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The three-dimensional local density of states(3D LDOS), which determines the radiation dynamics of a
point-source, in particular the spontaneous emission rate, is presented here for finite two-dimensional photonic
crystals composed of cylinders. The 3D LDOS is obtained from the 3D Green’s tensor, which is calculated to
high accuracy using a combination of a Fourier integral and the Rayleigh-multipole methods. A comprehensive
investigation is made into the 3D LDOS of two basic types of PCs: a hexagonal cluster of air-voids in a
dielectric background enclosed by an air-jacket in a fiberlike geometry, and a square cluster of dielectric
cylinders in an air background. In the first of these, which has a complete in-plane band gap, the 3D LDOS can
be suppressed by over an order of magnitude at the center of the air-voids and jumps sharply higher above the
gap. In the second, which only has a TM gap in-plane, suppression is limited to a factor of 5 and occurs at the
surface of the cylinders. The most striking band gap signature is the almost complete suppression of the
radiation component of the 3D LDOS when the complete in-plane gap is sufficiently wide, accompanied by a
burst into the radiation component above the gap.

DOI: 10.1103/PhysRevE.70.066608 PACS number(s): 42.70.Qs, 32.80.2t, 42.50.Dv

I. INTRODUCTION

Spontaneous emission may be regarded as one of the con-
sequences of vacuum fluctuations, which Purcell[1] origi-
nally recognized were not immutable, but could be radically
modified inside a cavity. Spontaneous emission can be both
enhanced on-resonance[1] inside a cavity and suppressed
off-resonance[2,3], relative to its rate in free-space. In fact,
all that is required to modify spontaneous emission is for the
density of photon states(DOS) to be altered, as has been
demonstrated near a reflecting interface[4,5].

Originally proposed by Yablonovitch[6] and John[7],
photonic crystals(PCs) are an area of rapidly growing inter-
est, offering new possibilities for controlling the propagation
of light [8]. Bragg scattering in the periodic dielectric struc-
ture of a PC can yield a photonic band gap(PBG) that pro-
hibits propagation over a range of frequencies. The existence
of the PBG is now well established by band structure calcu-
lations and the reconciliation of theory and experiment in
reflection and transmission spectra[9]. A PC also dramati-
cally rearranges the DOS about a PBG[6], transforming the
emission characteristics of an embedded radiating source.
The modified DOS can lead to inhibited spontaneous emis-
sion [6], the localization of photons[7], photon-atom bound
states[10], and an anomalous Lamb shift[10–13]. A sharp
band edge jump in the DOS also leads to novel non-
Markovian effects that include fractionalized steady-state
and oscillatory spontaneous emission[12,14–19], spectral
splitting and subnatural linewidth[14], low threshold and
rapid atomic switching[18,20], superradiance[15,21,22],
and coherent phenomena[23–25].

Control of spontaneous emission has immediate applica-
tion to improved efficiency in semiconductor devices like

lasers, diodes, and solar cells[6], and possibly to new tech-
nologies like low-threshold lasers, ultrafast optical switches,
all-optical transistors, and memory devices[18]. Despite
these prospects, theory and experiment on spontaneous emis-
sion are far from being reconciled. Experiments on sponta-
neous emission have been conducted using luminescent dye
impregnated in colloidal crystals[26–28] and opals[29–31],
but the interpretation of the results has been impeded by a
lack of applicable theory[31]. Furthermore, these experi-
ments probe the DOS, which characterizes spontaneous
emission averaged over a unit cell. PCs redistribute the DOS
both in frequency and space, and the spatially resolved or
local density of states(LDOS) [32,33] is the fundamental
quantity that determines radiation dynamics. Non-Markovian
effects were somewhat contentious as the isotropic and an-
isotropic band edge models adopted are not supported by the
quadratic behavior for the DOS usually observed in 3D PCs
[34]. However, recent accurate modeling of radiation dynam-
ics using the LDOS in real absolute gap PCs has demon-
strated the nonexponential decay phenomena predicted by
these band edge models[19].

An experimental probe of the LDOS would require the
measurement of radiation from a pointlike source(e.g., lu-
minescent atom or molecule, quantum dot or dipolar an-
tenna) at a particular location inside a finite-sized PC[35].
To-date, LDOS calculations have been limited to idealized
PCs. The LDOS can be calculated for infinitely periodic two-
dimensional(2D) and three-dimensional(3D) PCs using the
Bloch method. This has been done for an array of cylinders
[33], an array of spheres[33,34], and the cylindrical wood-
pile [36]. The LDOS has also been calculated for finite one-
dimensional structures using multiple scattering theory[37]
and the transfer matrix method[38]. Spontaneous emission
rates in finite-sized PCs can be inferred from the classical
dipole radiation power using the finite-difference time-*Email address: fussell@physics.usyd.edu.au
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domain(FDTD) method[39], by first assuming exponential
decay. The main deficiency of this approach is computational
inefficiency. The whole field across the structure is required
to be evaluated for a single dipole orientation and typically
only the emission rate for a few dipole orientations and po-
sitions is obtained. This has been done in 2D PCs composed
of dielectric cylinders[40], the 2D slab structure[40,41], and
the 3D inverted opal[42]. Large-scale investigations would
be computationally prohibitive. Furthermore, the LDOS is
the fundamental quantity that determines radiation dynamics
and inferring the LDOS from the emission rate would need
to be justified.

The preferred approach is to obtain the LDOS in a finite-
sized PC via the Green’s tensor. An accurate and efficient
approach has been demonstrated for calculating the Green’s
tensor in finite stratified media[43]. The Green’s tensor in
more general finite-sized dielectric structures can be obtained
by solving Dyson’s equation[44]. Like the FDTD method,
the structure is required to be discretized, limiting computa-
tional efficiency. Although this can be improved significantly
by adapting the approach to the geometry of the medium, as
has been done for a dielectric disk[45].

Recently, it was shown that a Rayleigh-multipole method
can be used to calculate the Green’s tensor accurately and
efficiently in an arbitrary arrangement of aligned circular cyl-
inders of infinite length[46]. This was used to calculate the
2D Green’s tensor and the 2D LDOS, which apply to an
infinite line-source, in a finite cluster of cylinders. It has
since been shown that this approach can be extended to the
3D case for a point-source using a Fourier integral[35].

Although 3D PCs with complete 3D PBGs exhibit the
strongest PBG effects, 2D PCs with complete 2D PBGs and
partial 3D PBGs hold both substantial theoretical[8,47,48]
and experimental[49,50] interest. They have taken many
forms, including alumina cylinders in the microwave[49,51]
and air-cylinders in glass[52], photonic crystal fiber[53],
and 2D PC slab[54–56]. However, macroporous silicon
[50], composed of a hexagonal array of cylindrical air-pores
in a silicon background, remains the best example of an es-
sentially ideal 2D PC system with a robust complete 2D
PBG. This system is fabricated with an aspect ratio(pore
height to pore diameter) of 100–500 and a pore separation
leading to a PBG in the technologically important 1.5mm
wavelength range. While interest in 2D PCs is in part be-
cause of the relative ease of their fabrication, they also have
numerous potential applications in their own right. These
applications are usually based on 2D structures that contain
defects[49,50] or a degree of stratification in the third di-
mension for confinement[54,57], and include basic optoelec-
tronic components like waveguides[54,58,59] and resonant
cavities [58,60], and more specific applications like fibers
[53], lasers[61,62], and fiber lasers[63], among others.

This paper begins with a short description of the connec-
tion between radiation dynamics, in particular spontaneous
emission, the LDOS, and Green’s tensor in Sec. II. In Sec.
III, the multipole method is detailed and extended to treat the
more general geometry of a cluster of cylinders enclosed by
a jacket. The computationally delicate treatment of a key
Fourier integral is also addressed. In Sec. IV, the numerical
implementation of this approach is validated by convergence

testing. In Sec. V, the 3D LDOS is calculated as a function of
both position and frequency and compared to the band struc-
ture. The sensitivities of the 3D LDOS to cylinder radius and
refractive index contrast are also examined, along with the
3D-projected-LDOS(3D PLDOS). Finally, in Sec. VI, the
results are summarized and their significance discussed.

II. SPONTANEOUS EMISSION, THE LDOS AND GREEN’S
TENSOR

The radiation dynamics of a fluorescent source embedded
in a host medium involves the source coupling to and inter-
acting with the electromagnetic mode structure of the me-
dium. The role of mode structure in radiation dynamics is
completely embodied in a single quantity—the local density
of states(LDOS) [15]. The focus here is on spontaneous
emission, where a two-level atom decays from an excited
statesuald into a ground statesubld by making an electric-
dipole transition, and emitting a photon of energy"vab in the
process. In 2D PCs, the LDOS is a sufficiently smooth func-
tion of frequency for the usual Weisskopf-Wigner theory of
spontaneous emission[64] to apply. The decay is then expo-
nential and the spontaneous emission rate is given in the
electric-dipole approximation by Fermi’s golden rule[65],

Gsr d =
2p

"2 o
f

ukf um̂ · Êsr duilu2dsvi − v fd, s1d

whereuil and ufl are the initial and final state vectors of the

atom-field system, andm̂ andÊsr d are the electric dipole and
electric field operators, respectively. As shown by Sprik, van
Tiggelen, and Lagendijk[32], the LDOS arises naturally
upon splittingGsr d into its atomic and field components,

Gsr d =
"vab

2

2pukaum̂ublu2

e0"2 rsr ,v,p̂d, s2d

where kaum̂ubl is the dipole transition moment andp̂ is the
orientation of the dipole. In Eq.(2), rsr ,v ,p̂d is the LDOS
for a particular dipole orientation, or projected-LDOS
(PLDOS), and is defined as

rsr ,v,p̂d = o
l

up̂ · Cl
Esr du2dsv − vld. s3d

The PLDOS is determined by the eigenfrequencies and
eigenfunctions,vl andCl

Esr d, of the Helmholtz equation in
the host medium

= 3 = 3 Cl
Esr d −

vl
2

c2 nsr d2Cl
Esr d = 0, s4d

wherensr d is the spatially dependent refractive index. The
normalization condition applying to the eigenfunctions con-
tains the weightingesr d,

E d3resr dCl
E*sr d · Cl8

Esr d = dl,l8. s5d

The PLDOS is usually defined without this weighting(e.g.,
Ref. [33]) so that at positions in material it has a material
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component in addition to the radiative component given by
Eq. (3) [32]. However, it is the radiative component that
appears explicitly in Eq.(2), and it is thus considered the
more appropriate definition for determining spontaneous
emission rates. The LDOS for a randomly oriented dipole
source is obtained by averaging Eq.(2) over dipole orienta-
tion and absorbing the resulting 1/3 factor into the atomic
part, giving

rsr ,vd = o
l

uCl
Esr du2dsv − vld. s6d

In a periodic structure, the usual DOS can be obtained by
integrating Eq.(6) over a unit cell and using the normaliza-
tion condition, Eq.(5), which gives

rsvd = o
l

dsv − vld. s7d

The LDOS describes the local availability of modes to
which a source can couple and emit a photon. It is clear from
Eq. (6) that in general it varies with position. The DOS is
still an important component in the LDOS, and in a complete
band gap where the DOS is zero, the LDOS is also every-
where zero. However, the modes in a PC have nodes and
antinodes separated by distances of the order of the wave-
length of light[8]. This is typically three orders of magnitude
greater than the size of an atom, so the LDOS and spontane-
ous emission rate can vary strongly with position when the
DOS is nonzero. If modes have a preponderance of nodes at
a certain position, then the LDOS can still be heavily sup-
pressed. This is particularly relevant to the 2D PCs consid-
ered here, which have 3D pseudo gaps, but do not have 3D
complete gaps. Spontaneous emission can also be enhanced
when the DOS is enhanced, and Eq.(6) suggests that the
enhancement is largest at locations where the relevant modes
tend to have antinodes.

In periodic structures, the LDOS[Eq. (6)] can be evalu-
ated directly by solving the eigenvalue problem(4) [33]. In
finite structures, the preferred approach is via Green’s func-
tion, or tensor[66,67]. The 3D Green’s tensor describes the
response of a medium to a point-source, as opposed to the
2D Green’s tensor for an infinite line-source[68]. It is a
powerful tool in electromagnetism(EM) that can be used in
wave scattering from arbitrary source distributions[69], per-
turbation analysis[67], or simply to produce the emission
pattern from a point-source. For a dipole point-source, the
3D LDOS is given by the trace of the electric Green’s tensor
sGEd [66],

rsr ,vd = −
2v

pc2ImhTrfGEsr ,r ;vdgj. s8d

Note that the 3D LDOS is determined by the imaginary part
of GE at the location of the source. The 3D PLDOS is ob-
tained after contractingGE by p̂,

rsr ,v,p̂d = −
2v

pc2Imhp̂T · fGEsr ,r ;vdg · p̂j. s9d

It is easy to show that in a homogeneous medium with re-
fractive index n, ImhG0uu

E sr ,r dj=−nv /6pc; ∀uP hx,y,zj.

Using this in Eq.(8) then yields the familiar expression for
the DOS in a homogeneous medium,rsvd=nv2/p2c3

=nr0svd [70], wherer0 is the DOS in free-space.

III. FORMALISM

The 3D LDOS in a 2D PC composed of a cluster of cyl-
inders is obtained here from the 3D Green’s tensor, which is
calculated using a combination of a Fourier integral and a
Rayleigh-multipole method. This involves a 3D full-vectorial
treatment of EM wave scattering[69,71,72]. The 3D Green’s
tensor is a 333 matrix (or dyadic), Gsr ,r 8d, where the ele-
ment Guvsr ,r 8d is the u coordinate of the field atr for a
dipole point-source oriented in the direction of thev coordi-
nate located atr 8. Both the electric,GE, and magnetic,GH,
Green’s tensors are evaluated in a piecewise homogeneous
dielectric medium with refractive indexnsr d=Îesr d. This is
done by solving the vector EM wave equations for a point-
source in the form[69]

= 3 = 3 GEsr ,r 8d − k2nsr d2 GEsr ,r 8d = − I dsr − r 8d,

= 3 = 3 GHsr ,r 8d − k2n sr d2GHsr ,r 8d

= − = 3 I dsr − r 8d, s10d

wherek=2p /l=v /c is the vacuum wave number andI is
the dyadic identity. Note thatGE andGH are coupled by the
boundary conditions, to be discussed in Sec. III B.

The general scattering geometry considered is a dipole
point-source embedded in a finite cluster ofNc circular cyl-
inders of infinite length, enclosed by a cylindrical jacket
(Fig. 1). The radius of thelth cylinder is denoted byal, and
its refractive index bynl. The cylinders are embedded in a
background of refractive indexnb, which is in turn enclosed
by a jacket of infinite extent that has a refractive index ofn0,
and an inner cylindrical boundary of radiusa0. The cluster is
arranged in a cylindrical coordinate system,sz,rd=sz,r ,fd,
with the cylinder axes aligned with thez-coordinate and the
jacket centered on the origin. The point-source coordinates

FIG. 1. The cross section of the scattering geometry composed
of an arbitrary arrangement of cylinders with radiusal and refrac-
tive indexnl, embedded in a background with refractive indexnb,
and enclosed by a jacket with inner radiusa0 and refractive index
n0.
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are denotedr 8=sz8 ,r8d and the coordinate of thelth cylinder
by rl =srl ,fld. Cartesian coordinates,r=sx,yd, are also used.
The addition of a jacket allows for cylinders to be embedded
in a background dielectric of finite extent(nb.1 with n0
=1), extending the previous work in Ref.[35], which only
allowed for a background of infinite extent. In summary,
while this scattering geometry is 2D, the wave propagation
from a point-source is 3D, leading to a 2.5D EM problem
[69].

A. Homogeneous Green’s tensor

The 3D Green’s tensor in an infinite homogeneous me-
dium, wherensr d=n for all r , is first examined to find an
appropriate source-field expression. The homogeneous
Green’s tensor,Gnsr ,r 8d, can be obtained from the scalar
Green’s function,gn, using[69]

Gn
Esr ,r 8d = FI +

= =

sknd2Ggnsr ,r 8d,

Gn
Hsr ,r 8d = = 3 I gnsr ,r 8d, s11d

wheregn is the solution to the Helmholtz equation,

f=2 + sknd2g gnsr ,r 8d = dsr ,r 8d. s12d

There are several different expressions forgn that follow
from adopting particular spectral decompositions of the
source. The expression adopted here, using cylindrical coor-
dinates, is[69]

gn = −
i

8p
E

−`

`

dbeibsz−z8d H0
s1dskrur − r8ud, s13d

whereH0
s1dszd is the zeroth order Hankel function of the first

kind, kr=Îsknd2−b2 is the in-plane component of the wave
vector, andb is the propagation constant in thez-coordinate.
Note that Eq.(13) is simply the inverse Fourier transform of

g̃n = −
i

4
H0

s1dskrur − r8ud, s14d

and is the reason it is considered to be the most easily
adapted source-field expression to the multipole approach
below. The components ofGn, obtained by using Eq.(13) in
Eq. (11), are given in Appendix A.

B. Multipole method

The wave equations(10) in the configuration of Fig. 1 can
be solved fully by exploiting the cylindrical geometry of the
problem. A Fourier transformation in thez-coordinate is first
made, giving wave equations for conical propagation. The
z-components of the fields for a source oriented in the direc-
tion of the unit vectorũ are given by

s=r
2 + kr

2d G̃zu
V sr,r8d = Du

V dsr − r8d, s15d

where G̃ is the Fourier transform of the Green’s tensor,V
P hE,Hj, kr= ±Îfknsr dg2−b2, and

Du
E = dzu+

ib

fknsr dg2 = · ũ and Du
H = z̃ · = 3 ũ

are differential operators. For in-plane propagation,b=0 and
Eq. (15) reduces to the wave equations for the 2D Green’s
tensor addressed by Asatryanet al. [46]. The transverse com-
ponents of the fields are straightforwardly obtained from the
z-components using Maxwell’s equations[69].

A multipole formulation is employed to solve Eq.(15)
exactly. This is essentially an extension of the treatment of
wave propagation in microstructured optical fibers by White
et al. [73] to wave scattering from an embedded source. The
reader is referred to Ref.[73] for more discussion on the
important features of this method. The multipole method
uses a field expansion in the vicinity of thelth cylinder in a
Fourier-Bessel basis

Vl = o
m=−`

`

fAm
l Jmskrrd + Bm

l Hm
s1dskrrdgeimf, s16d

whereJmszd is the Bessel function used to describe the con-
vergent or source-free part of the field nearr=0, and
Hm

s1dszd is the Hankel function used for the divergent part.
The local field expansion(16) only applies in the annulus
from the lth cylinder surface to the nearest neighboring cyl-
inder or source. The global field(or Wijngaard) expansion,
which applies throughout the background, can be obtained
using Green’s second theorem,

E
A

fVsr9,r8d=r9
2 g̃bsr,r9d − g̃bsr,r9d=r9

2 Vsr9,r8dg dAr9

=R
]A
FVsr9,r8d

]

] n9
g̃bsr,r9d

− g̃bsr,r9d
]

] n9
Vsr9,r8dG dsr9, s17d

whereA is the area of the background,]A is the boundary of
this area, andn9 denotes the outward unit normal to]A at r9.
Upon evaluating Eq.(17) [46], the global expansion is given
by

G̃zu
bVsr,r8d = −

i

4
xbsr8dDu

VhH0
s1dskrur − r8udj

+ o
l=1

Nc

o
m=−`

`

Bum
Vl Hm

s1dskrur − rludeim argsr−rld

+ o
m=−`

`

Aum
V0Jmskrrdeim f, s18d

wherexbsr8d is a function, with value 1 in the background
and 0 elsewhere, used to denote the presence of a point-
source in the background. The first term on the right-hand
side(RHS) of Eq. (18) gives the field from the point-source.
The second term gives the field scattered from the cylinders,
while the third gives that from the jacket. In the absence of
scattering objects, only the point-source term remains, and
Eq. (18) is simply the Fourier transform ofGnb

sr ,r 8d.
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The local[Eq. (16)] and global[Eq. (18)] field expansions
are required to be consistent about each cylinder. This is
enforced using Graf’s addition theorem[74],

Hm
s1dskrur − rqudeim argsr−rqd

= o
p=−`

`

Hp−m
s1d skrurq − rludeism−pdargsrq−rld

3Jmskrur − rludeim argsr−rld, s19d

to transform the global expansion into the local coordinates
of the lth cylinder. Equating Eqs.(16) and (18) then yields
the Rayleigh identity,

Aum
Vl = Kum

Vl + o
q=1,qÞl

Nc

o
p=−`

`

Smp
lq Bup

Vq + o
p=−`

`

Smp
l0 Aup

V0, s20d

where

Smp
lq = Hm−p

s1d skrrqdeisp−mdfq,

and

Smp
l0 = s− 1dm−pJm−pskrrldeisp−mdfl ,

andKum
Vl follow from the point-source term and are given in

Appendix B. The Rayleigh identity(20) relates the converg-
ing field at each cylinder(LHS) to the diverging fields from
all other source bodies(RHS) [73]. By the same approach, a
second Rayleigh identity is obtained for the jacket,

Bum
V0 = Qum

V0 + o
q=1

Nc

o
p=−`

`

Smp
0q Bup

Vq, s21d

where

Smp
0q = Jm−pskrrqdeisp−mdfq,

which relates the diverging field at the jacket to the diverging
fields from the background sources. Introducing matrix no-
tation whereAu

V=fAu
Vlg is a partitioned column vector com-

posed of vectors of multipole coefficients,Au
Vl=fAmu

Vl g, Eq.
(20) then condenses to

Au
V = K u

V + SBu
V + Sl0Au

V0. s22d

K u
V and Bu

V are defined similarly toAu
V, while Au

V0=fAmu
V0g.

S=fSlqg is a block matrix composed of Toeplitz matrices,
fSlqg=fSmp

lq g, andSl0 is defined similarly. In this notation, Eq.
(21) becomes

Bu
V0 = Qu

V0 + S0lBu
V. s23d

The field expansions inside a cylinder and in the jacket
are obtained similarly to that in the background. With only
the presence of the point-source in these two regions, the
field expansions simplify greatly with no need for Rayleigh
identities. The field expansion inside thelth cylinder is given
by

G̃zu
lVsr,r8d = −

i

4
xlsr8dDu

VhH0
s1dskrur − r8udj

+ o
m=−`

`

Cum
Vl Jmskrrldeim fl

= o
m=−`

`

fQum
Vl Hm

s1dskrrld + Cum
Vl Jmskrrldgeim fl ,

s24d

where the functionxlsr8d indicates the presence of a point-
source in the cylinder andQum

Vl is defined similarly toKum
Vl in

Appendix B. The field expansion in the jacket is given by

G̃zu
0Vsr,r8d = −

i

4
x0sr8dDu

VhH0
s1dskrur − r8udj

+ o
m=−`

`

Dum
V Hm

s1dskrrdeim f

= o
m=−`

`

fKum
V0Jmskrrd + Dum

V Hm
s1dskrrdgeim f.

s25d

The multipole coefficients are also constrained by the
boundary conditions, which require the tangential compo-
nents of the electric and magnetic fields to be continuous at
the surfaces of the cylinders and jacket. For the cylinders, the
boundary conditions yield the relation

FBE

BHG = FREE REH

RHE RHHGFAE

AHG + FTEE TEH

THE THHGFQE

QHG ,

s26d

or

B =RA +TQ, s27d

whereREE=diagfRm
EEg is a block diagonal matrix composed

of the diagonal matricesREEl=diaghRm
EElj, and the otherR

matrices and theT matrices are defined similarly. In Eq.
(27), R andT are the external reflection and transmission
matrices, respectively, with their components given in Ap-
pendix C. For the jacket, the boundary conditions yield

A0 =R0B0 +T 0K0, s28d

whereR0 andT 0 are the internal reflection and transmis-
sion matrices, respectively, also defined in Appendix C.

Using the matrix notation of Eq.(27), identity (22) be-
comes

Au =Ku +SBu +Sl0Au
0, s29d

whereS=diaghS,Sj. Similarly, identity (23) becomes

Bu
0 =Ku

0 +S0lBu. s30d

Note that the boundary conditions couple theE andH fields,
while they remain independent in the Rayleigh identities(29)
and (30). Note also that theR andT matrices contain the
material properties of the medium while theS matrices con-
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tain the underlying lattice structure. This separation of me-
dium and lattice parameters is advantageous for perturbation
theory [75].

The Rayleigh identities(29) and(30), and boundary con-
ditions (27) and (28), combine to form a complete linear
system. This system can be written as a single field identity,

fI −RsS +S0AR0S0BdgB
=RfS0AsR0K0 +T 0Q0d +Kg +TQ. s31d

The point-source terms are confined to the RHS and the ei-
genvalues of the medium can be obtained by setting the RHS
to zero[73]. In the presence of a point-source,B is obtained
with a single matrix inversion. The remaining multipole co-
efficients can then be obtained using the Rayleigh identities
and boundary conditions.

C. Fourier integral

The full 3D Green’s tensor is finally obtained by perform-
ing the inverse Fourier transformation,

GEsr ,r 8d =
1

2p
E

−`

`

db eibsz−z8d G̃Esr,r8d. s32d

The integrand in Eq.(32) containskr= ±Îsknd2−b2 terms,
which for a lossless medium lead to branch point singulari-
ties in complexb-space on the Rehbj-axis atb= ±kni, where
ni =nl ,nb,n0. For a medium with loss or gain these singulari-
ties shift off the axis. Depending on the geometry, the inte-
grand also has poles on the Rehbj-axis in the range
k minsnl ,nb,n0d, ubu,k maxsnl ,nb,n0d, corresponding to
bound modes, or near the axis, corresponding to leaky
modes. The integration around these singularities is ad-
dressed by ensuring that the Sommerfeld radiation condition
is satisfied, which is done on a contour above singularities
for Rehbj,0, and below for Rehbj.0 [69].

For the numerical demonstrations in this section and the
subsequent section, a small hexagonal cluster is used with
Nc=7 circular air-voidssnl =1.0d of radiusal /d=0.45(where
d is the lattice constant) in a silicon background of refractive
index nb=3.4, enclosed by an air-jacketsn0=1.0d of radius
a0/d=2.0. This is a simple 2D PC with a fiberlike geometry
that is most relevant to the important 3D LDOS results that
follow. The focus will also be on the components of
ImhTrfGEsr ,r ;vdgj required in the calculation of the 3D
LDOS [Eq. (8)].

The modes in the cluster are classified according to wave-
guide theory[76,77] and determine the behavior of the inte-

grand. To demonstrate this, the integrand ImhG̃zz
E sr ,rdj is

shown in Fig. 2(a) for Rehbj.0 on a radial contour just
below the Rehbj-axis. The rangeubu,knl contains a continu-
ous spectrum of radiation modes withkr real in all regions.
In this range the integrand is smooth and continuous. The
rangeknl , ubu,knb contains a discrete spectrum of bound
modes withkr real in the dielectric background and imagi-
nary in the air-voids and air-jacket. The integrand contains
singularities on the Rehbj-axis at these bound modes and
varies sharply in their vicinity. Forubu.knb, there are no

modes and ImhG̃uv
E sr ,rdj=0 on the Rehbj-axis.

The Fourier integral is required to be performed numeri-
cally, but it would be computationally inefficient to do so
close to the Rehbj-axis. By invoking the Cauchy integral
theorem, the integrand can be evaluated along a contour off
the Rehbj-axis that is appropriately confined to the second
and fourth quadrants of the complexb-plane to comply with
the Sommerfeld radiation condition. For Rehbj.0, a conve-
nient choice, after settingb=Reiu, is a contour of the form

C = CR ø Cu ø C0

= hbu0 ø Rø R8,u8j ø hbuR8,u8 ø u ø 0j ø hbuR8 ø R

, `,0j, s33d

composed of a radial componentsCRd with k maxsnl ,nb,n0d
,R8, an arc componentsCud, and an axial componentsC0d,
shown in Fig. 3. A similar contour above the axis is used for
Rehbj,0.

For calculating ImhGEsr ,r dj, only theCRøCu part of Eq.
(33) is required. It is also easy to show that only the Rehbj
.0 part is needed for the diagonal components in

FIG. 2. Integrand of the Fourier inverse integral, Eq.(32). (a)
Integrand on a radial contour withu8=−10−5, along with the loca-
tion of the bound modes(light-gray vertical lines). The vertical
dashed line delineates radiation modessb,kd from bound modes
sb.kd. (b) Integrand on Eq.(33) usingR8=1.1knb andu8=−p /4,
with theCR part (solid line, top scale) and theCu part (dashed line,
bottom scale). The structure is a hexagonal cluster with parameters
Nc=7, al /d=0.45,nl =1.0,nb=3.4,a0/d=2.0, andn0=1.0. The fre-
quency isvd/2pc=0.4 and the position isr=sx,yd /d=s0.0,0.0d.
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ImhTrfGEsr ,r dgj, while both parts are required for the off-
diagonal components of ImhfGEsr ,r dgj. The dramatic im-
provement in the behavior of the integrand on Eq.(33) using
u8=−p /4 andR8=1.13knb is shown in Fig. 2(b). These two
contour parameters are generally found to optimize the con-
vergence of the numerical evaluation of the Fourier integral.
A contour of the formCRøCu can also be used to isolate the
radiation component by usingknl ,R8,bN, wherebN is the
propagation constant of the bound mode closest toknl
(Fig. 3) .

IV. NUMERICAL VALIDATION

The field expansions,(18), (24), and(25), contain infinite
sums derived from the local field expansion(16) and Graf’s
addition theorem(19). The numerical evaluation of the field
expansions requires these to be truncated to −Nm, . . . ,Nm so
that each sum has in total 2Nm+1 multipole terms. The con-
vergence ofG with respect toNm is demonstrated in Fig. 4,
where the relative difference,h= uGNm+1−GNm

u / uGNm
u, is

plotted versusNm. In general, the rate of convergence of a
field expansion in Bessel functions becomes rapid in the

large order limit whereNm significantly exceeds the argu-
ment in the Bessel functions. This is the regime of electro-
statics where the largest order terms behave asrmexpsimud
and r−mexpsimud. Figure 4 shows that the rate of conver-
gence is accordingly slightly more rapid at low frequencies,
but depends primarily on the position in the cluster. For the
structure modeled, the rate of convergence is most rapid at
the center of cylinders in the low-index region where close to
six figure accuracy is achieved withNm<10. Between two
cylinders in the high-index region, the rate of convergence is
slowest and limited to about four figure accuracy atNm
<18. ForNm&20, convergence is approximately exponen-
tial in accord with the electrostatic regime, while beyond this
range machine precision begins to affect results andh begins
to fluctuate wildly. Convergence is slower in structures with
a higher refractive index contrast and larger cylinder radii,
again because the argument in the Bessel functions is then
larger.

The Fourier integral(32) is evaluated on the complex
contour (33) using numerical quadrature. Simpson’s rule is
adopted and involves the abscissa of the integrand being de-
composed intoNh intervals. The convergence of integration
along both components of the contour with respect toNh is
demonstrated in Table I. In the low index region, the contri-
bution of theCu component is much smaller than theCR
component, while in the high index region, the contribution
of both is similar. Accuracy better than four significant fig-
ures is assured forNh=16 and six figures forNh=32. This
demonstrates that when the Fourier integral is evaluated on
the complex contour, a high level of accuracy is achieved
with relatively few abscissa points. This is important and
leads to very high computational efficiency because almost
all of the computation time goes into evaluating the multi-
pole expansion at each abscissa point. Similar results are
found for other coordinates, frequencies, and geometries
where the essential behavior of the integrand shown in Fig. 2
is maintained. It is therefore adequate to use Simpson’s rule
with Nh fixed rather than more sophisticated adaptive rou-
tines. For a 3D LDOS calculation over a range of coordinates
and frequencies in a given 2D PC, it is also adequate to use
a fixedNm. Clearly,Nm andNh should be chosen so that the
accuracy in the multipole sums and the quadrature are com-
mensurate. Here, they are generally chosen to achieve 4–6
figure accuracy to ensure that at the very worst, the variation
in convergence with position and frequency yields 2–4 figure

FIG. 3. The complex contour(33) for Rehbj
.0, with the branch point singularities atb
=knl ,knb shown, along with the poles at the
bound modes on the Rehbj-axis.

FIG. 4. The convergence of elements of the 3D Green’s tensor
with respect to the truncation parameterNm. The relative difference
h= uGNm+1−GNm

u / uGNm
u is plotted for ImhGzzj at sx,yd /d

=s0.0,0.0d for frequencies vd/2pc=0.2 (solid line) and 0.6
(dashed line), and for ImhGxxj at sx,yd /d=s0.5,0.0d for frequencies
vd/2pc=0.2 (dotted line) and 0.6(dash-dot line). The structure is
the small hexagonal cluster used in Fig. 2.
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accuracy. The results in Sec. V A were obtained using
Nm=14 andNh=16, and the results in Sec. V B were ob-
tained usingNm=5 andNh=16.

V. LOCAL DENSITY OF STATES (LDOS)

A. Hexagonal cluster of cylindrical air-voids in dielectric
(PC1)

1. Band structure

As is clear from Eq.(6), the LDOS in a periodic structure
is determined by its band structure and modal field patterns.
Even though the structures considered here are finite, they
are sufficiently large for there to be a strong correspondence
between the LDOS and band structure, and comparing the
two is useful for understanding the LDOS results. For the 3D
LDOS in 2D PCs, both the in-plane and out-of-plane band
structures are relevant. These essentially characterize the
DOS, and to a significant extent the LDOS as a function of
frequency. An understanding of the modal field patterns
would provide insight into the spatial variation of the 3D
LDOS, but is beyond the scope of this paper.

The first general structure examined is a hexagonal cluster
of cylindrical air-voids in a dielectric background(PC1). The

main emphasis is on macroporous silicon[50] with a silicon
background of refractive indexnb=3.4. The focus will be on
an air-void radius ofal /d=0.45, which was found to produce
the most interesting results. Macroporous silicon can, how-
ever, be fabricated with a broad range of values for the air-
void radius, and other values will be considered, along with
other values for the background refractive index. The in-
plane band structure for the underlying lattice is shown in
Fig. 5. TE gaps are favored in this type of 2D PC[8], and it
has a wide TE-gap in the frequency(normalized) range
vd/2pc=0.303−0.495sDv /v0=48.0%d. There is also a
narrower TM gap in the frequency rangevd/2pc=0.405
−0.445 sDv /v0=9.4%d, which lies wholly within the TE
gap to form a complete in-plane gap.

The in-plane component of the wave vector is given by

TABLE I. The convergence of the radialsCRd andsCud contour components of ImhGuv
E sr ,r dj with respect

to Nh at the frequencyvd/2pc=0.4. The structure is the small hexagonal cluster used in Fig. 2.

Nh ImhGzz
E fs0.0,0.0d /d,s0.0,0.0d /dgj ImhGxx

E fs0.0,0.5d /d,s0.0,0.5d /dgj
CR Cu CR Cu

6 0.100 252 172 0.007 499 401 −0.459 822 761 0.911 654 546

8 0.098 555 853 0.007 499 095 −0.459 814 136 0.912 114 488

12 0.098 769 214 0.007 498 962 −0.459 815 784 0.912 363 219

16 0.098 773 924 0.007 498 937 −0.459 815 908 0.912 401 820

24 0.098 788 139 0.007 498 927 −0.459 815 911 0.912 409 352

32 0.098 787 173 0.007 498 925 −0.459 815 913 0.912 409 606

48 0.098 786 956 0.007 498 924 −0.459 815 914 0.912 409 621

FIG. 5. 2D band structure for a hexagonal(or triangular) array
of air-voids in a dielectric(PC1). The array parameters areal /d
=0.45, nl =1.0, andnb=3.4 (i.e., macroporous silicon). The TM
modes are shown as solid lines and the TE modes are shown as
dashed lines.

FIG. 6. Out-of-plane band structure for PC1(see Fig. 5). The
dark-gray region to the left of the light-line in airsv=bd indicates
oscillatory modes withkr real in air, while the light-gray region
between the light-line in air and the light-line in the dielectricsv
=b /nbd indicates evanescent modes withkr imaginary in air. The
pseudogap indicates thesv ,bd-region where there are no modes.
The horizontal line indicates the frequency where the pseudogap
covers the largest range ofb-values. The dashed lines indicate the
bands emanating from the in-plane TE gap. The bold upward slop-
ing line indicates the band emanating from the in-plane TM
G-point.
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kr =În2v2

c2 − b2, s34d

where b is the propagation constant, so that for in-plane
propagationb=0, and for out-of-plane propagationb.0.
The out-of-plane band structure for macroporous silicon is
shown in Fig. 6. For clarity, only the out-of-plane band seg-
ments emanating from the edges of the in-plane TE and TM
band gaps are shown. The segment from theG-mode on the
first TM band is also shown and is indicative of theb of the
fundamental mode at eachv. As the propagation angle in-
creases out-of-plane, indicated by increasingb in the figure,
the bands shift to higher frequencies. Whenb is small near
the in-plane band gaps, multiple scattering effects remain
important and the band structure for a givenb-value is
mostly determined by the in-plane band structure at the pro-
jected frequency, indicated bykr. The in-plane band structure
effectively anchorskr, and Eq.(34) with kr fixed is a rough
guide to dispersion in theb-direction. As a result, the out-of-
plane bands slope upward with low dispersion in the
b-direction whenb is small, and get steeper asb increases.
When b is large, index-guiding takes over withv,b /nb,
and the out-of-plane bands are correspondingly near parallel
to the light-line in the dielectric background.

For 3D wave propagation in a 2D PC, it is not possible to
have a complete band gap that covers all propagation direc-
tions. However, as shown in Fig. 6, a pseudogap, or asv
−bd-region where there are no modes, emanates from the
complete in-plane gap. There is also a largesv−bd-region in
the figure that emanates from the TE gap where there is a
dearth of modes. Along with the out-of-plane bands, the
pseudo gap is upward sloping in thesv−bd-diagram. As a
result, the pseudogap covers the widest range ofb-values
just below the top of the complete in-plane gap. The out-of-
plane diagram is also delineated by the light-linesv=bd into
modes that are oscillatory in airsv.bd and modes that are
evanescent in airsv,bd. As frequency increases inside the
complete in-plane gap, the pseudogap covers a widening
range of oscillatory modes. If the complete in-plane gap is
sufficiently wide, the pseudogap may cover all oscillatory
modes near the top of the in-plane gap. At the top of the
complete in-plane gap, the first mode encountered is a radia-
tion mode withb=0. Above the in-plane gap, the pseudogap
rapidly goes from covering oscillatory modes to covering a
narrowing range of evanescent modes.

2. Local density of states

The 3D LDOS in macroporous silicon was originally ex-
amined for a cluster of air-voids in an infinite silicon back-
ground [35] (i.e., without an air-jacket). In Fig. 7, the 3D
LDOS is shown across the plane of a macroporous silicon
cluster enclosed by an air-jacket. The cluster is composed of
Nc=37 hexagonally packed air-voids with an air-jacket of
radiusa0/d=4.0. The frequencysvd/2pc=0.445d is just be-
low the top of the complete in-plane gap(see Fig. 6). En-
closing the cluster by a jacket appears to have little impact
on the spatial distribution of the 3D LDOS inside the cluster.
As for an infinite silicon background[35], the 3D LDOS is

essentially the same across each unit cell inside the two outer
rings of air-voids, is suppressed by one order of magnitude at
the center of the air-voids, and is slightly enhanced in the
background. Outside the cluster in the jacket, the 3D LDOS
rapidly falls to its free-space value.

The 3D LDOS is shown at the center of the cluster as a
function of frequency in Fig. 8, both with and without an
air-jacket for comparison. This again shows the effect of the
jacket to be small. With the jacket, the 3D LDOS exhibits the
same band gap signature with an increase in suppression
with frequency inside the in-plane band gaps, strongest sup-
pression at the top of the complete in-plane band gap, fol-
lowed by a sharp jump above the gap. The jacket does, how-
ever, sharpen the features in the 3D LDOS. The maximum
suppression is slightly stronger and isr /r0=1/12.5 at
vd/2pc=0.449 with the jacket, compared tor /r0=1/10.4 at
vd/2pc=0.441 without. The band-edge jump is sharper and

FIG. 7. 3D LDOS across the plane of a macroporous silicon
cluster enclosed by an air-jacket. The frequency isvd/2pc
=0.445 and the cluster parameters areNc=37, al /d=0.45,nl =1.0,
nb=3.4, anda0/d=4.0. The 3D LDOS is normalized to its free-
space value,r0=v2/p2c3.

FIG. 8. 3D LDOS vs frequency in macroporous silicon(see Fig.
7) at sx,yd /d=s0.0,0.0d with an air-jacket(solid line) and without
(dashed line). The inner pair of vertical lines indicates the edges of
the in-plane TM gap and the outer pair indicates the edges of the TE
gap.
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is dr=1/19.2 overd vd/2pc=0.0065 with the jacket, com-
pared to dr=1/7.6 over d vd/2pc=0.0155 without. The
jacket also generally sharpens the oscillations in the 3D
LDOS.

The minor impact of the jacket on the 3D LDOS is largely
attributable to the size of the cluster. The 3D LDOS was
earlier shown to saturate rapidly with cluster size and is the
same inside the two outermost rings of air-voids regardless
of cluster size[35]. This is because the 2D periodicity of the
2D PC only partially affects the 3D emission from a point-
source. As a consequence of the upward sloping out-of-plane
band structure(Fig. 6), emission from the source at small
propagation angles is affected by the in-plane band structure
at frequencies at and immediately below the frequency of
interest. Summing over these propagation angles(or in-plane
frequencies) tends to dilute the impact of the 2D periodicity.
The 2D periodicity has no impact at large propagation
angles, and summation over the index-guided modes pro-
vides a foundation to the 3D LDOS that is more concentrated
in the background than in the air-voids as the index-guided
modes concentrate in the high dielectric region. The potential
suppression of the 3D LDOS in 2D PCs is thus limited. The
cluster examined is sufficiently large for the 3D LDOS to be
robust and therefore for the presence of the jacket to have
only a minor effect.

The jacket radius for a given cluster also needs to be
considered. With the air-jacket, there is a discrete spectrum
of bound modes whose number increases with the jacket ra-
dius. Clearly, the larger the jacket radius, the less significant
is the change in the 3D LDOS. However, given that a closely
fitting jacket on a moderately sized cluster has been shown to
have a minor impact, it is reasonable to expect that the 3D
LDOS rapidly converges to that in the infinite silicon back-
ground case with increasing jacket radius.

3. Bound and radiation components

The 3D LDOS is indicative of the angle-integrated spon-
taneous emission rate. Spontaneous emission rates in PCs
also depend on emission angle because associated with the
Bloch modes are directional Bloch vectors. Although the air-
jacket does not significantly change the 3D LDOS, it allows
3D LDOS to be separated into its radiation and bound com-
ponents. The radiation component is for emission into radia-
tion modes that are oscillatory in air(see Fig. 6). Experimen-
tally, this component gives the spontaneous emission rate
integrated over all angles outside the cluster in the air-jacket.
The bound component is for emission into bound modes that
are evanescent in air and gives the spontaneous emission rate
at the two opposing ends of the fiberlike structure. The ra-
diation component at the center of the cluster is shown in
Fig. 9, along with the total 3D LDOS for comparison. The
difference between these two is indicative of the bound com-
ponent. As all emission in free-space is into radiation modes,
the free-space LDOS remains an appropriate reference for
the radiation component. Inside the TE gap, the radiation
component drops rapidly with frequency and is suppressed
by r /r0=1/500 at the bottom of the complete in-plane gap.
Although almost all of the radiation modes are covered in-
side the complete gap, suppression ceases to grow further.

This is attributable to the finite size of the structure, and
obtaining further suppression requires a larger structure. The
radiation component forNc=61 cylinders(i.e., 4 rings) is
also shown in the figure for frequencies near the complete
gap. Suppression continues to grow inside the gap with a
maximum suppression ofr /r0=1/5000 near the middle of
the gap. Stronger suppression is likely in a larger structure.
While the radiation component does not saturate rapidly with
cluster size like the total 3D LDOS, these two results are not
inconsistent because the radiation component is making a
very small contribution to the total.

The suppression of the radiation component is strongest
when the pseudogap covers all radiation modes. The 2D PC
then behaves like an omnidirectional mirror[78] and only
supports bound modes. Omnidirectional reflectance has been
studied both theoretically and experimentally in multilayer
film [78] and the Bragg fiber[79], which is composed of
alternating dielectric rings to achieve periodicity in the radial
direction. Omnidirectional mirror behavior in spontaneous
emission where only emission into bound modes is sup-
ported has also been studied in multilayer film[38].

At the top of the complete in-plane gap, a high density of
radiation modes withb<0 (Fig. 6) is suddenly encountered
and the radiation component rises rapidly. Dispersion is low
in theb-direction at the top of the complete gap, resulting in
theb content in the radiation component fanning out rapidly
from b<0 as frequency increases. Above the complete gap,
the radiation comprises nearly the total 3D LDOS, while the
bound component becomes suppressed as the pseudogap
moves from the oscillatory region into the evanescent region.
However, the pseudogap only ever covers a narrow range of
evanescent modes and the impact on the bound component is
not as significant as it is on the radiation component. The
very heavy suppression of the radiation component of the 3D
LDOS at the top of the complete gap, followed by the sud-
den burst of emission into radiation modes propagating near
in-plane is perhaps the most striking band gap effect in spon-
taneous emission in 2D PCs.

4. Projected local density of states

The 3D PLDOS for dipoles oriented in thez, x, and y
directions [i.e., rsr ,v , ẑd, rsr ,v , x̂d, and rsr ,v , ŷd] are

FIG. 9. Radiation component of the 3D LDOS atsx,yd /d
=s0.0,0.0d in macroporous silicon(Fig. 7). The radiation compo-
nent for Nc=37 is plotted as a solid line, along with the total 3D
LDOS, plotted as a dashed line. The radiation component near the
complete gap forNc=61 is also plotted as a dotted line.
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shown in Fig. 10. The 3D PLDOS at the center of the cluster
is plotted along with the 3D PLDOS at the center of a single
air-void in an infinite silicon background, but otherwise with
the same parameters, to isolate band gap effects from single
scatterer effects. The 3D LDOS is included and is simply the
sum of these three 3D PLDOS values at the coordinates
shown. At the center of the cluster, the 3D PLDOS for all
three dipoles exhibits the same band gap signature as the 3D
LDOS, falling smoothly and continuously inside the TE gap
with maximum suppression at the top of the complete gap.
The maximum suppression ofr /r0=1/29.1 forrsr ,v , ẑd is,
however, significantly higher than ther /r0=1/9.7 for
rsr ,v , x̂d. Due to the symmetry of the structure,rsr ,v , x̂d
and rsr ,v , ŷd are virtually identical. Above the complete
gap, rsr ,v , ẑd jumps sharply higher bydr=129 over
dvd/2pc=0.0066, whilersr ,v , x̂d climbs gradually. Above
the TE gap,rsr ,v , x̂d jumps higher, butrsr ,v , ẑd is unaf-
fected. Thus, the 3D PLDOS at the center of the cluster
undergoes both relatively strong suppression and modulation
with frequency because its three 3D PLDOS components
each undergo similar changes and reinforce each other. For a
single isolated air-void in a dielectric background, single
scatterer effects are minor and comparing the 3D PLDOS
and 3D LDOS in the cluster with those in the isolated air-
void shows the suppression inside the in-plane gaps to be a
genuine band gap effect. Outside the gaps, the 3D PLDOS
and 3D LDOS in the cluster return to varying moderately
around those of the single air-void.

The connection betweenrsr ,v , ẑd and TM modes, and
rsr ,v , x̂d andrsr ,v , ŷd, and TE modes, can be explained as

follows. By Eq. (3), rsr ,v , ẑd is determined by the
z-component of the modal fields, whilersr ,v , x̂d and
rsr ,v , ŷd are determined by thex andy-components, respec-
tively. For in-plane propagationsb=0d, the former corre-
sponds to TM modes, while the latter corresponds to TE
modes. Forb.0, the modes are no longer decoupled, and
the modes emanating from the in-plane TM modes acquirex
andy-components, while the modes emanating from the in-
plane TE modes acquire az-component. As shown in Fig. 6,
the integration overb effectively draws in the in-plane band
structure at and below the frequency of interest. However,
for b small near the in-plane band gaps, dispersion in theb
direction is low, and it is reasonable to expect that the in-
plane band structure immediately below will have the most
significant impact on the 3D PLDOS. Consequently,
rsr ,v , ẑd remains closely tied to the in-plane TM band struc-
ture, whilersr ,v , x̂d andrsr ,v , ŷd remain closely tied to the
in-plane TE band structure.

The 3D PLDOS in the background atsx,yd /d=s0.5,0.0d,
between two adjacent air-voids at the center of the cluster, is
also shown in Fig. 10. Along with this, the 3D PLDOS is
plotted between the two adjacent air-voids without the sur-
rounding cluster and jacket, again to isolate band gap effects
from local field effects. In the cluster,rsr ,v , ẑd is enhanced
in the background with a band gap effect comparable to that
in the center, but far less dramatic. There is little difference
betweenrsr ,v , ŷd in the cluster and between two isolated
air-voids, and it is enhanced with no discernable band gap
effect. In contrast,rsr ,v , x̂d is heavily suppressed, again like
it is between two isolated air-voids, with a small superim-

FIG. 10. The 3D LDOS(a) and 3D PLDOS for anx-oriented dipole(b), a z-oriented dipole(c), and at ay-oriented dipole(d) in an
hexagonal cluster of air-voids(Fig. 7) at sx,yd /d=s0.0,0.0d (solid line) and (0.5,0.0) (dashed line). Also shown are the 3D LDOS and 3D
PLDOS at the center of a single isolated air-void in a silicon background(dotted line) and atsx,yd /d=s0.5,0.0d, directly between two
adjacent air-voids positioned atsx,yd /d=s0.0,0.0d and sx,yd /d=s1.0,0.0d in a silicon background(dash-dot line).
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posed band gap effect so that at the top of the complete
in-plane gap,r /r0=1/280. As a consequence of these three
results, the 3D LDOS is moderately enhanced in the back-
ground similarly torsr ,v , ẑd, but with smaller variations.

While band gap effects are most significant in the air-
voids, local field effects are most significant in the back-
ground. The highly polarized results in the background are
due to the very narrow dielectric vein between two close
adjoining air-voids. This leads to a strong anisotropy in the
depolarization factors for the field parallel to thex-oriented
dipole and the fields parallel to thez- andy-oriented dipoles.
It is beyond the scope of this paper to evaluate these depo-
larization factors. However, spontaneous emission in ellipti-
cal particles was examined recently[80], and the results bear
some consideration. The limiting depolarization factor for
eccentricitye→1 (i.e., infinite semimajor axis) for the field
parallel to the semiminor axis isf →1/n4, while for the
semimajor axisf →1. This suggests that the spontaneous
emission rate for a dipole oriented parallel to the narrow side
of a highly elongated dielectric region will be heavily sup-
pressed, while for a dipole parallel to the long side, the spon-
taneous emission rate will be relatively unchanged. It is also
consistent with heavy suppression in thex-oriented dipole
while thez-oriented dipole is relatively unaffected.

5. Exploration of parameter space

Macroporous silicon has so far been considered with a
fixed air-void radius ofal /d=0.45. Figure 11 shows how the
3D LDOS changes whenal /d is varied. The plot depicts the
3D LDOS at the center of the cluster as a function of fre-
quency, as in Fig. 8. As the 3D LDOS is essentially the same

inside the two outermost rings of air-voids, regardless of
cluster size, and the jacket has a minor effect, a cluster of
Nc=19 air-voids in an infinite silicon background is used for
efficient modeling. The gap map, which shows the TM and
TE band gaps as a function ofal /d, is also plotted. The band
gap signature observed in Fig. 8 is essentially reproduced for
varyingal /d. When the top of the TE gap is above the top of
the TM gap, the 3D LDOS also exhibits a second minor
trough. Although the TM gap continues to expand withal /d
and the complete gap is widest atal /d=0.473, the greatest
suppression occurs atal /d=0.45 where the TE gap is widest.

The most distinct feature of the 3D LDOS in macroporous
silicon is the strong suppression of approximately one order
of magnitude at the top of the complete in-plane gap. Figure
12 shows how this feature depends on the background refrac-
tive index. The maximum suppression for a givenal /d is
plotted for refractive indices of several important PC mate-
rials. Plots are shown for the refractive indices of glasses that
have been used to fabricate fibers:nb=1.45 (silica glasses),
2.0 (high lead concentration glasses), and 2.5(chalcogenide
glasses) [81]; and for materials that have been used or may
be used to fabricate PCs: 3.0(Al2O3 [49]), 3.4 (silicon [50]
and GaAs), and 4.0(germanium). The maximum suppression
and theal /d at which this occurs are also shown in Table II.
As nb increases, the maximum suppression increases, and the
al /d at which this occurs are also increases. This result is
again closely tied to the band structure. Asnb increases in
this type of structure, both the width of the in-plane gaps and
the al /d at which these are widest on the gap map also in-

TABLE II. Minima in the 3D LDOS shown in Fig. 12. The
air-void radiussal /dd and the maximum suppressionslogfr /r0gd for
eachnb is tabulated, along with the frequencysvd/2pcd at which it
occurs.

nb al /d logfr /r0g vd/2pc

1.45 0.4300 −0.0724 0.506

2.00 0.4125 −0.2800 0.496

2.50 0.4250 −0.5777 0.472

3.00 0.4375 −0.8246 0.454

3.40 0.4500 −0.9551 0.440

4.00 0.4650 −1.0718 0.424

FIG. 11. 3D LDOS vs frequency andal in macroporous silicon
at sx,yd /d=s0.0,0.0d. The cluster is composed ofNc=19 air-voids
in an infinite silicon background. The plot is overlaid with the cor-
responding gap map(white lines), with thick lines indicating the
edges of the TM gap and thin lines indicating the edges of the TE
gap.

FIG. 12. Maximum suppression in the 3D LDOS vsal (re. Fig.
11) for given nb.
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crease. However, with only 2D confinement, maximum sup-
pression is not significantly stronger when the refractive in-
dex contrast is high, and is effectively limited tor /r0
<1/15 in a 2D PC.

B. Square cluster of dielectric cylinders in air „PC2…

1. Band structure

The second structure examined is a square cluster of di-
electric cylinders in an air backgroundsPC2d. The main em-
phasis is on a cluster of cylinders of radiusal /d=0.15 and
refractive indexnl =3.0 in an air backgroundsnb=1.0d. The
in-plane band structure for the underlying lattice is shown in
Fig. 13. In contrast to the previous 2D PC, TM gaps are
favored in this type of 2D PC[8] and it has a wide TM gap
in the frequency rangevd/2pc=0.375−0.481 sDv /v0

=24.9%d, but no TE gaps.

2. Local density of states

The 3D LDOS across the plane of a cluster ofNc=49
dielectric cylinders is shown in Fig. 14. The frequency is
vd/2pc=0.48, and lies just below the top of the TM gap.
Like PC1(see Fig. 7), the 3D LDOS is essentially the same
across each unit cell in the cluster, particularly inside the
outermost square-ring of cylinders. It is also suppressed in-
side the cylinders, but the most significant effects occur at
the cylinder surface. The 3D LDOS is suppressed by a factor
of r /r0=1/2.7 at the center, strengthening a little tor /r0
=1/4.2 just inside the cylinder surface. At the surface, the
3D LDOS then jumps sharply by almost one order of mag-
nitude and is enhanced byr /r0=2.1 just outside, before fall-
ing to near-zero between the cylinders.

The dependence of the 3D LDOS on cluster size is dem-
onstrated in Fig. 15 where it is shown in one cylindersNc

=1d and clusters of onesNc=9d, two sNc=25d, and three
sNc=49d square rings of cylinders. The variation of the 3D
LDOS with position inside the cluster shown in Fig. 14 is
also made clearer. The figure shows that the 3D LDOS in a
single cylinder is significant, and it is suppressed by a factor
of r /r0=1/1.5 at the center, growing tor /r0=1/2.4 inside
the cylinder surface and then jumping just outside to be en-
hanced byr /r0=2.3. Adding square rings of cylinders re-
sults in stronger suppression inside the cylinders, but again
the suppression saturates rapidly with cluster size, and the
maximum suppression is achieved once there are two or
more rings. The 3D LDOS is also essentially the same with
distance from the outer boundary, regardless of cluster size.

The significance of cluster size is also demonstrated in
Fig. 16 where the 3D LDOS is shown at the surface of the
central cylinder of the cluster as a function of frequency. This
is done for the same clusters as in Fig. 15. The result for a
single cylinder is again shown to be significant, and the 3D
LDOS is suppressed at low frequencies, rises approaching
the bottom of the TM gap, falls inside the gap with a mini-
mum near the top of the gap, then rises again above the gap.
In a cluster of cylinders, the band structure manifests itself as
suppression in the 3D LDOS relative to that in the single
cylinder inside the TM gap, and enhancement surrounding
the gap. The band gap signature is similar to that for PC1,
with growing suppression inside the in-plane gap and maxi-

FIG. 13. 2D band structure for a square array of dielectric cyl-
inders in airsPC2d. The array parameters areal /d=0.15, nl =3.0,
andnb=1.0. The TM modes are shown as a solid line and the TE
modes are shown as a dashed line.

FIG. 14. 3D LDOS across the plane of a square cluster of di-
electric cylinders in air. The frequency isvd/2pc=0.48 and the
cluster parameters areNc=49, al /d=0.15,nl =3.0, andnb=1.0.

FIG. 15. 3D LDOS along thex-axis for varying cluster sizes.
The section of Fig. 14 atvd/2pc=0.48 with Nc=49 is shown
(solid-bold line) along withNc=1 (dotted line), 9 (dashed line), and
25 (dash-dot line), but otherwise using the same parameters.
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mum suppression at the top. However, with a gap in only one
polarization, the maximum suppression is well below the one
order of magnitude obtained in macroporous silicon. The
rapid saturation in the suppression of the 3D LDOS at the top
of the TM gap with cluster size is also again clear.

At low frequencies below the TM gap, the 3D LDOS
exhibits significant and rapid oscillations whose number and
density depend on the cluster size. These are attributed to a
long-wavelength regime where the whole cluster behaves
like a single homogenized scatterer, possessing a frequency-
dependent effective refractive index. The local peaks in the
3D LDOS represent resonances, whose number and location
depend upon the size and effective index of the structure.

Above the TM gap, this size effect is far less significant, and
at high frequencies the 3D LDOS in a cluster is close to that
in a single cylinder.

3. Projected local density of states

In Fig. 17, the 3D LDOS is shown along with the 3D
PLDOS for dipoles oriented in thez, x, andy directions. The
3D LDOS and 3D PLDOS on the surface of a single isolated
dielectric cylinder are also shown to isolate band gap effects
from single cylinder effects. The close connection between
rsr ,v , ẑd and TM modes described earlier for PC1 is again
evident. The band gap effect inrsr ,v , ẑd is strongest in the
background atsx,yd /d=s0.5,0.0d wherersr ,v , ẑd drops sig-
nificantly inside the TM gap and is suppressed byr /r0
=1/6.1 at the top of the gap. With no TE gap, there are no
significant band structure effects inrsr ,v , x̂d andrsr ,v , ŷd.
Both are heavily suppressed byr /r0=1/18.6 inside the cyl-
inders atvd/2pc=0.1, but this is a single cylinder effect.

In the long wavelength regime in a single cylinder, there
is strong polarization anisotropy between dipoles oriented
parallel and perpendicular to the cylinder axis. This is again
due to the strong anisotropy in the corresponding depolariza-
tion factors, discussed earlier for PC1. In fact, this result
concurs with recent experiment[82]. The polarized photolu-
minescence(PL) in indium phosphide nanowiressnl =3.5d
was measured using a polarized pump beam. This was done
for polarization parallel to the cylinder axis, probing
rsr ,v , ẑd, and perpendicular, probingrsr ,v , x̂d, in the long
wavelength regime. Order-of-magnitude polarization aniso-
tropy was observed, consistent with the results in Fig. 17.

FIG. 16. 3D LDOS vs frequency for varying cluster sizes. The
3D LDOS is taken atsx,yd /d=s0.15,0.0d (re. Fig. 14) for Nc=49
(solid-bold line), Nc=1 (dotted line), Nc=9 (dashed line), and Nc

=25 (dash-dot line). The pair of vertical lines indicates the edges of
the in-plane TM gap.

FIG. 17. 3D LDOS(a) and 3D PLDOS for anx-oriented dipole(b), a z-oriented dipole(c), and ay-oriented dipole(d) at sx,yd /d
=s0.15,0.0d (solid line), (0.0, 0.0) (dashed line), and (0.5, 0.0) (dash-dot line). Also shown are the 3D LDOS and 3D PLDOS for one
dielectric cylinder at(0.15,0.0) (dotted line).
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Similar to PC1, band gap effects in PC2 are most signifi-
cant in the low dielectric region, while the most significant
local field effects occur in the high dielectric region. The
interesting features in the 3D LDOS in PC2 are largely at-
tributable to the TM band structure throughrsr ,v , ẑd. While
the suppression inrsr ,v , ẑd is strongest at sx,yd /d
=s0.5,0.0d, this does not occur in the 3D LDOS because
there is no support fromrsr ,v , x̂d and rsr ,v , ŷd. The sup-
pression in the 3D LDOS is strongest at the cylinder surface
where rsr ,v , ẑd is still significantly suppressed, and
rsr ,v , x̂d andrsr ,v , ŷd are also suppressed.

VI. DISCUSSION AND CONCLUSIONS

The 3D Green’s tensor is a versatile tool that can be used
to obtain the 3D LDOS, but a method is required that gives
the real and imaginary components separately and to high
accuracy, and keeps them apart from the divergent real com-
ponent at the source position. By employing a combination
of a Fourier contour integral and a Rayleigh-multipole
method, a highly efficient and accurate approach has been
demonstrated for calculating the 3D Green’s tensor in 2D
PCs composed of cylinders. The multipole method uses a
field expansion that is consistent with the geometry of the
problem, giving it several major advantages over the alterna-
tives. First, the boundary conditions are enforced analytically
rather than through a Fourier series, avoiding the conver-
gence challenge posed by high dielectric contrast for plane-
wave methods. Second, a simple semianalytic expression for
the fields is obtained with the source field separate from the
scattered field. Third, an elegant identity is obtained from
which the eigenvalue problem can be solved and the field
coefficients determined with a single matrix inversion.
Fourth, convergence in the field expansions is superior, al-
lowing EM problems in complex structures to be investi-
gated on a desktop computer. This also allows the large pa-
rameter space of PCs including lattice geometry, cylinder
size, and refractive index contrast, to be explored. Finally,
with well-developed theory for Bessel functions in complex
space, the Fourier transform required for the 3D Green’s ten-
sor can be evaluated efficiently on an appropriately chosen
complex contour, giving the real and imaginary components
separately. This also allows the approach to deal with the
complex parameters of materials with gain or loss.

The 3D Green’s tensor was used to perform a large-scale
investigation into spontaneous emission in 2D PCs. A com-
prehensive collection of LDOS results has been produced
and reconciled with the band structure. The results have also
been compared to those for a single scatterer to isolate genu-
ine band gap effects from local field effects. The 3D LDOS
has been examined as a function of frequency and position,
along with the dependence on PC parameters like lattice con-
figuration, cylinder radius, and refractive index contrast. The
3D LDOS has also been decomposed into its radiation and
bound components, and also the 3D PLDOS, which are both
more sensitive probes of band gap effects.

The first structure examined was a 2D PC composed of a
hexagonal cluster of air-voids in a dielectric background
(PC1). This 2D PC has a complete in-plane band gap that

manifests itself as a distinct signature in the 3D LDOS at the
center of the air-voids. The suppression in the 3D LDOS, and
spontaneous emission, get progressively stronger with fre-
quency inside the TE gap and reach a maximum of one order
of magnitude at the top of the complete gap. The 3D LDOS
then jumps sharply higher above the gap. Enclosing the clus-
ter with an air-jacket to form a fiberlike 2D PC does not
significantly change this signature. However, the jacket is an
important extension because it is a more realistic geometry
than an infinite silicon background, and it means that PC
fibers, which are an important class of 2D PC, can be mod-
eled. Furthermore, the jacket allows the 3D LDOS to be
separated into its radiation and bound components. Experi-
mentally, the radiation component is detected outside the
cluster in the transverse direction, while the bound compo-
nent is detected at the ends of the 2D PC. In 2D PCs like
macroporous silicon, which have a wide complete in-plane
gap, the radiation component can be almost completely sup-
pressed just below the top of the complete gap. At the top, a
high density of radiation modes propagating close to in-plane
is suddenly encountered, and the radiation component jumps
sharply. This result would be observed as the radiation com-
ponent rapidly switching on about the edge of the gap and
provides perhaps the strongest experimental measure of band
gap effects in spontaneous emission in 2D PCs.

The band gap signature in the 3D LDOS also occurs in
the 3D PLDOS. At the center of the air-voids,rsr ,v , ẑd ex-
hibits the strongest features and is suppressed by a factor of
30 at the top of the complete gap before rapidly jumping
over two orders of magnitude higher above the gap. The
strongest suppression in the 3D PLDOS occurs in the back-
ground between two adjacent air-voids wherersr ,v , x̂d is
suppressed by more than two orders of magnitude over a
large frequency range. However, this is a local field effect
attributable to the narrow width of the dielectric vein rather
than a band gap effect. The dependence of the band gap
signature on air-void radius and background refractive index
was also examined. As might be expected, the strength of the
suppression depends on the width of the gaps. As the air-void
radius increases, the TM gap widens while the TE gap wid-
ens then narrows, and the suppression is strongest when both
gaps are wide. As the refractive index increases, the com-
plete gap widens, however suppression is essentially limited
to one order of magnitude for realistic values, again because
the periodicity of the 2D PC only affects two of the three
dimensions of wave propagation.

The second structure examined was a 2D PC composed of
a square cluster of dielectric cylinders(PC2). In contrast to
PC1, PC2 has a large TM gap, but does not have a complete
in-plane gap. The band gap produces a signature in the 3D
LDOS similar to that in PC1, but with no complete in-plane
gap, suppression is limited to about a factor of 5. Also, the
3D LDOS increases gradually above the gap rather than
jumping sharply. This signature again occurs inside the cyl-
inders, but is strongest at the cylinder surface rather than the
center. The signature is strongest inrsr ,v , ẑd because of its
close connection with the TM band structure, but the sup-
pression at the top of the TM gap remains below one order of
magnitude. In contrast to PC1, single cylinder effects are
significant in PC2 and are attributable to confinement in a

THREE-DIMENSIONAL GREEN’S TENSOR, LOCAL… PHYSICAL REVIEW E 70, 066608(2004)

066608-15



dielectric cylinder in air. The 3D LDOS in one cylinder
shows relatively strong variations with position and fre-
quency that are similar to those in a cluster, but smaller.
While there are no significant band gap effects inrsr ,v , x̂d
andrsr ,v , ŷd, both are suppressed by well over one order of
magnitude at long wavelengths.
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APPENDIX A: HOMOGENEOUS GREEN’S TENSOR

The homogeneous 3D Green’s tensor,Gn, presented in the
following is obtained using Eq.(13) in Eq. (11). Noting that
Gn

E is a symmetric tensor whileGn
H is an antisymmetric ten-

sor, only the upper-triangular components are shown. Also,
only the Fourier transform is shown, andGn can be obtained

as in Sec. III. The components ofG̃n
E in Cartesian coordi-

nates are

G̃nzz
E = −

i

4
S1 −

b2

sknd2DH0
s1dskrur − r8ud,

G̃nxz
E = −

bkr

4sknd2H1
s1dskrur − r8udcosfrr8,

G̃nyz
E = −

bkr

4sknd2H1
s1dskrur − r8udsin frr8,

G̃nxx
E = −

i

8
FS1 +

b2

sknd2DH0
s1dskrur − r8ud

+
kr

2

sknd2H2
s1dskrur − r8udcos 2frr8G ,

G̃nyy
E = −

i

8
FS1 +

b2

sknd2DH0
s1dskrur − r8ud

−
kr

2

sknd2H2
s1dskrur − r8udcos 2frr8G ,

G̃nxy
E = −

ikr
2

4sknd2H2
s1dskrur − r8udcosfrr8sin frr8, sA1d

wherefrr8=argsr−r8d. The nonzero components ofG̃n
H are

G̃nxz
H =

ikr

4
H1

s1dskrur − r8udsin frr8,

G̃nyz
H = −

ikr

4
H1

s1dskrur − r8udcosfrr8,

G̃nxy
H =

b

4
H0

s1dskrur − r8ud. sA2d

APPENDIX B: SOURCE COEFFICIENTS

The expressions for the source coefficients,Km
l and Qm

l ,
follow from using Graf’s addition theorem to write

H0
s1dskrur − r8ud= o

p=−`

`

Hp
s1dskrr.dJpskrr,deip argsr−r8d,

sB1d

where r.=maxsur−rlu , ur8−rlud and r,=minsur−rlu , ur8
−rlud. Also, the differentials in Eq.(15) are rewritten in terms
of source coordinates using the reciprocity properties ofGn,
which givesD8u

E=Du
E and D8u

H=Du
H. Applying these differ-

entials to Eq.(B1) in the matrix then givesKm
l , with nonzero

components

Kzm
El = S1 −

b2

sknd2D Hm
s1dskrrlsde−imfls,

Kxm
El = −

ibkr

2sknd2fHm−1
s1d skrrlsde−ism−1dfls − Hm+1

s1d

3skrrlsde−ism+1dflsg,

Kym
El = −

bkr

2sknd2fHm+1
s1d skrrlsde−ism+1dfls + Hm−1

s1d

3skrrlsde−ism−1dflsg,

Kxm
Hl =

kr

2i
fHm+1

s1d skrrlsde−ism+1dfls + Hm−1
s1d skrrlsde−ism−1dflsg,

Kym
Hl = −

kr

2
fHm−1

s1d skrrlsde−ism−1dfls − Hm+1
s1d skrrlsde−ism+1dflsg,

sB2d

where srls,flsd=srs−rld. The Qm
l coefficients are similar

with Hm
s1d replaced byJm. The expressions forKm

0 andQm
0 are

obtained upon settingrl =0.

APPENDIX C: BOUNDARY CONDITIONS

The boundary conditions are determined here for a cylin-
der of radiusa centered at the origin of a cylindrical coordi-
nate systemsz,r ,fd. Quantities inside the cylinder are de-
noted “−,” and those outside are denoted “+.” The
z-components of the fields in the vicinity of the cylinder
surface are expressed as

V± = o
m=−`

`

fAm
V±Jmskr

±rd + Bm
V±Hm

s1dskr
±rdgeimf, sC1d

where VP hE,Hj and kr
±=Îk2n±

2−b2. The boundary condi-
tions are that the tangential field components, that is thez
andf components, be continuous at a cylinder surface. For
example, for thez-components of theE field,
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Am
E−Jm

− + Bm
E−Hm

− = Am
E+Jm

+ + Bm
E+Hm

+ , sC2d

where Jm
− =Jmskr

−ad, etc. The linear relations for the coeffi-
cients that result from the boundary conditions can be written

A− = T−A+ + R−B−,

B+ = R+A+ + T+B−, sC3d

whereR andT are the reflection and transmission matrices,
respectively. The exterior reflection matrix is

R+ = FRm
EE+ Rm

EH+

Rm
HE+ Rm

HH+G , sC4d

with

Rm
EE+ =

1

dm
fsaJ−H+ − aH+J−dsn−

2aJ−J+ − n+
2aJ+J−d

− m2J+H+J−2t2g,

Rm
EH+ =

1

dm
mJ−2 kr

−

kkr
+

2i

pa
t,

Rm
HE+ = k2n+

2Rm
EH+,

Rm
HH+ =

1

dm
fsaJ−J+ − aJ+J−dsn−

2aJ−H+ − n+
2aH+J−d

− m2J+H+J−2t2g, sC5d

and

dm = saH+J− − aJ−H+dsn−
2aJ−H+ − n+

2aH+J−d + m2J−2H+2t2,

t =
kr

+

kkr
−Skr

−2

kr
+2 − 1Db

a
,

and whereaJ−H+=J8m
−Hm

+kr
+, etc. Similarly, the components of

the exterior transmission matrix are

Tm
EE+ =

1

dm

kr
+

kr
−n−

2saJ−H+ − aH+J−d
2i

pa
,

Tm
EH+ =

1

dm
mH+J− kr

+

kkr
−

2i

pa
t,

Tm
HE+ = k2n−

2Tm
EH+,

Tm
HH+ =

1

dm

kr
+

kr
−sn−

2aJ−H+ − n+
2aH+J−d

2i

pa
. sC6d

The components of the internal reflection matrix are

Rm
EE− =

1

dm
fsaJ−H+ − aH+J−dsn−

2aH−H+ − n+
2aH+H−d

− m2J−H−H+2t2g,

Rm
EH− =

1

dm
mH+2 kr

+

kkr
−

2i

pa
t,

Rm
HE− = k2n−

2Rm
EH−,

Rm
HH− =

1

dm
fsaH−H+ − aH+H−dsn−

2aJ−H+ − n+
2aH+J−d

− m2J−H−H+2t2g. sC7d

The components of the interior transmission matrix are

Tm
EE− =

1

dm

kr
−

kr
+n+

2saJ−H+ − aH+J−d
2i

pa
,

Tm
EH− =

1

dm
mH+J− kr

−

kkr
+

2i

pa
t,

Tm
HE− = k2n+

2Tm
EH−,

Tm
HH− =

1

dm

kr
−

kr
+sn−

2aJ−H+ − n+
2aH+J−d

2i

pa
. sC8d
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