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Self-organization phenomena and decaying self-similar state in two-dimensional incompressible
viscous fluids
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The final self-similar state of decaying two-dimensio(2D) turbulence in 2D incompressible viscous flow
is analytically and numerically investigated for the case with periodic boundaries. It is proved by theoretical
analysis and simulations that the sinh-Poisson state—sinh 8¢) is not realized in the dynamical system of
interest. It is shown by an eigenfunction spectrum analysis that a sufficient explanation for the self-organization
to the decaying self-similar state is the faster energy decay of higher eigenmodes and the energy accumulation
to the lowest eigenmode for given boundary conditions due to simultaneous normal and inverse cascading by
nonlinear mode couplings. The theoretical prediction is demonstrated to be correct by simulations leading to
the lowest eigenmode df(1,0)+(0,1)} of the dissipative operator for the periodic boundaries. It is also
clarified that an important process during nonlinear self-organization is an interchange between the dominant
operators, which leads to the final decaying self-similar state.
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[. INTRODUCTION cannot deal with this general case by using the theofg.3h
and Taylor’s selective theorji1].

The approach by the selective decay theories was re-

: ; . viewed in[15], based on either a variational principle or an

pressible viscous fluid has been addressed for the last decagﬁergy pri[nc?ple and has been discussed in SD hy%rodynam-
and is still controversial [1-10. The general self- oo (17 |t should be emphasized here, however, that the
organization theories ify—1Q have a common mathematical 15y|0r[11] and the selective decay theories are not based on
structure to find the decaying self-similar states as thosgjher g variational principlée.g., as in classical mechanics
states for which the rate of change of global autocorrelatlonfm]) or an energy principlée.g., to describe perturbations in
for multiple dynamical field quantities is minimized. On the 5 iqeal MHD plasmd17]), but are simply standing on the

other hand, Taylor published his famou_s self-organization 4riational calculus because the two principles lead to dy-
theory[11] to derive the Taylor stat¥ X B=AB and 0 €x-  namjcal equations for the time evolution of the system of

plain the appearance of the reversed field pinch configuratioferest. In the case of the 2D incompressible viscous fluid,

in fusion plasma experimen{d.2], using a conjecture that he selective decay theory was at first applied to lead to a
the magnetic energy is supposed to be minimized by its S&ecaying self-similar state with minimal Q/E

Ir:-zcltive decay comphared tlo the decay I?fr]thdebglobal magneltiFenstrophy/energy[1,2]. We are able to get this state by
elicity. However, the Taylor state itself had been previously ving th | self- ization th to the fluid ve-
derived from another theorfl 3] to find the state with mini- applying the general set-organization theory fo 'he fuid ve

R 4 . locity, the same as the state with minimum dissipation of
mum dissipation of magnetic energy. The mathematical PrOmagnetic energy in the theory p£3] shown above, as will
cedure to find this state is equivalent to that of the selectiv X

%e clarified in Sec. Il. This fact indicates that the general

decay theory, i.e., the global autocorrelation of current denfh 7-10 i ifving th f tlv two differ-
sity is supposed to be minimized by its selective decay Comén(?cotrhye[oriegi:?lg]u;:gl[qga eory Tor apparently two diter

pared to the decay of the global magnetic energy under th
assumption of uniform resistivity profile. An interesting fact
is that applying the general self-organization theory78]

The problem of determining the decaying self-similar
state in the dynamics of the two-dimensioriaD) incom-

€ In [4,5], they changed their dominant opinion on the de-
caying self-similar state from the selective decay theory to

. o the statistical theory by supposing the maximum entro
to the global autocorrelations for the magnetic field under the, J_ sition and deriv)e/d 'E/he sFi)rFl)h-PogiJsson state. It should %)g

same assumpti.on of the uniform rgsistivity profile,. We Come, 5104 here, however, that the sinh-Poisson state can never be
to a mathematical procedure to find the state with a mini-

oot ) realized as the decaying self-similar state in the 2D incom-
mum dissipation of magnetic energy, the same as that of th

ible vi flui ill lytically clarified i
theory in[13]. This general theory can, however, be appli- Ereess:lt.)e viscous fluid, as will be analytically clarified in

cable to the more general case with nonuniform resistivity, as An alternate approach by the scaling theory was proposed
was demonstrated ifl4] by showing agreement between o onay suggesting that the end state is the ultimate stage of

analytical and simulation results for the non-Taylor state. We, self-similar evolution governing the decay phé3]. As

the largest structures are formed, the system eventually
ceases to evolve or evolves in a low-dimensional dynamical

*Email address: kondohy@el.gunma-u.ac.jp space[3].
Ton leave from Institute for Fusion Studies, The University of ~ On the other hand, applying the general self-organization
Texas at Austin, Austin, Texas 78712, USA. theory to the 2D incompressible viscous flow in a friction-
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free box[18] and to the Korteweg—de Vries equation with a axis of the variables. The fluctuations may have several

dissipative viscosity term [19], we clarified by analytical characteristic lengths in different orders alogly one of

and simulation results that the state with the minimumwhich is expressed as,;. The characteristic length; may

change rate of the global autocorrelation becomes the decagive the ordering of the relaxation time scale.

ing self-similar state. Since the self-organized states must have the most un-
In this paper, since the sinh-Poisson state seems to kEhangeable configurations alomty during the evolution of

widely believed as the decaying self-similar state, analyticathe dynamical system, we find that the best algorithm to

proofs and numerical demonstrations are presented to invegidge and identify the self-organized states in a dissipative

tigate whether the beliefs are true or not. In order to investinonlinear dynamical system is by means of the autocorrela-

gate numerically the decaying self-similar state, we need tbion between dynamical variablesg[&¢] and g[é

perform simulations for quite long effective computation +(A&/ r)], where the increase @f for g; is normalized by

times, compared to the simulation data[#] more than 10 7. Therefore, we will be able to judge and identify the self-

times longer. organized states as those states for which the rate of change
In Sec. I, we present a brief description of the generalof global autocorrelations for multiple dynamical field quan-

self-organization theory for application to the 2D incom- tities is minimized, that are exactly written by

pressible viscous fluid, a derivation of the analytical solution

for the decaying self-similar state, and relating discussion.

We present typical demonstrative results of simulations and f

discussion in Sec. lll, in order to show that the sinh-Poisson min k] 1 ?)

state is not realized in the 2D incompressible viscous fluid. ’

Section IV provides a summary. f (Qi[gk])2|~]k¢j|y dé
#]

al&lalé + (Afj/Tci)]|Jk¢j|H g

Il. GENERAL THEORY OF SELF-ORGANIZATION AND whereJkij is the Jacobian to yield the well-defined integral
APPLICATION for the independent variablég*] (k+ j). When we use the
variational calculus in the following equations, we do not
need any clear expressions&yf;. This is because the varia-
After we briefly present a general theory extended fromtional calculus is so constituted that the Jacobian itself does
[9,1Q and originated fronj7,8] for how to judge and iden- not give any mathematical change to the process of varia-
tify self-organized states in a dissipative nonlinear dynamicational calculations. Here, the minimization in E®) is per-
system expressed by a general nonlinear sefl gimulta-  formed with respect to the dynamical variableg £&]
neous equations, we will show the application of the generali=1,2,...,N). Expanding Eq(2), we obtain the following
theory to the 2D incompressible viscous flow with periodicequivalent criterion for self-organized states to first order in
boundary conditions. It should be emphasized that the gem &/ 7:
eral theory, which uses auto-correlations for dynamical quan-
tities, is not based on either a variational principle or an f

A. General theory of self-organization

energy principle, and also that the global auto-correlations
are not time invariants.

Gl €V &)[drj 1T d

. k#]

In order to deal with arbitrary dissipative dynamical sys- min ' ©)
tems, we need to develop an abstract type of theory, as fol- T f (Qi[§k])2|~]k¢j|H dé
lows. Consider a set oN dynamical variablesy= q[&"] k#]
=(q,[&], ..., 0\ £]), with M-dimensional independent vari- o o _ _ _
ables[£] (k=1,2,...,M), which may include time, space, Substituting the_orlgme_ll dyna_lmlf:al equations of E_“b).lnto
and velocity in distribution functions, or prices, amount of Eq. (3), we obtain the final criterion for self-organized states

materials, budgets for production systems, and other such

variables. Using generalized symbolic dynamical operators, i

we may write the general nonlinear set Mfsimultaneous Qi[gk]D‘[qwk*j'g dé*

equations for an open or closed dynamical system as min . (4)
aq[£94¢ =Djlq], (1) 7o f (@LED P[] ] 0

whered is one fixed independent variable amdrgy], such

as timeRytg, andD![q] (i=1,2,...,N) represents dynamical Note that all of the dynamical laws, characterized by the
operators that include both nonlinear and dissipative termsonlinear simultaneous system of K@), are embedded in
for the change of a dynamical variabip along the fixed the equivalent criterion of Eq4). Since the nonlinear set of
independent variablé. In general, however can be any N simultaneous equatiori&q. (1)] mutually relate the set of
fixed independent variable other than titpand the dynami- N dynamical variables;[£&] (i=1,2,...,N), the mathemati-
cal system of interest evolves aloi# under Eq.(1). We  cal expressions of Eqg3) and (4) are obtained by varia-
must note here that the dynamical system of interest alwayonal calculus with the use of the two functiondtsgiven
has fluctuations of the dynamical variablgfé€] along the  below, with Lagrange multiplier;
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IqL¢] IqTE] »
F =f > {Qi[gk]l—j + TNGALED (|3 1T d, o aNal [E9=0. (12
i 23 K] 23
(5) Combining Eqs(7), (8), and(12) and taking account of the
eigenmode spectrum analysis, we obtain the final equations
for the self-organized states

F= f 2 {al&IDlal+ ra\al €1 [T de. (6)

k] aq & _
_ , — = =D/ [U]=-rgAululgl]. (13
Using sF =0 and&’F =0, we obtain from Eq(6) the follow- 9&
ing Euler-Lagrange equation and its associated eigenvalugnese self-organized states must satisfy the original(Eq.
equation and the boundary conditions. Equati¢iB) yields the final
DI*[q] + .\ "] = 0, 7 solutions for the self-similar, slowest decay phase with the
Mlal+ 7ohia €1 @ smallest eigenvalud;
D{#[U] + TciAimUim[gt;&j] =0. (8) Cﬂ#[érk] = EX[f— TciAilgj)Uil[gkk;ej]- (14)

Here,Uim[g‘;ﬂ] is the normalized eigenvalue solutions, andThe final analytic solutions, Eq14), definitely shows that
Ain is the eigenvalue, with the appropriate normalizationsthe self-organized state is not “the stationary state,” but is
written as [Ujn[ & Uil & 110z jd&= 8y, a@s has  “the decaying self-similar state” with the slowest speed
been earlier reportefi7,8]. Using the second variations of within characteristic decay time;, because of the dissipa-
Eg. (6) [9,10, we obtain the following condition for the tive feature of the dynamical system of interest. This theo-
self-organized state with the minimum rate of change: retical result is consistent with the physical picture for the
process of self-organization that we found with the use of
0 <A =N, 9) eigenmode spectrum analysis, as was discussed afLBq.
where\;; is the smallest positive eigenvalue akds taken
to be positive. B. Application to the 2D incompressible viscous fluid
Since we have the normalized eigenvalue solutions
Uinl&;]. the profile for each dynamical variabtg{ ;]
can be expanded at each instance with respect to the varial
&, as follows:

We apply the general theory shown above to the 2D in-
ompressible viscous fluid with periodic boundary condi-
Bns in thex,y plane(normalized to unit length Taking the
curl of the Navier-Stokes equation, we use the following

o vorticity representation
Gl&]= 2 CimUinl & ]. (10 e
m=1 E:—(u V) + 1Veo. (15)

Substituting Eq(10) into Eq.(1), we get the spectrum trans-
fer equations involving the nonlinear dissipative operatordHere,u(x,y) is the fluid velocity,w(x,y)=V Xu is the vor-

DI[U] ticity, v is the kinematic viscosity, an&¥ -u=0. In dimen-
" sionless units, the kinematic viscosityis the reciprocal of
D 3Cimul [£, ] the Reynolds numbeR for unit length and unit initial rms
= ad Mok velocity, i.e.,»=R™%. Multiplying R to Eq.(15), and normal-

. . izing time axis byR, we get a vorticity equation with the
. normalized time by the Reynolds number as follows:
=DI[(X CinUinl&xi] - 2 CranVinl D] (1)
m=1 m=1 Jdw
_ _ _ , _ — =-RUu- V)o+ Ve, (16)
Since the normalized eigenvalue SOlUtIdﬂ§][§t¢j] satisfy Jtg
Eq. (8), the operatorsD"[U] will induce nonlinear mode \heret.=t/R. The nondissipative and dissipative operators

coupling(A;nx An) both to higher and to lower eigenmodes, correspond to the R(u- V) term and theVe term in Eq.
.e., simultaneous normal and inverse cascades. Thus, Egyg) respectively.

(12) shows a physical picture for the process of self- Using the periodic boundary conditions for E46), we

organization in the following way(i) Simultaneous normal  gptain the following functionaF corresponding to Eq6) in
and inverse cascadings take place to accompany the Mofge general theory

rapid energy decay in the higher eigenmodgs. Conse-

quently, spectrum energy accumulates in the lowest eigen- _

mode that is allowed for given boundary conditions and be- F= ) [@: (= V XV Xw+mghw)dxdy. (17)
comes self-organized and self-similar decaying states Y _

Uil[ftij] (i=1,2,...,N). Since the effective dissipative operatb{[q] is given by

In the same way that Eq7) was derived from the first -V XV X® in Eq. (17), we directly obtain the Euler-
and the second variations of E¢f), we obtain the Euler- Lagrange equation from Eq7), which corresponds to Eq.
Lagrange equation from E@5) as follows: (8), for the self-organized statw” reported i8] as follows:
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VXV Xo'=Aw" (18) 2 oCy
_ L > —Xexdi2m(lx+ my) Ik
The value ofr is taken to be unity, since the self-organized \=.. Jtg

state of a 2D incompressible viscous fluid has negligibly o
small fluctuations. If we work in the velocity representation =S S (-i24RC,C F'km' +1jmy
of the Navier-Stokes equation, we obtain the same type of T ok -uj

; : . k= j=0 VIig+mg
Euler-Lagrange equation for the velocity’ at this self-

organized stat§7,8], namely, xexpfi2af (I £ 1)x+ (m £ m)yTHk + C (I} + )
#_ #
VXV Xu"=Au". (19) xexpl[i2m(lx+ mky)]}k>. (27)
We can rewrite the Euler-Lagrange equations ddrand u”
asV’w'=-Aw” and VZu*=-Au”. . It can be seen from Eq27) that if the flow system con-
Correspond[ng to Eq8) in thg general theory, we obtain tains multiple eigenmoded;,m) with j=1, 2, 3,.., the
the following eigenvalue equatiorg,8]: larger Reynolds number in the first term of right-hand side
VXV X wﬁ—Akw}f:O, (20) [deduced from the nonlinear ternRtu-V)w] induces the

faster spectrum transfers in the present time scaliy ¢
# 4 both the higher and the lower eigenmodeglgl;,m.+m))
VXV XU Ay =0, (21) by mode couplings, i.e., by simultaneous norméll and i;werse
whereA, is the eigenvalue, an@; anduf’ denote the eigen- cascading$18]. At the same time, the second tefdeduced
solutions. from the dissipative ternV?w] yields the higher dissipation
On the other hand, owing to the self-adjoint property offor the higher eigenmodes proportionally to the square of the
the present dissipative operatdt,g], the eigenfunctions,  mode number$:+mz. Therefore, collaborating with the dis-
for the associated eigenvalue problems form a complete osipative term, the nonlinear term works to accumulate flow
thogonal set and the appropriate normalization is written asnergies at the lowest eigenmode which persists to the end
[18]. It is important to note that any single eigenmode solu-
fak'(V XV X aj)defaj (VX V Xa)dV tion satisfies the equationRéu-V)w:O_ for thg nonlinear
term of Eqg.(16). In other words, any single eigenmode so-
lution can become one of the self-similar states of decaying
:Akf a - adV=Ady, (22) 2D turbulence. Then, the lowest eigenmode, which is per-
sisted to the end as discussed above with use of(Eq,
where VX V X a,—A,a.=0 is used. For the present case N€Ver induces_further diﬁere_nt eigenmodes and, the_refore,
with the periodic boundary conditions in they plane(nor- becomes the final self-organlzed state for the decaying 2D
malized to unit length the normalized orthogonal eigen- turbulence. These analytical results will be demonstrated by

functionsa,, for the vorticity anday, for the velocity are  Simulations in Sec. II.

obtained, respectively, as follows: Since the fluid veloc;ity is given byj:'W'/X'k with the
use of the stream functiop=(x,y,t), which is independent
A, = exdi2a(lx + my)Jk, (23)  of z as are all other field variables, the equation between

and ¢ is given by

auk= /21—exdi277(|kx +my)](=md +1,j), (24 Vi=-w. (28)
VIg+mg

5 Using the lowest eigensolution of E@3), we can obtain the
where A =472(Ig+m}),1,=0,m=0, except forl,=0 and relation betweens and  as follows:

m=0 at the same time. Her®, X ay=i2m/I2+nma . Us-

ing A? of the lowest{(1,0)+ (0,1} mode for this case with w =47, (29
the periodic boundaries, we obtaly =472, In the case of the scaling theory, the end state is suggested
The profiles forw and u at each instance can be ex- to be the ultimate state of a self-similar evolution governing
panded, respectively, by, anday as follows: the decay phasg3,6]. This indicates that since the self-
® organized and decaying self-similar state, denoted by super-
0= > Co@urs (25) script of #, must have an essential feature to keep its profile
Ke—oo and to decay its amplitude self-similarly, the state to be de-

rived from Eq.(16) must analytically satisfy “the condition

% of the self-similar decay” written as
u= > Cuduk (26) Je'
k== I RU*- V)o'+ Vo' =-a . (30)
R

where the spectra o, andC (k=1,2,..) depend now
on time R;tg. Substituting Eqs(23)—<26) into Eq. (16), we  If the state of interest satisfies this condition, the state is
obtain the following spectrum transfer equation, correspondproved to be the decaying self-similar state, but not to be the
ing to Eq.(11) in the general theory stationary state. In the case of statistical thejghyp], how-
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ever, the derived sinh-Poisson state=-sini(B#) always Repesenting energy E and enstropy } as E
fulfills —R(u*- V)w*=0, but it is not the solution foF?w” = [,[y(u-u)dxdy and Q= [, (w-w)dxdy, respectively, and
=—a w”. Therefore, the sinh-Poisson state can never satisfysing Eq.(16), vector formulas, the Gauss theorem, and the
the condition of the self-similar decay even for any largeperiodic boudary conditions, we obtain the following:
Reynolds numbers R, and it cannot analytically become the

decaying self-similar state. If we neglect the dissipative term JE 2 2
——f f (0 - w)dxdy =—-Q. (34)
plyly p

V2w, we can easily find that the sinh-Poisson state is an e
analytical solution foww/dtg=-R(u-V)w=0, i.e., the sinh- R
Poisson state is the stationary state itself. However, if we us
other initial multivortex distributions and numerically solve
the equatioWw/dtg=-R(u-V)w, then we can never obtain ; . et

the sinh-Poisson state itself and also the decaying Se“t_heory [1.2] to derive the .decaylng self-similar and self-
similar state without numerical error, such as the numerica?rgJanlzeOI state, as follows:

diffusion. This fact definitely means that the sinh-Poisson

state never appears in any accurate numerical simulations. If .10 (35)

the sinh-Poisson state is realized with the use of some simu- pE’

lations, then those results become a clear proof that those

simulations contain serious numerical errors. The nonappeasince initial distributions with a large number of small size
ance of the sinh-Poisson state in the dynamical evolution ofandom vortexes were used [ih,2], and they stopped their
the 2D incompressible viscous fluid belongs to an essentialomputation at an earlier time in their simulations, they
problem that this state can never become an analytical sol¢ould not reach the exact decaying self-similar state as
tion for the two original Eqs(15) and (16) and Eq.(30)  shown by the analytical solution E(R2). In the same way as

e
Substituting Eq.(34) into Eq. (33), we obtain exactly the
same condition with minimal)/E based on the selective

required for the decaying self-similar state. shown above, the theory of minimum dissipation of magnetic
On the other hand, the lowest eigenmode solution of Eqsenergy in[13] can be derived by setting[ £]=B and using
(23) and(24) satisfies Eq(30) as follows: relation of(9/ dt) [\(B -B)dV=2uof\(7j -j)dV with the use of
Ohm’s law with resistivityz, as follows:

d w?

— =R} V)i + Vel =- A\ of. 31 o

Pre 1- V)og 1 10 (31) ol (i -yav

min| —————— (36)

Equation(31) yields the final solutions of the self-similar and J (B-B)dv
slowest decay state with the smallest eigenvalyenritten v

by
If we assume uniform resistivity to lead to the Taylor state,
u we see that Eq.36) becomes identical to the theory [ifh3],
o (tr,Xy) = exp(— Astr)a,, but we can find the non-Taylor state for nonuniform resistiv-
= exp(~ 4m2tR)[cos 2nx + cos 2ry]k, (32) iy, as was analytically and numerically demonstrateflLj.
We can recognize from two derivations shown above that the
general theory7-1Q is a unifying theory for apparently two
where A, =472 of the lowest{(1,0+(0,1)} mode is used. different theories if13] and[1,2], which are applied to dif-
Equations(31) and (32) are the analytical results predicted ferent physical objects.
by the general theory to find self-organized states written at In order to investigate the correlation between the analyti-
Egs.(13) and (14). It is seen from Eq(32) that the decay cal equations for the self-organized states and the simulation
constant of the self-organized state is determined by the lowdata, we will calculate numerically the correlation coefficient
est eigenvalue\;=4#2, and it does not depend on the Rey- C(f,g) between two functions andg, which is defined as
nolds numbemR in the present time scale tf. follows:
We now derive minimalQ)/E (enstrophy/energybased
on the selective theoryl,2], using Eq.(3) of the general m
self-organization theory. Puttingi[£]=u(x,y),& =tz and C(f,g) = — 9-9 .
75=1, we obtain the condition to find the decaying self- [(f-)%g-0)2*
similar and self-organized state from H) as

(37

We will show later how the correlation coefficient between
simulation data and this relation af=47y becomes close

(ﬁ/ﬁtR)J f (u - u)dxdy to unity as Fhe final self—organized state appears in time. .
) xJy We consider here the ratio between the nonlinear coupling
min : (33 term and the dissipative term. We treat the root-mean-square
2f f (u - u)dxdy average of the nonlinear coupling term and that of dissipative
xJy term, respectively, as
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1 1t domain. In order to eliminate the numerical errors that
Nd:_z\/ f f {R(u - V)w}dxdy, (38)  propagate inward in the extra layers, all data in the extra
! 00 layers are replaced by the corresponding data on the grids in

the inside domain before the numerical errors reach at the

1 bt boundary of the inside domain. The time step is basically set
Dy= g (Vw)2%dxdy,
0J0

(39 as At=0.0001. In order to suppress the appearance of nu-
merical errors, however, when the maximum values of

wherel is boundary length with edge length 1. In order to dw/dx anddw/dy become 10 times greater than their average
investigate the dominantly working operator, we introducevalues, the time step is reduced to be one order smaller as
two quantities oD andN, defined byD=Dg/(Dyq+Ny) and  At=0.00001.
N=Ny/(Dg+Ny), respectively. We call herd andN as “the In this paper, we show typical data of simulations with
dissipative ratio” and “the nondissipative ratio,” respectively.two cases oR=R,;=1400 andR=R,= 14 000. In figures of
When the nonlinear coupling term is dominant compared t@imulation data, we use a common time axis WRftg in
the dissipative term, theD <N. When the self-similar state order to compare the two cases under the same equivalent
is realized in the free-decaying 2D turbulence, the stat@ormalized time. We show typical results of simulations for
comes to satisfy the equatiorRtu- V)w=0, and, hencel\, th_e initial flow, which is given by superposifcion of four
goes to zero. Therefore, it is seen from expressioris ahd ~ eigenmodes ofL, 3), (1, 4, -(3,1), and <4, 1), with the use
D thatD~1 andN~0 at the self-similar state. The domi- of Eq. (24) for the velocity. Here, €3,1) and «4,1) mean
nant operator changes, consequently, from the nonlinear terthat their amplitudes are muiltiplied by minus. The initial
to the dissipative term in the free-decaying 2D turbulenceflow contains the same amount of positive and negative
This interchange of dominant operator will be shown later ineigenmode components of vorticities. It should be empha-

the following numerical simulations. sized here that the initial flow does not contain the lowest
eigenmodes of(1,0)+(0,1)} that is analytically predicted
Il. COMPUTATIONAL RESULTS AND DISCUSSION for the slowest decaying self-similar state given by 8%).

First, we compare the typical time evolutions of the vor-

We solve Eq(16) in a dimensionless unit, under the con- ticity structure for the two cases &=R; andR=R,, which
ditions of periodic boundaries ir,y plane (normalized to  are respectively shown in Figs. 1 and 2. In those figures, the
unit length. The initial distributions of the present simula- bold and the broken lines show contour plots of positive
tions are given by superposition of several eigenmodes foyorticity and those of negative one, respectively. The height
the eigensolutions of Eq23). The hyperbolic equation of of the contours is normalized by the maximum absolute
Eq. (16) is solved with the use of a different type scheme,value of either the positive or negative vorticity in each fig-
named the KOND(kernel optimum nearly analytical dis- ure. In earlier phases aroumjtg=0.5 in Fig. 1 and around
cretization algorithm scheme[20,21, which has high nu- R;tz=0.1 in Fig. 2, the nonlinear process changes the initial
merical accuracy and stability. We use the JACOBI schemeorticity structure into the more complicated one with small-
[22] to solve the elliptic type equatioWi?y=-w. Numerical  scale deformations, and the like-sign vortex capture takes
procedures at each time step are as follogissolve V2 place as was reported ji—6,1§. At Rytg=4.5 in Fig. 1 and
=-w by the JACOBI scheme to get values #f (i) get  at Ritz=0.4 in Fig. 2, there appear positive and negative
values ofu from ¢, (iii ) solve Eq.(16) by the KOND scheme vorticities that are relatively steep and isolated from each
to get values ofw, and(iv) go to (i) for the next time step. other. These features were also observed in other simulations
The simulation domain is implemented on[@&+101+5  reported in[3], where they propose the scaling theory, and in
X (5+101+5] point grid with the grid interval of 0.01 in the [5], where they propose the statistical theory. As time goes
x andy directions. It should be emphasized that, because then, we find that the simplest structure with the lowest eigen-
initial large size vortex distributions with only several eigen- modes of{(1,0)+(0,1)} remains to become the decaying
modes are used here, the number of grid points shown abowelf-similar state, as is shown in the contour plotsRat;
is sufficient to get correct time evolutions of the present fluid=50 in both Figs. 1 and 2. This decaying self-similar struc-
dynamics by using the KONDO20,2] and the JACOBI ture was also reported ifil], where the selective decay
schemeq22], both of which have high numerical accuracy theory is suggested.
and stability. On the other hand, because initial distributions It is recognized from the comparison between the two
with a large number of small size random vortexes are usedases of Figs. 1 and 2 that since the nonlinear term
in [1,2,4,9, they have to use a large number of grid points,-R(u- V)w in Eq. (16) written by the normalized time scale
such as[(4096 X (4096, for their simulations, and this is 10 times larger for the latter case as compared to the
large number of grid points itself prevents them from inves-former one, the nonlinear process changes the vorticity struc-
tigating simulations for very long computation times, for ex- ture almost 10 times faster in the latter case than in the
ample, more than 10 times longer, compared to the simulaformer one, while the slowest decaying self-similar state ap-
tions in [4]. The periodic conditions are applied at the pears at almost the same normalized time.
boundaries of the inside domain (01X 101 point grids, Figures 3 and 4 show the typical time evolutions of the
and the extra layers with five-point grids surrounding thespectral components of vorticity during the self-organization
inside domain are used to sweep out numerically diffusiveprocess of the flow structure, which are obtained from the
errors that occur from the outermost edges of the simulatiosimulation data shown in Figs. 1 and 2, respectively. In those
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FIG. 1. Typical time evolution of vorticity structure during self-
organization for the case &t=1400.
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FIG. 2. Time evolution of vorticity structure during self-
organization for the case &t=14000.
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FIG. 3. Time evolution of spectral components of vorticity for
the case oR=1400.

figures, the horizontal scale is given by the spectral eigenval-
ues A =72(12+mg) for eigenmodes(l,,m). The vertical
scale is normalized by the maximum absolute value of either
the positive or the negative spectral componé)jsin each
figure, where the positive spectra are shown by bold bars and
the negative ones by shaded bars attached to the right-hand
side of the bold bars. The initial spectra for the four eigen-
modes of(1,3), (1,4, —(3,1), and <4,1) are seen to be
shown only by the two positive and the two negative lines in
both figures aR;tg=0. We find from the spectrum in earlier
phases aR;tg=0.5 in Fig. 3 and aR;tg=0.1 in Fig. 4 that
the nonlinear process yields the spectrum transfer toward
both the higher and the lower spectral eigenmodes, in other
words, it yields that the wave number flows toward both the
smaller sidgthe inverse cascagland to the larger onéhe
normal cascadeon the wave number space. It is seen from
the time evolution of spectra after the earlier phases that the
higher spectral components dissipate more rapidly and the
inverse cascade yields, gradually, spectrum accumulation at
the lowest eigenmodes §f1,0)+(0, 1)}, which remains to
become the decaying self-similar state, as is shown by the
spectrum aR;tg=50 in Figs. 3 and 4. The amplitude (f,0)
mode is equal to that di0,1) mode atR;tg=50. We should
note here that the eigenmodes {01,0)+(0,1)} were not
contained in the initial flow aR;tz=0, but have been in-
duced nonlinearly during the self-organization process.

It is clearly seen again from the comparison between the
two cases of Figs. 3 and 4 that the 10-times-larger nonlinear
term R(u-V)w in the latter case yields the almost 10-
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FIG. 4. Time evolution of spectral components of vorticity for case 0fR=1400.

the case 0R=14000. of Egs.(38) and(39). It is seen from Figs. 7 and 8 that the
nonlinear terms are dominant in earlier phases in both figures
times-faster spectrum transfer toward both the higher andnd the dominant operators are exchanged from the nonlin-
lower spectral eigenmodes than in the former case, resultingar terms to the dissipative ones at arotqgh=17 in Fig. 7
in similarly faster dissipation of the higher spectral compo-and at aroundR;tz=3 in Fig. 8. It is clear, however, that after
nents by the dissipative terW?w in Eq. (16) and in faster the exchange of the dominant operators, the nonlinear terms
spectrum accumulation at the lowest eigenmode§(bf0)  in both figures decrease rapidly to be negligibly small com-
+(0,1)}, consequently, in the present normalized time scalepared to the dissipative ones in the present normalized time
Figures 5 and 6 show the typical time evolutions of thescale. We may understand from Figs. 7 and 8 the reason why
relation betweenw and ¢ during the self-organization pro- the nonlinear term R(u-V)w comes to have no power to
cess for the simulation data shown in Figs. 1 and 2, respeaetermine the final ordered structure of the present two-
tively. The horizontal scale ig, and the vertical scale is.  dimensional incompressible viscous fluids: the physical fea-
Since normal and inverse cascades occur in earlier phasestate that the nonlinear term yields completely the seat of the
aroundR;tg=0.5 in Fig. 3 and at arounig4tz=0.1 in Fig. 4, dominant operator to the dissipative one after a certain time
the data ofw and ¢ exhibit a complicated distribution on the on the time scale normalized B, even ifR is quite large.
w— i plane at the corresponding time in Figs. 5 and 6. After Figures 9 and 10 show, respectively, the time evolutions
the earlier phases, corresponding to the rapid dissipation aif the correlation coefficients between the simulation data of
higher spectral components and the gradual spectrum acchigs. 1 and 2 with our analytical relation af=4=%y and
mulation to the lowest eigenmodes {fL,0)+(0,1)}, the those withw=c sinh(B¢) of the sinh-Poisson state. In those
scattered data begin to concentrate and show clearer strufigures, the bold line is the correlation coefficient for
tures. AtR;tg=17 in Fig. 5 and aR;tg=3.8 in Fig. 6, the =4#°y and the chain-dotted line is fab=c sinh(By). It is
concentrated data become curves, which are, on the wholgeen from the chain-dotted line in those figures that even
similar to those of the sinh-Poisson state=c sinh(B). though the values of the correlation coefficients fer
However, when we go on to calculate further, the data on thec sinh(8¢) come close to unity at arouriRitzr=13 in Fig. 9
w—1 plane clearly come to the straight line given By and at around?;tg=3 in Fig. 10, respectively, they never
=47 at Ritg=50 in both Figs. 5 and 6, as was predictedbecome 1.0 and deviate fairly fast away to be lower than
analytically at Eq(29). those foro=4m°y at Rjtzg=20 in Fig. 9 and aR;tg=10 in
Figures 7 and 8 show the time evolutions of dominantFig. 10, respectively. Those results definitely mean that the
operatorsD=Dy/(Dg+Ng) and N=Ny/(Dg+Ng) during the sinh-Poisson state never becomes the solution for the origi-
self-organization process, which are obtained from the simunal Eq.(16), as was analytically proved after E(B0). On
lation data shown in Figs. 1 and 2, respectively, with the usehe other hand, the values of the correlation coefficients for
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FIG. 7. Time evolutions of dominant operatoBB=D4/(Dq
+Ng) andN=Ny4/(Dgy+Ny) for the case oR=1400.

o O Rin=3s applied it to the 2D incompressible viscous fluid in Sec. Il B
/ . / to obtain the decaying self-similar solution £E§2) deduced
: A o / from Eg.(31) and satisfying the original Eq16) written in
e = .. / the time scale normalized by the Reynolds numBeiThe
5|t / two Egs.(31) and(32) are directly connected with the gen-
0 / *? yd eral analytical results of Eq6l3) and(14) deduced from the
. _l"' / general theory. Applying the eigenfunction spectrum analysis
R TEITTE e o , T to the 2D turbulent process with the use of the normalized

orthogonal eigenfunctions Eq&23) and (24), we deduced
FIG. 6. Time evolution of the relation betweanand ¢ for the ~ the following physical picture, which is independent with
case 0fR=14000. values ofR to explain sufficiently the self-organization with
two simple and fundamental mechanisnis: Simultaneous
w=47% become almost completely united after arouno|n__ormal and inverse cascading by nonlinear mode couplings.
R,tr=28 in Fig. 9 and after arounB;tz=25 in Fig. 10, re- (i) The faster spec_tral decay of higher .e|genmodes anq the
spectively. spectral accumulation to the lowest eigenmode for given
It should be noted here that, by referring to Figs. 1-4 androundary Condlthn_s. We also derived the a_nalytlc_al relation
7-10, the decaying self-similar state has already establish&gtween the vorticity and the stream function writtencas
at aroundRtx=25-28 in the normalized time scale, and the =47 for the decaying self-similar state. We analytically
structure of the vortex does not change, but only the vorteroved that the sinh-Poisson state never appears in the dy-
amplitude decreases gradually with time after the realizatio@mical evolution of the 2D incompressible viscous fluid by
of the decaying self-similar and self-organized state. showing that this state never becomes the analyt_lcal solution
We find from comparison of Fig. 9 and Fig. 10 that when for both of the original Eq(16) and Eq.(30) required for
we replot data along the present time scale normalized by thdéh€ decaying self-similar state.” .
Reynolds numbeR, then the establishment time of the We analytically showed that the general thepfy1Q is a
decaying self-similar state becomes almost the same time &§1ifying theory for apparently different two theories of mini-
mentioned above, whose value of time depends on initiaum dissipation of magnetic energy [ib3] and of minimal

vortex distributions. In the normalized time scale, we see :

from Figs. 9 and 10 that the larger value Bfyields the o
earlier appearance and the faster disappearance of a state, r\ P P
which is not exactly the same but is similar to the sinh- 08 |t
Poisson state. The nonappearance of the sinh-Poisson state in g'
the dynamical evolution of the 2D incompressible viscous 0.6
fluid is analytically proved after Eq.30), by showing that = |
this state does not become an analytical solution for the 0.4 ; —
original Eq.(16). ”

g

‘ \\\
IV. SUMMARY 0 U
0~ 10 20 3 40 50
In Sec. Il A, we presented the general theory, extended Bitg

from [9,10] and originated fronj7,8], for how to judge and
identify self-organized states in general dissipative nonlinear FIG. 8. Time evolutions of dominant operatoB=Dy/(Dgy
dynamical systems from the view point of observations and-Ny) andN=Ny/(Dy+Ny) for the case 0R=14000.
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FIG. 9. Time evolutions of the correlation coefficients between g1 10, Time evolutions of the correlation coefficients between
t_he ;lmulatlon_data of Fig. 1 witho=472y and those withw the simulation data of Fig. 2 withv=472 and those withw
=csinh(By). R=1400. =c sinh(By). R=14000.

Q/E (enstrophy/energybased on the selective theory in

(1.2]. . .

In Sec. lll, the theoretical prediction together with the before the_|_nterchange Of_ the dommant_opera_tors, there ap-

physical picture of self-organization to the decaying self-Pear transitional states similar to the sinh-Poisson state on
the whole.

similar state was demonstrated to be correct by simulation h kable f fh L th
that exactly realize the theoretical solution of the lowest g € moﬁt r(_emzr_a he Qaturet()) the p|>_resbe|nt gener;’:\ t e(r)]ry
eigenmod€(1,0)+(0, 1)} for the case of the periodic bound- to be emp asize IS t at.'t can be applicable hot only to the

urbulent 2D incompressible viscous fluid, but also to any

aries. It is also clarified that an important process duringt. S ) - )
nonlinear self-organization is the interchange of the domi—d!ss'p""t've nonlinear dynamical systefasitten by Eq.(1)],

nant operators, through which there appears the Olecayir%ving decaying self-s@milar and self-organized states as the
self-similar state with the lowest eigenmode of the dissipa- uler-Lagrange equations.

tive operator(cf. Figs. 7 and 8 Showing that the value of
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