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The final self-similar state of decaying two-dimensional(2D) turbulence in 2D incompressible viscous flow
is analytically and numerically investigated for the case with periodic boundaries. It is proved by theoretical
analysis and simulations that the sinh-Poisson statecv=−sinhsbcd is not realized in the dynamical system of
interest. It is shown by an eigenfunction spectrum analysis that a sufficient explanation for the self-organization
to the decaying self-similar state is the faster energy decay of higher eigenmodes and the energy accumulation
to the lowest eigenmode for given boundary conditions due to simultaneous normal and inverse cascading by
nonlinear mode couplings. The theoretical prediction is demonstrated to be correct by simulations leading to
the lowest eigenmode ofhs1,0d+s0,1dj of the dissipative operator for the periodic boundaries. It is also
clarified that an important process during nonlinear self-organization is an interchange between the dominant
operators, which leads to the final decaying self-similar state.
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I. INTRODUCTION

The problem of determining the decaying self-similar
state in the dynamics of the two-dimensional(2D) incom-
pressible viscous fluid has been addressed for the last decade
and is still controversial [1–10]. The general self-
organization theories in[7–10] have a common mathematical
structure to find the decaying self-similar states as those
states for which the rate of change of global autocorrelations
for multiple dynamical field quantities is minimized. On the
other hand, Taylor published his famous self-organization
theory [11] to derive the Taylor state=3B=lB and to ex-
plain the appearance of the reversed field pinch configuration
in fusion plasma experiments[12], using a conjecture that
the magnetic energy is supposed to be minimized by its se-
lective decay compared to the decay of the global magnetic
helicity. However, the Taylor state itself had been previously
derived from another theory[13] to find the state with mini-
mum dissipation of magnetic energy. The mathematical pro-
cedure to find this state is equivalent to that of the selective
decay theory, i.e., the global autocorrelation of current den-
sity is supposed to be minimized by its selective decay com-
pared to the decay of the global magnetic energy under the
assumption of uniform resistivity profile. An interesting fact
is that applying the general self-organization theory in[7,8]
to the global autocorrelations for the magnetic field under the
same assumption of the uniform resistivity profile, we come
to a mathematical procedure to find the state with a mini-
mum dissipation of magnetic energy, the same as that of the
theory in [13]. This general theory can, however, be appli-
cable to the more general case with nonuniform resistivity, as
was demonstrated in[14] by showing agreement between
analytical and simulation results for the non-Taylor state. We

cannot deal with this general case by using the theory in[13]
and Taylor’s selective theory[11].

The approach by the selective decay theories was re-
viewed in [15], based on either a variational principle or an
energy principle, and has been discussed in 2D hydrodynam-
ics [1,2]. It should be emphasized here, however, that the
Taylor [11] and the selective decay theories are not based on
either a variational principle(e.g., as in classical mechanics
[16]) or an energy principle(e.g., to describe perturbations in
an ideal MHD plasma[17]), but are simply standing on the
variational calculus because the two principles lead to dy-
namical equations for the time evolution of the system of
interest. In the case of the 2D incompressible viscous fluid,
the selective decay theory was at first applied to lead to a
decaying self-similar state with minimal V /E
senstrophy/energyd [1,2]. We are able to get this state by
applying the general self-organization theory to the fluid ve-
locity, the same as the state with minimum dissipation of
magnetic energy in the theory of[13] shown above, as will
be clarified in Sec. II. This fact indicates that the general
theory [7–10] is a unifying theory for apparently two differ-
ent theories in[13] and [1,2].

In [4,5], they changed their dominant opinion on the de-
caying self-similar state from the selective decay theory to
the statistical theory by supposing the maximum entropy
condition and derived the sinh-Poisson state. It should be
noted here, however, that the sinh-Poisson state can never be
realized as the decaying self-similar state in the 2D incom-
pressible viscous fluid, as will be analytically clarified in
Sec. II.

An alternate approach by the scaling theory was proposed
recently, suggesting that the end state is the ultimate stage of
a self-similar evolution governing the decay phase[3,6]. As
the largest structures are formed, the system eventually
ceases to evolve or evolves in a low-dimensional dynamical
space[3].

On the other hand, applying the general self-organization
theory to the 2D incompressible viscous flow in a friction-
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free box[18] and to the Korteweg–de Vries equation with a
dissipative viscosityn term [19], we clarified by analytical
and simulation results that the state with the minimum
change rate of the global autocorrelation becomes the decay-
ing self-similar state.

In this paper, since the sinh-Poisson state seems to be
widely believed as the decaying self-similar state, analytical
proofs and numerical demonstrations are presented to inves-
tigate whether the beliefs are true or not. In order to investi-
gate numerically the decaying self-similar state, we need to
perform simulations for quite long effective computation
times, compared to the simulation data in[4] more than 10
times longer.

In Sec. II, we present a brief description of the general
self-organization theory for application to the 2D incom-
pressible viscous fluid, a derivation of the analytical solution
for the decaying self-similar state, and relating discussion.
We present typical demonstrative results of simulations and
discussion in Sec. III, in order to show that the sinh-Poisson
state is not realized in the 2D incompressible viscous fluid.
Section IV provides a summary.

II. GENERAL THEORY OF SELF-ORGANIZATION AND
APPLICATION

A. General theory of self-organization

After we briefly present a general theory extended from
[9,10] and originated from[7,8] for how to judge and iden-
tify self-organized states in a dissipative nonlinear dynamical
system expressed by a general nonlinear set ofN simulta-
neous equations, we will show the application of the general
theory to the 2D incompressible viscous flow with periodic
boundary conditions. It should be emphasized that the gen-
eral theory, which uses auto-correlations for dynamical quan-
tities, is not based on either a variational principle or an
energy principle, and also that the global auto-correlations
are not time invariants.

In order to deal with arbitrary dissipative dynamical sys-
tems, we need to develop an abstract type of theory, as fol-
lows. Consider a set ofN dynamical variablesq;qfjkg
;sq1fjkg ,… ,qNfjkgd, with M-dimensional independent vari-
ables fjkg sk=1,2,… ,Md, which may include time, space,
and velocity in distribution functions, or prices, amount of
materials, budgets for production systems, and other such
variables. Using generalized symbolic dynamical operators,
we may write the general nonlinear set ofN simultaneous
equations for an open or closed dynamical system as

] qifjkg/] j j = Di
jfqg, s1d

wherej j is one fixed independent variable amongfjkg, such
as timeR1tR, andDi

jfqg si =1,2,… ,Nd represents dynamical
operators that include both nonlinear and dissipative terms
for the change of a dynamical variableqi along the fixed
independent variablej j. In general, however,j j can be any
fixed independent variable other than timet, and the dynami-
cal system of interest evolves alongj j under Eq.(1). We
must note here that the dynamical system of interest always
has fluctuations of the dynamical variablesqifjkg along the

axis of the variablej j. The fluctuations may have several
characteristic lengths in different orders alongj j, one of
which is expressed astci. The characteristic lengthtci may
give the ordering of the relaxation time scale.

Since the self-organized states must have the most un-
changeable configurations alongj j during the evolution of
the dynamical system, we find that the best algorithm to
judge and identify the self-organized states in a dissipative
nonlinear dynamical system is by means of the autocorrela-
tion between dynamical variablesqifj jg and qifj j

+sDj j /tcidg, where the increase ofj j for qi is normalized by
tci. Therefore, we will be able to judge and identify the self-
organized states as those states for which the rate of change
of global autocorrelations for multiple dynamical field quan-
tities is minimized, that are exactly written by

min*E qifj jgqifj j + sDj j/tcidguJkÞ jup
kÞ j

djk

E sqifjkgd2uJkÞ jup
kÞ j

djk

− 1* , s2d

whereJkÞ j is the Jacobian to yield the well-defined integral
for the independent variablesfjkg skÞ jd. When we use the
variational calculus in the following equations, we do not
need any clear expressions ofJkÞ j. This is because the varia-
tional calculus is so constituted that the Jacobian itself does
not give any mathematical change to the process of varia-
tional calculations. Here, the minimization in Eq.(2) is per-
formed with respect to the dynamical variablesqifjkg
si =1,2,… ,Nd. Expanding Eq.(2), we obtain the following
equivalent criterion for self-organized states to first order in
Dj j /tci:

min*E qifjkgs] qifjkg/] j jduJkÞ jup
kÞ j

djk

tci E sqifjkgd2uJkÞ jup
kÞ j

djk * . s3d

Substituting the original dynamical equations of Eq.(1) into
Eq. (3), we obtain the final criterion for self-organized states

min*E qifjkgDi
jfqguJkÞ jup

kÞ j

djk

tci E sqifjkgd2uJkÞ jup
kÞ j

djk* . s4d

Note that all of the dynamical laws, characterized by the
nonlinear simultaneous system of Eq.(1), are embedded in
the equivalent criterion of Eq.(4). Since the nonlinear set of
N simultaneous equations[Eq. (1)] mutually relate the set of
N dynamical variablesqifjkg si =1,2,… ,Nd, the mathemati-
cal expressions of Eqs.(3) and (4) are obtained by varia-
tional calculus with the use of the two functionalsF given
below, with Lagrange multipliersli
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F =E o
i
Hqifjkg

] qifjkg
] j j + tciliqifjkg2JuJkÞ jup

kÞ j

djk,

s5d

F =E o
i

hqifjkgDi
jfqg + tciliqifjkg2juJkÞ jup

kÞ j

djk. s6d

UsingdF=0 andd2Fù0, we obtain from Eq.(6) the follow-
ing Euler-Lagrange equation and its associated eigenvalue
equation

Di
j#fqg + tciliqi

j#fjkg = 0, s7d

Di
j#fug + tciLimUimfjkÞ j

k g = 0. s8d

Here,UimfjkÞ j
k g is the normalized eigenvalue solutions, and

Lim is the eigenvalue, with the appropriate normalizations
written as eUimfjkÞ j

k gUinfjkÞ j
k guJkÞ jupkÞ jdjk=dmn, as has

been earlier reported[7,8]. Using the second variations of
Eq. (6) [9,10], we obtain the following condition for the
self-organized state with the minimum rate of change:

0 , li ø li1, s9d

whereli1 is the smallest positive eigenvalue andli is taken
to be positive.

Since we have the normalized eigenvalue solutions
UimfjkÞ j

k g, the profile for each dynamical variableqifjkÞ j
k g

can be expanded at each instance with respect to the variable
j j, as follows:

qifjkÞ j
k g = o

m=1

`

CimUimfjkÞ j
k g. s10d

Substituting Eq.(10) into Eq.(1), we get the spectrum trans-
fer equations involving the nonlinear dissipative operators
Di

j#fUg

o
m=1

`
] Cim

] j j UimfjkÞ j
k g

= Di
jfso

m=1

`

C1mUimfjkÞ j
k g,…, o

m=1

`

CNmUimfjkÞ j
k gdg. s11d

Since the normalized eigenvalue solutionsUimfjkÞ j
k g satisfy

Eq. (8), the operatorsDi
j#fUg will induce nonlinear mode

couplingsLim±Lind both to higher and to lower eigenmodes,
i.e., simultaneous normal and inverse cascades. Thus, Eq.
(11) shows a physical picture for the process of self-
organization in the following way:(i) Simultaneous normal
and inverse cascadings take place to accompany the more
rapid energy decay in the higher eigenmodes.(ii ) Conse-
quently, spectrum energy accumulates in the lowest eigen-
mode that is allowed for given boundary conditions and be-
comes self-organized and self-similar decaying states
Ui1fjkÞ j

k g si =1,2,… ,Nd.
In the same way that Eq.(7) was derived from the first

and the second variations of Eq.(6), we obtain the Euler-
Lagrange equation from Eq.(5) as follows:

] qi
j#fjkg
] j j + tciliqi

j#fjkg = 0. s12d

Combining Eqs.(7), (8), and(12) and taking account of the
eigenmode spectrum analysis, we obtain the final equations
for the self-organized states

] qi
j#fjkg
] j j = Di

j#fUg = − tciLi1Ui1fjkÞ j
k g. s13d

These self-organized states must satisfy the original Eq.(1)
and the boundary conditions. Equation(13) yields the final
solutions for the self-similar, slowest decay phase with the
smallest eigenvalueLi1

qi
j#fjkg = exps− tciLi1j jdUi1fjkÞ j

k g. s14d

The final analytic solutions, Eq.(14), definitely shows that
the self-organized state is not “the stationary state,” but is
“the decaying self-similar state” with the slowest speed
within characteristic decay timetci, because of the dissipa-
tive feature of the dynamical system of interest. This theo-
retical result is consistent with the physical picture for the
process of self-organization that we found with the use of
eigenmode spectrum analysis, as was discussed at Eq.(11).

B. Application to the 2D incompressible viscous fluid

We apply the general theory shown above to the 2D in-
compressible viscous fluid with periodic boundary condi-
tions in thex,y plane(normalized to unit length). Taking the
curl of the Navier-Stokes equation, we use the following
vorticity representation

] v

] t
= − su · = dv + n¹2v. s15d

Here,usx,yd is the fluid velocity,vsx,yd= = 3u is the vor-
ticity, n is the kinematic viscosity, and= ·u=0. In dimen-
sionless units, the kinematic viscosityn is the reciprocal of
the Reynolds numberR for unit length and unit initial rms
velocity, i.e.,n=R−1. Multiplying R to Eq. (15), and normal-
izing time axis byR, we get a vorticity equation with the
normalized time by the Reynolds number as follows:

] v

] tR
= − Rsu · = dv + ¹2v, s16d

wheretR; t /R. The nondissipative and dissipative operators
correspond to the −Rsu ·= dv term and the¹2v term in Eq.
(16), respectively.

Using the periodic boundary conditions for Eq.(16), we
obtain the following functionalF corresponding to Eq.(6) in
the general theory

F =E
x
E

y

fv · s− = 3 = 3 v + tcilvdgdxdy. s17d

Since the effective dissipative operatorDi
jfqg is given by

−= 3 = 3v in Eq. (17), we directly obtain the Euler-
Lagrange equation from Eq.(7), which corresponds to Eq.
(8), for the self-organized statev# reported in[8] as follows:
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= 3 = 3 v# = Lv#. s18d

The value oftci is taken to be unity, since the self-organized
state of a 2D incompressible viscous fluid has negligibly
small fluctuations. If we work in the velocity representation
of the Navier-Stokes equation, we obtain the same type of
Euler-Lagrange equation for the velocityu# at this self-
organized state[7,8], namely,

= 3 = 3 u# = Lu#. s19d

We can rewrite the Euler-Lagrange equations forv# andu#

as¹2v#=−Lv# and¹2u#=−Lu#.
Corresponding to Eq.(8) in the general theory, we obtain

the following eigenvalue equations[7,8]:

= 3 = 3 vk
# − Lkvk

# = 0, s20d

= 3 = 3 uk
# − Lkuk

# = 0, s21d

whereLk is the eigenvalue, andvk
# anduk

# denote the eigen-
solutions.

On the other hand, owing to the self-adjoint property of
the present dissipative operator[7,8], the eigenfunctionsak
for the associated eigenvalue problems form a complete or-
thogonal set and the appropriate normalization is written as

E ak · s= 3 = 3 ajddV =E aj · s= 3 = 3 akddV

= LkE aj ·akdV = Lkd jk, s22d

where =3 = 3ak−Lkak=0 is used. For the present case
with the periodic boundary conditions in thex,y plane(nor-
malized to unit length), the normalized orthogonal eigen-
functions avk for the vorticity andauk for the velocity are
obtained, respectively, as follows:

avk = expfi2pslkx + mkydgk , s23d

auk =
1

Îlk
2 + mk

2
expfi2pslkx + mkydgs− mki + lkj d, s24d

where Lk=4p2slk
2+mk

2d , lkù0,mkù0, except for lk=0 and
mk=0 at the same time. Here,=3auk= i2pÎlk

2+mk
2avk. Us-

ing L1
2 of the lowesths1,0d+s0,1dj mode for this case with

the periodic boundaries, we obtainL1=4p2.
The profiles forv and u at each instance can be ex-

panded, respectively, byavk andauk as follows:

v = o
k=−`

`

Cvkavk, s25d

u = o
k=−`

`

Cukauk, s26d

where the spectra ofCvk and Cuk sk=1,2, . . .d depend now
on time R1tR. Substituting Eqs.(23)–(26) into Eq. (16), we
obtain the following spectrum transfer equation, correspond-
ing to Eq.(11) in the general theory

o
k=`

`
] Cvk

] tR
expfi2pslkx + mkydgk

= o
k=`

`

o
j=0

` S− i2pRCvkCuj
7 lkmj ± l jmk

Îlk
2 + mk

2

3exphi2pfslk ± l jdx + smk ± mjdygjk + Cvk4pslk
2 + mk

2d

3exphfi2pslkx + mkydgjkD . s27d

It can be seen from Eq.(27) that if the flow system con-
tains multiple eigenmodessl j ,mjd with j =1, 2, 3,…, the
larger Reynolds number in the first term of right-hand side
[deduced from the nonlinear term −Rsu ·= dv] induces the
faster spectrum transfers in the present time scale oftR to
both the higher and the lower eigenmodes ofslk± l j ,mk±mjd
by mode couplings, i.e., by simultaneous normal and inverse
cascadings[18]. At the same time, the second term[deduced
from the dissipative term=2v] yields the higher dissipation
for the higher eigenmodes proportionally to the square of the
mode numberslk

2+mk
2. Therefore, collaborating with the dis-

sipative term, the nonlinear term works to accumulate flow
energies at the lowest eigenmode which persists to the end
[18]. It is important to note that any single eigenmode solu-
tion satisfies the equation −Rsu ·= dv=0 for the nonlinear
term of Eq.(16). In other words, any single eigenmode so-
lution can become one of the self-similar states of decaying
2D turbulence. Then, the lowest eigenmode, which is per-
sisted to the end as discussed above with use of Eq.(27),
never induces further different eigenmodes and, therefore,
becomes the final self-organized state for the decaying 2D
turbulence. These analytical results will be demonstrated by
simulations in Sec. III.

Since the fluid velocity is given byu= =c3k with the
use of the stream functionc=csx,y,td, which is independent
of z as are all other field variables, the equation betweenv
andc is given by

¹2c = − v. s28d

Using the lowest eigensolution of Eq.(23), we can obtain the
relation betweenv andc as follows:

v = 4p2c. s29d

In the case of the scaling theory, the end state is suggested
to be the ultimate state of a self-similar evolution governing
the decay phase[3,6]. This indicates that since the self-
organized and decaying self-similar state, denoted by super-
script of #, must have an essential feature to keep its profile
and to decay its amplitude self-similarly, the state to be de-
rived from Eq.(16) must analytically satisfy “the condition
of the self-similar decay” written as

] v#

] tR
= − Rsu# · = dv# + =2v# = − a v#. s30d

If the state of interest satisfies this condition, the state is
proved to be the decaying self-similar state, but not to be the
stationary state. In the case of statistical theory[4,5], how-
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ever, the derived sinh-Poisson statecv=−sinhsbcd always
fulfills −Rsu#·= dv#=0, but it is not the solution for¹2v#

=−a v#. Therefore, the sinh-Poisson state can never satisfy
the condition of the self-similar decay even for any large
Reynolds numbers R, and it cannot analytically become the
decaying self-similar state. If we neglect the dissipative term
=2v, we can easily find that the sinh-Poisson state is an
analytical solution for]v /]tR=−Rsu ·= dv=0, i.e., the sinh-
Poisson state is the stationary state itself. However, if we use
other initial multivortex distributions and numerically solve
the equation]v /]tR=−Rsu ·= dv, then we can never obtain
the sinh-Poisson state itself and also the decaying self-
similar state without numerical error, such as the numerical
diffusion. This fact definitely means that the sinh-Poisson
state never appears in any accurate numerical simulations. If
the sinh-Poisson state is realized with the use of some simu-
lations, then those results become a clear proof that those
simulations contain serious numerical errors. The nonappear-
ance of the sinh-Poisson state in the dynamical evolution of
the 2D incompressible viscous fluid belongs to an essential
problem that this state can never become an analytical solu-
tion for the two original Eqs.(15) and (16) and Eq.(30)
required for the decaying self-similar state.

On the other hand, the lowest eigenmode solution of Eqs.
(23) and (24) satisfies Eq.(30) as follows:

] v1
#

] tR
= − Rsu1

# · = dv1
# + =2v1

# = − L1v1
#. s31d

Equation(31) yields the final solutions of the self-similar and
slowest decay state with the smallest eigenvalueL1 written
by

v#stR,x,yd = exps− L1tRdav1

= exps− 4p2tRdfcos 2px + cos 2pygk , s32d

whereL1=4p2 of the lowesths1,0d+s0,1dj mode is used.
Equations(31) and (32) are the analytical results predicted
by the general theory to find self-organized states written at
Eqs. (13) and (14). It is seen from Eq.(32) that the decay
constant of the self-organized state is determined by the low-
est eigenvalueL1=4p2, and it does not depend on the Rey-
nolds numberR in the present time scale oftR.

We now derive minimalV /E senstrophy/energyd based
on the selective theory[1,2], using Eq.(3) of the general
self-organization theory. Puttingqifjkg=usx,yd ,j j = tR and
tci =1, we obtain the condition to find the decaying self-
similar and self-organized state from Eq.(3) as

min* s] /] tRdE
x
E

y

su ·uddxdy

2E
x
E

y

su ·uddxdy * . s33d

Repesenting energy E and enstropy V as E
;exeysu ·uddxdy and V;exeysv ·vddxdy, respectively, and
using Eq.(16), vector formulas, the Gauss theorem, and the
periodic boudary conditions, we obtain the following:

] E

] tR
= −

2

r
E

x
E

y

sv · vddxdy = −
2

r
V. s34d

Substituting Eq.(34) into Eq. (33), we obtain exactly the
same condition with minimalV /E based on the selective
theory [1,2] to derive the decaying self-similar and self-
organized state, as follows:

min
1

r

V

E
. s35d

Since initial distributions with a large number of small size
random vortexes were used in[1,2], and they stopped their
computation at an earlier time in their simulations, they
could not reach the exact decaying self-similar state as
shown by the analytical solution Eq.(32). In the same way as
shown above, the theory of minimum dissipation of magnetic
energy in[13] can be derived by settingqifjkg=B and using
relation ofs] /]tdeVsB ·BddV=2m0eVshj ·j ddV with the use of
Ohm’s law with resistivityh, as follows:

min*m0E
V

shj · j ddV

E
V

sB ·BddV * . s36d

If we assume uniform resistivity to lead to the Taylor state,
we see that Eq.(36) becomes identical to the theory in[13],
but we can find the non-Taylor state for nonuniform resistiv-
ity, as was analytically and numerically demonstrated in[14].
We can recognize from two derivations shown above that the
general theory[7–10] is a unifying theory for apparently two
different theories in[13] and[1,2], which are applied to dif-
ferent physical objects.

In order to investigate the correlation between the analyti-
cal equations for the self-organized states and the simulation
data, we will calculate numerically the correlation coefficient
Csf ,gd between two functionsf and g, which is defined as
follows:

Csf,gd =
sf − f̄dsg − ḡd

fsf − f̄d2sg − ḡd2g1/2
. s37d

We will show later how the correlation coefficient between
simulation data and this relation ofv=4p2c becomes close
to unity as the final self-organized state appears in time.

We consider here the ratio between the nonlinear coupling
term and the dissipative term. We treat the root-mean-square
average of the nonlinear coupling term and that of dissipative
term, respectively, as
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Nd =
1

l2
ÎE

0

1E
0

1

hRsu · = dvj2dxdy, s38d

Dd =
1

l2
ÎE

0

1E
0

1

s¹2vd2dxdy, s39d

where l is boundary length with edge length 1. In order to
investigate the dominantly working operator, we introduce
two quantities ofD andN, defined byD=Dd/ sDd+Ndd and
N=Nd/ sDd+Ndd, respectively. We call hereD andN as “the
dissipative ratio” and “the nondissipative ratio,” respectively.
When the nonlinear coupling term is dominant compared to
the dissipative term, thenD!N. When the self-similar state
is realized in the free-decaying 2D turbulence, the state
comes to satisfy the equation −Rsu ·= dv=0, and, hence,Nd

goes to zero. Therefore, it is seen from expressions ofN and
D that D,1 andN,0 at the self-similar state. The domi-
nant operator changes, consequently, from the nonlinear term
to the dissipative term in the free-decaying 2D turbulence.
This interchange of dominant operator will be shown later in
the following numerical simulations.

III. COMPUTATIONAL RESULTS AND DISCUSSION

We solve Eq.(16) in a dimensionless unit, under the con-
ditions of periodic boundaries inx,y plane (normalized to
unit length). The initial distributions of the present simula-
tions are given by superposition of several eigenmodes for
the eigensolutions of Eq.(23). The hyperbolic equation of
Eq. (16) is solved with the use of a different type scheme,
named the KOND(kernel optimum nearly analytical dis-
cretization algorithm) scheme[20,21], which has high nu-
merical accuracy and stability. We use the JACOBI scheme
[22] to solve the elliptic type equation¹2c=−v. Numerical
procedures at each time step are as follows:(i) solve ¹2c
=−v by the JACOBI scheme to get values ofc, (ii ) get
values ofu from c, (iii ) solve Eq.(16) by the KOND scheme
to get values ofv, and(iv) go to (i) for the next time step.
The simulation domain is implemented on afs5+101+5d
3 s5+101+5dg point grid with the grid interval of 0.01 in the
x andy directions. It should be emphasized that, because the
initial large size vortex distributions with only several eigen-
modes are used here, the number of grid points shown above
is sufficient to get correct time evolutions of the present fluid
dynamics by using the KOND[20,21] and the JACOBI
schemes[22], both of which have high numerical accuracy
and stability. On the other hand, because initial distributions
with a large number of small size random vortexes are used
in [1,2,4,5], they have to use a large number of grid points,
such asfs4096d3 s4096dg, for their simulations, and this
large number of grid points itself prevents them from inves-
tigating simulations for very long computation times, for ex-
ample, more than 10 times longer, compared to the simula-
tions in [4]. The periodic conditions are applied at the
boundaries of the inside domain ofs1013101d point grids,
and the extra layers with five-point grids surrounding the
inside domain are used to sweep out numerically diffusive
errors that occur from the outermost edges of the simulation

domain. In order to eliminate the numerical errors that
propagate inward in the extra layers, all data in the extra
layers are replaced by the corresponding data on the grids in
the inside domain before the numerical errors reach at the
boundary of the inside domain. The time step is basically set
as Dt=0.0001. In order to suppress the appearance of nu-
merical errors, however, when the maximum values of
]v /]x and]v /]y become 10 times greater than their average
values, the time step is reduced to be one order smaller as
Dt=0.00001.

In this paper, we show typical data of simulations with
two cases ofR=R1;1400 andR=R2;14 000. In figures of
simulation data, we use a common time axis withR1tR in
order to compare the two cases under the same equivalent
normalized time. We show typical results of simulations for
the initial flow, which is given by superposition of four
eigenmodes of(1, 3), (1, 4), −s3,1d, and −s4,1d, with the use
of Eq. (24) for the velocity. Here, −s3,1d and −s4,1d mean
that their amplitudes are multiplied by minus. The initial
flow contains the same amount of positive and negative
eigenmode components of vorticities. It should be empha-
sized here that the initial flow does not contain the lowest
eigenmodes ofhs1,0d+s0,1dj that is analytically predicted
for the slowest decaying self-similar state given by Eq.(32).

First, we compare the typical time evolutions of the vor-
ticity structure for the two cases ofR=R1 andR=R2, which
are respectively shown in Figs. 1 and 2. In those figures, the
bold and the broken lines show contour plots of positive
vorticity and those of negative one, respectively. The height
of the contours is normalized by the maximum absolute
value of either the positive or negative vorticity in each fig-
ure. In earlier phases aroundR1tR=0.5 in Fig. 1 and around
R1tR=0.1 in Fig. 2, the nonlinear process changes the initial
vorticity structure into the more complicated one with small-
scale deformations, and the like-sign vortex capture takes
place as was reported in[1–6,18]. At R1tR=4.5 in Fig. 1 and
at R1tR=0.4 in Fig. 2, there appear positive and negative
vorticities that are relatively steep and isolated from each
other. These features were also observed in other simulations
reported in[3], where they propose the scaling theory, and in
[5], where they propose the statistical theory. As time goes
on, we find that the simplest structure with the lowest eigen-
modes ofhs1,0d+s0,1dj remains to become the decaying
self-similar state, as is shown in the contour plots atR1tR
=50 in both Figs. 1 and 2. This decaying self-similar struc-
ture was also reported in[1], where the selective decay
theory is suggested.

It is recognized from the comparison between the two
cases of Figs. 1 and 2 that since the nonlinear term
−Rsu ·¹ dv in Eq. (16) written by the normalized time scale
is 10 times larger for the latter case as compared to the
former one, the nonlinear process changes the vorticity struc-
ture almost 10 times faster in the latter case than in the
former one, while the slowest decaying self-similar state ap-
pears at almost the same normalized time.

Figures 3 and 4 show the typical time evolutions of the
spectral components of vorticity during the self-organization
process of the flow structure, which are obtained from the
simulation data shown in Figs. 1 and 2, respectively. In those
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figures, the horizontal scale is given by the spectral eigenval-
ues Lk=p2slk

2+mk
2d for eigenmodesslk,mkd. The vertical

scale is normalized by the maximum absolute value of either
the positive or the negative spectral componentsCvk in each
figure, where the positive spectra are shown by bold bars and
the negative ones by shaded bars attached to the right-hand
side of the bold bars. The initial spectra for the four eigen-
modes of(1,3), (1,4), −s3,1d, and −s4,1d are seen to be
shown only by the two positive and the two negative lines in
both figures atR1tR=0. We find from the spectrum in earlier
phases atR1tR=0.5 in Fig. 3 and atR1tR=0.1 in Fig. 4 that
the nonlinear process yields the spectrum transfer toward
both the higher and the lower spectral eigenmodes, in other
words, it yields that the wave number flows toward both the
smaller side(the inverse cascade) and to the larger one(the
normal cascade) on the wave number space. It is seen from
the time evolution of spectra after the earlier phases that the
higher spectral components dissipate more rapidly and the
inverse cascade yields, gradually, spectrum accumulation at
the lowest eigenmodes ofhs1,0d+s0,1dj, which remains to
become the decaying self-similar state, as is shown by the
spectrum atR1tR=50 in Figs. 3 and 4. The amplitude of(1,0)
mode is equal to that of(0,1) mode atR1tR=50. We should
note here that the eigenmodes ofhs1,0d+s0,1dj were not
contained in the initial flow atR1tR=0, but have been in-
duced nonlinearly during the self-organization process.

It is clearly seen again from the comparison between the
two cases of Figs. 3 and 4 that the 10-times-larger nonlinear
term −Rsu ·= dv in the latter case yields the almost 10-

FIG. 1. Typical time evolution of vorticity structure during self-
organization for the case ofR=1400.

FIG. 2. Time evolution of vorticity structure during self-
organization for the case ofR=14000.

FIG. 3. Time evolution of spectral components of vorticity for
the case ofR=1400.
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times-faster spectrum transfer toward both the higher and
lower spectral eigenmodes than in the former case, resulting
in similarly faster dissipation of the higher spectral compo-
nents by the dissipative term=2v in Eq. (16) and in faster
spectrum accumulation at the lowest eigenmodes ofhs1,0d
+s0,1dj, consequently, in the present normalized time scale.

Figures 5 and 6 show the typical time evolutions of the
relation betweenv and c during the self-organization pro-
cess for the simulation data shown in Figs. 1 and 2, respec-
tively. The horizontal scale isc, and the vertical scale isv.
Since normal and inverse cascades occur in earlier phases at
aroundR1tR=0.5 in Fig. 3 and at aroundR1tR=0.1 in Fig. 4,
the data ofv andc exhibit a complicated distribution on the
v−c plane at the corresponding time in Figs. 5 and 6. After
the earlier phases, corresponding to the rapid dissipation of
higher spectral components and the gradual spectrum accu-
mulation to the lowest eigenmodes ofhs1,0d+s0,1dj, the
scattered data begin to concentrate and show clearer struc-
tures. At R1tR=17 in Fig. 5 and atR1tR=3.8 in Fig. 6, the
concentrated data become curves, which are, on the whole,
similar to those of the sinh-Poisson statev=c sinhsbcd.
However, when we go on to calculate further, the data on the
v−c plane clearly come to the straight line given byv
=4p2c at R1tR=50 in both Figs. 5 and 6, as was predicted
analytically at Eq.(29).

Figures 7 and 8 show the time evolutions of dominant
operatorsD=Dd/ sDd+Ndd and N=Nd/ sDd+Ndd during the
self-organization process, which are obtained from the simu-
lation data shown in Figs. 1 and 2, respectively, with the use

of Eqs.(38) and (39). It is seen from Figs. 7 and 8 that the
nonlinear terms are dominant in earlier phases in both figures
and the dominant operators are exchanged from the nonlin-
ear terms to the dissipative ones at aroundR1tR=17 in Fig. 7
and at aroundR1tR=3 in Fig. 8. It is clear, however, that after
the exchange of the dominant operators, the nonlinear terms
in both figures decrease rapidly to be negligibly small com-
pared to the dissipative ones in the present normalized time
scale. We may understand from Figs. 7 and 8 the reason why
the nonlinear term −Rsu ·= dv comes to have no power to
determine the final ordered structure of the present two-
dimensional incompressible viscous fluids: the physical fea-
ture that the nonlinear term yields completely the seat of the
dominant operator to the dissipative one after a certain time
on the time scale normalized byR, even ifR is quite large.

Figures 9 and 10 show, respectively, the time evolutions
of the correlation coefficients between the simulation data of
Figs. 1 and 2 with our analytical relation ofv=4p2c and
those withv=c sinhsbcd of the sinh-Poisson state. In those
figures, the bold line is the correlation coefficient forv
=4p2c and the chain-dotted line is forv=c sinhsbcd. It is
seen from the chain-dotted line in those figures that even
though the values of the correlation coefficients forv
=c sinhsbcd come close to unity at aroundR1tR=13 in Fig. 9
and at aroundR1tR=3 in Fig. 10, respectively, they never
become 1.0 and deviate fairly fast away to be lower than
those forv=4p2c at R1tR=20 in Fig. 9 and atR1tR=10 in
Fig. 10, respectively. Those results definitely mean that the
sinh-Poisson state never becomes the solution for the origi-
nal Eq. (16), as was analytically proved after Eq.(30). On
the other hand, the values of the correlation coefficients for

FIG. 4. Time evolution of spectral components of vorticity for
the case ofR=14000.

FIG. 5. Time evolution of the relation betweenv andc for the
case ofR=1400.
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v=4p2c become almost completely united after around
R1tR=28 in Fig. 9 and after aroundR1tR=25 in Fig. 10, re-
spectively.

It should be noted here that, by referring to Figs. 1–4 and
7–10, the decaying self-similar state has already established
at aroundR1tR=25–28 in the normalized time scale, and the
structure of the vortex does not change, but only the vortex
amplitude decreases gradually with time after the realization
of the decaying self-similar and self-organized state.

We find from comparison of Fig. 9 and Fig. 10 that when
we replot data along the present time scale normalized by the
Reynolds numberR, then the establishment timete of the
decaying self-similar state becomes almost the same time as
mentioned above, whose value of time depends on initial
vortex distributions. In the normalized time scale, we see
from Figs. 9 and 10 that the larger value ofR yields the
earlier appearance and the faster disappearance of a state,
which is not exactly the same but is similar to the sinh-
Poisson state. The nonappearance of the sinh-Poisson state in
the dynamical evolution of the 2D incompressible viscous
fluid is analytically proved after Eq.(30), by showing that
this state does not become an analytical solution for the
original Eq.(16).

IV. SUMMARY

In Sec. II A, we presented the general theory, extended
from [9,10] and originated from[7,8], for how to judge and
identify self-organized states in general dissipative nonlinear
dynamical systems from the view point of observations and

applied it to the 2D incompressible viscous fluid in Sec. II B
to obtain the decaying self-similar solution Eq.(32) deduced
from Eq. (31) and satisfying the original Eq.(16) written in
the time scale normalized by the Reynolds numberR. The
two Eqs.(31) and (32) are directly connected with the gen-
eral analytical results of Eqs.(13) and(14) deduced from the
general theory. Applying the eigenfunction spectrum analysis
to the 2D turbulent process with the use of the normalized
orthogonal eigenfunctions Eqs.(23) and (24), we deduced
the following physical picture, which is independent with
values ofR to explain sufficiently the self-organization with
two simple and fundamental mechanisms:(i) Simultaneous
normal and inverse cascading by nonlinear mode couplings.
(ii ) The faster spectral decay of higher eigenmodes and the
spectral accumulation to the lowest eigenmode for given
boundary conditions. We also derived the analytical relation
between the vorticity and the stream function written asv
=4p2c for the decaying self-similar state. We analytically
proved that the sinh-Poisson state never appears in the dy-
namical evolution of the 2D incompressible viscous fluid by
showing that this state never becomes the analytical solution
for both of the original Eq.(16) and Eq.(30) required for
“the decaying self-similar state.”

We analytically showed that the general theory[7–10] is a
unifying theory for apparently different two theories of mini-
mum dissipation of magnetic energy in[13] and of minimal

FIG. 6. Time evolution of the relation betweenv andc for the
case ofR=14000.

FIG. 7. Time evolutions of dominant operatorsD=Dd/ sDd

+Ndd andN=Nd/ sDd+Ndd for the case ofR=1400.

FIG. 8. Time evolutions of dominant operatorsD=Dd/ sDd

+Ndd andN=Nd/ sDd+Ndd for the case ofR=14000.
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V /E senstrophy/energyd based on the selective theory in
[1,2].

In Sec. III, the theoretical prediction together with the
physical picture of self-organization to the decaying self-
similar state was demonstrated to be correct by simulations
that exactly realize the theoretical solution of the lowest
eigenmodehs1,0d+s0,1dj for the case of the periodic bound-
aries. It is also clarified that an important process during
nonlinear self-organization is the interchange of the domi-
nant operators, through which there appears the decaying
self-similar state with the lowest eigenmode of the dissipa-
tive operator(cf. Figs. 7 and 8). Showing that the value of
the correlation coefficient for the sinh-Poisson state with
simulation data never becomes 1.0 in Figs. 9 and 10, we
have clarified that this state never becomes the solution for
the original Eq.(16), as was analytically proved after Eq.
(30). On the other hand, these two figures show that the
value of the correlation coefficient forv=4p2c becomes al-
most completely 1.0 at almost the same time aroundR1tR
=25–28 in the normalized time scale, as was analytically
predicted at Eq.(31). It is, however, worthwhile to note that

before the interchange of the dominant operators, there ap-
pear transitional states similar to the sinh-Poisson state on
the whole.

The most remarkable feature of the present general theory
to be emphasized is that it can be applicable not only to the
turbulent 2D incompressible viscous fluid, but also to any
dissipative nonlinear dynamical systems[written by Eq.(1)],
giving decaying self-similar and self-organized states as the
Euler-Lagrange equations.
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