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Kinetics of ensembles with variable charges
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Kinetics of particle ensembles with variable charges is investigated. It is shown that the energy of such
ensembles is not conserved in the interparticle collisions. The case when the equilibrium charge depends on the
particle coordinate is studied, and the collision integral describing the momentum and energy transfer in
collisions is derived. Solution of the resulting kinetic equation shows that the system is unstable—the mean
thermal energy exhibits explosion-like growth, diverging at a finite time.
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[. INTRODUCTION ity of particles with variable charges is that tbellisions do
not conserve the energyecause charge variations cause
Hamiltonian descriptionNon-Hamiltonian kineticson the fluct_uations of the interparti_c!e forces during the co!lisiqns.
other hand, is far less well developed—for the simple reasoh ©" mstance, Wh?n the equilibrium charge of a .pa.rt|cle IS a
that such systems have not received as much attefaion functhn of cc_)ordlnatesq_(r), then_ the charge varla_tlons are
though they are ubiquitoygind have usually been dealt with associated with the particle motion and characterized by the
by separating time scales and reverting back to the HamilgradientVa. For a pair of particles interacting within the
tonian formalism. range\ (screening length the average displacement during
One of the remarkable features distinguishing complexhe interaction is also of the order ef\. Therefore, the
(dusty) plasmas from usuaimultispecie$ plasmas is that relative variation of the particle energy caused by a collision
charges on the grains are not constant, but fluctuate in timis |5E|/E~|Vg/g|\. Note that random variations of charges
around some equilibrium value which, in turn, is some func-associated with temporal fluctuations of, e.g., local plasma
tion of spatial coordinategl—6]. The fluctuation(charging  density/temperature, UV radiation, e8], also contribute to
time scale and the mean charge generally depend on thRe energy variationgl0].
charging mechanism operating in a plas(eee, e.9.[3,5]).
Ensembles of particles with variable charges are non-
Hamiltonian systems and, therefore, the use of thermody- A. Collision integral
namic potentials to describe them is not really valid. An ap-
propriate way to investigate their evolution is to use the In this paper we investigate the kinetics of particles with a
kinetic approach. spatial dependence of the equilibrium chargte charge
Both in laboratory and space plasmas, the time scales agariations are due to the particle motion, random fluctuations
sociated with random fluctuations and establishing the equigre neglected. The latter formally corresponds to the limit of
librium charge are normally many orders of magnitudesinfinitely short charging tim¢3,7,8 (the case of charge fluc-
shorter than the time scales related to the grain dynamicgations related to dust discreteness, i.e., finite charging time,
[1,3,7-9. In many cases this fact allows us to separate thgyj pe considered in future workl0]). In order to simplify

charging kinetics from the kinetics of the grains themselveg; o calculations, yet keeping the physical essence of the ef-

(.6'9"[2’.4])’ _and consider _du_st grains as an e_ns_emble of Palfact, we will consider the kinetics of a smataseousfrac-
ticles with givencharacteristics of charge variation.

tion of “light” particles [with spatially dependent charge
q(r)] added to “heavy” particlegwnith chargeQ). This situ-
Il. KINETICS ation, when particles have very different masses, is quite

Kineti ‘ bl ith iable ch h normal for complex plasma experimens.g., the “Plasma
inetics of ensembles with variable charges have NOcqiq Experiment-Nefedov” experiment onboard Interna-

be_en StUdi?d systematically so far, and the main objective c’Jonal Space Statiofill], where the particle sizes differ by
this paper is to demonstrate some extraordinary features PEsctor of 2. or the follow-up experiment “PK-3 Plus,"where
culiar to such systems. In order to highlight properties of ' '

ensembles with variable charges, let us consider the sim Ietqis range is about 20 and is ubiquitous in space dusty
WIth vart charges, fet u ! 'mp! asmagwhere the grains range from tenths of microns up to
case when no external fields are present. Then the partic

oo . . eters in size, e.g[12)]).
k!net!cs IS sqlely determined by the mutual collisions. The Due to the small concentration of light particlgsd also
kinetic equation is

their relatively small charggsone can neglect their mutual
e _ collisions and consider only pair collisions with the heavy
f = Stf, (1) ) A T
particles. Under these approximations the collision integral
where St denotes the collision integral. The major peculiar-becomes linear. Moreover, if the relative variation of the

Many problems in physical kinetics are treated using
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particle energy in collisions is small—namely, if the follow- B. Polynomial expansion
ing inequality for the charge gradient is satisfied, We expand the distribution function into a series of Leg-
endre polynomials and keep the first two terms:
e=|Vaglgh<1 (2
f(p, 6,1) = fo(p,t) + f1(p,t)cose. (%)

(i.e., spatial scale of the charge variation is much larger than
the screening lengghthen one can divide the collision inte- Substituting Eqs(4) and(5) in Eq. (3), after the usual pro-
gral into two parts—corresponding to the variation of thecedure[14] we derive from Eq(1) the following expressions
absolute value of momentum, and of the momentunfor the symmetric and asymmetric parts of the distribution
direction—and present the first part in the differential function:
Fokker-Planck form, expanding over the smallness param- 2 2[5 4
eter e. For simplicity we neglect the motion of the large fo= (lc +c )__(p )-10 Li(p )
0 2 3 mpz(gpz 3 1mp2(9p 1/

—f —f
particles. Then the collision integral j$3,14 ¢° ¢

19 o 9, - p € <p4 )
=S— — fi=-——f—c——s—| . 6

P , One can see from Eqg6) that there is a hierarchy of time
* Nmf[f(p,a )~ f(p.6)] do ®) scales characterizing the evolution ff and f;: The time

) _ ) scale for the asymmetric part is equal to the collision-free
The charge(of light particleg is assumed to have constant time r.,,=m¢/p. The symmetric part evolves at much longer

gradientVg; the distribution function is symmetric with re- time scales~¢e 27, This allows us to decouple Eqe).
spect to the gradient, and thus depends on two variables: thgom the second equation we derive

absolute value of the momentumand the angled between
the gradient and the momentum vector. The differential cross ¢ et d p_]c __ptime
sectiondo corresponds to the scattering betwegand ¢, P =-¢ pdap\ e ° (1-e )- (@)
with cos#’ =cosé cosa+sinfsina cos(e—¢') expressed
in terms of the scattering angte[14]. As usual, the Fokker- Equation(7) demonstrates that after a few collisiotet t
Planck coefficienty13], A=—(sp)/ét and B=((5p)?)/24, = 751 the asymmetric part rapidly converges to the quasi-
are averaged over many collisions occurring withinvaria- ~ Stationary solution determined by the kinetics of the “slow”
tion (of the absolute valyeof momentum in a collisiongp, ~ Symmetric part. Substituting this asymptotic solution fer
is related to the energy variation Vi = psp/m. From Eq.  into the first equatiori6), we finally derive
(A2) we obtain dp/p~ e(cosf+cos’)S(a), which yields

fO = (

4

5 4

after averaging the coefficients }Ci + lcz + C3)ii<p_f0> - %iii(p_f())_

, 3+ 3 mp? ap?\ € 3 mptap\ ¢
€p
= - ——c, 0S¥, (8)
A s
ezps 2 C. Analysis of moments: Energy growth
B=—— 0+cCy). 4

2m€(c2 co ¢ @ Although Eg.(8) can be solved analytically, it is much

It , introd he f affe (o)L more useful to analyze the kinetics of the derived equation in
tis con\(ement to introduce the free paft(Noy)™ ex- . terms ofp-moments. The zero moment yields the conserva-
pressed in terms of the momentum transfer cross sectiofyn of the particle density, #/ p*f,dp=1 (we normalized

oy =J(1-cosa)do, and the concentration of large particles, \he distribution function to unity The second moment

N. The free path is generally a function @f (e.g., the corresponds to the mean kinetic  energyf
screened Coulomb interaction often reduces to the harg4wf(p2/2m)p2f0dp. We obtain

spheres limit, with a weak logarithmic dependencepdior
the free pattj15]). The Fokker-Planck coefficients are deter- . 2, 1 A 5
mined by the dimensionless “scattering constants:” £=¢é PR | e f (p1O)fedp>0. (9)

The derived equation shows that nonlinéag?) terms in the

Clzf (1 + cosa)S(a)dal oy, Fokker-Planck expansion causegsowth of mean energy
irrespective of the initial state, i.e., the system is always
unstable.

Cf%f (1+ 4 cosa + 3 cog a)Sa)daloy, It is remarkable that the most common type of the
dissipation—the friction caused by collisions with neutral
gas molecules—can be easily incorporated in our calcula-

L tions in the Fokker-Planck forrfi13,14], with the following

C3=3 J Sin’ a $X(a) doloy,. additional term to the collision integrés):
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d (py=t™ at t=(7.,). Therefore,K—0 and, hencef—7,
Shf = Vﬁ(pf‘Lan%)' i.e., the particles are completely thermalized due to colli-
sions. If the free path is a function of momentufis €(p),
whereT, is the temperature of the molecules apds the  then (p) converges with time to some nonzero value
frictional damping rate in the corresponding Langevin equaz¢ (¢ /¢)pf, dp. Assuming logarithmigor powej depen-
tion. The friction yields the additional term, -y%—ng), in dencep for ¢(p) we obtain: ¢//¢=pL, and, hence, the
Eg. (9 and, hence, sets up a threshold for the instability. TQnean  drit = momentum P tends to «efpfydp
derive this threshold, we eva!uate the integ_ral ir51 I£9). SE(J‘piOdp)lIZ(fp4fodp)1/2~€V'E-. Therefore, the drift part
Fr0m4 the3/2 Hozlder l}pqu’gmy we obtain [p>fo dp of the energy remains relatively small,= €2€, i.e., most of
= (Jp*fodp)™(Jp*fodp) °‘§ - Normalizing the energy by the energy is always transmitted into particle heating.
the neutral gas temperatu@s£/T,,, and assuming for sim-
plicity €=const, we derive the following equation for the

lower energy bound D. Applicability
- - . ~ ~ 4 In our calculations we neglected the explicit dependence
E= 2245, + 5C, + Cal{Teon) E32 = 24(E - 3) of the solution on spatial coordinates. In fact, spatial charge

(10) inhomogeneityq(r), implies the spatial dependence of the
cross section in the collision integréd) and results in the
where (7o) =€ /vt is the “mean” collision-free time, with appearance of an additional teg@/m)V f in Eq. (1). This
- inhomogeneity, however, is weak and is determined by the
smallness parameter Expanding St into a series ovek
and assuming a homogeneous initial distributidn,, the
W Teon) < 362(201+c2+ 3cy). (11) resulting corrections to “homogeneous” soluti@) are of
higher order ine. Hence, they were not considered further.
The solution of Eq(10) diverges at a finitgcritical) time,  Also, we neglected the motion of heavy particles, which for-
Eox(1-t/t,) 7% provided Eq.(11) is satisfied. The critical mally corresponds to a zero light-to-heavy particle mass ra-
time scales a,~ € X 7.,). Thus, we have an explosionlike tio, m/M—0. In fact, the kinetics of light particles is not
energy growth. We should note, however, that at sufficiently2/tered significantly provided the rate of energy exchange,
high energies the free path is no longer a constant or a weakhich is ~(m/M)(r.q)* [14], is less than the energy growth
(logarithmig function of momentunj15j—it starts increas- rate, ~eXr.)~". This implies that the conditiom/M < ¢
ing with p, and oncef(p) grows faster than linearly, the must be satisfied. Important remark: The studied above ex-
instability is saturated. ample with ensembles of light particles was chosen solely to
Equation(11) allows us to evaluate the physical condi- simplify the algebra; it is not crucial. On the other hand, the
tions when the charge gradients should cause the energsgry fact that the particle energy is not conserved in mutual
growth. For instance, let us consider typical laboratory ex-<ollisions is auniversalintrinsic feature peculiar to any en-
periments with microsize particles of temperaturd eV ~ semble with variable charges. The mechanism of the energy
and density~10° cm 3 embedded into a plasma with the growth should therefore be generic and apply to different
screening length ~ 1 mm. The resulting mean collision free ensembles as wele.g., “monodisperse” particlgs
time is {7 ~ 3x 1072 s [15]. Assuming the spatial scale of
the “natural” charge gradients in the presheath region about
=5 mm, i.e., five times larger than the screening lerj@®j,
we get for the smallness parametér- 3 X 1072 and, hence, In order to verify the obtained theoretical results we per-
the instability condition isy=1 s*. This corresponds to formed 2D molecular dynamics simulations of a Yukawa
fairly realistic pressures about 1 Pa or less. “Artificial” system of particles with variable charges. The particles were
charge gradients at much shorter spatial scales can be easilivided into two groups and randomly distributed over a
created by means of, e.g., external UV radiafion,1§ par-  square of sizd_=1 cm: 5000 “large”(motionles$ particles
tially focused on the dust clouds, and then the heating shouldith constant charge®=3x 10% and 5000 “small”’(mov-
be possible at much higher pressures. In space plagtas  able particles with an initialisotropig Maxwellian velocity
in the interstellar clouds, where the charge gradients can bdistribution and charges depending linearly on the
created by inhomogeneous cosmic radiatjtp) the condi-  z-coordinate, withg=3x 10% at the left boundarg=0. Pe-
tion to trigger the heating might be substantially relaxed, dueiodic boundary conditions were chosen for the particle ve-
to much lower ambient pressure. locities atz=0 andz=L. The transverse boundarigs; 0 and
Important remark: The total energy consists of the thermay=L, were “mirror walls.” The screening length for the
and drift parts£=7+ K, with K=(p)?/2m (due to symmetry, Yukawa interaction was =30 um (about one third of the
the drift is along the charge gradignifter a few collisions, mean interparticle distange-igure 1 shows the mean kinetic
the mean drift momentungp) e [p*f,dp converges to the energy of “small” particlesé (normalized to the initial tem-
quasi-stationary valugsee Eq(7)]. In the caseg/=const the peraturg, as function of time for different values of the
drift asymptotically vanishes: For instance, assuming theharge gradiené. Of course, the mean energy remains con-
Boltzmann distribution forfy we derive using Eq(7) that  stant without the gradient. For finite, the energy scales

vr=\T,/m. From the requiremerﬁ>0 for anyE we obtain
the sufficient condition for the instability,

E. Numerical calculations
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FIG. 2. Sketch of the particle interaction during the collision.

Mean kinetic energy (rel. units)

be considered as a Hamiltonian system, there is a continuous
exchange of energy between these two subsystems via the
charging processes, so that the charged grains cannot be de-
scribed by a Hamiltonian function. In addition, there always
exist external source@.g., inhomogeneous ionization, UV
radiation, eto. which provide the energy influx into the
whole system of charges including the subsystem of grains.

FIG. 1. Mean kinetic energy of particIeE,(normaIized to the
initial temperaturg versus timet. Curves correspond to different
values of the dimensionless charge gradiestO (constant charge,
1), =102 (2), ande=1.5x 1072 (3).

- APPENDIX: VARIATION OF ENERGY
initially as £ €t, in agreement with Eq10). The computed IN COLLISIONS
magnitude of the energy growth coincides with the theoreti-
cal prediction as wel[given the combination of the scatter-  Let us consider how the energy of a moving particle
ing constants; , 3in Eq. (10) equal to=0.5]. In agreement changes while it passes by a motionless particle. If the po-
with the theory, the drift part of the kinetic energy rapidly tential distribution around the motionless particlebig ) and
decreases in the simulations after a few collisigast  the charge of the moving particle is a certain function of
=<101s for this examplgand is negligible at later stages, spatial coordinatesg(r), then the variation of the particle
K=1072€. Therefore, the plotted curves actually show theenergy is
thermal part7 of the mean energy.

5E:—qu<Ddr:fCI>qur, (A1)
IIl. CONCLUSIONS c C

In conclusion, we investigated the kinetics of particle en-
sembles with variable charges. Those are non-Hamiltoniahere the integration is taken along the trajectogyof the
systems, and the total energy is not conserved in mutudt@rticle. In Eq.(Al) we took into account thaid equals
particle collisions. We focused on the case of inhomogeneou&ero at the ends of the pafB. Assuming constant charge
charge distribution—when the equilibrium charge dependgradient pointed along the-axis, we rewrite Eq(Al) as
on the particle coordinate—and derived the collision integrafollows:
which describes the momentum and energy transfer in colli-
sions. Solution of the resulting kinetic equation shows that
the system is unstable—the mean thermal energy exhibits SE=|Vq J D[rc(2)]dz=| V q{P)L,.
explosionlike growth, diverging at a finite time. The obtained
solutions can be of significant importance for laboratory
dusty plasmas as well as for space plasma environmentklere angle brackets denote the average@fc), andL, is
where inhomogeneous charge distributions are often preserihe displacement of the particle along thexis “during” the
For instance, the instability can cause the dust heating igollision. Thus, the calculation ofE is essentially a me-
low-pressure complex plasma experiments and be respochanical problem of determining a particle trajectary.
sible, e.g., for the melting of plasma crystals, or might oper-Generally speaking, this is a rather complicated tesde,
ate in protoplanetary disks and, thus, affect kinetics of thee.g.,[20,21]), and for purposes of this paper we just perform
planet formatione.g.,[19)]), etc. a scaling analysis based on asymptotic characteristics of the

Concerning the energy source providing the instabilityinteraction between highly charged particles.
(divergence of thermal energyn ensembles with variable The electrostatic potential of a charged particle in a
charges, we point out that charged grains can be considergdasma is normally of a short range, because the particle is
as a subsystem of elementary chargelectrons and ions screened. For sufficiently high particle charges the pair inter-
“bound” to the grains, which along with the subsystem ofaction is usually reduced to the limit of elastic hard spheres
“free” plasma charges formsa@mplete ensembta charges. [15,22,23: For instance, for the screened Coulomb
Even if the complete ensemble is in detailed balance and cafvukawa potential one can approximate the interaction by a
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collision of a pointlike particle of energlg with a sphere of OE/E ~ €(cosé+ cosd’ )Y «), (A2)
radiusa=\ In(qQ/\E) and the “elasticity depth™N\, pro-

vided the radius is much larger than the screening lengdth  wheree=|Vq/g|\ <1 is the smallness parameter introduced
i.e., IN(QQ/NE)>1. Figure 2 shows the sketch of such anin Eq.(2). The energy gain is positive if the particle displace-
interaction. Assuming scattering within the elasticity depth,ment during the collision is in the direction of the charge
the effective length is estimated &s~AS(cosf+cosé’),  gradient, and is negative in the opposite case. Note that such
where S is a function of the scattering angle. Also, the  a representation of collisions is not valid at very small scat-
average electrostatic energy for such interaction is of theering anglese<\/a<1. Nevertheless, since the collision
order of the kinetic energy, i.eq(®)~E. Therefore, we cross section does not have singularities at smatine can
have the following estimation for the relative variation of the use Eq.(A2) to estimate magnitudes of the Fokker—Planck

energy: coefficients[Eq. (4)].
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