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Water waves over a strongly undulating bottom
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Two-dimensional free-surface potential flows of an ideal fluid over a strongly inhomogeneous bottom are
investigated with the help of conformal mappings. Weakly nonlinear and exact nonlinear equations of motion
are derived by the variational method for an arbitrary seabed shape parametrized by an analytical function. As
applications of this theory, the band structure of linear waves over periodic bottoms is calculated and the
evolution of strong solitary waves running from a deep region to a shallow region is numerically simulated.
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. INTRODUCTION IK(w,H)
: . — <0, (2)
The classical problem of water waves over a variable sea- oH

bed has attracted much attenti@ee[1-30 and references

therein. There are some significant differences in this inter-yhere the functiorK(w, H) is determined by Eq1). There-
esting and practically important problem, as compared to thgyre a5 in conventional light optics, here an oblique wave
theory of waves on a deep water or in canals with a flatnanges its direction of propagation when it meets the gra-
horizontal bottom. In situations where the fluid depth is lessjient ofn. Also, total internal reflection is possible in propa-
or of the same order as a typical length of a surface wave, th&ation from smaller depth to larger depth.

inhomogeneity of the bottom is a reason for linear and non-" gegjges observing such natural phenomena, a set of labo-
linear wave scattering and transformation, and it stronglyaiory experiments has been carried out to investigate vari-
affects wave propagation. These phenomena occur so widely s aspects of the given problem in more idealized and con-
that one can meet them almost everywhere, although Wity,1ed  conditions than are achieved in nature
different scales. Examples of strongly nonlinear _dynam'(?f[g,lz_m,19,20,37|n particular, waves over locally periodic
are ocean waves running on a beach or th_e motion of dis;ottoms were studied experimentally,12—14,27, and such
turbed water in a puddle_after a car. Among linear effects dug general periodic media effect was observed as the Bragg
to bottom topography is the existence of special edgeegonances and corresponding band structure with gaps in a
localized waves discovered by Stod3—2Q, which propa- \yave spectrum. It is worth saying that in natural conditions
gate along the shore line of a beach. Over an axially SYMguasiperiodic sand bars occur quite often.

metric underwater hill, qua5|locallzed_ wave _modes with * | general, a qualitative picture of the mentioned phenom-
nonzero angular momentum can exist, similar 10 10ng-gnq is clear. As concerns the quantitative side of the math-
lifetime states of a quantum particle confined by a potentiapmaical theory of waves over a variable bottom, here not
barrier of a finite width[6,31]. It is necessary to say that oyerything that is necessary has been done, because practi-
underwater_ obstacles of definite shapes and sizes can Ser¥glly all analytical models and methods developed up to now
as waveguidega narrow and long underwater Cresi 8 46 'related to the limit cases where the fluid is considered as
lenses(an oblong underwater hill oriented crosswise to thejjeq| and the slope of the bottom is smait the amplitude
wave propagation A qualitative explanation for all linear ot the hottom undulations is smallFor the general three-
effects is simple. Indeed, lat, be the coordinate in the yimensiona(3D) Hamiltonian theory of water waves, such a
horizontal planeH(r ;) the depth corresponding to quiet Sur- reqtriction seems to be unavoidable even when considering
face. Then, looking at the well-known dispersion relation forihe most simple, irrotational flows when the state of the sys-

small-amplitude gravitational surface waves, tem is described by a minimal set of functions—namely, by a
N v rsmrryrS pair of canonically conjugated quantities such as the devia-
o(K,H) = VgK tanHKH) (D) tion 9(r , ,1) of the free surface from the horizontal plane and

the boundary valug(r | ,t) of the velocity potentia[32,33.

A technical difficulty exists here that, when working in 3D
space, it is impossible to represent in convenient and com-
pact form the kinetic energy function&X », ¢} which is part

of the Hamiltonian of the system. Small values of the bottom

(where w is the frequencyK is the absolute value of the
wave vectorg is the gravitational acceleratiprone can see

that the local refraction indem(w,r | ) increases as the depth
H(r |) decreases, in accordance with the formulas

slope and of the free surface slope make possible an expan-
N(w,H(r )) = Klw,H(r ) = gK(w":(rl)) >1, sion of the Hamiltonian to asymptotic series and subsequent
K(w,H =) @ application of various variants of the perturbation theory. In
such a traditional approach, an inhomogeneous bottom does
not allow one to write in exact form even linearized equa-
*Electronic address: ruban@itp.ac.ru tions, not to speak of nonlinear corrections.
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There are more favorable conditions for progress in the 1 = =
theory of 2D potential ideal flows with a free boundary, and 05 — e —
the reason for this is the possibility to employ such powerful o£:§£:§
mathematical tools as analytical functions and the corre- os§§?§§?
sponding conformal mappings. Time-dependent conformal - N A
mappings were successfully used for studying strongly non- S j S (T\ NI (
linear 2D wave dynamics on deep water and over a straight 45 { \ / \ ( / \
horizontal bottom[34—-4(Q. In the cited works the region } \ }
occupied by resting fluigthe lower half-plane or a horizon- 2r / \ /
tal stripeg was mapped onto the region with a disturbed free 25N 4 . 4
boundary, and the real axis was transformed into a moving 3 — ) —
boundary. Such a conformal “straightening” of the free sur- @ 2 X‘jh 4 5 6
face has provided a compact representation of the Hamil-
tonian, the derivation of exact equations of motion, and the 2 —
possibility for precise numerical simulations of the system T
evolution. 15 "

The purpose of this work is to study the effect of a ' &
strongly undulating bottom on 2D ideal potential flows with = \ /
a free surface. Here conformal mappings are used as well, 2 1 e L
and this is done in two variants. In the first, “moderate” i) R
variant(Sec. ll), a fixed conformal mapping “straightens” the /
bottom, but not the free boundary. More exactly, instead of 0.5
the Cartesian coordinates and y (with the y axis up-
directed, curvilinear coordinates andv are introduced, and 0 .
the change of coordinates is performed with the help of an ) 0 02 04 ‘o 06 08 1
analytical functiorz(w) which maps the stripe <t Im w< 0
onto the region between the horizontal lipe0 and the in- FIG. 1. Left: periodic shape of the bottottower thick line),
homogeneous bottoyp=—-H(x). In this casex+iy=z(u+iv), levels of constanb=-0.9,-0.8, ..., +0.qthin lines, and (sche-

the horizontal liney=0 corresponds to=0, and on the bot- matically) free boundary(thick line neary=0). Right: the corre-
tom v=-1. The bottom may have an arbitrary large slopesponding band structure of the spectrum of linear waves. In this
and even impending pieces where the dependetice is  examplez(w)/h=w+(2e/ a)sin(aw)/[1+b cogaw)], with param-
multivalued, as shown in Fig. 1. The shape of free surfac@tersa=2m/3, €=-0.17, anch=0.16. Note that the effective depth
will be described by a functiom=V(u,t). The Lagrangian h is different from the mean depti(x)) (see Sec. Il B for detaijs

for weakly nonlinear waves is represented as an integral se-

ries in powers of the dynamical variablgéu,t) and¢(u,t),  dependent conformal mapping straightens both the bottom
with coefficients explicitly depending on the spatial coordi-and free boundarySec. Ill). Such a mapping can be repre-
nateu. In the small-amplitude limit, the wave dynamics is sented as the result of two mappings:iy=z({(w,t)), where
governed by linear integral-differential equations. It is usingthe first functionZ(w,t) maps the horizontal stripe <1v <0

the conformal variables andv that allows us to obtain these onto a regionD,(t) with the straight lower boundargim {
equations in exact form, contrary to the traditional approach=-1) and with a perturbed upper boundary. After that the
where even linearized equations can be obtained only apime-independent functiorz(?) maps the half-plane Ini
proximately by an expansion of the small parameter, the=-1 onto the regiony>-H(x) in the physical plane
slope of the bottom. The definition “moderate” for this vari- hounded from below by the bottom. The shape of the free
ant emphasizes that straightening of the bottom withoutyrface will be described by the formuls+iY=2Z(u,t)
straightening the free boundary is able to provide not more-z/(y,t)). However, it appears that exact nonlinear equa-
than a weakly nonlinear theor_y. Nevgrtheless, such a theoryons for Z(u,t) in the inhomogeneous case have the same
seems to be helpful and applicable in many practical casegm 45 the known equations for waves over a horizontal
when the wave amplitude is small. The results of this part of,1om 3], but with different analyticity requirements im-
the work are the derivation of the Hamiltonian functional for posed on the solutions. Numerical solutions obtained by the

weakly nonlinear potential surface waves in canals having aQpeciral method are presented that describe the running and
arbitrary bottom shape, as well as calculations for the ban reaking waves over uneven bottongec. IV).

structure of the spectrum for a number of periodic bottom
profiles. As an example of how to treat the linearized equa-
tions, also the problem is considered of wave reflection on a Il. WEAKLY NONLINEAR THEORY

smooth “step”—changing the depth fram to h,.

The other variant of using conformal mappings may be So suppose we know the analytical functiczw)
called “radical” in the sense that it is valid for an arbitrary =x(u,v)+iy(u,v) which maps the horizontal stripe
shape of the bottom and for an arbitrary shape of the freel<Im w<<0 onto the region occupied by the fluid at rest
surface. It is an exact combined theory where a timeand this function takes real values on the real axis)
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=x(u,0). The velocity field is irrotational, and the velocity =/(u) exp(-iku)du by k tanhk. Quadratic onV part of
potential ¢(u,v) satisfies the Laplace equatian,+¢,,=0  the potential energy is

in the flow region - v <V(u,t), with the boundary condi-

tions ¢,,=-1=0, ¢|,=yy=¥(u). Due to conformal invari- PN} = gfvzx’3(u)du. (9)
ance of the Laplace equation in 2D space, the equagign 2

+¢,y=0 is satisfied as well, with a no-penetration boundaryj; js convenient to deal with the function&(u,t)
condition on the bottom: de/ dnly-_y=0. Let us now take =V(u,t)x’%(u), canonically conjugated ta/(u,t), and write

into account the fact that the Lagrangian functional for po-he corresponding up-to-third-order Hamiltonian in terms of
tential surface waves has the following structure ¢ andy:
[32,33,35-38,4]t
) ﬂ{g,lp}:}f ¢{ﬁtanhﬁ]¢du+ 9 ,g—zdu
L= gmdx=H= [ HYX,~ Y X)du-"H, (3) 2 2 ) x'(u)
2 _ Tk 1:/,)2
where Y(u,t)=y(u,V(u,t)), X(u,t)=x(u,V(u,t)), and the + Ef i ([k,tinhk]@ }gdu. (10
Hamiltonian functional is the total energy of the system— 2 X' %(u)

the sum of the kinetic energy and the potential energy inbpysically, this asymptotic expansion of the Hamiltonian is
gravitational field(in this paper \./ve.neglect surface ten§|on on a small parameter—the slope of the free surfaee[33]
effects, though they can be easily incorporated by adding tgor more comments and referenge¥he weakly nonlinear

the Hamiltonian the surface enejgyn our variables, equations of motion have the standard Hamiltonian structure
" 1fd“fvm)( 2+ ¢7)d 5H o ( éw
== @+ ¢p)dv _OH e u Ao s
= — =[ktanhk]y— —| —— | —[ktanhk
2 1 & 50 [k tanhk]yr &U(X,z(u) [k tanhk]
gf 2 d 1y L
+= u, V(u))—x(u,V(u))du. (4 gk tanhk]
2 ) Y1 du ) ) \ e v (11)
This system has the obvious stable equilibrigmO0, V=0;
hence, one may consider weak oscillations near this equilib- ~ A ay
rium state. In a standard wagee, for instancg33)), let us = M _ g £ . ¢fi~ ([k tanhk]y) .12
expand the Lagrangia8) in powers of the dynamical vari- ¢ X'(u) X'%(u)

ablesy andV. It is clear that due to the symmetry principle
the expansion fory(u,v) contains only odd powers af,
while the expansion fox(u,v) contains only even powers of
v. Therefore up to third order in powers @f and V the
Lagrangian(3) is equal to

If |x"(u)/x'(u)|<1, thenx’(u) is approximately equal to
the equilibrium depthH(u). For long waves over a such
slowly varying bottom, only the Fourier harmonigg and &,
with smallk are excited, so in this case the Hamilton{d0)
can be simplified to the local form

L= f WX Hudu- K2y} - KOy Vi - PRV, (B) g, f [ﬁ_@+2%uu+ UL
! 2 6 15 2X(u)  2X¥u) ’
wherex’(u)=z'(u+0i)=x,(u,0) and the equalityy,=x, has (13)
been taken into account in the first integral on the right-hand

side(RHS). The expansion for the kinetic energgalculation ~ Which is suitable for consideration of such phenomena as the
of the functionalsk® and K®) is performed in a standard interaction of solitons with the bottom topography.

manner[33,38 and gives A. Linearized equations

1 r v Now let us consider the linearized system
@fyr == | yfktanhk]ydu, 6 Y
Ky Zfeb{ anhk]ydu (6) .
5 1 o . - gx’(u)'
KPRVt = 2 f {#4 - ([ktanhk]y)vdu. (@) For a monochromatic wave, = exp(—iwt)] Egs. (14) are
reduced to the single integral equation

&=[ktanhKly, - (14)

Here the linear Hermitian operat[j} tanhﬁ] has been intro- )
duced, acting as (%x'(u) - ktanhk> (W) = 0. (15)

+oo

- - Yy(U)du . _ .

[k tanhk]y(u) = - P Py ps , (8 In the low-frequency limit this equation can be considerably
~ 2sinf(m/2)(U-u)] simplified. A variant of the simplification is to introduce a

where P means principal value integral. In Fourier represeniew functionf by the equalitylz tanhkz/fw(u):—fuu. Then we
tation this operator simply multiplies the Fourier harmonicsobtain the equation
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w? N A
(Ex’(u)k cothk + (d/du)z)f =0 (16)
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Z(w)=h>, a,explinaw), a;=1, a,=a, (23

The low-frequency limit corresponds to long wavelengths, Herehis a dimensional paramet@n effective depthanda,

when k cothk~1+k2/3=1-(1/3)(d/du)?, so we have to
deal with the second-order differential equation

2
“x'(u)

- X' (u)
39

where w?x’(u)/g should be smal[only in this case is the
wavelength indeed effectively long; remember tk&u) is
of the same order as the depth

Higher-order approximations to E(L5) can be derived in
a similar manner—for instance, by changé#,(u)
=[coshk]f(u) and subsequently expandin@:oshﬁ] and
[k sinhk] in powers ofk?=—(d/du)?.

As an explicit example of using E@17), we consider the

fuu(u) + f(u) =0, (17)

are some complex Fourier coefficients. It should be noted
that h differs from the mean depttH(x)) by a geometric

factor, since
27la)
—f Im[z(u-1)]JRgZ (u—i)]du

0
27la)
f RdZ (u-

0

(HX) = (24)

i)]du

Obviously, x'(u)=z'(u)>0 and|a,| decay rapidly at large
In|, since z'(w) does not have any singularities at
-1<Imw<1. Equation (15 for eigenfunctions ¢, (u)
(wherex=w?h/g) now has the form

x(}‘, a, exmnau))zp(u) —[ktanhk]#(u)=0  (25)

n

reflection of a long wave from a step-shaped bottom inhoor, in Fourier representation,

mogeneity described by the function

(z)

z(w) = hyw+ ——=In(1 +e*), (18)
whereh; >h,>0, 0< a< . If the frequency of the wave is
small, w<+\g/hy, then Eq.(17) may be applied. Calculating
the derivative

1 h,e”*"+h,
"W)y=hy+(h,—h = , 19
Z'(w) =hy + (h, 1)1 Wy ] (19
we have forf(u) the equation
w? [hlce o+ hz]
fuu(u) + Wf(u) 0, (20)
where
oty
~ hy ~ h, 39
h,= , hy,= , C= . (21
! w2h1 2 w2h2 wzhz 29
1-— 1-—= 1-—=
39 39 39

A general solution for Eq(20) is known[31]. In particular,
the reflection coefficient is given by the expression

2
sinff — \/hj h,)
a\'g ]
R(w) = - - (22
sinf — \/;1 Fz)
a\g

B. Periodic bottom: The band structure of the spectrum

Interesting phenomena occur if shape of the bottom is

periodic:

N>, anthing = K tanhk,. (26)
n
For convenience let us denote
F,=avtanhav), V,=¢,,. (27)
Now we have the infinite chain of linear equations
=F,¥,, (28)

A av, .,
n

where‘lf,,l and lIf,,2 interact if the difference between and

v, IS an integer number. Let us fix some Nontrivial solu-
tions of the system(28) exist only at definite values
=\n(v), wherem=1,2,3, ... . Itisnecessary to note that the
functions A,(v) are periodic,\(v+1)=A,(v), and even,
Am(=v)=\y(v). This determines the band structure of the
spectrum with frequency gafsee Figs. 1 and)2 For nu-
merical computing\(v) it is necessary to cut the infinite
chain (28) at some large but finite length, thus considering
only v between N and N. PracticallyN should be several
times larger than the indem of A, Numerical results for
\7\ shown in Figs. 1 and 2 were obtained with the help of
the mathematical packagerpPLE 8 takingN=10.

Figure 2 shows that in some cases even for a strongly
undulating bottom the coefficients, with n=1 can be still
small (a;=€=0.2<1). In these cases it is easy to calculate
analytically in the main approximation the positions of the
gaps. For example, let us consider the bottom profile as in
Fig. 2, wherex’(u)=h[1+2¢ cos(au)]. The gaps in the spec-
trum correspond to integer or half-integes. It is important
that at these values aof, solutions of the linear chai®8)
possess definite parity, in the sense tifaj=+V,. This al-
lows us in gap calculations to consider only positiuelet
us first consider half-integers and the corresponding half-
infinite chain

(N =F1) W1+ Ne(x W+ W3, =0, (29
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FIG. 2. Shape of the bottom, levels of constanaind the band
structure forz(w)/h=w+(2¢/ @)sin (aw), with a=7/3, €=0.2.

(N—F3) W+ Ne(Wyp+ W50 =0, (30)

(N =Fs)Ws+ Ne(W3p+ W) =0... (31)

Obviously, the even and odd cases result in differésitand

PHYSICAL REVIEW E70, 066302(2004)

1 1
+

NS =Fypt+ €F5,
: Fa2—=Fsp2

Fap=Fap
3
+ 63F3/2
(Farp=F1p)?

Analogously, the gaps at integeis can be considered.
These are determined by the system

(34)

()\ - Fo)qlo + AE(i‘l’l + \I’]_) = 0, (35)
()\ - Fl)\lfl + )\E(‘PO + \1,2) = 0, (36)
()\ - Fz)\IIZ + )\E(‘Pl + \1,3) =0... (37)

For instance, the position of the second gap in second order
is given by the formulas

€F}
F2 - Fl

€F}
2~ Fl

NGE S , AN?=Fy(1+28) -

(38)

IIl. EXACT THEORY

In exact nonlinear theory, the shape of the free boundary
is given in parametric form by a compound function
Z({(u,t)), wherez(¢) is a known function completely deter-

mined by the bottom shape(for example, z({)
=h[/(¢+i)?>=(b/h)?>~i] corresponds to a narrow vertical bar-

rier of the heighth at x=0 on the straight horizontal bottom
with the depthy=-h). The unknown functiori(w,t) should

it is this difference that determines the gaps in spectrum. Fop€ analytical in the stripe —ZIm w<0 and the combination
main-order calculations of the first and third gaps, we cut thig¢(U=i,)+i] should take real values. These conditions relate
chain:¥,,=0, ¥y,=0, and so on. Now we have to solve the the real and imaginary parts ¢fu,t) at the real axi§38]:

equation for zeros of the determinank3:

[{N(1 % €) = Fyf(N = Fan) = N2€*](\ = Fsp0)

-NEN1+e)-Fy]=0. (32

First we takex=F4,,+A4, whereA, is a small quantity of the
order ofe. In the main orderA, £ eF4,,=0, and this gives us
the first gapF(1—€) <N <Fq(l+e).

For the third gap we write\=F;,+A3, whereA; is of
order €. The equation fo\; with third-order accuracy is

{[Faa(1 £ €) = FyplAs = €F3H(Fan— Fsp)
— €F5[Faa(lte) —Fy]=0. (33
From here we find

1 . 1
Fao—Fs2 Fap(lte)=Fyppl’

A= 62':%/2

Zub)=u+(L+iR)p(u,t), (39)

wherep(u,t) is a real function and the linear anti-Hermitian

operatorli is itanhk in Fourier representation. Iru
representation,

~ +°° p(T,1)dU
Rp(u,t) =P - . 40
Py L 2 Sin(w/2) (T - W] “0
The inverse operatd%‘lz'i':—i cothk acts as
- ™ p(GHdu
T =P —_— 41
Py f L. 1-exin(i-u] 4

Note that the previously considered operaﬂirtanhk] is
—-Rd,. The kinetic energy functional is now exactly equal to

where we may keep only the second- and third-order termghe expression on the RHS of E(f). The Lagrangian for

This gives us the position of the third ga§)<)\<)\(+3):

(u,t) and (u,t) is given by the formula
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I P el R I O (e {&} 0
ﬁexact_f|2 (§)|2< Y )wu+2J¢R¢udu 6=+ Z QP ) 50
_Qf 2 ' A Im &
{im 2(O¥RdZ (§)2,]du B (T {_}
2) T R PP
=8 plf+e_ e @y
+IA[ > R( 5 u):|du, (42 —(1+|R){2|Z,T|Z|§U|2+g|m Z(()]- (52)

where the(rea) Lagrangian indefinite multiplieA(u,t) has A very interesting point is that one can rewrite E¢4) and
been introduced in order to take into account the analyt|ca@48) without the intermediate functiof(u,t), but directly for

properties of the functiol” given by Eq.(39). From the  z(u,t). Indeed, after multiplying Eqi44) by z'(¢) we obtain
above Lagrangian one can obtain the equations of motionhe equations

The variation of the actiorf Lay,cdt by Siu,t) gives the

equation . IR
B B ) zt:—zu(T+I)Lzu¢|g], (52)
12 (OIA(Zudi = £udd!(20) = = Ry, (43
which can be easily transformed to the foaompare with ~ { |§3¢ f[ " ﬁw]
[38)) hrgimz=-yT| —5 |- ——5— (53
) ‘ Sl (2P
L= (:I. +i) Ry, (44) which is exactly the same system as was derive[88j for
! ! 1) | a straight horizontal bottom. However, in our case the ana-
lytical ti f the functi t diff t:
The variation of the action by/(u,t) results after simplify- ytical properties of the functioa(w,t) are differen
ing to the equation Im z(u) # R{Rz(u) - u]}. (54)

12 (O1H ey - vl + 9, Im 2O} - (L +iR)A =0. (45)  The only requirements faz(w,t) now are that it should be
. analytical in the stripe —£Im w< 0 and the corresponding
Since the product,(1+iR)A has the same analytical prop- mapping should have a physical serise self-intersections

erties as botlf, and (1 +iR)A, we can multiply Eq(45) by ~ are allowed. The question may arise: Where is the bottom

¢, and write shape in Eq952) and(53)? The answer is simple: The shape
- of the bottom is an integral of motion for this system.
12/ ()| + g Im 2D Lol - vulily) - (L+IR)A =0, Roughly speaking, each particular solution of E@®) and

(53) corresponds to a flow over a definite topography deter-
mined by the initial conditiorg(r—i,0).
Analogously, Egs(50) and(51) can be represented as

(46)

where is another real function. The imaginary part of the

above equation together with E@3) results in -~ [Iima,
- . . z=-2z7(T+i) P | (55
A=- T[‘/’uRlpu]- (47) Zu
Using this equality, we can reduce the real part of @) to ~ | Im®, | Dy
the form D =-P(T+1i) > | —(1+iR) >+gimz|.
| 2lz,|
- élﬁu :r[‘ﬂuliwu] (56)
4//+9|m2(§)=-¢T{ ; }- ; : (48)
t “LIZ@PP ] 2 @R
IV. NUMERICAL EXPERIMENTS
which is the Bernoulli equation in conformal variables. The ) _
exact equation&t4) and(48) [with the given analytical func- A. Different forms of equations
tion z(¢) and condition(39)] completely determine the evo-  For numerical simulations, still other equivalent forms of

lution of gravitational surface waves over the undulating bot-exact equations may be useful, since numerical stability de-

tom parametrized by a real parametersuch asXy(r)  pends dramatically on the choice of dynamical variables

+iYp(r) = 2(0)|g=r—i- [39,40,42,43 Two alternative sets of equations are presented
Equations(44) and (48) can be represented in another below. First, as was pointed if89] for the case of deep

form by using the identity -Ig[%ﬁ%]:%_(ﬁg%)z [38] and  Water, a good practical choice for the dynamical variables is

introducing the complex potential A=1/z, andB=®/z,. It is easy to derive the equations of
motion for A(u,t) andB(u,t) from Egs.(55) and (56), and
dut)=(1+ ili)z,/;(u,t) (49) they are very elegaritompare with[39]):
(which is analytically continued to the stripe <lIm w<0): A=- Au(‘i' + i)Im(BX) + A(‘i’ +i)a, Im(BX), (57
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~ _ - B 2 1 +00
Bi=—By(T+i)Im(BA) - A(L + IR)[&U% +gIm ;} : p(90)= > pm(t) explim®),  p_m(t) = pu(t).
m=-—w
(58) -
The linear operatoR, is diagonal in the discrete Fourier
The variablesA andB do allow stable numerical simulations fepresentationR ,(m)=i tant(am).
for waves over a varying seabéske the author’s e-prifi4] Analogously, B(u,t) can be represented asg
for a corresponding exampleHowever, analytical properties =[gL/(27h)]2B.(9,t), where
of A and B are not restricted by conditions similar to Eq. oo .
(39), and in computations the shape of the bottom is pre- 5 5y 3 2xm(t) explimd)
served in this case only approximately. Therefore our discus- 2L L+ exg2ma(t)]
sion below will be concentrated on another set of variables.
This second set of variables, which were used in the nu- (63

merical experiment, consists of two complex functions:Equations of motion for the real functiorst), p(,t), and

=(1+iR,)x(9,1).

{(u,t) and x(9,t) follow from Egs.(60) and(61):
AU = By (u b/, (u.), (59) ) == 2“,m(L@)dﬁ, 64
2mlo  \[Z(L)PE(9)
both having effectively controlled analytical properties. With
this choice, the bottom shape is preserved exactly, but the R - B(D)
corresponding equations of motion are slightly less compact: p(9,1) = Re{ (T, + i)Im(—_>] , (65
Z(L)PE(9)
;tz_gu(hmm( B _), (60) X _B(9)
|Z,(£)|2§u j((ﬁ,t):Re[,Bl(TaH)lm(—_)
|2 (L8 ()
= - B(T+i B —l1+'FA2 a(MH )
IBt_ BU(T+I)Im<|Z’(§)|2Zu> gi( | a) b 2|Z¢Ic(é’*)2 mz*(g) y
o | B (66)
"L (iR, 2|z’(§)|2+g|m 20| (62) where the time variable has been appropriately rescaled,

. . . . O =2nm/L)Z-i+LL ] (2m)], L=0dy¢+, and . The lin-
It is necessary to explain here some important deta|lsz*(§) (2m A)Z[ +L¢:/(2m)], £:=0p¢-, and so on. The lin

about space-periodic solutions of the syst8) and (61) ear operatoff , is regular. In the discrete Fourier representa-
since spectral numerical methods deal with periodic funclion it is defined as follows:

tions. Such solutions exist if the functiari(¢) is periodic T,(m) =—i coth(am) (m+ 0)
with a fixed real(dimensionlessperiod L, so thatz({+L) B B
=L+2z({) (herezis rescaled by a dimensional factoand 8 =0 (m=0). (67)

is rescaled byh?). However, this does not imply that the  Two numerical experiments are briefly reported below,
functions{,(u,t) and B(u,t) have a fixedu period. It would  poth of them employing Eqs(60) and (61) in the form
be so, but the linear operatdris singular at smalk and its  (64)—66). The system64)—66) is very convenient for nu-
action on a constant function is not periodicinTC=Cu, ~ Merical solutions by spectral methods, inasmuch as the mul-
Thus on the right-hand sides of Eq80) and(61) we have tPlications can be performed iit representation while the
nonperiodic terms. Thereforg(u,t) and B,(u,t) cannot re- linear operatorsR and T (also thed differentiation are
tain a constantl period. However{,(u,t) and3,(u,t) can be ~ simple in the Fourier representation. Efficient subroutine li-
periodic with a time-dependentperiod. So at arbitrary mo- braries for the fast Fourier transform are now available. The
ment of time we will have the equalityZ(u,t)+i integration scheme was based on the Runge-Kutta fourth-
=(L/2m) & (ualt),t), where order method, similarly to Ref40]. For computing the dis-
crete Fourier transform, therTw library was used45].

+00 - :
2p(t) explimd B. First experiment

LDN) =9 +ia+ S, o) exAimD) | | > |

me—ee 1+ exg2mad(t)] In the first numerical experimeriteferred as tdi)], the

shape of the bottom was fixed by the analytical function

z(&) =G +ridexpidy),

with an unknown real functiom(t). The unknown complex with the dimensionless parameté+0.16. The initial veloc-
Fourier coefficientgp,(t) correspond to a redgRw-periodic ity field was taken as zergy(9,0)=0, while p(,0) had the
on the variabled) function p(9,1): form

= +ialt) + (L+iR,)p(91), (62)
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. T T 0.08
0.05 free surface V, —— [\
0.04f bottom - 0.06L- Yy
0.03 ZAN 0.04 / \\
0.02[ > / 0.02 o / \\
& \ : P A
§ o]\ VAN AN AV,
° \ 7 VN
-0.02 AN
-0.01 N / \ 7' \/
\\ / -0.04 -
-0.02
— -0.085 02 024 05 08
-0.03 . . . .
0 0.2 0.4 R 0.6 0.8 1 @) Xe/21
X+/ LT
. ) 0.05 T ‘
FIG. 3. (i) The bottom profile and shape of the free surface at free surface
t=0. The velocity field is everywhere zero. 0.04 bottorn -
0.03
. \- -
p(9,0) = Re®(0.63,0.09 +iagp) 0.02F> g 7
51 N, i
+0.06 Re®(0.9,0.049 +iap), S 0.0 \, 7
. . 0 ‘\ //
where ap=a(0)=27/100~0.0628 and® is defined as 0.01 \
follows: ' N yd
-0.02 >
. [ L1+rexd-i(w-2xwd -0.03
@(I’,d,W) =_j |n< F{ ( )]> b) 0 0.2 0.4 o 0.6 0.8 1
1+rexgd+i(w-27d)] Xedem

This initial configuration(shown in Fig. 3 results after FIG. 4. (i) Velocity distribution on the free surface and shape of
some time in two oppositely propagating, nearly solitarythe surface at=2.
waves. In the course of motion the right-propagating wave
first approaches the shallow region where the surface profile
y=n(x,t) becomes steeper and finally multivalued.

0.2

The systen(64)—66) was solved with a high accuracy for vV, —
m in the limits —~8000<m<8000 (the energy conservation 0145 Vy
was up to 12 digits during a relatively long “smooth” initial /
stage of the evolution, and it was up to 5 digits on the final 0.1
stage just before the breakingsome of the results of this /
numerical experiment are presentéd terms of the dimen- > 005
sionless quantities =x. +iy. andV.=B./z:(£) =V,—iV,] in 0 /\ P P B / L
Figs. 3—6 where the velocity distribution on the surface is B / ﬁj/"
shown, as well as shapes of the free surface for several mo- 0.05
ments of time. In general, the computed wave profiles look
quite realistic, though the present theory does not take into -0.1
; . e 0 0.2 04 0.6 0.8 1
account viscosity-generated effects, such as the diffusive @) /o
and/or convective transport of the vorticity from the free sur-
face and/or from the bottoifa careful consideration of these 0.05 : .
. . free surface
phenomena needs much more effort and is not possible 0.041- botom ~eeeemrer
within the class of 1+ 1)-dimensional systems of equatigns .
Steepening of the wave profile is clearly seen. The computa- 0.03 = —— =
tion was stopped well before the moment of formation of a 0.02 Yz
singularity on the crest of the wave, when the numerical & 01 \; /
scheme becomes invalid. In the real world this moment > 0 /
would correspond to the development of a three-dimensional N\ /
instability resulting in vortices, splash, and foam. -0.01 < Ve
-0.02 S
C. Second experiment -0.035 0.5 0.4 0.6 08 .
b .
In the second numerical experimegméferred to agii)], ® e
the bottom shape was determined by the analytical function FIG. 5. (i) The same as in Fig. 4, &t4.
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0.35 0.03 . :
vV, —— free surface
0.3f Vy m 0.025}- bottom ---———-
025 Vs 0.02 A
0.2 — } 0.015 /
> 015 \ S o001
i ES | ]
01 0.005( [
0.05 A
AN 0
HIANS
O JAN C
-0.005
-0.05
095 096 097 098 09 -0.015 05 0 0% 08 ]
@) xf2m %l21
0.04 . . )
free surface FIG. 7. (ii) Free surface and bottom fo+0.
bottom -
0.035 V. SUMMARY
—’-7 In this paper we have derived approximate weakly non-
&f 0.03 linear, as well as exact nonlineét +1)-dimensional equa-
> tions of motion for potential water waves over a strongly
inhomogeneous bottom. The consideration was based on us-
0025[ [ i ing conformal mappings. For linear waves over a periodic
seabed, the band structure of the spectrum has been
0.02 calculated.
095 096 097 098 099 Though the obtained exact equations can be written in
(b) X+/21

FIG. 6. (i) Front of the breaking wave at4.4.

formally the same form as those derived 88] for a straight

horizontal bottom, admissible solutions have different ana-
lytical properties if the bottom is inhomogeneous. When the
equations are written in this form, the bottom shape is pre-

. 1+E(¢)
Z(&) = & 5In<—l ~ Ez(é“*)>’

where E; 5({+)=—iC expli{«—ims; »), with the parameter$
=0.02,C=0.99,s5,=0.235, ands,=-0.230. The initial con-
ditions were taken a&(0)=ay~0.0628,x(?,0)=0, and

p(9,0) = - 0.47 ReS(0.016,9 + i ap)
+0.032 ReD(0.924,0.059 + i ag).

Here the term with the complex analytical functién

Sew) iln(isinw+\e+co§w>
€W) = — ,

Vli+e

makes the initial surface approximately horizontal despite
the abrupt changes of depth. Qualitatively, these initial con-
ditions are similar to those in the first experiment; however,
now the slope of the bottom is not everywhere small. The
corresponding numerical results are presented in Figs. 7-10.
Here we again observe a steepening of the wave profile with
a tendency towards finite time singularity formation on the
crest. Such behavior indeed takes place in natural conditions
when the flows are almost two dimensional.
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served as an integral of motion.

0.1
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FIG. 8. (ii) t=4: propagation stage.
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02— 0.35 —-
0157 03r Yy /
0.25
0.1 / 0'2 //
< 0.05 < 015
7\ —— 3
0 PNEAR PN \«,{‘ 0.1 | \
g ~L i \
\ v/ \7( * 0.05 s ]
H N
0.05 0 - .
0.1 oopl——i i
0 0.2 04 0.6 08 1 0.94 095 096 097 098 099 1
(a) X127 (2) X«/21
0.03 T T 0.03 . .
free surface free surface
0.025}- bottom e bottom <-rrrmr
0.025
0.02
" SN \ " /\
g 0.0t g9 0.015 —
3 . ] 2,
0.005 ’s —
0.01
o |
-0.005 0.005
-0.01 ! 0
0 0.2 04 06 08 1 094 095 096 097 098 099 1
(b) x-/27 (b) /25
FIG. 9. (i) t=7: steepening of the wave. FIG. 10. (i) t=7.5: crest of the breaking wave.

Numerical experiments have been carried out that confirnwvaves and thus it is a useful tool to study ocean waves.
the advantage of the theory by giving quite realistic pictures
for wave profiles before wave breaking. ACKNOWLEDGMENTS
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