PCs like
to obtain the 3D LDOS, but a method is required that giveamacroporous silicon, which have a wide complete in-plane
the real and imaginary components separately and to higbap, the radiation component can be almost completely sup-
accuracy, and keeps them apart from the divergent real conpressed just below the top of the complete gap. At the top, a
ponent at the source position. By employing a combinatiorhigh density of radiation modes propagating close to in-plane
of a Fourier contour integral and a Rayleigh-multipole is suddenly encountered, and the radiation component jumps
method, a highly efficient and accurate approach has beesharply. This result would be observed as the radiation com-
demonstrated for calculating the 3D Green’s tensor in 20ponent rapidly switching on about the edge of the gap and
PCs composed of cylinders. The multipole method uses grovides perhaps the strongest experimental measure of band
field expansion that is consistent with the geometry of thegap effects in spontaneous emission in 2D PCs.
problem, giving it several major advantages over the alterna- The band gap signature in the 3D LDOS also occurs in
tives. First, the boundary conditions are enforced analyticalljjhe 3D PLDOS. At the center of the air-voigsy , w,2) ex-
rather than through a Fourier series, avoiding the converhibits the strongest features and is suppressed by a factor of
gence challenge posed by high dielectric contrast for plane30 at the top of the complete gap before rapidly jumping
wave methods. Second, a simple semianalytic expression fever two orders of magnitude higher above the gap. The
the fields is obtained with the source field separate from thetrongest suppression in the 3D PLDOS occurs in the back-
scattered field. Third, an elegant identity is obtained fromground between two adjacent air-voids wheie,w,X) is
which the eigenvalue problem can be solved and the fielduppressed by more than two orders of magnitude over a
coefficients determined with a single matrix inversion.large frequency range. However, this is a local field effect
Fourth, convergence in the field expansions is superior, alattributable to the narrow width of the dielectric vein rather
lowing EM problems in complex structures to be investi-than a band gap effect. The dependence of the band gap
gated on a desktop computer. This also allows the large pasignature on air-void radius and background refractive index
rameter space of PCs including lattice geometry, cylindemwas also examined. As might be expected, the strength of the
size, and refractive index contrast, to be explored. Finallysuppression depends on the width of the gaps. As the air-void
with well-developed theory for Bessel functions in complexradius increases, the TM gap widens while the TE gap wid-
space, the Fourier transform required for the 3D Green'’s tenens then narrows, and the suppression is strongest when both
sor can be evaluated efficiently on an appropriately chosegaps are wide. As the refractive index increases, the com-
complex contour, giving the real and imaginary componentplete gap widens, however suppression is essentially limited
separately. This also allows the approach to deal with théo one order of magnitude for realistic values, again because
complex parameters of materials with gain or loss. the periodicity of the 2D PC only affects two of the three

The 3D Green's tensor was used to perform a large-scaldimensions of wave propagation.
investigation into spontaneous emission in 2D PCs. A com- The second structure examined was a 2D PC composed of
prehensive collection of LDOS results has been produced square cluster of dielectric cylindeBC2. In contrast to
and reconciled with the band structure. The results have ald8C1, PC2 has a large TM gap, but does not have a complete
been compared to those for a single scatterer to isolate genin-plane gap. The band gap produces a signature in the 3D
ine band gap effects from local field effects. The 3D LDOSLDOS similar to that in PC1, but with no complete in-plane
has been examined as a function of frequency and positiorgap, suppression is limited to about a factor of 5. Also, the
along with the dependence on PC parameters like lattice corBD LDOS increases gradually above the gap rather than
figuration, cylinder radius, and refractive index contrast. Thgumping sharply. This signature again occurs inside the cyl-
3D LDOS has also been decomposed into its radiation anghders, but is strongest at the cylinder surface rather than the
bound components, and also the 3D PLDOS, which are bothenter. The signature is strongestpift ,w,2) because of its
more sensitive probes of band gap effects. close connection with the TM band structure, but the sup-

The first structure examined was a 2D PC composed of aression at the top of the TM gap remains below one order of
hexagonal cluster of air-voids in a dielectric backgroundmagnitude. In contrast to PC1, single cylinder effects are
(PCJ. This 2D PC has a complete in-plane band gap thasignificant in PC2 and are attributable to confinement in a
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dielectric cylinder in air. The 3D LDOS in one cylinder
shows relatively strong variations with position and fre-

quency that are similar to those in a cluster, but smaller,

While there are no significant band gap effectpin, w,X)

andp(r,w,¥), both are suppressed by well over one order of

magnitude at long wavelengths.
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APPENDIX A: HOMOGENEOUS GREEN’'S TENSOR

The homogeneous 3D Green’s tensgy, presented in the
following is obtained using Eq13) in Eq. (11). Noting that
GE is a symmetric tensor whil&! is an antisymmetric ten-

sor, only the upper-triangular components are shown. Also,

only the Fourier transform is shown, afj, can be obtained

as in Sec. Ill. The components @ in Cartesian coordi-
nates are

GEZZ——L(l (f)z)w”(k,,m i
G- % HO (k lp — p'[)c0S ¢,
G =~ 4(ik)2 HP (K |p = p')sin ¢,
3, —‘5{(1 (fz)z)H“(k p-p')

2
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E
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4(k )ZH(l)(k |p P |)Cos¢pp'3|n d)pp ’ (Al)

whereg,,,=argp—p’). The nonzero components éﬁf are

ik
Gh.= —4’-’H(1 (klp—p'Dsin ¢,
- ik
Gryz= = HT (klp = p'Dcos b,
B )
Ghy= 2H klp—p')). (A2)
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APPENDIX B: SOURCE COEFFICIENTS

The expressions for the source coefficierts, and Q!,,
follow from using Graf’s addition theorem to write

HE (Kol = p'D= 2 HE (Kp)Jp(k,p) P 2P
p=—o
(B1)

where p-=max|p-p||,|p'-p|) and p-=min(lp-p|,|p’
-pi|). Also, the differentials in Eq15) are rewritten in terms
of source coordinates using the reciprocity propertie& Qf
which givesD’E=DE and D' '=Df!. Applylng these differ-
entials to Eq(B1) in the matrlx then g|veKm, with nonzero
components

BZ
(kn)

KzErl'n: (1 - ) H%)(kppls)e_im%-

iBK )
= Syl Hia(kopro)e™ T~ i,

X (Koprs) €™ M%),

El — _

ym~ ~ a(k PIs)€ (s 4 H(D

2(k )2[H
X (K pg)e M D],

KHI _Q[H 1(ka S)e—l (M) s 4 H(l)l(k Pls )e |(m—1)z,b|s]

K;'rln _E[H(l)l( ps)e_l(m_ ¢IS_Hm+1( ppls)e_i(m+l)¢ls]y

(B2)

where (pis, $1s) =(ps—py). The Q'm coefficients are similar
with H replaced by, The expressions fdt2, andQ? are
obtained upon setting,=0

APPENDIX C: BOUNDARY CONDITIONS

The boundary conditions are determined here for a cylin-
der of radiusa centered at the origin of a cylindrical coordi-
nate systemz,p, ). Quantities inside the cylinder are de-
noted “-,” and those outside are denoted “+.” The
z-components of the fields in the vicinity of the cylinder

surface are expressed as

VE= D AN 3K p) + B HD (Kp) 1™, (CY)

m=—o

whereV e {E,H} and k;=\k’ni- % The boundary condi-
tions are that the tangential field components, that iszthe
and ¢ components, be continuous at a cylinder surface. For
example, for thez-components of th& field,
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1 K™ 2i

TH = —mH'J PR

WhereJ%=Jm(k;a), etc. The linear relations for the coeffi- 5m KK,

cients that result from the boundary conditions can be written

A =T A"+RB7,

Am I * By Hin = AR+ BRHE, (C2)

HE+ _ |2 2TEH+
T =kniT, T,

+

k 2i

B*=R'A*+T*B", (C3) THHe

whereR andT are the reflection and transmission matrices,
respectively. The exterior reflection matrix is

EE+ pEH+
w%m %]

The components of the internal reflection matrix are

(o%) 1
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1
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m
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Ry = 5_[(a'J‘J+ — ay ) (NZagy+ = Niay+y) . . - .
m The components of the interior transmission matrix are
-mPIH I %], (CH) -
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1 k 2i
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and whereny+=J';Hr K, etc. Similarly, the components of THE = 1@n2TEr,
the exterior transmission matrix are
k+ 2i _ o 2i
EE 2 HH-_ = Bp 2 £
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