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Diffraction radiation(DR) from an ultrarelativistic particle in the high frequency limit is considered. The
distribution of the emitted energy over angles and frequencies has been obtained. Both backward DR and
forward DR have been explored. The maximum of backward DR is found to augment with increasing the
oblique incidence angle.
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I. INTRODUCTION

Diffraction radiation(DR) arises when a charged particle
moves near the edge of a target[1–6]. By now the model of
the perfect conducting target has been explored in detail.
Thus in Ref.[7] DR from a charge passing near an infinitely
thin perfectly conducting semi-infinite plane has been calcu-
lated exactly. A similar problem has been investigated in Ref.
[8] for a metal wedge with arbitrary vertex angle. Results of
the studies[1–8] relating to DR are restricted to optical fre-
quencies.

On the other hand, transition radiation(TR) of an ul-
trarelativistic charge extends to the region of high frequen-
cies up togvp [6]. Hereg is the Lorenz factor of the charge,
vp=Î4pZNe2/m is the plasma frequency,N is the number
density of atoms,m is the mass of the electron,Z is the
number of the atomic element in the periodic table. With that
TR is a constant at frequencies fromvp to gvp, and de-
creases asv−4 at frequenciesv.gvp. TR and DR have the
same nature—they arise owing to dynamic polarization of
the material by the proper field of the passing charge. This
allows us to assume a similar behavior for DR.

DR in the plasma frequency limitsv@vpd has been al-
ready investigated. DR for the nonrelativistic caseb!1 was
considered in Ref.[9]. However, DR is well known to be
nonzero only if the distance between the target and the
charge is not larger thanbgl. Hence there is not any reason
to consider DR in the high frequency limit for nonrelativistic
particles. Theoretical description of the x-ray generation
through resonant DR(the Smith-Purcell effect) is given in
Ref. [10]. This approach is based on the equations given in
Ref. [4] (p. 382), which had been obtained for an infinitely
thin perfectly conducting target. This makes the applicability
of these results for frequencies larger than optical ones rather
questionable. Moreover, the skin effect does not occur at
frequenciesv.vp and the approximation of infinitely thin
target is not valid.

The study of DR at high frequencies has a practical im-
portance for the development of novel methods of noninter-
ceptive diagnostics of charged particle beams. Therefore it is

of interest to explore the DR of an ultrarelativistic charge at
frequencies larger thanvp in detail.

In the present paper we use a simple method, which al-
lows us to obtain the main characteristics of DR. This
method was suggested by Durand[11] and applied for the
exploring of TR at frequenciesv@vp.

Our approach is based on the fact that media become
transparent for the radiation at frequencies of interest. Due to
this fact one can neglect reflection and refraction of the ra-
diation on the surface of the target. The virtue of this ap-
proach follows from its simplicity and applicability to differ-
ent geometries of the problem. Here we have considered a
case when an ultrarelativistic charge moves uniformly above
the slab parallel to its top plane. The oblique incidence angle,
the width, and thickness of the slab are supposed to be arbi-
trary. In Sec. II and III we derive the expression for the
current density induced in the slab and give the general ex-
pression for the distribution of the emitted energy over
angles and frequencies. In Sec. IV we consider a special case
when the charge trajectory is crossed with the plane of the
slab under right angle. The case of arbitrary oblique inci-
dence angle is discussed in Sec. V. In Sec. VI we summarize
the main features of DR at high frequencies and discuss the
scope of validity of the results.

II. CURRENT DENSITY INDUCED IN THE SLAB

Let us consider DR from an ultrarelativistic charge pass-
ing close to a single target. We will take the slab with sizes
a3`3b as a target(see Fig. 1). In reality, the slab length
can be considered as infinite, if it is more thangl.

Assume that the charge travels at constant velocityv
=svx,vy,0d. At the momentt=0 it is at the points0,0,hd.
The proper field of the charge induces a current in the slab
substance. The radiation arising here is defined by the Fou-
rier image of the current densityj sp ,vd. The connection of
the polarization current densityj sr ,vd with the proper
charge fieldE0 can be written as

j sr ,vd =
v

4pi
f«svd − 1gE0sr ,vd. s1d
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v @ vp s2d

a dielectric function has a universal form[12]

« = 1 −vp
2/v2. s3d

Consider a high energetic particle with

g @ 1. s4d

In this case the charge fieldE0 is nearly transverse with
respect tov [4] and we can ignore the parallel component of
it. The Fourier image of the transverse proper fieldE' of the
ultrarelativistic charged particle is

E'sq,vd = −
ie

2p2

q − vv/v2

q2 − v2/c2dsv − q ·vdexph− iqzhj. s5d

Thus within the range of inequalities(2) and (4) the polar-
ization current density becomes

j sr ,vd =
iv

4p

vp
2

v2 E d3qE'sq,vdexphiq · r j. s6d

III. RADIATION FIELD AND EMITTED ENERGY

At frequenciesv@vp the refraction coefficient differs
from unity only in the quantity of the order ofsvp/vd2. On
the other hand, the polarization current density is propor-
tional to svp/vd2. Consequently, taking into account refrac-
tion and reflection gives terms of the order ofsvp/vd4 that
can be neglected. Hence we can ignore reflection and refrac-
tion on the slab surface at frequencies of interest. Therefore
the radiation formed inside the slab goes out without changes
both in amplitude and direction. In other words, we assume
here rectilinear propagation of the radiation from the source
point to the surface of the slab with a real wave vectorÎ«k
and rectilinear propagation to the point of observation with a
wave vectork. This approach has been applied successfully
by Durand[11] for analysis of TR at high frequencies(see
also Ref.[6]). Besides, a similar method was used within the
frame of eikonal approximation[13]. The radiation field here
can be obtained as

Ersr ,vd =
exphikrj

r

iv

c2 n 3 n 3 E
V

d3r8

3exph− iÎ«k · r 8jj sr 8,vd, s7d

wherek =sv /cdn is the wave vector of the radiation field at
the point of observation,n is the unit vector. We are integrat-
ing here over all volumeV of the slab. The result of integrat-
ing is

Ersr ,vd =
exphikrj

r

evp
2

c2

1 − exphiawj
4pvxw

exph− Hrj

3
exph− ibkzj − exph− brj

r − iÎ«kz

n 3 n 3 SA

r
− iezD .

s8d

Here is denoted

w =
k

bx
s1 − n ·vÎ«/cd, vx Þ 0, Î« . 1 −

1

2

vp
2

v2 , s9d

r =
v

cbxg
Î1 + g2s«b2ny

2 + by
2 − 2Î«bynyd, s10d

A = H v

vx
Svy

2

v2 − Î«bynyD,−
v

v
Svy

v
− Î«bnyD,0J . s11d

Here H is the impact parameter, i.e., the shortest distance
between the particle trajectory and the edge of the slab;a and
b are the thickness and the width of the slab, respectively
(see Fig. 1).

The spectral and angular distribution of the radiated en-
ergy can be found by the formula

d2Esn,vd = cr2dVdvuErsr ,vdu2. s12d

If we substitute Eq.(8) in Eq. (12), we get

d2Esn,vd
dVds"vd

=
e2

c"
S vp

2

2pv2D2

Fb

1 − nz
2 + fA2 − sA ·nd2g/r2

sc2/v2dr2 + «nz
2

3exph− 2Hrj
sin2S av

2vx
s1 − n ·vÎ«/cdD

s1 − n ·vÎ«/cd2
,

s13d

Fbsb,vd = 1 − 2 exph− brjcossbÎ«kzd + exph− 2brj.

s14d

The factorFb defines the dependence of the radiated energy
on the slab width. It should be noticed that Eq.(13) describes
DR at distances much larger than the dimension of the emit-
ting source. Furthermore, formulas(8)–(14) are given as they
are obtained from Eq.(7). In further analysis one should
neglect terms of the order ofsvp/vd2 in comparison with
unity according to Eq.(2).

FIG. 1. The geometry.H is an impact parameter,b is the width
of the slab,a is the thickness,a is the oblique incidence angle, i.e.,
the angle between the velocityv and axisx. The charge moves
parallel to thexy plane.
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IV. NORMAL INCIDENCE

Now we will consider the case when the velocity is di-
rected along thex axis, i.e.,a=0, v=sv ,0 ,0d. It is easy to
obtain

d2Esn,vd
dVds"vd

=
e2

c"
S vp

2

2pv2D2sin2Sav

2v
s1 −Î«bnxdD

s1 −Î«bnxd2

3Fb

1 − nz
2 + ny

2s1 − ny
2d/sg−2 + ny

2d
g−2 + 1 −nx

2 exph− 2Hrj,

s15d

wherer becomes

r =
v

cg
Î1 + g2ny

2 s16d

and we have neglected terms of the order ofg−2 andvp
2/v2

in comparison with unity.
It is convenient to introduce the spherical coordinate sys-

tem (see Fig. 2) as

nx = cosu, ny = sinu cosf, nz = sinu sinf. s17d

We can see that the radiation has a sharp maximum foru
,g−1. We have foru!1

d2Esn,vd
dVdv

.
1

p2

e2

c
Svp

v
D4 sin2Fav

4c
su2 + g−2 + vp

2/v2dG
su2 + g−2 + vp

2/v2d2su2 + g−2d

3 Fb

1 + 2g2ny
2

1 + g2ny
2 expH−

2Hv

cg
Î1 + g2ny

2J .

s18d

Here ny<u cosf. It follows from Eq. (18) that maximal
radiation is directed straightforward. The reason for it is the
absence of any symmetry in reference to the charge trajec-
tory.

A. Cutoff frequency

Let us look at the distinctive features of Eq.(18). First,
there is a cutoff frequencyvc. If

H , lp, s19d

the cutoff frequency is

vc . gvp. s20d

This is the same cutoff frequency as for TR. The condition
(19) is rather exotic. It means that the trajectory of the par-

ticle almost touches the slab surface. In the case of

H . lp s21d

the cutoff frequency is defined by the decreasing exponent
and equals

vc . cg/H. s22d

The conditionH@lp is a practical case in experiments. In
what follows we will assume Eq.(21) holds true and the
cutoff frequency isvc<cg /H. In the considered case, this is
much less thangvp. On account of this the sine in Eq.(18)
oscillates rapidly with small changes inv and can be re-
placed by its average value 1/2 on condition

aHp2 @ lp
2g, s23d

wherelp=2pc/vp. In this case Eq.(18) practically does not
depend onvp and one can get the same formula as for opti-
cal diffraction radiation by a perfectly conducting, infinitely
thin half plane, multiplied by 2[5]:

d2Esn,vd
dVdv

.
1

2p2

e2

c

g−2 + 2ny
2

su2 + g−2dsg−2 + ny
2d

3expH− 2
v

vc

Î1 + g2ny
2J . s24d

In obtaining Eq.(24) for the sake of simplicity we have
assumedb=`, i.e., Fb=1. Equation(24) differs from the
analogous formula of Ref.[5] by multiplier 2. This multiplier
corresponds to two independently emitting sides of the slab
(at x=0 and x=a). The condition(23) is fulfilled, for in-
stance, ifvp=431016 s−1 ("vp=26.1 eV, Beryllium[14]),
Hù50 mm, aù10 mm, gø105. We will assume that Eq.
(23) holds true in this section.

The cutoff frequency(22) depends on the Lorenz factor of
the chargeg and the impact parameterH and does not de-
pend on the properties of the material in contrast to the TR
cutoff frequencygvp. The spectral density of the radiation
spreads fromvp up to vc.cg /H (see Fig. 3).

FIG. 2. Angles of observation.

FIG. 3. DR emitted in the casea=0 atu=g−1, ny=0 for differ-
ent values of the slab widthb. The plasma frequency isvp=4.1
31016 s−1, "vp=26.1 eV(Beryllium). The impact parameter isH
=50 mm; g=63104. The thicknessa may be any provided that Eq.
(23) is fulfilled. For these parameters the cutoff frequency is"vc

=219 eV. The figure is pictured using Eq.(13) within the frequency
range fromvp to 20 vp.
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B. Dependence onb

The energy emitted per frequency per solid angle depends
on the width of the slabb by means of the factorFbsb,vd
[see Eq.(14)]. For b@r−1 (r−1=cg /v at ny=0) we have
Fb<1, i.e., any dependence of the radiation on the slab
width b vanishes provided thatb is large enough. Forb
!r−1 we haveFb<2s1−cosbkzd, i.e., oscillations of period
l /nz appear, wherel is the wavelength. Thereby, the depen-
dence of the radiated energy on the width of the slabb is
defined by the ratiob to the effective widthbef f,

bef f , r−1 =
cg

vÎ1 + g2ny
2
. s25d

In fact, bef f is the characteristic distance for the decrease of
the proper charge field. If the conditionnyøg−1 is satisfied
we havebef f,gl. For instance, forny=0, g,63104 and
v,1017 s−1 we havebef f<180 mm.

Note that the maximum of the radiation falls at a fre-
quency larger thanvp and besides depends on the widthb.
This is because behavior of the functionFbsb,vd is deter-
mined at fixedb by the ratiov to some effective frequency
of the order of

vm , gc/b. s26d

Figure 4 demonstrates the behavior of the factorFbsb,vd. All
parameters are the same as in Fig. 3. Figure 3 shows the
dependence of the radiated energy on the frequency at dif-
ferent values of the slab widthb. If the width b increases
further, the plot would not be changed significantly. Indeed,
the dependence of the radiation on the widthb vanishes at
b@bef f. Figure 3 shows a suppression of the radiation for
bøbef f and v,vp. Such a behavior is determined by the
function Fbsb,vd; see Fig. 4.

C. Total radiated energy

Here we will consider the total energy radiated in the full
solid angle at frequenciesv.vp. In order to make a rough
estimation of the total radiated energy we should take the
maximum ofd2Esn ,vd /dVdv and multiply it by the width
of the range where the radiation is maximal. As it follows
from above,sdvdef f,v,vc,cg /H, sdVdef f,g−2 provided
that Eq.(21) holds true. Assuming that Eq.(23) is fulfilled,
one obtains

E ,
1

2p2

e2

c

cg

H
F1 − 2 expH−

b

H
J cosS b

H
D + expH−

2b

H
JG .

s27d

For b@H we have

E ,
1

2p2

e2

c

cg

H
. s28d

Thereby, the total radiated energy is proportional to the Lo-
renz factorg. Note that such an estimation for TR givesE
, 1

3se2/cdgvp which is greater than Eq.(28). This is con-
nected mainly with the difference between the cutoff fre-
quency for DR and TR:cg /H!gvp. We emphasize that this
estimation is rather rough and valid only for qualitative
analysis.

V. OBLIQUE INCIDENCE

Now we go on to the discussion of the complete form of
expression(13). First of all we will investigate the maxima
of radiation. DR is a maximum when the index of the expo-
nent exph−2H rj is a minimum and the preexponential factor
is maximal.

The inspection ofr at fixed H, v, and g gives us the
condition for which the exponent achieves its maximum,

ny =
by

b2Î«
=

sina

bÎ«
. s29d

Here the anglea is defined bybx=b cosa, by=b sin a (see
Fig. 1). With that, we have

A = 0, r =
v

cg
. s30d

Taking into account Eq.(29) we can see from Eq.(13) that
the radiation is proportional to the factor

1 − nz
2 + fA2 − sA ·nd2g/r2

sc2/v2dr2 + «nz
2 =

1 − nz
2

g−2 + «nz
2 . s31d

This factor is maximal if

nz = 0. s32d

This means that the radiation is maximal in thexy plane.
Using Eqs.(32) and (29) one can see that there are two
directions of maximal radiation. They are defined by

nx = ±Î1 −
sin2 a

b2«
= ±

Îcos2 a − s1 − «b2d

bÎ«
. s33d

Here the sign “1” refers to the radiation maximum along the
trajectory of the particle and the sign “2” refers to the ra-
diation under the specular reflection angle. Hereafter we as-
sume that

v ø vc = cg/H ! gvp. s34d

The grazing incidence case, cosaøÎ1−«b2, requires a
more detailed consideration and is not treated here. For cosa
large enough,

FIG. 4. The behavior of the factorFbsb,vd. The parameters are
the same as in Fig. 3, the thickness isb=0.5 mm. For these param-
eters the quantityvm,cg /b equals 3.4831016 s−1. The figure is
plotted using Eq.(13) within the frequency range fromvp to 20vp.
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cos2 a @ 1 − «b2 < vp
2/v2, s35d

Eq. (33) takes on the form

nx < ±
cosa

bÎ«
S1 −

vp
2/v2

2 cos2 a
D . s36d

Neglecting the second term in Eq.(36) one can see that there
are two directions of the radiation in thexy plane:

f = 0, u = a, max FDR,

f = 0, u = p − a, max BDR. s37d

The former condition gives us the maximum of forward dif-
fraction radiation(FDR). The latter condition means radia-
tion emitted at the angle of specular reflection. This is called
usually backward diffraction radiation(BDR). BDR is a
rather convenient instrument for noninvasive diagnostics of
charged particle beams[15] because the observation angle
can be arbitrarily large. BDR in the optical range has been
explored in detail by one of the authors of this study[16]. In
particular, BDR was found to be emitted in the narrow cone
like FDR (see Fig. 5).

Using Eqs.(29) and (36) one can get for FDR[sign “1”
in Eq. (36)]

1 − n ·v
Î«

c
<

vp
2

2v2 s38d

and for BDR[sign “2” in Eq. (36)]

1 − n ·v
Î«

c
< 2 cos2 a. s39d

The same expressions(38) and(39) can be obtained by using
Eq. (37). The maximum of both FDR and BDR can be ob-
tained from Eq.(13) allowing for Eqs.(30), (38), and (39).
For the FDR maximum we have

d2Emax
FDR

dVds"vd
=

e2

c"

g2

2p2F1 − expH−
bv

cg
JG2

expH−
2Hv

cg
J ,

s40d

and for BDR we find

d2Emax
BDR

dVds"vd
=

e2

c"

g2

2p2

svp/vd4

16 cos4 a
F1 − expH−

bv

cg
JG2

3expH−
2Hv

cg
J . s41d

In obtaining Eqs.(40) and (41) and the sine square was re-
placed by 1/2 according to the inequality(23). Comparing
Eqs. (40) and (41) one can see that BDR is much weaker
than FDR provided that Eq.(35) holds true. However, the
BDR maximum increases with the anglea (see Fig. 6).

The factor

Svp

v
D4F1 − expH−

bv

cg
JG2

defines the law of BDR falling in the frequency range from
vp to vc. The law of decreasing isv−4 if

bv @ cg, s42d

and it isv−2 if

bv ! cg. s43d

The condition(34) implies Eq.(43) if b!H. Practically, it
can be a very thin lying slabsa@bd or a thin wiresa,bd.

VI. SUMMARY

Now we go over the main points of our results. It is worth
considering DR atH.lp only in the frequency range

vp , v , cg/H. s44d

At v.cg /H DR decreases as exph−vH /cgj. In the opposite
caseH,lp the trajectory of the charge almost touches the
slab surface, DR becomes similar to TR, and the range where
DR exists is

vp , v , gvp. s45d

The usual experimentation atH@lp, hence the cutoff fre-
quencyvc.cg /H depends only on the Lorentz factorg and
the impact parameterH. The spectral and angular density of
the radiation has the maximum betweenvp andvc.

The slab widthb plays a considerable part ifbøbef f
,gl. In particular, decreasingb leads to radiation suppres-

FIG. 5. The backward DR emitted at the angleu=p−a, a
=70°. The frequency of observation isv=10vp. The width of the
slab isb=0.5 mm. The rest of the parameters are the same as in Fig.
3. The figure is plotted by Eq.(13) provided that Eq.(23) is
satisfied.

FIG. 6. The maximum of the backward DR emitted at angles
f=0, f=p−a, and frequenciesv=10vp, "vp=26.1 eV. The im-
pact parameter isH=50 mm, g=63104, b=0.5 mm. The thickness
a may be any provided that Eq.(23) is satisfied. The figure is
plotted by Eq.(41). The anglea changes from 0 to 70°.

DIFFRACTION RADIATION FROM AN … PHYSICAL REVIEW E 70, 066501(2004)

066501-5



sion at small frequencies, decreasing of the radiation maxi-
mum and shifting it towards high frequencies(see Fig. 3).

The essential distinction between DR and TR consists in
their behavior at frequencies higher than the cutoff fre-
quency: TR falls asv−4 but DR falls as exph−v /vcj. This
exponential falling of DR can be used to determine the Lo-
renz factor of the charge. Namely, having measuredvc and
knowing the impact parameterH we can findg,Hvc/c.

In practice the two-sided inequality(44) is satisfied if the
charge has a very high energy so thatg.104. To extend the
range downwards one should use a material with the least
plasma frequency. For example[14], the plasma frequency
vp is 13.8 eV for lithium, 20.9 eV for polyethylenesCH2d,
and 24.4 eV for mylarsC5H4O2d.

For oblique incidenceaÞ0 (see Fig. 1), the radiation
maxima are defined by Eq.(29) ny=by/ sb2Î«d as well as the
conditionnz=0. Equation(29) turns into the usual conditions

for the FDR and BDR maxima(37), ignoring corrections of
the order ofg−1.

BDR is investigated. The BDR maximum is shown to
augment with increasing anglea [see Eq.(41)]. It follows
from above that BDR is rather weak in comparison with
FDR. However, even relatively weak radiation can be of ex-
perimental interest since it is emitted at a large angle to the
direction of motion. Furthermore, the smallness of the wave-
length of the radiation gives a possibility to use such a ra-
diation for submicron collider beams, where optical DR is
unusable due to the diffraction limit.

The domain of validity of the main formula(13) is re-
stricted to the inequalitiesv.vp, g@1, and cos2 a
@vp

2/v2. Besides, our results become nonapplicable at those
frequencies where an imaginary part of the dielectric func-
tion in Eq. (3) should be taken into account. This might be
narrow bands near the frequencies of characteristic absorp-
tion or frequencies higher or of the order of 1 MeV[17].
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