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We investigate the generalized higher-order nonlinear Schrodinger equation with variable coefficients under
two sets of parametric conditions. The exact one-soliton solution is presented by the ansatz method for one set
of parametric conditions. For the other, exact multisoliton solutions are presented by employing the Darboux
transformation based on the Lax pair. As an example, we consider a soliton control system, and the results
show that the soliton control system may relax the limitations to parametric conditions. The stability of the
solution is discussed numerically; the results reveal that finite initial perturbations, such as amplitude, chirp, or
white noise, could not influence the main character of the solution. In addition, the evolution of a quite
arbitrary Gaussian pulse and the interaction between neighboring pulses have been studied in detail.
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Propagation of femtosecond light pulses in optical fibersR(z) is the nonlinearity parameter, and the parametém
is of particular interest because of their extensive applicaandf(z) are related to self-steepening and delayed nonlinear
tions to telecommunication and ultrafast signal-routing sysresponse effects, respectively(z) denotes the amplification
tems. The problem can be described by the higher-order noyr absorption coefficient. They are real functions of the nor-
linear SchrodingetHNLS) equation, which was derived by malized propagation distance andt is the retarded time.
Kodama and Hasegawd,2]. The best known solutions of Equation(1) describes short pulse propagation in weakly dis-
the HNLS equation are those for solitary waves or solitongpersive and nonlinear dielectrics with distributed parameters.
under certain parametric conditions. In recent years, manjn particular, whenD5(2)=0, a(2)=0, andf(2)=0, Eq. (1)
authors have analyzed the HNLS equation from differentan reduce to the NLS equation with variable coefficients.
points of view and some interesting results have also been |n this paper, we investigate the generalized higher-order
obtained[3-17. nonlinear Schrodinger equation with variable coefficients un-

The concept of soliton control is a new and importantder two sets of parametric conditions. The exact one-soliton
development in the application of solitons. Picosecond soliso|ution is presented by the ansatz method for one set of
ton control, which is described by the nonlinear Schrodingeparametric conditions. For the other, multisoliton solutions
(NLS) equation with variable coefficients, has been eXtenare presented by emp|0ying the Simp|e, Straightforward Dar-
sively studied theoretically because of its potential valueyoux transformation based on the Lax pair, and particularly
[18-26. We would note the fact that the first soliton disper- the exact one- and two-soliton solutions in explicit forms are
sion management experiment in a fiber with hyperbolicallygenerated. The importance of the results presented here is
decreasing group velocity dispersion was realized as early agofold. First, exact multisoliton solutions to the generalized
in 1991 by Bogatyrewet al. [27]; therefore, a study of the HNLS equation with variable coefficients under certain para-
NLS—type equation with variable coefficients is Significant. It metric conditions are obtained in a Simp|e way. The f|nd|ng
has been discussed in previous paj@6s-3Q. However, 0 of a mathematical algorithm to discover soliton solutions in
our knowledge, studies of femtosecond soliton control havgonlinear dispersive systems with spatial parameter varia-
not been widespread. The problem is governed by the HNL$ons is helpful for future research. Second, these results are

equation with variable coefficients as follows: useful not only in the design of transmission lines with soli-
) o ) ) ton management, but also in some experiments of other
i, = — Dx(2)0 — 2R(2)|9|°q + iD 3(2) Gy + i (2) (|0 )y problems, such as femtosecond lasers.
+if(2q(|gP), +iC(2)q, (1) Generally, Eq(1) is not integrable. To solve Eql), we

begin our analysis by assuming a solution given by the ex-
whereq(z,t) is the complex envelope of the electrical field in pression[24]
a comoving frameD,(z) and D5(z) represent the group ve-

locity dispersion and third-order dispersion, respectively, ql(z,t):nl(z)w/%e“f’lsechal, 2)

where 6,=7,(2)[t+p(2)], $1=&(Dt+w(2), and 7,(2), p(2),
*Corresponding author. Electronic address: llz@sxu.edu.cn &(2), and w(z) are related to the inverse width, the group
TCorresponding author. Electronic address: zhougs@sxu.edu.cnvelocity, the frequency shift, and the phase of the pulse,
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which are functions of propagation distanzerespectively. R ) _
Substituting the ansat?) into Eq. (1), removing the expo- B= D. 4AD30\" + 2(Dgq + DN
2

nential term, and then separating the real and imaginary

parts, we can obtain two sets of solvable conditions as fol- R ). .
lows: +Dg| Oy + 2D_q|q| +iDo0 |,
2
1RD,,-D,R
T2 =522 =27, (3) R S
2 RD2 C = D_ - 4D3q)\ + 2(D3qt - |Dzaj)\
2
7, = const, (4) — SR o) =
+D3 —qn—ZD—EMI +iDoq |,
2
6D3R= (3a + 2f)D,, (5  where the overbar represents the complex conjugate) ad

with to verify that Eq.(1) can be recovered by the compatibility
N condition U,—V,+[U,V]=0. In particular, when Eq(1) is
() £=0, 6) with constant coefficients, the conditio(®) and(7) are re-
or duced to the Hirota conditions, E@) represents the Lax
pair of the Hirota equation, and the corresponding results
(i) & =const, a+f=0. (7)  have been given ifi5,32. In the following, we investigate
Eq. (1) by employing a simple, straightforward Darboux
In the cas«i), one can write Eq(2) in the form transformation based on the linear eigenvalue probi@m
[31-33.
— \/@e P2 ZD (0)d According to the standard procedure of Darboux transfor-
®=n R B 1 0 26 mation [32,33, we can obtain the fundamental Darboux
, transformation
Xsec 771(t+77§f Ds(g)d§>i|- (8) N
{ 0 01=9 +2 %m (10)

_ , o R [+ ]gal*
The existence of soliton solutiof8) is the result of weak ) )
balance among third-order dispersion, self-steepening, arff'd @nalogous to this procedure and taking the Darboux
delayed nonlinear response effects described by (Bp. transformatiom times, we find the following formula:
From the expressio(8) one can clearly see that the velocity n - —
of the soliton is determined by?ZD4(2), the phase shift is Qn=q+2\/EE ()\m+)\m)§01,m(}\m)(P2,m()\m), (12)
related to 77§D2(z), and the amplification or absorption is R =1 Am
determined by the relatio(8). Thus we may obtain the op- where
timal control system by choosing the distributed parameters
Ds(2), D,(2), andR(z) for each specific problem, appropri-
ately.

‘Pk,rml()\mﬂ) = Nme1+ ) (Pk,m(7\m+1)

In the case(ii), by employing Ablowitz-Kaup-Newell- _B_m()\ +r) )
Segur technology we can construct the linear eigenvalue A, ™" Promiim/
problem for Eq.(1) as follows:
- A2+ A2,
q’t — U\P, \I,z: V\I,, (9) Am |§Dl,m( m)| |‘)02,m( m)|
whereW =(¢;,¢,)T, T represents the transpose of the matrix, B = ¢1mAme) @1m(Nm) + @2m(Amed) 2 m(Amm) s
andU andV can be given by m=1,2,...,n, k=1, 2, and(¢; 1(\1), @,1(\1))" is the eigen-
A B function of Eq.(9) corresponding to\; for g. Substituting
U=NJ+P, V=< ) the zero solutiorg=0 of Eg. (1) into Eq.(11), we can sys-
C -A tematically obtain multisoliton solutions for E¢lL). Here we

present only one- and two-soliton solutions in explicit forms.
By settingn=1 in Eq.(11) and taking the complex spec-

1 0 0 tral parametein,=(n;+i&;)/2, we find that the one-soliton
J :( ) = 1 /5< q) solution is of the form
0 -1/’ D, ’

with

-q 0
DZ(Z) i i
R@ € %ksechd,, (12

i=m

. RD, RD, .
A=4D A3+ 2ID,\% + 22— |2\ + —(qg, — +iR|gl?,
3 2 D, |a D, (o, - qq) |q where
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the spectral parameter which is a complex constant. It is easy
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) N z For example, we consider a soliton control system with
= 1| t+ (7 — 3§k)f Ds(Hd¢ - 2§kf Da(HAE | = o, the group velocity dispersion parameter
0 0

, D2(2) = doexp(- g2, (19
= &+ E(3n — 5@[ Da({)dd the nonlinearity parameter
0
. a7 R(z) =r exp(- 02), (16)
+ (7 - fk)j D({)d¢ = ¢ros (13 _ _ _
0 and the third-order dispersion parameter
k=1, and 6,9 and ¢y are arbitrary real constants. In the D4(2) = daexp- h2) (17)

above two expressions, the real payt of the spectral pa-

rameter\; is mainly dependent on the pulse width and itswherer and o are the parameters to describe the nonlinear-
imaginary parté; describes the frequency shift. The phaseity, andd, andg, d; andh are related to the group velocity
shift is related to both real and imaginary parts of the spectrafiispersion and third-order dispersion, respectively. The pre-
parametei;, and the initial position and the initial phase of sented system is similar to the one given by Bef) of Ref.

the soliton are determined by the parametéfsand ¢10,  [26]. In this situation, the gain/loss distributed function is of
respectively. From the soliton solutigt2), we find that the  the formI'(2)=(o—g)/2 (o>g for the gain;oc<g for the
velocity of the soliton is determined by7-3é)Ds(2)  |oss, and the velocity of each soliton in the two-soliton so-
—2£Dy(2), which depends on the distributed parameterqution (14) can be written asV,=dy(72-3&)exp—h2)
D,(z) and D3(2) except for the spectral parameter. Thus,  -2d,&exp(-g2). From it one can see that, for h>0 and

we can control the velocity of the soliton by managing theg> 0 tends to zero wher goes to infinity. This means that
distributed parameter®,(z) and Ds(2) in optical soliton  whenh>0 andg>0 the bound-soliton solution can always
communication systemg26]. In particular, whenD,(z2)  be formed, and is independent of the spectral paramaters
=R(z)=const,D3(z) =const, andt; =0, the one-soliton solu- and\,. Figure Xa) presents the separating evolution plot of
tion (12) can be reduced to a simple form, as shown in Refthe two-soliton solution given by Eql4) for h>0 and

[18]. g>0. From Fig. 1a) we can see that the separation between
Whenn=2, from Eq.(11), we can find the two solitons[Eq. (14)] keeps constant except for the
change of the soliton velocity at the beginning of propaga-
5= /D22 G (14)  tion. Whenhg<0 orh<0 andg<0, V| tends to + or —»
R(2) F (depending on the choice of the spectral parameterand

\,) asz goes to infinity, and hence the two-soliton solution
given by Eqg.(14) may describe the elastic collision between
G = a,cosh6,€ %1 + a,coshe, e # solitons. Figure (b) shows the procedure of the elastic col-
. . i . i lision for h<0 andg>0. The results show that one may
+iag(sinh 6,61 - sinh ,€%2), control the interaction between the pulses by choosing the
arameter$ andg appropriately.

F =b,COSH6; + ;) + b,COSI 6, — 6,) + bsCO by =~ 1), P It is worth notgilngp&atpthe e{dstence of soliton solutions
with (12) and (14) depends on the specific nonlinear and disper-
sive features of the medium, which have to satisfy the con-
ditions (3)«(5) and(7), i.e., Hirota conditions in a more gen-
eral sense, which could be called the generalized Hirota
conditions. These constraint conditions present the strict bal-

1 - ) ances among third-order dispersion, self-steepening, and de-
by = 4_1{[771+ (= D7)+ (&1~ &), layed nonlinear response effects. In real applications, how-

ever, it may be difficult to produce exactly such balances.
A= (&,- &), by=- _ Therefore a study for nongeneraliz_ed Hirota conditi_ons is

37 MU2ie1T 820 B3 T T 2 necessary. Here we take the solutith®) and the soliton
6 and ¢, are given in Eq(13) with k=1, 2, where we have control system given by Eq$15)—17) as an example, and
used\ =(m+i&)/2. Based on the exact solutiq4), we  perturb the generalized Hirota conditions in two waga:
can conveniently analyze the transmission properties of twee=6D3(2)R(2)/D,(2), a+f=D3(2); and (b) a
femtosecond optical solitons in inhomogeneous systems:7D3(z)R(z)/Dy(z), a+f=0. The results are shown in Fig.
From the expression ofy, one can clearly see that the ve- 2. We clearly see that, after a short adjustment, the soliton
locity of each soliton in the two-soliton solutiail4) is de-  approaches the stable state. In fact, we have made more nu-
termined by (72-3&)D3(2)-2&D,(2), which is dependent merical simulations for the nongeneralized Hirota conditions,
not only on the spectral parametexg and \,, but on the and the results show that the solution is still stable and the
distributed parameterB4(z) and D,(z). Thus, we can trap evolution of the soliton is not sensitive to perturbed condi-
the velocity of each soliton to form a bound-soliton solutiontions. Therefore, we may infer that the soliton control system
by designing the distributed paramet&g(z) and Dy(2). presented here may relax the limitations to parametric con-

where

= %([775‘ nﬁ_k+ (&- &),
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FIG. 2. The evolution plot of soliton solution given by E42)
for the parameter=g. Here the parameters adopted ajg=¢;
=1, 010=¢10=0. (@ @=6D3(29)R(2)/Dy(2), a+f=D3(2); (b) «
=7D3(2)R(2)/Dy(2), a+f=0.

20 some oscillation attached to the solitons’ tails.

time ¢ Finally, we investigated interaction between neighboring
pulses. Here, we consider two cas@d:the initial pulse is of
Gaussian type with equal amplitude in the fom0,t)
=exfd—(t+To/2)%]+exd-(t-To/2)?]; (b) the initial pulse is

of sech type with equal amplitude in the forigO,t)
=seclft+T,/2) +seclit—T,/2), where T, accounts for the

FIG. 1. (a) The separating evolution plot of soliton solution
given by Eq. (14) for the system parameterd,=g=1, d3;=h
=0.1,r=1, o=g. The other parameters adopted aye=-1, 7,
=1.1,£=£6=0.6, 619=629=1, d10=»0=0. (b) The elastic colli-
sion for the system parametens—0.1, and the other parameters
the same as i@).

ditions. This may make the soliton control technique more
realistic and leave scope for more physical explanations an
applications in the future.

To demonstrate stability with respect to finite perturba-,,

[

tions for the solutions, we still take E¢L2) as an example £
and perform various types of numerical experiments. TheE
results reveal that finite initial perturbatios0%), such as

amplitude, frequency, and white noise, could not influence
the main character of the solution. Figure 3 presents thi

evolution plot of an initial perturbed sech
pulse  1.Iy;\D,(0)/R(0)exp(0.9&,t- 6y sectizn;t—¢1o)
+0.1 randon(t)] for the system given by Eq$15—17). In FIG. 3. The evoluton plot of an initial perturbed
addition, we investigated the problem of whether the solutiorsech  pulse  1.4;\/D,(0)/R(0)exp(0.9 &t - 6;9)[secki7;t— by

is stable under more general conditions. Figure 4 shows theg.1 randortt)] for the system given by Eq§15)—(17), where the
evolution of an initial Gaussian pulsﬁo,t):exq—tz). From system parameters amy=g=1, d;=h=0.1,r=1, =g, and the
this plot, we find that the solution is still stable except for other parameters arg;=&,=1, 6;9= ¢10=0.
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FIG. 4. The evolution of an initial Gaussian pulsg0,t)
=exp(—-t?) for the system parametersl,=g=1,d;=h=0.1,r
=1,0=g.

pulse separation. Figuresdd and %b) present the separating (b)
evolution plot of the neighboring Gaussian-type pulse anc
the neighboring sech-type pulse under the same pulse sef
ration To=7 for the parametesr=g, respectively. From Fig.

5 we can see that for the Gaussian-type pulse the interactic
between pulses gives rise to unequal amplitude except fc
some oscillation attached to the solitons’ tails, as shown ir'®
Fig. Xa); for the sech-type pulse, however, the separation o
the neighboring solitons keeps constant, and is smaller tha
that for the ideal nonlinear Schrodinger equati®4], as
shown in Fig. Bb). Therefore, we may infer that the com-
bined effects of controlling both the group velocity disper-
sion distribution and the nonlinearity distribution can restrict
the interaction between the neighboring solitons to some ex
tent. It is advantageous to increase the information bit rate il
optical soliton communications.

In conclusion, we have considered the higher-order non- FIG. 5. The evolution plot of the interaction between neighbor-
linear Schrddinger equation with variable coefficients undeing pulses with the separatioh,=7. Here the system parameters
two sets of parametric conditions. We have presented theare the same as in Fig. &) The neighboring Gaussian-type pulse;
exact one-soliton solution by the ansatz method for one seb) the neighboring sech-type pulse.
of parametric conditions. For the other, we have presented
multisoliton solutions by employing the Darboux transfor- ampjitude, frequency, or white noise, could not influence the
mation, and the exact one- and two-soliton solutions in €xmajn character of the solution. In addition, the evolution of a
plicit forms have been generated. The solutions are of geryyite arbitrary Gaussian pulse and the interaction between
eral application in short pulse propagation in weaklyneighboring pulses have been studied in detail. The applica-
dispersive and nonlinear dielectrics. Furthermore, as an e%ion of these results to femtosecond optical soliton propaga-

ample, we have given a soliton control system, and the reyion in long optical fibers should be an interesting task.
sults have shown that the soliton control system presented

here may relax the limitations to parametric conditions. The This research is supported by the Provincial Overseas
stability of the solution has been discussed numerically. Thé&cholar Foundation of Shanxi and the National Natural Sci-
results have revealed that finite initial perturbations, such aence Foundation of China Grant 60477026.
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