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Two-dimensional free-surface potential flows of an ideal fluid over a strongly inhomogeneous bottom are
investigated with the help of conformal mappings. Weakly nonlinear and exact nonlinear equations of motion
are derived by the variational method for an arbitrary seabed shape parametrized by an analytical function. As
applications of this theory, the band structure of linear waves over periodic bottoms is calculated and the
evolution of strong solitary waves running from a deep region to a shallow region is numerically simulated.
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I. INTRODUCTION

The classical problem of water waves over a variable sea-
bed has attracted much attention(see[1–30] and references
therein). There are some significant differences in this inter-
esting and practically important problem, as compared to the
theory of waves on a deep water or in canals with a flat
horizontal bottom. In situations where the fluid depth is less
or of the same order as a typical length of a surface wave, the
inhomogeneity of the bottom is a reason for linear and non-
linear wave scattering and transformation, and it strongly
affects wave propagation. These phenomena occur so widely
that one can meet them almost everywhere, although with
different scales. Examples of strongly nonlinear dynamics
are ocean waves running on a beach or the motion of dis-
turbed water in a puddle after a car. Among linear effects due
to bottom topography is the existence of special edge-
localized waves discovered by Stokes[17–20], which propa-
gate along the shore line of a beach. Over an axially sym-
metric underwater hill, quasilocalized wave modes with
nonzero angular momentum can exist, similar to long-
lifetime states of a quantum particle confined by a potential
barrier of a finite width[6,31]. It is necessary to say that
underwater obstacles of definite shapes and sizes can serve
as waveguides(a narrow and long underwater crest) or as
lenses(an oblong underwater hill oriented crosswise to the
wave propagation). A qualitative explanation for all linear
effects is simple. Indeed, letr ' be the coordinate in the
horizontal plane,Hsr 'd the depth corresponding to quiet sur-
face. Then, looking at the well-known dispersion relation for
small-amplitude gravitational surface waves,

vsK,Hd = ÎgK tanhsKHd s1d

(where v is the frequency,K is the absolute value of the
wave vector,g is the gravitational acceleration), one can see
that the local refraction indexnsv ,r 'd increases as the depth
Hsr 'd decreases, in accordance with the formulas

n„v,Hsr 'd… ;
K„v,Hsr 'd…
Ksv,H = `d

=
gK„v,Hsr 'd…

v2 . 1,

]Ksv,Hd
]H

, 0, s2d

where the functionKsv ,Hd is determined by Eq.(1). There-
fore, as in conventional light optics, here an oblique wave
changes its direction of propagation when it meets the gra-
dient ofn. Also, total internal reflection is possible in propa-
gation from smaller depth to larger depth.

Besides observing such natural phenomena, a set of labo-
ratory experiments has been carried out to investigate vari-
ous aspects of the given problem in more idealized and con-
trolled conditions than are achieved in nature
[9,12–14,19,20,27]. In particular, waves over locally periodic
bottoms were studied experimentally[9,12–14,27], and such
a general periodic media effect was observed as the Bragg
resonances and corresponding band structure with gaps in a
wave spectrum. It is worth saying that in natural conditions
quasiperiodic sand bars occur quite often.

In general, a qualitative picture of the mentioned phenom-
ena is clear. As concerns the quantitative side of the math-
ematical theory of waves over a variable bottom, here not
everything that is necessary has been done, because practi-
cally all analytical models and methods developed up to now
are related to the limit cases where the fluid is considered as
ideal and the slope of the bottom is small(or the amplitude
of the bottom undulations is small). For the general three-
dimensional(3D) Hamiltonian theory of water waves, such a
restriction seems to be unavoidable even when considering
the most simple, irrotational flows when the state of the sys-
tem is described by a minimal set of functions—namely, by a
pair of canonically conjugated quantities such as the devia-
tion hsr ' ,td of the free surface from the horizontal plane and
the boundary valuecsr ' ,td of the velocity potential[32,33].
A technical difficulty exists here that, when working in 3D
space, it is impossible to represent in convenient and com-
pact form the kinetic energy functionalKhh ,cj which is part
of the Hamiltonian of the system. Small values of the bottom
slope and of the free surface slope make possible an expan-
sion of the Hamiltonian to asymptotic series and subsequent
application of various variants of the perturbation theory. In
such a traditional approach, an inhomogeneous bottom does
not allow one to write in exact form even linearized equa-
tions, not to speak of nonlinear corrections.*Electronic address: ruban@itp.ac.ru
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There are more favorable conditions for progress in the
theory of 2D potential ideal flows with a free boundary, and
the reason for this is the possibility to employ such powerful
mathematical tools as analytical functions and the corre-
sponding conformal mappings. Time-dependent conformal
mappings were successfully used for studying strongly non-
linear 2D wave dynamics on deep water and over a straight
horizontal bottom[34–40]. In the cited works the region
occupied by resting fluid(the lower half-plane or a horizon-
tal stripe) was mapped onto the region with a disturbed free
boundary, and the real axis was transformed into a moving
boundary. Such a conformal “straightening” of the free sur-
face has provided a compact representation of the Hamil-
tonian, the derivation of exact equations of motion, and the
possibility for precise numerical simulations of the system
evolution.

The purpose of this work is to study the effect of a
strongly undulating bottom on 2D ideal potential flows with
a free surface. Here conformal mappings are used as well,
and this is done in two variants. In the first, “moderate”
variant(Sec. II), a fixed conformal mapping “straightens” the
bottom, but not the free boundary. More exactly, instead of
the Cartesian coordinatesx and y (with the y axis up-
directed), curvilinear coordinatesu andv are introduced, and
the change of coordinates is performed with the help of an
analytical functionzswd which maps the stripe −1, Im w,0
onto the region between the horizontal liney=0 and the in-
homogeneous bottomy=−Hsxd. In this casex+ iy=zsu+ ivd,
the horizontal liney=0 corresponds tov=0, and on the bot-
tom v=−1. The bottom may have an arbitrary large slope
and even impending pieces where the dependenceHsxd is
multivalued, as shown in Fig. 1. The shape of free surface
will be described by a functionv=Vsu,td. The Lagrangian
for weakly nonlinear waves is represented as an integral se-
ries in powers of the dynamical variablesVsu,td andcsu,td,
with coefficients explicitly depending on the spatial coordi-
nateu. In the small-amplitude limit, the wave dynamics is
governed by linear integral-differential equations. It is using
the conformal variablesu andv that allows us to obtain these
equations in exact form, contrary to the traditional approach
where even linearized equations can be obtained only ap-
proximately by an expansion of the small parameter, the
slope of the bottom. The definition “moderate” for this vari-
ant emphasizes that straightening of the bottom without
straightening the free boundary is able to provide not more
than a weakly nonlinear theory. Nevertheless, such a theory
seems to be helpful and applicable in many practical cases
when the wave amplitude is small. The results of this part of
the work are the derivation of the Hamiltonian functional for
weakly nonlinear potential surface waves in canals having an
arbitrary bottom shape, as well as calculations for the band
structure of the spectrum for a number of periodic bottom
profiles. As an example of how to treat the linearized equa-
tions, also the problem is considered of wave reflection on a
smooth “step”—changing the depth fromh1 to h2.

The other variant of using conformal mappings may be
called “radical” in the sense that it is valid for an arbitrary
shape of the bottom and for an arbitrary shape of the free
surface. It is an exact combined theory where a time-

dependent conformal mapping straightens both the bottom
and free boundary(Sec. III). Such a mapping can be repre-
sented as the result of two mappings:x+ iy=z(zsw,td), where
the first functionzsw,td maps the horizontal stripe −1,v,0
onto a regionDzstd with the straight lower boundarysIm z
=−1d and with a perturbed upper boundary. After that the
time-independent functionzszd maps the half-plane Imz
.−1 onto the regiony.−Hsxd in the physical plane
bounded from below by the bottom. The shape of the free
surface will be described by the formulaX+ iY=Zsu,td
=z(zsu,td). However, it appears that exact nonlinear equa-
tions for Zsu,td in the inhomogeneous case have the same
form as the known equations for waves over a horizontal
bottom [38], but with different analyticity requirements im-
posed on the solutions. Numerical solutions obtained by the
spectral method are presented that describe the running and
breaking waves over uneven bottoms(Sec. IV).

II. WEAKLY NONLINEAR THEORY

So suppose we know the analytical functionzswd
=xsu,vd+ iysu,vd which maps the horizontal stripe
−1, Im w,0 onto the region occupied by the fluid at rest
and this function takes real values on the real axis:zsud

FIG. 1. Left: periodic shape of the bottom(lower thick line),
levels of constantv=−0.9,−0.8, . . . , +0.6(thin lines), and (sche-
matically) free boundary(thick line neary=0). Right: the corre-
sponding band structure of the spectrum of linear waves. In this
examplezswd /h=w+s2e /adsinsawd / f1+b cossawdg, with param-
etersa=2p /3, e=−0.17, andb=0.16. Note that the effective depth
h is different from the mean depthkHsxdl (see Sec. II B for details).
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=xsu,0d. The velocity field is irrotational, and the velocity
potential wsu,vd satisfies the Laplace equationwuu+wvv=0
in the flow region −1,v,Vsu,td, with the boundary condi-
tions uwvuv=−1=0, uwuv=Vsud=csud. Due to conformal invari-
ance of the Laplace equation in 2D space, the equationwxx
+wyy=0 is satisfied as well, with a no-penetration boundary
condition on the bottom:u]w /]nuy=−Hsxd=0. Let us now take
into account the fact that the Lagrangian functional for po-
tential surface waves has the following structure
[32,33,35–38,41]:

L =E cḣdx− H =E csYtXu − YuXtddu− H, s3d

where Ysu,td=y(u,Vsu,td), Xsu,td=x(u,Vsu,td), and the
Hamiltonian functionalH is the total energy of the system—
the sum of the kinetic energy and the potential energy in
gravitational field(in this paper we neglect surface tension
effects, though they can be easily incorporated by adding to
the Hamiltonian the surface energy). In our variables,

H =
1

2
E duE

−1

Vsud

swu
2 + wv

2ddv

+
g

2
E y2

„u,Vsud…
d

du
x„u,Vsud…du. s4d

This system has the obvious stable equilibriumc=0, V=0;
hence, one may consider weak oscillations near this equilib-
rium state. In a standard way(see, for instance,[33]), let us
expand the Lagrangian(3) in powers of the dynamical vari-
ablesc andV. It is clear that due to the symmetry principle
the expansion forysu,vd contains only odd powers ofv,
while the expansion forxsu,vd contains only even powers of
v. Therefore up to third order in powers ofc and V the
Lagrangian(3) is equal to

L̃ =E cVtx82suddu− Ks2dhcj − Ks3dhc,Vj − Ps2dhVj, s5d

wherex8sud=z8su+0id=xusu,0d and the equalityyv=xu has
been taken into account in the first integral on the right-hand
side(RHS). The expansion for the kinetic energy(calculation
of the functionalsKs2d andKs3d) is performed in a standard
manner[33,38] and gives

Ks2dhcj =
1

2
E cfk̂ tanhk̂gcdu, s6d

Ks3dhc,Vj =
1

2
E hcu

2 − sfk̂ tanhk̂gcd2jVdu. s7d

Here the linear Hermitian operatorfk̂ tanhk̂g has been intro-
duced, acting as

fk̂ tanhk̂gcsud = − PE
−`

+` cũsũddũ

2 sinhfsp/2dsũ − udg
, s8d

where P means principal value integral. In Fourier represen-
tation this operator simply multiplies the Fourier harmonics

ck=ecsud exps−ikuddu by k tanhk. Quadratic onV part of
the potential energy is

Ps2dhVj =
g

2
E V2x83suddu. s9d

It is convenient to deal with the functionjsu,td
=Vsu,tdx82sud, canonically conjugated tocsu,td, and write
the corresponding up-to-third-order Hamiltonian in terms of
j andc:

H̃hj,cj =
1

2
E cfk̂ tanhk̂gcdu+

g

2
E j2

x8sud
du

+
1

2
E hcu

2 − sfk̂ tanhk̂gcd2jj
x82sud

du. s10d

Physically, this asymptotic expansion of the Hamiltonian is
on a small parameter—the slope of the free surface(see[33]
for more comments and references). The weakly nonlinear
equations of motion have the standard Hamiltonian structure

jt =
dH̃
dc

= fk̂ tanhk̂gc −
]

]u
S jcu

x82sud
D − fk̂ tanhk̂g

3S jfk̂ tanhk̂gc
x82sud

D , s11d

− ct =
dH̃
dj

= g
j

x8sud
+

cu
2 − sfk̂ tanhk̂gcd2

x82sud
. s12d

If ux9sud /x8sudu!1, thenx8sud is approximately equal to
the equilibrium depthHsud. For long waves over a such
slowly varying bottom, only the Fourier harmonicsck andjk
with smallk are excited, so in this case the Hamiltonian(10)
can be simplified to the local form

H̃l =E Fcu
2

2
−

cuu
2

6
+

2cuuu
2

15
+

gj2

2x8sud
+

jfcu
2 − cuu

2 g
2x82sud Gdu,

s13d

which is suitable for consideration of such phenomena as the
interaction of solitons with the bottom topography.

A. Linearized equations

Now let us consider the linearized system

jt = fk̂ tanhk̂gc, − ct = g
j

x8sud
. s14d

For a monochromatic wavefj ,c~exps−ivtdg Eqs. (14) are
reduced to the single integral equation

Sv2

g
x8sud − k̂ tanhk̂Dcvsud = 0. s15d

In the low-frequency limit this equation can be considerably
simplified. A variant of the simplification is to introduce a

new functionf by the equalityk̂ tanhk̂cvsud=−fuu. Then we
obtain the equation
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Sv2

g
x8sudk̂ cothk̂ + sd/dud2D f = 0. s16d

The low-frequency limit corresponds to long wavelengths,

when k̂ cothk̂<1+k̂2/3=1−s1/3dsd/dud2, so we have to
deal with the second-order differential equation

fuusud +

v2

g
x8sud

1 −
v2x8sud

3g

fsud = 0, s17d

where v2x8sud /g should be small[only in this case is the
wavelength indeed effectively long; remember thatx8sud is
of the same order as the depth].

Higher-order approximations to Eq.(15) can be derived in
a similar manner—for instance, by changecvsud
=fcoshk̂gfsud and subsequently expandingfcoshk̂g and

fk̂ sinhk̂g in powers ofk̂2=−sd/dud2.
As an explicit example of using Eq.(17), we consider the

reflection of a long wave from a step-shaped bottom inho-
mogeneity described by the function

zswd = h1w +
sh2 − h1d

a
lns1 + eawd, s18d

whereh1.h2.0, 0,a!p. If the frequency of the wave is
small,v!Îg/h1, then Eq.(17) may be applied. Calculating
the derivative

z8swd = h1 + sh2 − h1d
1

1 + e−aw =
h1e

−aw + h2

e−aw + 1
, s19d

we have forfsud the equation

fuusud +
v2

g

fh̃1Ce−au + h̃2g
fCe−au + 1g

fsud = 0, s20d

where

h̃1 =
h1

1 −
v2h1

3g

, h̃2 =
h2

1 −
v2h2

3g

, C =

1 −
v2h1

3g

1 −
v2h2

3g

. s21d

A general solution for Eq.(20) is known [31]. In particular,
the reflection coefficient is given by the expression

Rsvd =1 sinh3 pv

aÎg

sÎh̃1 − Îh̃2d4
sinh3 pv

aÎg

sÎh̃1 + Îh̃2d42
2

. s22d

B. Periodic bottom: The band structure of the spectrum

Interesting phenomena occur if shape of the bottom is
periodic:

z8swd = ho
n

an expsinawd, a0 = 1, a−n = ān. s23d

Hereh is a dimensional parameter(an effective depth) andan
are some complex Fourier coefficients. It should be noted
that h differs from the mean depthkHsxdl by a geometric
factor, since

kHsxdl =

−E
0

s2p/ad

Imfzsu − idgRefz8su − idgdu

E
0

s2p/ad

Refz8su − idgdu

. s24d

Obviously, x8sud=z8sud.0 and uanu decay rapidly at large
unu, since z8swd does not have any singularities at
−1, Im w,1. Equation (15) for eigenfunctions clsud
(wherel=v2h/g) now has the form

lSo
n

an expsinaudDcsud − fk̂ tanhk̂gcsud = 0 s25d

or, in Fourier representation,

lo
n

anck−na = k tanhkck. s26d

For convenience let us denote

Fn = an tanhsand, Cn = can. s27d

Now we have the infinite chain of linear equations

lo
n

anCn−n = FnCn, s28d

whereCn1
andCn2

interact if the difference betweenn1 and
n2 is an integer number. Let us fix somen. Nontrivial solu-
tions of the system(28) exist only at definite valuesl
=lmsnd, wherem=1,2,3, . . . . It isnecessary to note that the
functions lmsnd are periodic,lmsn+1d=lmsnd, and even,
lms−nd=lmsnd. This determines the band structure of the
spectrum with frequency gaps(see Figs. 1 and 2). For nu-
merical computinglmsnd it is necessary to cut the infinite
chain (28) at some large but finite length, thus considering
only n between −N and N. PracticallyN should be several
times larger than the indexm of lm. Numerical results for
Îlm shown in Figs. 1 and 2 were obtained with the help of
the mathematical packageMAPLE 8 takingN=10.

Figure 2 shows that in some cases even for a strongly
undulating bottom the coefficientsan with nù1 can be still
small sa1=e=0.2!1d. In these cases it is easy to calculate
analytically in the main approximation the positions of the
gaps. For example, let us consider the bottom profile as in
Fig. 2, wherex8sud=hf1+2e cossaudg. The gaps in the spec-
trum correspond to integer or half-integern’s. It is important
that at these values ofn, solutions of the linear chain(28)
possess definite parity, in the sense thatC−n= ±Cn. This al-
lows us in gap calculations to consider only positiven. Let
us first consider half-integern’s and the corresponding half-
infinite chain

sl − F1/2dC1/2 + les±C1/2 + C3/2d = 0, s29d
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sl − F3/2dC3/2 + lesC1/2 + C5/2d = 0, s30d

sl − F5/2dC5/2 + lesC3/2 + C7/2d = 0. . . s31d

Obviously, the even and odd cases result in differentl’s, and
it is this difference that determines the gaps in spectrum. For
main-order calculations of the first and third gaps, we cut this
chain:C7/2=0, C9/2=0, and so on. Now we have to solve the
equation for zeros of the determinant 333:

fhls1 ± ed − F1/2jsl − F3/2d − l2e2gsl − F5/2d

− l2e2fls1 ± ed − F1/2g = 0. s32d

First we takel=F1/2+D1, whereD1 is a small quantity of the
order ofe. In the main order,D1±eF1/2=0, and this gives us
the first gap:F1/2s1−ed,l,F1/2s1+ed.

For the third gap we writel=F3/2+D3, whereD3 is of
ordere2. The equation forD3 with third-order accuracy is

hfF3/2s1 ± ed − F1/2gD3 − e2F3/2
2 jsF3/2 − F5/2d

− e2F3/2
2 fF3/2s1 ± ed − F1/2g = 0. s33d

From here we find

D3 = e2F3/2
2 F 1

F3/2 − F5/2
+

1

F3/2s1 ± ed − F1/2
G ,

where we may keep only the second- and third-order terms.
This gives us the position of the third gapl−

s3d,l,l+
s3d:

l±
s3d = F3/2 + e2F3/2

2 F 1

F3/2 − F5/2
+

1

F3/2 − F1/2
G

±
e3F3/2

3

sF3/2 − F1/2d2 . s34d

Analogously, the gaps at integern’s can be considered.
These are determined by the system

sl − F0dC0 + les±C1 + C1d = 0, s35d

sl − F1dC1 + lesC0 + C2d = 0, s36d

sl − F2dC2 + lesC1 + C3d = 0. . . s37d

For instance, the position of the second gap in second order
is given by the formulas

l−
s2d = F1 −

e2F1
2

F2 − F1
, l+

s2d = F1s1 + 2e2d −
e2F1

2

F2 − F1
.

s38d

III. EXACT THEORY

In exact nonlinear theory, the shape of the free boundary
is given in parametric form by a compound function
z(zsu,td), wherezszd is a known function completely deter-
mined by the bottom shape(for example, zszd
=hfÎsz+ id2−sb/hd2− ig corresponds to a narrow vertical bar-
rier of the heightb at x=0 on the straight horizontal bottom
with the depthy=−h). The unknown functionzsw,td should
be analytical in the stripe −1, Im w,0 and the combination
fzsu− i ,td+ ig should take real values. These conditions relate
the real and imaginary parts ofzsu,td at the real axis[38]:

zsu,td = u + s1 + iR̂drsu,td, s39d

wherersu,td is a real function and the linear anti-Hermitian

operator R̂ is i tanhk in Fourier representation. Inu
representation,

R̂rsu,td = PE
−`

+` rsũ,tddũ

2 sinhfsp/2dsũ − udg
. s40d

The inverse operatorR̂−1=T̂=−i cothk̂ acts as

T̂rsu,td = PE
−`

+` rsũ,tddũ

1 − expfpsũ − udg
. s41d

Note that the previously considered operatorfk̂ tanhk̂g is

−R̂]u. The kinetic energy functional is now exactly equal to
the expression on the RHS of Eq.(6). The Lagrangian for
csu,td andzsu,td is given by the formula

FIG. 2. Shape of the bottom, levels of constantv, and the band
structure forzswd /h=w+s2e /adsin sawd, with a=p /3, e=0.2.
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Lexact=E uz8szdu2S z̄uzt − zuz̄t

2i
Dcdu+

1

2
E cR̂cudu

−
g

2
E hIm zszdj2Refz8szdzugdu

+E LF z − z̄

2i
− R̂S z + z̄

2
− uDGdu, s42d

where the(real) Lagrangian indefinite multiplierLsu,td has
been introduced in order to take into account the analytical
properties of the functionz given by Eq. (39). From the
above Lagrangian one can obtain the equations of motion.
The variation of the actioneLexactdt by dcsu,td gives the
equation

uz8szdu2sz̄uzt − zuz̄td/s2id = − R̂cu, s43d

which can be easily transformed to the form(compare with
[38])

zt = − zusT̂ + idF R̂cu

uz8szdu2uzuu2
G . s44d

The variation of the action bydzsu,td results after simplify-
ing to the equation

uz8szdu2hctz̄u − cuz̄t + gz̄u Im zszdj − s1 + iR̂dL = 0. s45d

Since the productzus1+iR̂dL has the same analytical prop-

erties as bothzu and s1+iR̂dL, we can multiply Eq.(45) by
zu and write

uz8szdu2hfct + g Im zszdguzuu2 − cuz̄tzuj − s1 + iR̂dL̃ = 0,

s46d

whereL̃ is another real function. The imaginary part of the
above equation together with Eq.(43) results in

L̃ = − T̂fcuR̂cug. s47d

Using this equality, we can reduce the real part of Eq.(46) to
the form

ct + g Im zszd = − cuT̂F R̂cu

uz8szdu2uzuu2
G −

T̂fcuR̂cug
uz8szdu2uzuu2

, s48d

which is the Bernoulli equation in conformal variables. The
exact equations(44) and(48) [with the given analytical func-
tion zszd and condition(39)] completely determine the evo-
lution of gravitational surface waves over the undulating bot-
tom parametrized by a real parameterr such asXbsrd
+ iYbsrd= uzszduz=r−i.

Equations(44) and (48) can be represented in another

form by using the identity 2T̂fcuR̂cug=cu
2−sR̂cud2 [38] and

introducing the complex potential

Fsu,td = s1 + iR̂dcsu,td s49d

(which is analytically continued to the stripe −1, Im w,0):

zt = − zusT̂ + idF Im Fu

uz8szdu2uzuu2G , s50d

Ft = − FusT̂ + idF Im Fu

uz8szdu2uzuu2G
− s1 + iR̂dF uFuu2

2uz8szdu2uzuu2
+ g Im zszdG . s51d

A very interesting point is that one can rewrite Eqs.(44) and
(48) without the intermediate functionzsu,td, but directly for
zsu,td. Indeed, after multiplying Eq.(44) by z8szd we obtain
the equations

zt = − zusT̂ + idF R̂cu

uzuu2
G , s52d

ct + g Im z= − cuT̂F R̂cu

uzuu2
G −

T̂fcuR̂cug
uzuu2

, s53d

which is exactly the same system as was derived in[38] for
a straight horizontal bottom. However, in our case the ana-
lytical properties of the functionzsw,td are different:

Im zsud Þ R̂hRefzsud − ugj. s54d

The only requirements forzsw,td now are that it should be
analytical in the stripe −1, Im w,0 and the corresponding
mapping should have a physical sense(no self-intersections
are allowed). The question may arise: Where is the bottom
shape in Eqs.(52) and(53)? The answer is simple: The shape
of the bottom is an integral of motion for this system.
Roughly speaking, each particular solution of Eqs.(52) and
(53) corresponds to a flow over a definite topography deter-
mined by the initial conditionzsr − i ,0d.

Analogously, Eqs.(50) and (51) can be represented as

zt = − zusT̂ + idF Im Fu

uzuu2 G , s55d

Ft = − FusT̂ + idF Im Fu

uzuu2 G − s1 + iR̂dF uFuu2

2uzuu2
+ g Im zG .

s56d

IV. NUMERICAL EXPERIMENTS

A. Different forms of equations

For numerical simulations, still other equivalent forms of
exact equations may be useful, since numerical stability de-
pends dramatically on the choice of dynamical variables
[39,40,42,43]. Two alternative sets of equations are presented
below. First, as was pointed in[39] for the case of deep
water, a good practical choice for the dynamical variables is
A=1/zu and B=Fu/zu. It is easy to derive the equations of
motion for Asu,td and Bsu,td from Eqs.(55) and (56), and
they are very elegant(compare with[39]):

At = − AusT̂ + idImsBĀd + AsT̂ + id]u ImsBĀd, s57d
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Bt = − BusT̂ + idImsBĀd − As1 + iR̂dF]u

uBu2

2
+ g Im

1

A
G .

s58d

The variablesA andB do allow stable numerical simulations
for waves over a varying seabed(see the author’s e-print[44]
for a corresponding example). However, analytical properties
of A and B are not restricted by conditions similar to Eq.
(39), and in computations the shape of the bottom is pre-
served in this case only approximately. Therefore our discus-
sion below will be concentrated on another set of variables.

This second set of variables, which were used in the nu-
merical experiment, consists of two complex functions:
zsu,td and

bsu,td = Fusu,td/zusu,td, s59d

both having effectively controlled analytical properties. With
this choice, the bottom shape is preserved exactly, but the
corresponding equations of motion are slightly less compact:

zt = − zusT̂ + idImS b

uz8szdu2z̄u
D , s60d

bt = − busT̂ + idImS b

uz8szdu2z̄u
D

− zu
−1s1 + iR̂d]uF ubu2

2uz8szdu2
+ g Im zszdG . s61d

It is necessary to explain here some important details
about space-periodic solutions of the system(60) and (61),
since spectral numerical methods deal with periodic func-
tions. Such solutions exist if the functionz8szd is periodic
with a fixed real(dimensionless) period L, so thatzsz+Ld
=L+zszd (herez is rescaled by a dimensional factorh andb
is rescaled byh2). However, this does not imply that the
functionszusu,td andbsu,td have a fixedu period. It would

be so, but the linear operatorT̂ is singular at smallk and its

action on a constant function is not periodic inu: T̂C=Cu.
Thus on the right-hand sides of Eqs.(60) and (61) we have
nonperiodic terms. Thereforeztsu,td and btsu,td cannot re-
tain a constantu period. However,ztsu,td andbtsu,td can be
periodic with a time-dependentu period. So at arbitrary mo-
ment of time we will have the equalityzsu,td+ i
=sL /2pdz*(uastd ,t), where

z*sq,td = q + iastd + o
m=−`

+`
2rmstd expsimqd
1 + expf2mastdg

= q + iastd + s1 + iR̂adrsq,td, s62d

with an unknown real functionastd. The unknown complex
Fourier coefficientsrmstd correspond to a real(2p-periodic
on the variableq) function rsq ,td:

rsq,td = o
m=−`

+`

rmstd expsimqd, r−mstd = r̄mstd.

The linear operatorR̂a is diagonal in the discrete Fourier
representation:Rasmd= i tanhsamd.

Analogously, bsu,td can be represented asb
=fgL/ s2phdg1/2b*sq ,td, where

b*sq,td = o
m=−`

+`
2xmstd expsimqd
1 + expf2mastdg

= s1 + iR̂adxsq,td.

s63d

Equations of motion for the real functionsastd, rsq ,td, and
xsq ,td follow from Eqs.(60) and (61):

ȧstd =
1

2p
E

0

2p

ImS − b*sqd

uz*8sz*du2z̄*8sqd
Ddq, s64d

ṙsq,td = ReFz*8sT̂a + idImS − b*sqd

uz*8sz*du2z̄*8sqd
DG , s65d

ẋsq,td = ReFb*8sT̂a + idImS − b*sqd

uz*8sz*du2z̄*8sqd
D

−
1

z*8
s1 + iR̂ad]qS ub*sqdu2

2uz*8sz*du2
+ Im z*sz*dDG ,

s66d

where the time variable has been appropriately rescaled,
z*sz*d=s2p /Ldzf−i +Lz* / s2pdg, z*8=]qz* , and so on. The lin-

ear operatorT̂a is regular. In the discrete Fourier representa-
tion it is defined as follows:

Tasmd = − i cothsamd smÞ 0d

= 0 sm= 0d. s67d

Two numerical experiments are briefly reported below,
both of them employing Eqs.(60) and (61) in the form
(64)–(66). The system(64)–(66) is very convenient for nu-
merical solutions by spectral methods, inasmuch as the mul-
tiplications can be performed inq representation while the

linear operatorsR̂ and T̂ (also theq differentiation) are
simple in the Fourier representation. Efficient subroutine li-
braries for the fast Fourier transform are now available. The
integration scheme was based on the Runge-Kutta fourth-
order method, similarly to Ref.[40]. For computing the dis-
crete Fourier transform, theFFTW library was used[45].

B. First experiment

In the first numerical experiment[referred as to(i)], the
shape of the bottom was fixed by the analytical function

z*sz*d = z* + id expsiz*d,

with the dimensionless parameterd=0.16. The initial veloc-
ity field was taken as zero:xsq ,0d=0, while rsq ,0d had the
form
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rsq,0d = ReQs0.63,0.0,q + ia0d

+ 0.06 ReQs0.9,0.04,q + ia0d,

where a0=as0d=2p /100<0.0628 and Q is defined as
follows:

Qsr,d,wd ; − i lnS1 + r expf− isw − 2pddg
1 + r expf+ isw − 2pddgD .

This initial configuration(shown in Fig. 3) results after
some time in two oppositely propagating, nearly solitary
waves. In the course of motion the right-propagating wave
first approaches the shallow region where the surface profile
y=hsx,td becomes steeper and finally multivalued.

The system(64)–(66) was solved with a high accuracy for
m in the limits −8000,m,8000 (the energy conservation
was up to 12 digits during a relatively long “smooth” initial
stage of the evolution, and it was up to 5 digits on the final
stage just before the breaking). Some of the results of this
numerical experiment are presented[in terms of the dimen-
sionless quantitiesz* =x* + iy* andV* =b* /z*8sz*d=Vx− iVy] in
Figs. 3–6 where the velocity distribution on the surface is
shown, as well as shapes of the free surface for several mo-
ments of time. In general, the computed wave profiles look
quite realistic, though the present theory does not take into
account viscosity-generated effects, such as the diffusive
and/or convective transport of the vorticity from the free sur-
face and/or from the bottom[a careful consideration of these
phenomena needs much more effort and is not possible
within the class ofs1+1d-dimensional systems of equations].
Steepening of the wave profile is clearly seen. The computa-
tion was stopped well before the moment of formation of a
singularity on the crest of the wave, when the numerical
scheme becomes invalid. In the real world this moment
would correspond to the development of a three-dimensional
instability resulting in vortices, splash, and foam.

C. Second experiment

In the second numerical experiment[referred to as(ii )],
the bottom shape was determined by the analytical function

FIG. 3. (i) The bottom profile and shape of the free surface at
t=0. The velocity field is everywhere zero.

FIG. 4. (i) Velocity distribution on the free surface and shape of
the surface att=2.

FIG. 5. (i) The same as in Fig. 4, att=4.
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z*sz*d = z* − d lnS1 + E1sz*d
1 − E2sz*dD ,

whereE1,2sz*d=−iC expsiz* − ips1,2d, with the parametersd
=0.02, C=0.99, s1=0.235, ands2=−0.230. The initial con-
ditions were taken asas0d=a0<0.0628,xsq ,0d=0, and

rsq,0d = − 0.47 ReSs0.016,q + ia0d

+ 0.032 ReQs0.924,0.05,q + ia0d.

Here the term with the complex analytical functionS,

Sse,wd ; − i lnS i sinw + Îe + cos2 w
Î1 + e

D ,

makes the initial surface approximately horizontal despite
the abrupt changes of depth. Qualitatively, these initial con-
ditions are similar to those in the first experiment; however,
now the slope of the bottom is not everywhere small. The
corresponding numerical results are presented in Figs. 7–10.
Here we again observe a steepening of the wave profile with
a tendency towards finite time singularity formation on the
crest. Such behavior indeed takes place in natural conditions
when the flows are almost two dimensional.

V. SUMMARY

In this paper we have derived approximate weakly non-
linear, as well as exact nonlinears1+1d-dimensional equa-
tions of motion for potential water waves over a strongly
inhomogeneous bottom. The consideration was based on us-
ing conformal mappings. For linear waves over a periodic
seabed, the band structure of the spectrum has been
calculated.

Though the obtained exact equations can be written in
formally the same form as those derived in[38] for a straight
horizontal bottom, admissible solutions have different ana-
lytical properties if the bottom is inhomogeneous. When the
equations are written in this form, the bottom shape is pre-
served as an integral of motion.

FIG. 6. (i) Front of the breaking wave att=4.4.

FIG. 7. (ii ) Free surface and bottom fort=0.

FIG. 8. (ii ) t=4: propagation stage.
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Numerical experiments have been carried out that confirm
the advantage of the theory by giving quite realistic pictures
for wave profiles before wave breaking.

Of course, the above “inviscid theory” works only on
large enough spatial scales and only until the singularity mo-
ment, as was clear from the very beginning. Practically, pre-
dictions of this theory have many common features with real

waves and thus it is a useful tool to study ocean waves.
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