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Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation
in the incompressible limit

Yong Shi, T. S. Zhad, and Z. L. Guo
Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, China
(Received 13 February 2004; revised manuscript received 21 June 2004; published 27 December 2004

In this paper, by introducing a different distribution function and starting from the Boltzmann equation as
well as the Maxwell-Boltzmann distribution, we obtain a Boltzmann Bhatnagar-Gross-KB&aK) equation
for thermal flows with viscous heat dissipation in the incompressible limit. The continuous thermal BGK
model is then discretized over both time and phase space to form a lattice BGK model, which is shown to be
consistent with some existing double distribution function lattice BGK models based on macroscopic govern-
ing equations. We have also demonstrated that the lattice BGK model derived theoretically in this work can be
used to simulate laminar incompressible convention heat transfer with/without viscous heat dissipation.

DOI: 10.1103/PhysRevE.70.066310 PACS nunierd4.27+g

I. INTRODUCTION LBGK models usually employ a larger set of discrete veloci-

. ties than the corresponding isothermal models, and include
The lattice Bhatnagar-Gross-KrogkBGK) method has higher order velocity terms in the equilibrium distribution

been widely used in various scientific and engineering COMz \nction (EDF). Although the physical idea behind the mul-

putations over the last decade. As a mesoscopic numeri.caipeed LBGK models is straightforward and reasonable, it is
approach, the LBGK method numerically solves the Kinetic,oher onerous to derive the parameters in the EDF of such

equation(the Boltzmann BGK equatiqri1,2] for the single- a5 Another disadvantage of the multispeed LBGK

parti_cle distributi.on functiqn. In comp_aris_on with the con- models is that they usually suffer from severe numerical in-
ventional numerical algorithms, the kinetic features of thestability and is only suitable for problems with a rather nar-

LBGK method enable it to be more effective for simulating ./ temperature rangi21,27. In addition, the multispeed
complex fIw?I sys;tlems, Isycr:] as :::OWS 5'” 1p0r0usd mefﬂll? LBGK models using a single relaxation time are limited to
suspension i OWSE%’ ;nutlp ase flows[5-12, and multi-  , ohiems with a fixed Prandtl number, which departs far
component owg13-13. from the real physics. Although some methods have been
Historically, the LBGK method, or more generally the proposed to overcome these problefag.,[22] for the im-

:att@ce Boltzmann equatio(lLBhE')hmthqd, r(])riginates from provement of the stability[;30] for the problem with variable
attice gas auto_mata_GA), which mimic the mICroscopic  prapnqy numbens the drawbacks of the multispeed models
dynamics of fluids by the motion of imaginary particles on still greatly limit their practical applications.

regular lattices subject to some specific collision rules  ajernatively, the double distribution function models uti-
[16-18. But later studies|1,2] showed that the LBGK ;¢ 5 aqditional distribution function, instead of the original
method could be derived from the continuous Boltzmanngi, e narticle distribution function, to describe the evolution
BGK equation. Following this idea, various lattice BGK f the temperature fielf25-29. It has been shown that the
models for particular problems have been well constructe DF LBGK models are simple and applicable to problems
[6,24,27. with different Prandtl numbers. More importantly, the DDF
On the other hand, although the LBGK method has gk models have better numerical stability than the mul-

achieved great successes in simulating and modeling iSOtheﬁ'speed models. The reliability of the DDF models has been
mal fluid dynamics problems, it is still a challenging problem validated by many author@.g.,[25-29).

to construct LBGK models for thermal flows with a solid However, it should be pointed out most of the previous

physical foundation and with good numerical performanceDDF LBGK models were proposed based on the observation

Generally, the existing LBGK models for thermal flows in yo temperature is governed by an advection-diffusion equa-

the literature fall into two pat_ego_ries: the _muItispeed modelSjon under the conditions that both the compression work and
[;9_34 anﬁ the dlqublec(jdlstn%utllon functio®DF) r_nodelfs h viscous heat dissipation are negligilpgs,26,28,2% In these
[LE;S(;KQI Tdel m::ltlspeeh mo Ieﬂs are an e;:_terr:smnl 0 ht models, the temperature is regarded as a passive scalar. Early
. models tor |so_t ermal Tlows, ‘I which -only the studies[26] even treated the temperature as a component of
single-particle distribution functiofiis defined and a higher the mixture. As a result, the introduced temperature or inter-

order of.velocny moment of th|s distribution function is used nal energy distribution function became independent of the
to describe the temperature field. In order to recover the ma&‘a—n

. . . ; riginal distribution function. In the previous DDF LBGK
roscopic energy conservation equation, the multispee odels, the additional evolution equation and the corre-

sponding EDF were developed rather heuristically as long as
the macroscopic energy equation can be recovered. Further-
*Corresponding author. Electronic address: metzhao@ust.hk more, these models are usually constructed based on the as-
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sumption that both the compression work and the viscoughange inf due to binary collisions. Note that the effect of
heat dissipation can be neglected. Although it is reasonablge external force field is not included in Eq) (see[6,32]

to neglect the compression work in the incompressible limitfor the case when the effect of the external force field is
the viscous heat dissipation may have a significant effect ofhcludeqd. The macroscopic variables, such as the density

number fluids or flows with a high Eckert number. To our

best knowledge, few of the previous DDF LBGK models, N
except the one proposed by ldeal. [27], take into account p—f fdc
the effect of viscous heat dissipation. However, the rest tem-
perature EDF in the model by Ha al. always takes negative f R

fc dc,

: (2)

values; and this model is rather complicated in comparison pu=
with other DDF models even in the case when the compres-
sion work and the viscous heat dissipation are negligible. gng

The objective of this work is to develop a lattice BGK
model for thermal flows with viscous heat dissipation in the DpRT (1. . _, .
incompressible limit. To this end, we first introduce a distri- 2 Ef(c_ U*de, (4)
bution function related to the original single-particle distri-
bution function to describe the temperature field, and thenvhereD is the space dimension. Here, without losing gener-
derive the continuous thermal lattice BGK model starting@lity, we focus on three-dimensional problef@s=3). Equa-
from the Boltzmann equation and the Maxwell-Boltzmanntions (2)<4) indicate that the density, velocity 4, and tem-
distribution, based on which a lattice BGK model is obtainedperatureT, are related, respectively, to the zeroth, the first,
for thermal flows with viscous heat dissipation in the incom-and the second moments of the distribution funcfimn the
pressible limit. The proposed LBGK model is simple andnesoscopic scale. Generally, the collision teify it in the
robust in comparison with other existing DDF LBGK models gg|;mann equation is rather complicated and hence simpli-

for thermal flows with or without viscous heat dissipation in fication is needed in practical applications, provided that the

he incompressible limit. Moreover, we al how theoreti- . - .
the incompressible t. Moreover, we aiso show theoret basic features of.f/dt are retained. In fact, the well-known

cally that most of the existing DDF LBGK models that were S .
usually developed based on the macroscopic governing equg_hatnaga.r—Gross-Krpok mode[33] _o_rlgmates from this
need, which approximates the collision process as a relax-

tions can be derived from our continuous model. . B
The rest of the article is organized as follows. In Sec. Il, aatlon to the local equilibrium
temperature distribution function based on the original J 1. .
single-particle distribution function is defined, and its evolu- = = Z(f-fe9), (5)
tion equation together with the equilibrium distribution func- A N
tion is derived from the Boltzmann equation as well as - S a
Maxwell-Boltzmann distribution. In Sec. Ill, we derive the Where\ is the relaxation time ané™is the local Maxwell-
corresponding thermal lattice BGK model based on the reBoltzmann equilibrium distribution functiof81] given by
sults obtained in the previous sections. It is shown that many Seq_ 3 .
existing heuristic DDF LBGK models are consistent with our fe9= p(27RT)*%ex - (€ - 0)%/2RT], (6)
results. In Sec. IV, we employ our model to simulate severalyith R representing the gas constant.

classical heat transfer problems, and finally some conclu- |t can be shown that the Boltzmann equation given by Eq.
sions are drawn in Sec. V. (1) with the BGK approximation given by Eq5) can re-
II. CONTINUOUS BGK EQUATIONS cover the correct macroscopic contingity, momentum, and
FOR THERMAL FLOWS energy equz_atlo_ns. However, the resu!tmg Prandtl number of
the system is fixed as a constant. This disadvantage is actu-
We start with the derivation of the continuous BGK equa-ally caused by the use of a single relaxation time to approxi-
tions for thermal flows from the continuous Boltzmann equa-mate the real collision process. In fact, as pointed o{iB4j,
tion and the Maxwell-Boltzmann distribution. the relaxation time of energy carried by the particles to its
equilibrium is different from that of momentum. This is why
the original BGK model with a single relaxation time is in-
adequate to model a process involving both momentum and
In kinetic theory, the Boltzmann equation, which de- energy transport with different Prandtl numbers. This prob-
scribes the evolution of the single-particle distribution func-lem can be overcome by introducing two distinct relaxation
tion f(t,F,E), is given by[31] times to characterize momentum and energy transport, re-
. . . spectively[34]. Motivated by this idea, we propose a two-
af v If _ 9t 1 relaxation-time, two-distribution-function BGK model which
ot ¢ a @) directly separates the energy transport from the momentum
transport. In this model, we use a BGK equation with a re-
wheret, 7, andC denote the time, the particle position, and |axation time\ for a density distribution functiof to model
the particle velocity, respectively, angf/dt is the rate of momentum transport, while using another BGK equation

3

—_h )

A. Temperature distribution function and its evolution
equation
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with a relaxation time\; for a different distribution function . oo
g to model energy transport. The first BGK equation describ- pu= | fcdc, (15)
ing momentum transport can be written as

and
of of 1
— 4. —=—(f-fe
ot ¢ or x(f ., ™ .
pT=| gdc (16)
where

Since EQq.(16) indicates that the temperature is the zeroth
moment ofg, hereafter we will refer tq as the temperature
distribution function. It is worth mentioning that E¢) can
alternatively be rewritten aj27]

fed= fed= p(27RT) 3 2%exg - (€ - G)¥2RT]. (8)

Note that we have replacddwith f and\ with \ to distin-
guish the momentum BGK model given by E@g) and(8)
from the original one, given by Eqs¢l) and(5), which de- 1.
scribes both the momentum and energy transport with a p8=f —f(é—J)zdF;:Jg’dé, a7
single relaxation time. 2

To obtain the second BGK equation modeling energy PR . .
transport, we first multiply both sides of the Boltzmann Whereg’=(c-u)%/2. Equation(17) implies that the macro-

equation given by Eqi1) by a factor,(6-0)?/(3R), to give scopic internal energy includes the translational kinetic en-
’ ’ ergy of the particles only. This is true for an ideal gas. For

& A (B2 7F real gases, however, the internal energy must include the
a9 . dg (C€-0)"0f = : U e .
—+C-—=—"""—"+%R, (9 rotational kinetic energy, vibrational energy, and internal po-
a n 3R at tential energy of the particles, in addition to the translational
kinetic energy shown in Eq17). Therefore, Eq(17) holds

where for an ideal gas only. However, the temperature distribution
. (E-0)2. function g has no such limitation.
9= f, (10 Equations(7), (8), (12), and(13) constitute a continuous
Boltzmann BGK model for thermal flows. Through the
R R Chapman-Enskog procedyil], the macroscopic conserva-
. %2(0— u) . [@ + (6 i) ﬁ} (11) tion equations of mass and momentum can be derived from
3R at )] Eq. (7):
Equation(10) indicates thafy is not an independent variable ap :
but related to the original single-particle distribution function a7 * o (p) =0, (18)

f. A comparison between Eg$4) and (10) shows thatg
represents energy carried by the particles. In this sense, Eq. Api) 9 g 2

(9) virtually describes the energy transport process. In a man- AP, — - (ptl) =— —p+—-1I, (19
ner similar to the treatment of the collision operator for mo- g ar g or

mentum transport, the collision integral in £§) can also be
modeled by a BGK approximation with a relaxation time
that represents the relaxation process of energy. With thi
approximation, we obtain another BGK equation:

|

and the macroscopic conservation equation of energy can be
gerived from Eq(12):

d(pc, T d a ar d ER
o, w1 P e = ) -o{a)
. f r f r P
Fig D= Zg-g+m, (12
ot or At (20)
where <
where the thermal conductivitg=5\R?T/2 and Il repre-
(€-1)%- (E-0)?p o sents the stress tensor.
= 3R fi= 3R(27RT)*2 expl- (€~ WF2RT], The above analysis indicates that the thermal flows can be

described by the two Boltzmann BGK-like equations Egs.
(13 (7) and (12), which provide a base for developing thermal
lattice Boltzmann BGK models. In fact, Het al. [27] has

andR has the same expression®swith f andf*ireplaced  5h0sed such a model recently based on a similar BGK

by f andf*, respectively. Note that the varialiein Eq.(9)  model. However, we notice that the BGK-like equatids)

is replaced by the variablgbecause of the BGK assumption -5 pe further simplified. To this end, we rewrite Etf) as
in Eq. (12). The macroscopic variables can thus be redefineds g+ RI+ R with

with f andg as
2(c-u) |ad J\.
= _ = J.—
”:ffda’ (14 TR [&t+<“ aF)u]' v
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T viscous heat dissipation in the incompressible limit. We have
RY=-f 3R(C_ w(c- U)-a_r»u, (22)  also shown this model can further reduce to E§) for the
case when the viscous heat dissipation is negligible. The
and EDF g® for the temperature distribution functianin both
5 P models is given by Eq(13), which is now simplified as
RIII - _ (f _ feq)_(é_ fD((f- J)ﬁl] (23) follows. _ _
3R or For low Mach number flows, the density ECF? given

by Eg. (8) and the temperature ED§ given by Eq.(13)

It is well known that in the LBGK method the Mach number . <
can be expanded as a Taylor series up4o

is required to be small, implying that the fluid is nearly in-
compressible. Under such a circumstance, the second term 1 \8R 2 (€-0) (6-02 @
on the right hand side of E20), representing the compres- %= P(m) "ORT 1+ RT T 2ReT2 T ORT
sion work, can thus be neglected. Note that the compression m

work in Eq.(20) results virtually from the ternR" given by (27)
Eq. (22) [27]. Hence, for thermal flows at small Mach num- d

bers considered in this work, E(L2) can be simplified as

ag ag 1 eq— T(L)Slze)(%_ iz>|:c_2+<c_2_g> (66)
e l= (g g R AR 24 97PN oRT 2RT/| 3RT \3RT 3/ RT
t
. ¢ 4\(c-0? [ & 2\
Moreover, it can be shown that the zeroth moment of the + (— - —)% - (— - _)u_ . (28)
termR' vanishes, i.e. 3RT 3/ 2R°T 3RT 3/2RT

Since the polynomial of the density EDY given by Eq.
f R'dé=0, (27) has been well documented, we focus on the discussion
of the expanded series gf First, we regroup Eq.28) as

L | I
which implies thatR' itself has no contribution to the tem- ( 1 )3/2exp<— iz)[ E-0) éedd
2RT

perature equation. However, it should be pointed out that the g®4=pT —
elimination of R would create an additional term, corre- 2mRT RT  2R°T
sponding to the first moment ¢¥, in the resulting macro- 2 1 \32 &2 &2
scopic temperature equation. Further analysis indicates that TORT +PT<—> exp(— ﬁ_) 3RT 1
this additional term is of order Macompared with the heat

conduction term, which is negligible for low Mach number 1 \32 ¢ ¢ 5\(¢-0)
flpwg,. Therefore,. the final BGK eqpation for the temperature pT 27RT exp - oRT/I\3RT 3/ RT
distribution functiong now is simplified to

. (_7)_(_5)_} 29)
(i—i?+6.?):—;(g—geq)+R|”_ 25) 3RT 3/2ReT2 \3RT 3/2RT]
r t

) i . i o It can be readily proved that the zeroth through second order
It is shown that in the incompressible limit we can use Eq.moments of the summed terms in the last square brackets on
(25 to model the macroscopic energy equation for thermatne right side of Eq(29) vanish. Moreover, we can also
flows with viscous heat dissipation that takes the same formroye that the zeroth and first order moments of the summed
as Eq.(20) but without the compression work ter(see the  terms in the second square brackets in the right side of Eq.
Appendix for details . _ (29) are zero, and the second order moment is only related to

It is noted that for low Prandtl number fluids or flows with the macroscopic thermal ConductivkyThUS, exc|uding this
small Eckert number, the viscous heat dissipation becomegrm only leads to a change in the thermal conductivity, from
less important and can also be neglected in many engineering. 5pMR2T/2 to k=2p\R2T. Clearly, the only difference is
applications. Under these situations, we can directly drop thg,q co:’1stant in fror21t oti))\tRzT whic’h can be absorbed by

termR™ in Eq. (25) to obtain manipulating the parametex,, in the numerical implemen-
g . g 1 tation. Therefore, we can drop the terms in the last two
—+C-—=-—(g-0%), (26)  square brackets on the right side of E20) together to sim-
A xo M plify Eq. (29) as
which represents the evolution equation of the temperature 32 &
(%RT) exp( )

distribution function for the case when the viscous heat dis- g®9=pT| ——

-

2RT
Jea o s

sipation is negligible.

RT 2R’T? 2RT
=Tfeq, (30)

B. The equilibrium distribution functions
for low Mach number

In Sec. Il A, we have developed a continuous thermal
Boltzmann BGK model, i.e., Eq25), for thermal flows with  which indicates that the temperature EG¥ s related to the
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density EDF,f®4 through the temperatur€. On the other Ill. THERMAL LATTICE BGK MODEL
hand, it should be recognized that the inclusion of the terms
in the second square brackets on the right side of (E@).
makes the temperature EDF negative &r0 [27], which

In this section, we will discretize the Boltzmann BGK

equations derived in the preceding section over the velocity

contradicts the physical definition of a distribution function. SP2C€V(€) and physical spac(t, ) to form a lattice BGK
For low Mach number flows, the temperature EDF giveandeI for thermal flows with viscous heat dissipation in the

Eq. (30) can further be simplified by neglecting the terms of iIncompressible limit. First, we discuss the discretization of
O(W?) to give the velocity space. Following the procedure proposed by He

and Luo[1,2], we first obtain the two-dimensiondD=2)

. ( )3/2 p( &2 ){ (6-6)} discrete velocity version of Eq$32) and(34) as
g%=pT| ——= Xp - —= . (31
27RT 2RT RT
TIPS (39)
The simplification from Eq(30) to Eq.(31) can be justified S D WL
by comparing the zeroth to second order moments of the
EDFs given by Eqs(30) and(31). It can be proved that the and
zeroth and first order moments of both EDFs are identical;
and the second order moments of the two EDFs differ only in g 4@ 99 _ l( g +R" (39)
terms with the order of Ma Therefore, in the incompressible ot Voar M 90 R
limit it is reasonable to neglect the terms®fu?) in the EDF
given by Eq.(30). wheref; andg; are the distributions in terms of the discrete

In summary, at this point we have obtained a continuouselocities. R!" =—(1/R)(f;—f£%(¢;—0)(G,—0): 4/ oF and the
thermal BGK model for thermal flows in the incompressible discrete velocitie€; are given by[35]
limit, where the evolution equation for the density distribu-

tion functionf is (0,0, i=0,
e e 1 ¢ = c(cog (i — 1) m/2],sin (i — 1) =/2]), i=1,2,3,4,
PRl Untis (32) V2c(cog (2i - 9)w/4],sir{(2i - 9)w/4]), 1=5,6,7,8,
| (40)
with
i S with ¢=\3RT. The corresponding discrete EDF¥ and g
fed= p< 1 ) p(— C_) can be obtained from Eqé33) and(36) as follows:
27RT 2RT ,
R - - G-0) (G-u u?
[ e, e @ 9 fsq:wip[“QJ'z—?—z—z] (41)
RT = 2RCT2 2RT)’ G R
and the evolution equation for the temperature distributionand
functiong is @ -0)
PI=wpT| 1+ =5 |, (42)
Dye.B=-Z(g-g=+RY (39 &
ot FK N ’

wherecg= VRTis the sound speed, angy=4/9,w;,=1/9 for
with i=1-4, andw;=1/36 fori=5-8.Note that if we start from
Eq. (30) instead of Eq(36), the EDFg’ will be obtained:

2 d
R = — (f - f®)—(¢-0)(G-0):—0 35 - - -
( q)SR( _))( -,) ar—) ( ) eq (Ci J) (Ci _L-DZ u2
g =wppT 1+T+ pyraabyel b (43)
a.nd S S S
1\ I . which differs from that given by Eq42) in the last two
geq:pT<_> e p(— C_){ M} (36)  terms of order M3 just as in their continuous counterparts.
27RT 2RT RT The macroscopic variables are now defined by
For the case when the viscous heat dissipation is negligible, 8 8 8
the evolution equation for the temperature distribution func- p=21f, pli=>fc, pT=>0. (44)
tion g reduces to i=0 i=0 i=0
99 +E g_ 1 = 37 The above discretization procedures can also be extended to
a ¢ o )\t(g g 37 three-dimensional problems. Taking the three-dimensional
27-bit lattice model as an example, the corresponding dis-
where the EDFg®Yis still given by Eq.(36). crete velocities ar¢l,2]
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(0,0,0, i=0,
(+1,0,0c,(0, £1,0c,(0,0, + Jc, i=1,...,6
“7) (+1,+1,0c,(+1,0, + Dc,(0, 1, Dc, i=7,...,18 (45
(1, +1,0c, i=19,...,26
[
and the weights appearing in the EDFs avg=8/27, w; a9 . dg; 1 .
=2/27 fori=1-6,w;=1/54 fori=7-18, andw,=1/216 for FRhAr S —;t(gi -9, (53

i=19-26. The term associated with the viscous heat dissipa-
tion in the discrete velocity BGK equation is given by with the discrete EDF$7% and g given by Egs.(41) and
(42), which can be discretized to obtain the following LBGK

R == (2/3R)(f; = F79(E - 0)(& - J):;’—‘;. (46) ~ model:

fi(t+ At,r + CAt) - fi(t,1) = — [ f;(t,1) = f74t,1)], (54)
Note that the above discrete velocity evolution equations are
S_tl|| continuous in the physical spa@(t,r*). Applymg the Gi(t+ At 7+ EA) — gi(t,D) = — wlgi(t,P) - g?Yt,D)].
first order forward Euler scheme in time and the first order
upwind scheme in space to both equati@d® and(39), we (59

obtain the following LBGK model: Note that in the incompressible limit, for thermal flows with-
_ > AL - TF _ e out viscous heat dissipation, the LBGK model given by Egs.
filt+ ALF+CAD =it = = o[fi(L1) ~ FFLO], (47) (54) and (55) together with the discrete EDF$Y and g&
L B n given by Egs(41) and(42) or (43) is consistent with those
gi(t+ A+ CAY - gi(t,1) = - o gi(t,7) — g7t N] + AtRT, reported in the literaturée.g.,[25,26,29), which were con-
(48) structed based on the macroscopic conservation equations,

. . . . rather than starting from the Boltzmann BGK equation.
wherew=At/\ is the dimensionless relaxation parameter for g q

fi and w,=At/\; is the dimensionless relaxation parameter
for g;. IV. NUMERICAL SIMULATIONS

Note that the above LBGK equatio®7) and(48) are of . . )
only first order accuracy in both space and time for the con- In the previous section, we have derived a DDF LBGK
tinuous discrete velocity equations. However, the accuracjodel for incompressible thermal flows with viscous heat
can be improved to second order by absorbing the first ordefissipation from the Boltzmann equation. In this section we
discrete errors into the physical shear viscositpnd the Shall apply the proposed model to simulate heat transfer in
thermal conductivityk, respectively. In fact, we can derive Coyette flow and in Poiseuille flow with viscous heat dissi-
the following macroscopic equations from the two LBGK Pation to validate the accuracy of the model.
equations (47) and (48) through the Chapman-Enskog

procedure: A. Heat transfer in Couette flow with the viscous heat

p 9 dissipation

L (o) =0, (49)

r o or We first present the simulation results of heat transfer in

Couette flow. Consider an incompressible and viscous fluid
Api)  d J J - between two infinite parallel flat plats, separated by a dis-
—+— - (pll) = - —p+—-(prS), (500 tance ofD. The upper plate at temperatufgmoves at speed
aar oo U, and the lower plate at temperatufe(T,>T,) is statio-
nery. The exact solution of this problem is given by
BT, 2 (pe,iT) =2 (kﬁ—f) +prS:2d, (51) £
ot or or or or y*(1-y*), (56)

Pr
0=y* +

where v and k are now given by(l/w—O.S)cht and
pC,(1/w—0.5C2At, respectively. Similarly, from Eqs32)
and(37), we also obtain the following discrete velocity equa-
tions for thermal flows without viscous heat dissipation:

where 6=(T-T))/(T,=T,), y*=y/D; Pr=v/« is the Prandtl
number, and Ecuzlcp(Th—T,) is the Eckert number, with,

v, andc, representing the thermal diffusivity, kinematic vis-
cosity, and specific heat, respectively.

af,  _ of; 1 . In simulations, periodic boundary conditions were applied
ot tG } =~ X(fi - 79 (52 to the inlet and outlet and the nonequilibrium extrapolation
method[36] was applied to the two plates. The central dif-
and ference scheme was adopted to discretize the ®ifm
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FIG. 1. Dimensionless temperature profile in Couette flow for Pr ~ FIG. 2. Dimensionless temperature profile in Couette flow for
Ec=(a) 0.16, (b) 2.0, (c) 4.0, (d) 8.0, (e) 16.0, (f) 32. Solid line, ~Pr=100 and Ec=1.0. Solid line, analytical solution; *, numerical

analytical solution; *, numerical results. results.
We carried out the simulation on an 80 mesh for T-T, y 3 2y 4
Ec=16.0 and Pr ranging from 0.01 to 1.0 and a X380 T ot B+£_1PrE 1- D 1, (58)
h=

mesh for Ec=16.0 and Pr=2.0. The final dimensionless tem-
perature profiles with different Pr Ec are compared with thewhere D represents the width between the platgsgpre-
exact solution, Eq(56), in Fig. 1. It is shown that for small sents the distance from the surface of the bottom plate, and
values of Pr Ec, temperature varies almost linearly along the)=(dp/dx)D?/12u is the average velocity. In simulations,
direction perpendicular to the plates. This means that in comye again applied the periodic boundary conditions to both
parison with heat conduction, the effect of the viscous heathe inlet and outlet of the channel, and the nonequilibrium
dissipation is rather weak. As Pr Ec increases, the temperaxtrapolation method to the two plates. Asfts at the sur-
ture profile deviates from the linear distribution. In particu- face of the plates, we adopted the bounce back rule. Mean-
lar, when Pr Ec>2.0, the maximum temperature of the fluid while, the dimensionless relaxation tineis chosen to be
even exceeds the temperature at the upper plate. We can se@5 and the density of the working fluid is set to be 1.0.

from Fig. 1 that the numerical results by the model proposedhgain, the central difference scheme was applied to dis-
in this work are in an excellent agreement with the eX&C'&:retizeRi'”.

solution. It is also worth mentioning that our model can also e carried out simulations on an 880 mesh grid for

be used to simulate the problem at rather high Prandtl numpr Ec=0.0, 0.375, 3.0, and a 18030 mesh grid for Pr Ec
ber. For instance, in Fig. 2 we show the numerical results foe6.0. Figure 3 presents the comparison between the numeri-
Pr=100 and Ec=1.0. It is seen that the numerical results argal results and the analytical solution, given by E&9).

in good agreement with the analytical solution even for suctFrom Fig. 3, it can be observed that the numerical results are

a high Prandtl number fluid. This shows that our model posin good agreement with the analytical solution for all the
sesses good numerical performance over a wide range @hkses.

Prandtl number.

B. Heat transfer in Poiseuille flow with viscous heat V. CONLUSION

dissipati . .
issipation In this paper, we have proposed a lattice BGK model for

Poiseuille flow with viscous heat dissipation is anotherihermal flows with viscous heat dissipation in the incom-
classical heat transfer problem. Unlike Couette flow, in thispressible limit. In this model, a temperature distribution
case, the parallel plates are all stationery and the incompresgnction g is defined to represent the temperature field. The
ible and viscous fluid flow between the plates is driven by &yg|ytion equation and the EDF of this distribution function
constant pressure differencelp/dx along the direction par- 3y been directly derived from the Boltzmann equation and
allel to the plates. It is well known that for Poiseuille flow ine Maxwell-Boltzmann distribution. The resulting DDF
with viscous heat dissipation, the macroscopic velocity dis| Bk model with two relaxation times can recover the cor-
tributes parabolically as rect macroscopic conservation equations for thermal flows

u 3 2y 2 with viscous heat dissipation in the incompressible limit and

U2 1—(5—1> : (57)  ensure that the EDF for each discrete velocity is non-
negative. We have further demonstrated that for the case

and the temperature distributes as when viscous heat dissipation is negligible, our thermal lat-
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1

we can obtain a series of equations in terms of the order of

nat .
% fO=feq (A5)
as} T
07} 1 0,f©@ a,f@ 1
el T— 4@ 2—=-Zf0 (AB)
06t . ot or A
S st -
ES (0) (1) (€
o4t 8 e oof + af +C- 51f§ =- Ef(z) (A7)
ot ot ar A
0.3t ]
0l | and
N - &% g0=g%, (A8)
% 6 5q®  5q0 1
&ﬂf-iz——g(”, (A9)
ot o At
FIG. 3. Dimensionless temperature profile in Poiseuille flow for 209 g.g® g.qV 1
5 o . 5. 020 19 = 0197 _ 1y
r Ec=(a) 0, (b) 0.375,(c) 3.0, (d) 6.0. Solid line, analytical solu- e + +C-———=-—¢
tion; *, numerical results. a a or At
2 d
. . L —fO R OVE=0) 25
tice BGK model can reduce to a simple form, which is con- fH3g(E- (e J).aFu. (A10)

sistent with those reported in the literature. We have also
carried out the numerical simulations of heat transfer in botiFrom Eqgs.(A5) and (A8) and the definitions of¢9 and g*¢
Couette and Poiseuille flows to validate our thermal latticegiven by EQs.(8) and (13), we can obtain the following
BGK model. The numerical results are all in good agreemenmoments off™” andg”,

with the analytical solutions. It has also been shown that this
thermal lattice BGK model can also be applied in rather high

: fOgg= ff(’) c=0forr=1,2,..., (A1l
Prandtl number flows and gives a reasonable accuracy. f de=p. de=0fo 2 )
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APPENDIX: RECOVERING THE MACROSCOPIC f g(O)d6=pT, fg(r)déz 0forr=1,2,...,(A13)
CONSERVATION EQUATIONS THROUGH THE

CHAPMAN-ENSKOG PROCEDURE

In the appendix, we present the detailed mathematic deri-
vation of the macroscopic conservation equations of mass,
momentum, and energy from Eq$) and (25) through the
Chapman-Enskog procedui&l]. Without loss of generality, -
we discuss the three-dimensional case. First, we introduce ff(())eédé:f fOCC dé+ pid, ff(())éé dé=pl,
the following multiscale expansion:

f g Q¢ dé= pdT, (A14)

f=fO+of@ 4 2@ 4 ... (A1) (A15)
O (D) 4 22 o whereC, the peculiar velocity, is defined @si.
g=g" TegrretghE e, (A2) With the help of Eqs(Al11)-(Al14), we can obtain the
macroscopic mass, momentum, and energy equations in the
9 - 8% + 82%’ (A3) first order ofe by taking moments of EqA6) and (A9) as
J 17
S “E+ 2L (p0) =0, (A16)
=, (A4) g
an or
- ; di(pu) Gl
where e is a small parameter proportional to the Knudsen L A (pad) = - 2p, (A17)
number. Substituting Eq$A1)—(A4) into Egs.(7) and(25), ot ar o
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di(pc,T) T)

p (CT)O

(A18)

wherec,=3R/2 is the specific heat at constant volume. On

the other hand, from Eq$A6) and (A9) we can obtain

0,f0 4O
f(l):—)\<1—+c- |, (A19)

it o

ag®  _ a,g©
W=\ | E—+e- = A20
g t( it or (A20)

Using the result$A16)—(A18), and substituting Eq$8) and
(13) into Egs.(A19) and(A20), respectively, we can rewrite
fD andg® as

~2
P {L_(al)]é,m
2RT \2 or

CC CA | a.
| =-==].% (A21)
RT 3RT/ o

2CC 4, .
f— _'_u

: , A22
c2 o (A22)

wherel is the unity tensor.

With these results, we can obtain the macroscopic mass,

momentum, and energy equations in the second ordebgf
taking moments of EqA7) and (A10) as

(A23)

(A24)

PHYSICAL REVIEW E 70, 066310(2004)

-(kalT+F' + F”) I0:
ar

aZ(pCVT) — ﬁ

- ﬁFII,
at ar at

_1
a?F

(A25)
where the second term on the right hand side of (B&4),

—(a,1 ) -(p)Sy, results from(dl or) - [66FVdE, and denotes
the stress experlenced by the fluids \RT is the shear vis-

cosity, andSl—alu/aH(&lu/&F)T [(&1/aF) l]]l is the ten-
sor associated with the velocity grad|ents In E425), k

=5p\R?T/2 represents the thermal conductivity, aht

=(pv)S, represents the stress tenddrandF" are two addi-
tional terms caused by eliminatirg) andR" from Eq.(12):

o0 . o
l u'%)!
ar

F'=-\pR (A26)

et}

Fil=-\p2. (A27)
ar

It is worth mentioning that the term &' is of order M&
compared with the heat conduction. Hence, for thermal flows
in the incompressible limit(Ma<1), this term can be
dropped from Eq(A25). As to F", the zeroth moment of
g, it has been shown that it does not vanish but is related to
the compression work only. In the incompressible limit, we
can also neglect this term. Therefore, we can rewrite the
macroscopic energy equation in the second order a$

F T\ =
92(pC,T) i<k<9_) i
ot ar ar

In summary, combining Eq$A16)—«A18), (A23), (A24),

and (A28), we can obtain the macroscopic conservation
equations of mass, momentum, and energy:

(A28)

Ip

—+— u)=0, A29
e pu) (A29)
api) o d 2
S E (e = - Zp+ = I, A30
a g lea=map s (A30)
dpc, T aT\ = 4.
(pC ) pe — - (pc,uT) = (1)+H:1u.
ot or or
(A31)
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