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We investigate the generalized higher-order nonlinear Schrödinger equation with variable coefficients under
two sets of parametric conditions. The exact one-soliton solution is presented by the ansatz method for one set
of parametric conditions. For the other, exact multisoliton solutions are presented by employing the Darboux
transformation based on the Lax pair. As an example, we consider a soliton control system, and the results
show that the soliton control system may relax the limitations to parametric conditions. The stability of the
solution is discussed numerically; the results reveal that finite initial perturbations, such as amplitude, chirp, or
white noise, could not influence the main character of the solution. In addition, the evolution of a quite
arbitrary Gaussian pulse and the interaction between neighboring pulses have been studied in detail.
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Propagation of femtosecond light pulses in optical fibers
is of particular interest because of their extensive applica-
tions to telecommunication and ultrafast signal-routing sys-
tems. The problem can be described by the higher-order non-
linear Schrödinger(HNLS) equation, which was derived by
Kodama and Hasegawa[1,2]. The best known solutions of
the HNLS equation are those for solitary waves or solitons
under certain parametric conditions. In recent years, many
authors have analyzed the HNLS equation from different
points of view and some interesting results have also been
obtained[3–17].

The concept of soliton control is a new and important
development in the application of solitons. Picosecond soli-
ton control, which is described by the nonlinear Schrödinger
(NLS) equation with variable coefficients, has been exten-
sively studied theoretically because of its potential value
[18–26]. We would note the fact that the first soliton disper-
sion management experiment in a fiber with hyperbolically
decreasing group velocity dispersion was realized as early as
in 1991 by Bogatyrevet al. [27]; therefore, a study of the
NLS-type equation with variable coefficients is significant. It
has been discussed in previous papers[28–30]. However, to
our knowledge, studies of femtosecond soliton control have
not been widespread. The problem is governed by the HNLS
equation with variable coefficients as follows:

iqz = − D2szdqtt − 2Rszduqu2q + iD3szdqttt + iaszdsuqu2qdt

+ i f szdqsuqu2dt + iGszdq, s1d

whereqsz,td is the complex envelope of the electrical field in
a comoving frame,D2szd andD3szd represent the group ve-
locity dispersion and third-order dispersion, respectively,

Rszd is the nonlinearity parameter, and the parametersaszd
and fszd are related to self-steepening and delayed nonlinear
response effects, respectively.Gszd denotes the amplification
or absorption coefficient. They are real functions of the nor-
malized propagation distancez, and t is the retarded time.
Equation(1) describes short pulse propagation in weakly dis-
persive and nonlinear dielectrics with distributed parameters.
In particular, whenD3szd=0, aszd=0, and fszd=0, Eq. (1)
can reduce to the NLS equation with variable coefficients.

In this paper, we investigate the generalized higher-order
nonlinear Schrödinger equation with variable coefficients un-
der two sets of parametric conditions. The exact one-soliton
solution is presented by the ansatz method for one set of
parametric conditions. For the other, multisoliton solutions
are presented by employing the simple, straightforward Dar-
boux transformation based on the Lax pair, and particularly
the exact one- and two-soliton solutions in explicit forms are
generated. The importance of the results presented here is
twofold. First, exact multisoliton solutions to the generalized
HNLS equation with variable coefficients under certain para-
metric conditions are obtained in a simple way. The finding
of a mathematical algorithm to discover soliton solutions in
nonlinear dispersive systems with spatial parameter varia-
tions is helpful for future research. Second, these results are
useful not only in the design of transmission lines with soli-
ton management, but also in some experiments of other
problems, such as femtosecond lasers.

Generally, Eq.(1) is not integrable. To solve Eq.(1), we
begin our analysis by assuming a solution given by the ex-
pression[24]

q1sz,td = h1szdÎD2

R
eif1sechu1, s2d

where u1=h1szdft+rszdg, f1=j1szdt+vszd, and h1szd, rszd,
j1szd, and vszd are related to the inverse width, the group
velocity, the frequency shift, and the phase of the pulse,

*Corresponding author. Electronic address: llz@sxu.edu.cn
†Corresponding author. Electronic address: zhougs@sxu.edu.cn

PHYSICAL REVIEW E 70, 066603(2004)

1539-3755/2004/70(6)/066603(6)/$22.50 ©2004 The American Physical Society066603-1



which are functions of propagation distancez, respectively.
Substituting the ansatz(2) into Eq. (1), removing the expo-
nential term, and then separating the real and imaginary
parts, we can obtain two sets of solvable conditions as fol-
lows:

Gszd =
1

2

RD2,z − D2Rz

RD2
, s3d

h1 = const, s4d

6D3R= s3a + 2fdD2, s5d

with

sid j1 = 0, s6d

or

sii d j1 = const, a + f = 0. s7d

In the case(i), one can write Eq.(2) in the form

q1 = h1ÎD2

R
expFih1

2E
0

z

D2szddzG
3sechFh1St + h1

2E
0

z

D3szddzDG . s8d

The existence of soliton solution(8) is the result of weak
balance among third-order dispersion, self-steepening, and
delayed nonlinear response effects described by Eq.(5).
From the expression(8) one can clearly see that the velocity
of the soliton is determined byh1

2D3szd, the phase shift is
related toh1

2D2szd, and the amplification or absorption is
determined by the relation(3). Thus we may obtain the op-
timal control system by choosing the distributed parameters
D3szd , D2szd, andRszd for each specific problem, appropri-
ately.

In the case(ii ), by employing Ablowitz-Kaup-Newell-
Segur technology we can construct the linear eigenvalue
problem for Eq.(1) as follows:

Ct = UC, Cz = VC, s9d

whereC=sw1,w2dT, T represents the transpose of the matrix,
andU andV can be given by

U = lJ + P, V = SA B

C − A
D

with

J = S1 0

0 − 1
D, P =Î R

D2
S 0 q

− q̄ 0
D ,

A = 4D3l3 + 2iD2l2 + 2
RD3

D2
uqu2l +

RD3

D2
sq̄qt − qq̄td + iRuqu2,

B =Î R

D2
F4D3ql2 + 2sD3qt + iD2qdl

+ D3Sqtt + 2
R

D2
ququ2D + iD2qtG ,

C =Î R

D2
F− 4D3q̄l2 + 2sD3q̄t − iD2q̄dl

+ D3S− q̄tt − 2
R

D2
q̄uqu2D + iD2q̄tG ,

where the overbar represents the complex conjugate, andl is
the spectral parameter which is a complex constant. It is easy
to verify that Eq.(1) can be recovered by the compatibility
condition Uz−Vt+fU ,Vg=0. In particular, when Eq.(1) is
with constant coefficients, the conditions(5) and (7) are re-
duced to the Hirota conditions, Eq.(9) represents the Lax
pair of the Hirota equation, and the corresponding results
have been given in[5,32]. In the following, we investigate
Eq. (1) by employing a simple, straightforward Darboux
transformation based on the linear eigenvalue problem(9)
[31–33].

According to the standard procedure of Darboux transfor-
mation [32,33], we can obtain the fundamental Darboux
transformation

q1 = q + 2ÎD2

R

sl1 + l̄1dw1w̄2

uw1u2 + uw2u2
, s10d

and analogous to this procedure and taking the Darboux
transformationn times, we find the following formula:

qn = q + 2ÎD2

R
o
m=1

n
slm + l̄mdw1,mslmdw̄2,mslmd

Am
, s11d

where

wk,m+1slm+1d = slm+1 + l̄mdwk,mslm+1d

−
Bm

Am
slm + l̄mdwk,mslmd,

Am = uw1,mslmdu2 + uw2,mslmdu2,

Bm = w1,mslm+1dw̄1,mslmd + w2,mslm+1dw̄2,mslmd,

m=1,2,… ,n, k=1, 2, and(w1,1sl1d , w2,1sl1d)T is the eigen-
function of Eq. (9) corresponding tol1 for q. Substituting
the zero solutionq=0 of Eq. (1) into Eq. (11), we can sys-
tematically obtain multisoliton solutions for Eq.(1). Here we
present only one- and two-soliton solutions in explicit forms.

By settingn=1 in Eq. (11) and taking the complex spec-
tral parameterl1=sh1+ ij1d /2, we find that the one-soliton
solution is of the form

q1 = h1ÎD2szd
Rszd

eifksechuk, s12d

where
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uk = hkSt + shk
2 − 3jk

2dE
0

z

D3szddz − 2jkE
0

z

D2szddzD − uk0,

fk = jkt + jks3hk
2 − jk

2dE
0

z

D3szddz

+ shk
2 − jk

2dE
0

z

D2szddz − fk0, s13d

k=1, and u10 and f10 are arbitrary real constants. In the
above two expressions, the real parth1 of the spectral pa-
rameterl1 is mainly dependent on the pulse width and its
imaginary partj1 describes the frequency shift. The phase
shift is related to both real and imaginary parts of the spectral
parameterl1, and the initial position and the initial phase of
the soliton are determined by the parametersu10 and f10,
respectively. From the soliton solution(12), we find that the
velocity of the soliton is determined bysh1

2−3j1
2dD3szd

−2j1D2szd, which depends on the distributed parameters
D2szd andD3szd except for the spectral parameterl1. Thus,
we can control the velocity of the soliton by managing the
distributed parametersD2szd and D3szd in optical soliton
communication systems[26]. In particular, whenD2szd
=Rszd=const,D3szd=const, andj1=0, the one-soliton solu-
tion (12) can be reduced to a simple form, as shown in Ref.
[18].

Whenn=2, from Eq.(11), we can find

q2 =ÎD2szd
Rszd

G

F
s14d

where

G = a1coshu2e
if1 + a2coshu1e

if2

+ ia3ssinhu2e
if1 − sinhu1e

if2d,

F = b1coshsu1 + u2d + b2coshsu2 − u1d + b3cossf2 − f1d,

with

ak =
hk

2
fhk

2 − h3−k
2 + sj1 − j2d2g,

bk =
1

4
hfh1 + s− 1dkh2g2 + sj1 − j2d2j,

a3 = h1h2sj1 − j2d, b3 = − h1h2.

uk andfk are given in Eq.(13) with k=1, 2, where we have
usedlk=shk+ ijkd /2. Based on the exact solution(14), we
can conveniently analyze the transmission properties of two
femtosecond optical solitons in inhomogeneous systems.
From the expression ofuk, one can clearly see that the ve-
locity of each soliton in the two-soliton solution(14) is de-
termined byshk

2−3jk
2dD3szd−2jkD2szd, which is dependent

not only on the spectral parametersl1 and l2, but on the
distributed parametersD3szd and D2szd. Thus, we can trap
the velocity of each soliton to form a bound-soliton solution
by designing the distributed parametersD3szd andD2szd.

For example, we consider a soliton control system with
the group velocity dispersion parameter

D2szd = d2exps− gzd, s15d

the nonlinearity parameter

Rszd = r exps− szd, s16d

and the third-order dispersion parameter

D3szd = d3exps− hzd, s17d

wherer ands are the parameters to describe the nonlinear-
ity, and d2 andg, d3 andh are related to the group velocity
dispersion and third-order dispersion, respectively. The pre-
sented system is similar to the one given by Eq.(14) of Ref.
[26]. In this situation, the gain/loss distributed function is of
the form Gszd=ss−gd /2 (s.g for the gain;s,g for the
loss), and the velocity of each soliton in the two-soliton so-
lution (14) can be written asVk=d3shk

2−3jk
2dexps−hzd

−2d2jkexps−gzd. From it one can see thatVk for h.0 and
g.0 tends to zero whenz goes to infinity. This means that
whenh.0 andg.0 the bound-soliton solution can always
be formed, and is independent of the spectral parametersl1
andl2. Figure 1(a) presents the separating evolution plot of
the two-soliton solution given by Eq.(14) for h.0 and
g.0. From Fig. 1(a) we can see that the separation between
the two solitons[Eq. (14)] keeps constant except for the
change of the soliton velocity at the beginning of propaga-
tion. Whenhg,0 or h,0 andg,0, Vk tends to +̀ or −`
(depending on the choice of the spectral parametersl1 and
l2) as z goes to infinity, and hence the two-soliton solution
given by Eq.(14) may describe the elastic collision between
solitons. Figure 1(b) shows the procedure of the elastic col-
lision for h,0 and g.0. The results show that one may
control the interaction between the pulses by choosing the
parametersh andg appropriately.

It is worth noting that the existence of soliton solutions
(12) and (14) depends on the specific nonlinear and disper-
sive features of the medium, which have to satisfy the con-
ditions (3)–(5) and(7), i.e., Hirota conditions in a more gen-
eral sense, which could be called the generalized Hirota
conditions. These constraint conditions present the strict bal-
ances among third-order dispersion, self-steepening, and de-
layed nonlinear response effects. In real applications, how-
ever, it may be difficult to produce exactly such balances.
Therefore a study for nongeneralized Hirota conditions is
necessary. Here we take the solution(12) and the soliton
control system given by Eqs.(15)–(17) as an example, and
perturb the generalized Hirota conditions in two ways:(a)
a=6D3szdRszd /D2szd , a+ f =D3szd; and (b) a
=7D3szdRszd /D2szd , a+ f =0. The results are shown in Fig.
2. We clearly see that, after a short adjustment, the soliton
approaches the stable state. In fact, we have made more nu-
merical simulations for the nongeneralized Hirota conditions,
and the results show that the solution is still stable and the
evolution of the soliton is not sensitive to perturbed condi-
tions. Therefore, we may infer that the soliton control system
presented here may relax the limitations to parametric con-
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ditions. This may make the soliton control technique more
realistic and leave scope for more physical explanations and
applications in the future.

To demonstrate stability with respect to finite perturba-
tions for the solutions, we still take Eq.(12) as an example
and perform various types of numerical experiments. The
results reveal that finite initial perturbations(10%), such as
amplitude, frequency, and white noise, could not influence
the main character of the solution. Figure 3 presents the
evolution plot of an initial perturbed sech
pulse 1.1h1ÎD2s0d /Rs0dexps0.9ij1t−u10dfsechsh1t−f10d
+0.1 randomstdg for the system given by Eqs.(15)–(17). In
addition, we investigated the problem of whether the solution
is stable under more general conditions. Figure 4 shows the
evolution of an initial Gaussian pulseqs0,td=exps−t2d. From
this plot, we find that the solution is still stable except for

some oscillation attached to the solitons’ tails.
Finally, we investigated interaction between neighboring

pulses. Here, we consider two cases:(a) the initial pulse is of
Gaussian type with equal amplitude in the formqs0,td
=expf−st+T0/2d2g+expf−st−T0/2d2g; (b) the initial pulse is
of sech type with equal amplitude in the formqs0,td
=sechst+T0/2d+sechst−T0/2d, where T0 accounts for the

FIG. 1. (a) The separating evolution plot of soliton solution
given by Eq. (14) for the system parametersd2=g=1, d3=h
=0.1, r =1, s=g. The other parameters adopted areh1=−1, h2

=1.1, j1=j2=0.6, u10=u20=1, f10=f20=0. (b) The elastic colli-
sion for the system parametersh=−0.1, and the other parameters
the same as in(a).

FIG. 2. The evolution plot of soliton solution given by Eq.(12)
for the parameters=g. Here the parameters adopted areh1=j1

=1, u10=f10=0. (a) a=6D3szdRszd /D2szd , a+ f =D3szd; (b) a
=7D3szdRszd /D2szd , a+ f =0.

FIG. 3. The evolution plot of an initial perturbed
sech pulse 1.1h1ÎD2s0d /Rs0dexps0.9ij1t−u10dfsechsh1t−f10d
+0.1 randomstdg for the system given by Eqs.(15)–(17), where the
system parameters ared2=g=1, d3=h=0.1, r =1, s=g, and the
other parameters areh1=j1=1, u10=f10=0.
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pulse separation. Figures 5(a) and 5(b) present the separating
evolution plot of the neighboring Gaussian-type pulse and
the neighboring sech-type pulse under the same pulse sepa-
ration T0=7 for the parameters=g, respectively. From Fig.
5 we can see that for the Gaussian-type pulse the interaction
between pulses gives rise to unequal amplitude except for
some oscillation attached to the solitons’ tails, as shown in
Fig. 5(a); for the sech-type pulse, however, the separation of
the neighboring solitons keeps constant, and is smaller than
that for the ideal nonlinear Schrödinger equation[34], as
shown in Fig. 5(b). Therefore, we may infer that the com-
bined effects of controlling both the group velocity disper-
sion distribution and the nonlinearity distribution can restrict
the interaction between the neighboring solitons to some ex-
tent. It is advantageous to increase the information bit rate in
optical soliton communications.

In conclusion, we have considered the higher-order non-
linear Schrödinger equation with variable coefficients under
two sets of parametric conditions. We have presented the
exact one-soliton solution by the ansatz method for one set
of parametric conditions. For the other, we have presented
multisoliton solutions by employing the Darboux transfor-
mation, and the exact one- and two-soliton solutions in ex-
plicit forms have been generated. The solutions are of gen-
eral application in short pulse propagation in weakly
dispersive and nonlinear dielectrics. Furthermore, as an ex-
ample, we have given a soliton control system, and the re-
sults have shown that the soliton control system presented
here may relax the limitations to parametric conditions. The
stability of the solution has been discussed numerically. The
results have revealed that finite initial perturbations, such as

amplitude, frequency, or white noise, could not influence the
main character of the solution. In addition, the evolution of a
quite arbitrary Gaussian pulse and the interaction between
neighboring pulses have been studied in detail. The applica-
tion of these results to femtosecond optical soliton propaga-
tion in long optical fibers should be an interesting task.
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