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Controlled synchronization of chaotic systems with uncertainties
via a sliding mode control design
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This paper addresses the problem of robust adaptive control for synchronization of continuous-time coupled
chaotic systems with uncertainties. A general model is studied using measured output state feedback control.
An adaptive controller is designed based on a sliding mode control design. When only the output variable is
measurable for synchronization, the adaptive controller is designed by incorporating with an observer. Two
numerical examples are presented to show the effectiveness of the proposed chaos synchronization method.
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[. INTRODUCTION [12]). Although the parameter structure can be known in
some cases, it would be desirable to have a feedback scheme
to achieve synchronization in spite of the slave oscillator
Raving the least prior knowledge about the structure of the
master system. This necessity for robustness can be required
in some systemsfor instance, the multimode laser, animal

ait, or oscillatory neural systemd hus, it is important and

ecessary to design robust synchronization schemes for un-
dcertain chaotic systems with various types of uncertainties.

~ As an alternative, in recent years sliding mode control has
ceived much attention and become an active research area.

Motivated by the study of chaotic phenomefsae, e.g.,
[1,2)), recent years have seen an increase in the interest
synchronization. The idea of synchronizing two identical
systems that start from different initial conditions was intro-
duced by Pecora and Car@8]. It investigates the linking of
the trajectory of one system to the other system with th
same values parametésolution), such that they remain to-
gether in each step through the transmission of a signal. A
hering to the Pecora-Caroll drive-response concept, sever
chaos synchronization schemes have been successfully esééfding mode control is a nonlinear control strategy. It in-

lished [3-7]. But to have an exact synchronous SyStem, Fydes two parts: switched control and equivalent control.
response system must have an identical copy 9f the C.haouﬁaditional sliding mode control cannot assure system ro-
§ystem_used by the drlye sygtem. Hoyvever, It s praCt'Ca”}bustness. It also often has chattering phenomena for which
!mposs!ble to hav_e two identical .ChaOt'C systems because %e sliding mode controller is applied. Therefore, designing a
impossible-to-avoid tolerances in the real-world phySICaISliding mode controller involves selecting a correct update
control parameters. For example, the tolerances of the Varlaw or a suitable switching manifolde.g., [14]). Sliding

ous electric elements in two “identical” electronic circuits mode control has a learning capability %or improving the

will certaintly lead to small but definite differences in the ¢, 4pack control performance by incorporating useful up-
physical parameters and thus the operations of the circuity . information on line. An advantage of sliding mode

Thus by definition synchronization cannot occur. It has been. .01 on the other hand. is the system robustness with

prop(r)]sed_ that one replace it with a generaligedpractica)  ogpect to certain system parameter variations and external
synchronization. disturbance$13-15. Since sliding mode control is suitable

Recentl_y, spec_:lallsts from(nonlineay control theory. for the synchronization of uncertain nonlinear systems, it is a
turned their attention to the study of controlled synchroniza-

. s ) od candidate for synchronizing uncertain chaotic systems
tion. It has been demonstrated for important special cases ff

“drive/response” and coupled systems that syn_chronizin I5revious work of otherfl7—19 has presented interesting

Sesults on the synchronization of chaotic systems based on
Mhe sliding mode control design. In particular, the authors of
[19] studied the synchronization of chaotic systems with un-
certainties. Although their analysis ensured synchronization
stability, it is not clear when synchronization can be achieved
for a given estimation of the system’s uncertainties and how
to choose the estimated value of the uncertainties. This is
* Author to whom correspondence should be addressed. Permbecause the estimated value of the system model uncertain-
nent address: B.P. 8329, Yaoundé, Cameroun. RR&X7) 231-95-  ties depends on the state of the observer in a complex man-

sification methods. Incomplete information about the syste
parameters has been taken into accqadaptive and robust

synchronization7-11]) as well as incomplete information of
the state of the systenfobserver-based synchronization

84. Email address: sbhowong@uycdc.uninet.cm ner.
"Email address: fmoukam@uycdc.uninet.cm We believe that this difficulty to estimate the system’s
*Email address: ctchawoua@uycdc.uninet.cm uncertainties arises because the system structure information
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Z(+) involving the modeling differences, uncertain param-assumed that systefd) exhibits chaotic dynamics. The re-
eters, and the unknown external perturbations has been usegonse system is
in the sliding control law{see Eq.(14) in Yang and Shao’s

papet. In principle, an analysis that focuses on geometrical y=9(y.t) +Bu,

control theory[7] could exploit the specific property and

structure of the system to provide a dynamic estimation of Y =Gy, (2)
the system’s uncertainties. wherey e R" is a vector of the response system staggis, a

~ This paper, in the spirit of previous work&7-19, stud-  nonlinear vector function defining the flo®, is a constant

ies the synchronization of chaotic systems with uncertaintiegyatrix which defines the control channel, and R is a con-
based on a sliding mode control design. The proposego| input which has to be chosen. The vec@rdefines the
scheme consists of a dynamical output feedback which petneasured state of the response system. Note that we can
forms the suppression of chaos on the uncertain system. Thgsume tha€4=C,. The role of the feedback is thus to
main idea behind our proposal is, departing from the uncerforce the convergence of the response towards the drive or-
tain system, to construct an extended nonlinear system whidkit. To carry out such an investigation, let us introduce the
should be dynamically equivalent to the canonical represenyariablee=y-x, which is the measure of the nearness of the

tation. In this way, the system’s uncertainties are lumped intgesponse to the drive. Introducilegn Eq. (2), we obtain the
a nonlinear function, which is rewritten into the extendedso|iowing equation:

nonlinear system as a state variable. By using the results

reported by Teel and Pralj20], an observer can be con- e=g(e+xt) - f(xt) + By,
structed to get an estimated value of the lumping nonlinear
function via the augmented state variable. More importantly, Ye=Ce. (3

we ShO.W h.OW the convergence rate' can be assigned by tl.m'nﬁw synchronization is achieved whengoes to zero as
the switching parameter of the sliding surface. Numerical

simulations on the synchronization o#®-Duffing and increases or, practically, is less than a given precision.

¢®-Van der Pol oscillators as well as two Lorenz systems Now, let us define a coordinates transformat ©
Y such that the error syste3) can be globally transformed

with parameter mismatching are used to illustrate our f'nd'into the canonical fornj21].

ings.
With respect to existing results in the literatu(see z2=2,,1=1,2,...p-1,
[17-19), our contribution in this paper can be summarized
as follows. _ . 2,= a(z,v) + Az W)U,
(i) An explicit construction of the estimation of the sys-
tem’s uncertainties is provided, while [49] the procedure v=(zv)

to estimate the system model uncertainties is not clear.

(ii) A prescribed synchronization error convergence rate ~_
can be assigned. This can be done easily by tuning a single y=a, (4)
parameter of the sliding surface. To the best of author'syherey is the system outpup is the relative degree of the
knowledge, this issue has not been previously studied.  error systenti.e., the lowest-order time derivative such that

The paper is organized as follows. In Sec. Il, the class othe control commandh is directly related to the outp(t),
uncertain chaotic systems is established. In Sec. lll, the prokand » € R is the unobservable states vectorternal dy-
lem of chaotic system synchronization based on a slidinghamics.
mode control design is analyzed. In Sec. IV, some numerical Often, the constant matrig can be selected to make pos-
simulations to illustrate our findings are carried out, and fi-sible the transform from Eq23) to the assumed forma#).
nally in Sec. V, some conclusions are presented. System(4), which is very general, contains most well known

chaotic systems and some special models for chaotic systems
like those proposed if13]. For example, the Lorenz dy-

Il. A CLASS OF UNCERTAIN CHAOTIC SYSTEMS namical, the Rossler system, and several types of Chua’s
circuits can be transformed into the canonical form with a

To Investigate SynChl’OﬂIZ&thl”l, we consider two nomden_-rdative degreep<n. On the other hand, a nonautonomous

tical chaotic systems with uncertainties. The drive system ISecond-order chaotic system such as the Duffing oscillator
x=f(x.1), and the Van der Pol system can be written as the canonical

form with p=n. In addition, if p=n, the transformed system

(4) is the so-called fully linearizable nonlinear system, and if

Ya=CoX, (1) p<n, the systen(4) is called a partially linearizable nonlin-
wherex e R" is a vector of drive system statefsjs a non-  ear system.
linear vector function defining the flow, ang e R denotes Nevertheless, if the vector fieldsx,t) andg(y,t) are un-

the measurable output state that can be transmi@gds a  certain, the coordinates transformation®(e), bringing the
vector of proper length which defines the output channelerror systen(3) into the canonical forng4), is uncertain. In
Note that, without loss of generality, we can assume that therinciple, since the coordinates transformation is a diffeo-
measured state is given byy=x;. For the following, it is  morphism, one can suppose that the uncertain transformation
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exists and it is invertible. However, sindg(e) is uncertain, z=7,, 1<i<n,
the nonlinear functiona(z, v) andy(z, v) are also uncertain,

hence they cannot be directly used in a linearizing-like feed- Zoi1 = 7+ 20,

back.
In the next section, the detailed design procedure of the _— -
feedback control law is described with detailed explana- 7= E(Z Zye, 7,7,U,0,1), 6)
tions.
v={(zv),
IlIl. SYNCHRONIZATION VIA MEASURED OUTPUT
FEEDBACK V=12,

In this section, we present a robust control design foryhere
uncertain chaotic systems in canonical fo(#). The main
idea is to construct a dynamically equivalent system which is _, . !
itself uncertain. Dynamic output feedback is applied to per- =(ZZu1 7,7, 1) = 2 Zeadmat 2 T
form chaos synchronization in spite of modeling differences, k=t K=t

n-1

parameter variations, and noisy measurements. +[n+ Y2 ]19nZ1

To describe the new design and analysis, the following n
assumptions are needdé;) Only the system outpit=z, is + S 210 {(2,1)0,0(z,1,U)]
available for feedbackA,) (2) is bounded away from zero. vl e

However, an estimaté(z) of y(z,v), satisfying sghy(2)]
=sgn y(z,v)], is available for feedbackKA;) System(5) is

the minimum phase, i.e., the subsystem of the zero dynam-

ics, »=¢(0,v), wherev e R™, is asymptotically stable. The + U[ Az,v) + ¥(2) + {(z,v)d,8(z,v)
first assumption is realistic because in many applications,

due to the difficulty in measurements or demand for security, n

some state variables cannot be measured. For example, in + a8z v) | + 8z v

secure communication, a signal is transmitted from the drive k=1

system to the response system, where the transmitted signgliin 0,0(z,v,U)=30(z, v,u)l v, 3.8z, ) =98(z, v)| 9z, and
which is kept unmeasurable, is part of state variables. Th??kg(z,y):ag(z,y)/azk, k=1,2,...D, i.e., system(6) is dy-

second assumption implies that the origin is not a Singmari%amically equivalent to systeri#). It must be pointed out
point when a linearizing-like feedback is used to perform . P n
that the man|f0|d w(za Zn+l! 7V, u,u, U) - n_Ek:12k+1(9an+l

synchronization. The minimum phase supposition is a stron- X : . 1T .
gz;r condition, which implies thgt the unrz:rt))ntrollable states, 5(2”/)[.&4,(2’”).‘9”2"*1:0 is, by definition, time-invariant,
ve R"P of the uncertain system are asymptotically stable.m fact, it is straightforward to prove that the set
This is reasonable for the boundness of the chaotic attractor U = {y{Z, 2,41, 1, v,U,U, )}
in state space and the interaction of all trajectories inside the
attractor. So when we taken actions to achieve_ligz,=0, )
i=1,...p, the part{(0,»)— {(0,v)—0 asymptotically for =7- g Z10kZne1 + SZ)U+ {(Z,)9, 2011,
the so-called minimum phase character. Fortunately, most -
chaotic oscillators satisfy this assumption. n

In order to determine the sliding mode control law, the . -3 zﬁ P +
reformulation of the state space equation of sys{émnto K +10kEn+1
an extended controllable canonical form is required. To this
end, let us define

+{(z,v)9,[{(z,v)3,0(z,v,u)]

n

n-1

E Zs20kZns1 [7/ + %(Z)]ﬂnznﬂ
k=1 k=1

+ E Zk+lo-'k[§(zv V) ‘91/@(21 v, U)]

8(2) = y(z,v) = ¥(2), O(z,v,u) = a(z,v) + 8z, v)u, k=1
+{(z,v)9,[{(z,v)9,0(z,v,u)]
Z01 = 0O(z,v,u) + M2, .
and + U[ 8z,v) + Y2 + {(z,1)3,8z,v) + X, §3(z,v)
k=1
n
1= 2 Zerdhmr + A2 W)U+ {200,201 (5) oz v

k=l satisfiesdy/dt=0 for all t=0. Now, from the equality

With Zn1= 02411/ 92, K=1,2, ... 0, and d,z,,1=0Zys1/ V. (2,241, m,v,U,0,0)=0 and conditiond/dt=0, one can

Then, there exists a time-invariant manifold take the first integral of systeii®) to get 7==;_,z¢19Zn+1
(Z,2441, m,U,U,0)=0 such that the solution of systei) is  + 8(z, v)u+{(z,v)d,Z,+1- When the first integral is backsub-
a projection of the solution of the following dynamical sys- stituted into systeni6), we obtain the solution of syste().
tem: Hence, the solution of systeid) is a projection of system
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(6) via the modulen(z,z,,1, 7, v)=(z,»). This is, systen{6) 0 1 o ... 0
is dynamically equivalent to syste() if initial conditions,

. X 0 0 1 .. 0
(z(0),z,,1(0), 7(0), »(0)) are contained in _
(2,241, m,U,v,0,0), i.e., the augmented state provides A=
the dynamics of the uncertain functi&(z, »,u) which in- 0 0 o .. 1
volves modeling differences, uncertain parameters, and un- -K; =Ky, =K; ... =Kp

known external disturbances. ) ]

The following must be noted. Since the nonlinear func-1"€NK;, j=1,2,... n+1 are chosen such that the matx
tions a(z, v) and y(z, ») are uncertain, the nonlinear function Nas all its eigenvalues at.theﬂopen left-half complex plane
0(z,v,u) is also uncertain, hence it cannot be directly usecﬂ'e" all roots of polynomiak™ " +Kp,,8™+ -+ +Kzs+K; =0
in a sliding mode control law. ave neg.at'lve real pajts . . . . .

A key feature of Eq(6) is that the uncertainties have been . The sliding surfa(_:_e used_ln this paper is one dimension
lumped in an uncertain functio(z, »,u) which can be es- hlghgr than the traditional s_I|<_j|_ng surface, which guarante_es
timated by means of the nonmeasured but observablestate that it passes through the |n|_t|al states of the system being
By an observable state, we mean that the dynamics of Suchcgntrolled. The reaching law is chosen as
state can be reconstructed from one-line measurentggarts & po_
example, y=z,). Furthermore, if one is able to stabilize the S=AS=0sgnS), (19
system (6) without making use of the constraint where O<B<1 and sgf) denotes the signum function.
#(2(0),z,,1(0), 7(0),u(0), v(0),u(0),(0))=0, one would be From Egs.(7) and(11), it can be found that

able to stabilize syster@) and its equivalent systeii3). n+1
By the concept of extended systems, a suitable sliding = pa_ -5 4 n-j+DK . 12
surface can be chosen as S=BS=0sgS =z gl o % (12
emL or, alternatively,
S=241~Z1(0) + E 0(“‘J+1)szj =0, @) n+1
0 j=1

Zw1= 7+ Y2)U=BS-0sgn(S - >, 6" VK z. (13
wherez,,,(0) is the initial state of,,4(t), >0 is the switch- =0 HDU=B oS J% A (13
ing gain which is determined such that the sliding condition . _ . . .
isgsgtisfied and sliding mode motion will occurgaqu, i So if the initial conditionu(0)=0, then the differential equa-
=1,2,... n+1 are constant parameters of the sliding surfacdion Of control inputu can be determined as

which are computed from the following procedure. 1 i
Equation(7) can also be reformulated as u= e BS—0sgr(S) - n— 2 0" VK iz | (14)
n+1l Y Z) =1
Zr == 2 0Kz, (8)  Therefore, the control input can be obtained as

=1 +1
t 1 n )
Therefore, the sliding mode dynamigbe desired dynamigs u= f [— BS—-60sgnS - n- 2 0<“‘J+1)szj dt,
0

can be described as 12 =1
. 15
2=z, 1<i=n, (15)
with u(0)=0. It should be pointed out that a largeis im-
n+1 portant for the realization of synchronization, which is asso-
Zoi1= > 9<n—i+1>|<jzj, ciated with the system information of the two chaotic sys-
j=1 tems. This question can be qualitatively analyzed with the
9 Lyapunov stability theory as follows.
7= E(Z,Zp+1, 7, v,U,0,0), Substituting the control law of Eq14) into the extended
system(6), the dynamics of the closed-loop system can be
- described as
V= g(zr V) ’
or in a matrix equation form as Z=zu,1=1,2,...1,
Z=0A7'AAZ, . oo
o Al Zoe1= BSOS - 2 9(n_]+1)Kij,
=1
n=E2(Z, n,vuul), (10
. .7]::(212n+]_1 nauyuyu)a
v={(zv),
whereZ=(z,z,,,)T, A,=diag &2, ... ,6") with A} its inverse v={z). (16)
and Let the Lyapunov function of the system be
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(17)

thereforeV is a positive semidefinite function. The first de-
rivative of V with respect to time is obtained as
n+l

'v=s's;s(-zn+1- )

E 0(n_j+l)Kij
=1

=9BS- 0sgn9)]

= BS - abgS)

< abg9)[abg9) - 4]. (18

If V=<0 is satisfied, the sliding mode will exist. From K@),
we know that the sliding surfac& depends on(z,z,.,),
hence one or x andy. For the boundness of the chaotic
attractor, we know tha$ is bounded. So a large enough

will lead to V=<0. Convergence of(t) to zero follows from

PHYSICAL REVIEW E 70, 066217(2004)

Z

Z+1_ dCi(zl_Zl), lg | = n,

Zne1= 7+ VDU = OCras(Z— 21), (20)

;7: - 0n+2Cn+2(21 -7y,

whereC;, j=1,2, ... n+2 are estimation parameters. Appro-
priately  choosing parametersC;, j=1,2,...n+2,
(2, ....,2y), Zy1, and 77 will converge toz, 1<j=<n, Z,,
and 7, respectively. Note that sind®(z, v,u) is uncertain,
the function E(z,z,:1,7,v,u,u,l) correspondingly is un-
known. Thus, such a term has been neglected in the construc-
tion of the observe(20).

In order to determin€;, j=1,2,... n+1, letée R™? be
an estimation error vector whose components are defined as
follows: §=60"1(z-z), i=1,2,...n and &,,=7-7.
Then, the dynamics of the estimation error can be written as
follows:

the fact that the closed-loop system is in cascade form. In

many situations, the conditioW<0 can be satisfied by
choosing a large enough switching g#rOn the other hand,
the 6 parametrization of the feedback control |&hb) pro-

vides a simple tuning procedure. In fact, in a matrix equation

form, the first equation of the closed-loop systélfi) can be
rewritten as

Z=0A;AAZ + (9, (19

where A is defined as in Eq(10) and Q(S=[0,...,0,8S
-60sgn(S)]". The integration of the closed-loop syst&®)
yields

Z(t) = exp(AA,AA 1) Z(0) + exp A, AA )
t

<[

Since the matrixA is Hurwitz and the surfaces is
bounded for alt=0, Q(S) is also a bounded function, i.e.,
[Q(S)||<L. Then using the triangle and Schwartz inequali-
ties, one has the following inequality:

exp(— 6A,"AA ,0)Q(Sdo.

t
[Z(t)|| < |lexp(AA, AA 1) Z(0)]| + L J [exp(— 6A,*AA yo)do].
0

Then, the trajectorieZ(t) are bounded for ali=0, that is,
Z(t) — B(R(6™1)), where B(R(6™1)) is a ball with radius on
the orderd ™. In fact, as the switching parametgincreases,
[Z(t)|| decreases, and the faster the convergencgtofis.
Note that the sliding surfac@) and the sliding controller
(15) require full information about the states of systédy
In this sense, the following comments are in order.The
augmented states,,; and » are not available for feedback.
This fact is obvious becausg,,; and » represent, by defini-

tion, the mismatches between the drive and response sys-

tems. (ii) It is desired that only one state is available for

feedback from one-line measurements. Consequently, esti-

mated values of the statés, z,.,, ) are required for practi-
cal implementation. To this end, the following uncertainty
estimator is proposed:

= 0D@ + ['(2, 241, v, 7,U, 0, 0), (21)

where

F(Zyzn+11 ﬂ,U,V,U,U) = [0101 e 1OE(Zyzn+11 7 Vyuvuiu)]T

and the matrixD is given by

-c, 10 0
-Cc, 01 0

D=| : Do :
~Cp1 0 0 1

| -Cz 00 0

The estimation parametelS;, 1<j<n+2 are chosen in
such a way that the polynomid®,,,(s)=s"2+C,;s™1+---
+C,+1S*+C, 12 is Hurwitz. In addition, since the trajectories
x(t) and y(t) are contained in some chaotic attractor, then
E(z,Z41,7,U,7,0,0) is a bounded function. Consequently,
after choosingC;, j=1,2, ... n+2 so that all the eigenvalues
of D are located in the left-half complex plane, we can con-
clude that for a sufficiently large value >0, 8—0 ast
—oo, which implies thatzj—z, j=1,2,... N, Zy1— Zye1,
and 7— 7. So we can get the information of unmeasurable
states fronk;, i=1,2, ... n and the model uncertainties from
Z.+1 and 7. Then, the sliding surfacg) and the sliding con-
trol law (15) become

t n+1

S=Z1 =20+ | 2 0"TUKZ=0 (22
0j=1
and
t 1 n+l
u= f (T[ﬂs— 0sgr(S) - A’I]_ 2 G(n_J+l)K]21>]dt
o\ Y2 j=1
(23)
with u(0)=0.
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Notice that the sliding surfac€@2) and the sliding con- We choose two second-order driven oscillators to illustrate
troller (23) only use estimated values of the uncertain termghis case. The drive system is given by #&Duffing equa-
a(z,v) andy(z,v) (by means,,; and7) andz. So Eqs(22)  tion, whereas the response system is given by#hé/an der
and(23) neglect the system uncertainties and are more physiPol oscillator. The second example consists of the synchro-
cally realizable than Egg7) and(15). Thus, the robust ex- nization of two Lorenz systems whose model is similar but
ponential stabilization is given by the dynamic compensatowhose parameter values are different. Here, the objective is
(20), the sliding surfacg22), and the sliding control law to show that the synchronization can be achieved in spite of
(23). parameter variations and to illustrate that the chaotic

The proposed controller has the following advantages reminimum-phase assumption is satisfied.
garding the adaptive control schemgn: the order of the
proposed controller does not increase with the number of A synchronization in spite of a strictly different model
parameters(ii) if the system is nonlinear in its parameter _ . .
structure, the proposed controller does not change because | '€ 90al of this example is to illustrate that the synchro-

the controller does not require information about system pa[nzanon can be attained in spite of a different model for the

rameters; andiii) a large d in the sliding surface will in- drive and response systems, which is the extreme case of

crease the robustness of adaptive control, while a sgall driye/ response mismatch and extternal perturbations by an
will be good for robust stability. Therefore, in practice, aoscnlatory selgnal _Wh'Ch can be mterpr_eted as noise. We
trade-off will be made according to the purpose of the de_crgoose thep -Duffm_g oscillator as the drive system and the
sign. As a result, the robust feedback contro(l29), (22), ¢"-Van der P(.)I oscillator as th? response sys.tem. The equa-
and (23) can be experimentally implemented to perform tions of the drive system are given as follows:

chaos synchronization on a class of uncertain chaotic sys-
tems.

Feedback control based on a high-gain observer can in-
duce undesirable dynamics effects such as the peaking phe-
nomenon[22]. This phenomenon leads to closed-loop insta-where f(x,t):—rlxz—rle—rgxf—r4x§+r5 coswt. The equa-
bilities which are represented by finite-time escapes angdions of the response system are given by
large overshooting. To diminish these effects, the control law

X1 =Xy,
(25
%o = f(x,1),

can be modified by means of Y1=Y2,
t | (26)
0\ %2 whereg(y,t) = u(1-y9)y,— iy, - dys—\y;+f, cosQt and u
n+1 is the control input which has to be chosen.ylf=x; and
-> e(“—iﬂ)szj) } dt, (24)  y,=y, are, respectively, the outputs of the drive and response
j=1 systems, and by defining=y;-x;, i=1, 2, one gets the fol-

where sgt}:R"— SCR", Sis a bounded sq®6]. lowing uncertain system:

A similar synchronization scheme to that described above e =6,
has been studied previous[{19]. A drawback of such a
scheme is that it is not apparent how one chooses the esti-
mated value of the system’s uncertainties so that the sliding
surface and the control law become physically realizable. _
Our procedure has no such drawbacks. In fact, an estimate of Ye= €.
the uncertainties is obtained via the new statggand7 by Thus, the coordinates transformation is givenzpye; and
means of a state estimator. Stability is guaranteed for suffiz,=e,. In this way, systeni27) is transformed into
ciently large values of the switching gaih

e, =g(e+x,t) - f(x,t) +u, (27

In the next section, we will show that the control strategy 2 =12,
(20), (22), and(23) can be used to address problems of syn-
chronization of chaos. In fact, we will illustrate via numeri- Z,= a(z,x,1) + U, (298

cal simulations that the previously developed control strategy
is able to synchronize uncertain chaotic systems with only y=z
1y
knowledge of the outpuy.
whereYy is the output of the uncertain system amt,x,t)
=g(z+x,t)—f(x,t) denotes the uncertainties of these two sys-
tems (parameter mismatching and external perturbajions
We present two examples in this section to illustrate théNote that systeng27) is fully linearizable, i.e., there is no
above given results. The first example consists of the syndnobservable states in the uncertain system because
chronization of two strictly different oscillators. The aim is the relative degreep=n. Now, defining zz=a(z,x,t)+u
to show that the synchronization can be attained in spite ofnd 7=(da/ dz1)Z,+(dal 92y) 23+ (da! IX )Xo+ (el IXo) F(X, 1)
model differences between the drive and response systems(da/dt), the dynamical systert6) can be constructed. So

IV. ILLUSTRATIVE EXAMPLES
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the extended state observ@0) can be described in the fol- | Synchronization error: &
lowing form:

09=50

21=2,-0Cy(2z1 - 7y), 4 ' ' ]

;Zz =23 6°Cy(z, - 7),
(29

73= - FCs(Z - 29) + U,

;]:‘9404(21_21)-

Hence the sliding surface and sliding control 1822) and - | ]
(23) can be described by

BF- : : -

t
S=73-25(0) + f [®K 2, + PK,2, + 0K3Z5]dt  (30)
0

_8 L 1 1 L 1
0 5 10 15 20 25 30
(a) Time(s)

and
i Synchronization error: e,
50 T T T T T
U(t) = f [BS— 6’Sgr‘(S) - A’f]_ 03K121 - 02K222_ 0K323]dt 6=50
0

40 .

(32) % : |

To ensure that both systems are chaotic, we select thit z .
parameter values =1, r,=1, r3=-3, r,=1.5, rs=480, w
=1.221, u=0.4, wy=0.46, 6=1, \=0.1, f,=4.5, and Q 10 ]
=0.86. Initial conditions for theps-Duffing and#°~Van der & ,
Pol oscillators were selected ag(0)=0, x,(0)=0, y;(0)
=0.1, andy,(0)=0. Then e,(0)=0.1 and e,(0)=0. This e 1
choice of initial conditions is arbitrary: control can be ap- - .
plied for any initial conditions. The initial condition for
(z4,2,,23,7) is randomly chosen a®.2, 0, 0, 0. The initial
condition for the sliding surfac€29) is S(0)=0 and u(0) 40 ‘ .
=0 for the control input31). The eigenvalues corresponding
to the sliding surface are -10, —10+6i, and -10-6i, of
which the coefficients of the Hurwitz polynomial are
[K1,K2,K3]=[30,336,1360 The estimation paramete; FIG. 1. Dynamics of the synchronization error whén50. (a)
=4, C,=6, C3=4, andC,=1 were chosen so that the poly- Positione;. (b) Velocity e,.
nomial s*+C,s+C,s*+C;S+C,=0 has all its roots located

at-1. _ ) ) ) frequency was chosen such that the dynamics behavior of the
Let #=50. If the control input is activated &£15 s, the  qrive system remains chaotic. Figure 4 shows the time re-
synchronization error can be regulated effectively and eff"sponse of the error betwee®y(t) and the recovery signal

ciently to zero, as shown in Fig. 1. The performance of theSR(t) when #=50. The message signal is decoded with ac-
error system is presented in Fig. 2. The corresponding corEeptable accuracy

trol input is continuous, as shown in Figi@® The resulting
control does not have an abrupt change and chattering phe-
nomenon. The sliding surface dynamics is shown in Fig.
2(b). Here, the aim is to show that synchronization can be

To illustrate the fact that an arbitrary convergence rate ofichieved in spite of parametric drive/response mismatches.
the synchronization error can be prescribed, Fig. 3 preseniBhe Lorenz system has been chosen to illustrate the proposed
the position of the synchronization erref=y;—x; for three  synchronization scheme. The Lorenz system consists of three
different values of the switching gaih As expectede; con-  simple nonlinearly coupled ordinary differential equations
verges to zero and the larger the valuefpfthe faster the that depend on three positive parameters obtained from the
convergence. Navier-Stokes equations for viscous fluids, originally derived

After the synchronization of the transmittédrive) and  for studying large-scale atmospheric behavior. It can be nu-
receiver (responsg one would like to know if a message merically integrated and the unexpected results have initiated
signal can be recovered in spite of model differences bethe new and ubiquitous field of deterministic chaos, which
tween the transmitter and receiver. The information signabccurs in many branches of physical, mathematical, biologi-
was chosen to be a periodic functi®p(t)=1.5sin 2@. The cal, as well as social sciences.

30 il

_50 I I 1 1 I
0 5 10 15 20 25 30

) Time(s)

B. Synchronization in spite of parametric variation
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Control input: u
1000 T T

600 -

400

200

9=50

—200

30

_400 I L L L I
0 5 10 15 20 25
(a) Time(s)
Sliding surface: S
1 T T T T T
0=50
08r- -
06 -
04r s
02 =
2] 0
-0.2- -
-0.4r -
06 q
08l o
-1 1 1 1 L L
0 5 10 15 20 25
(b) Time(s)

FIG. 2. Performance of the error system whsrb0. (a) Control

input. (b) Sliding surface dynamics.

30

PHYSICAL REVIEW E 70, 066217(2004)

Synchronization error: e
0.3 T

4

~0.05 1 I I 1 I
o] 05 1 15 2 25 3

Time(s)

FIG. 3. Dynamics of the synchronization errey=y,-x; for
three different values of.

Y3=Y1Y2 ~ CoYa,

whereu is the control input which has to be chosen. From
the differences =x,—-y;, i=1, 2, 3, the uncertain syste(8)
can be obtained as follows:

él = a1(62 - el) + (al - aZ) (yZ - yl) - U,
éz = blel - 82 - el(e3 + Y3) + (bl - bZ - e3)y11 (34)

e3=e1(e+Y,) + Y18 — C1€3+ (C2 — C1)Y3.

Now defining the drive output by,=x; and the response
output byy,=y,, one has thay.=e;. This implies that coor-
dinates transformation is globally defined by=e;, v1=e,,
andr,=es. In this way, the smallest integer is=1. Then the
uncertain system can be rewritten as

The drive system can be written in dimensionless form as

follows:

X1 = a3(X = Xy),

X2 = D1Xg = Xo = X1 X,

X3 = X1Xp = CX3.

Suppose that the same configuration is used as a respon
system. However, assume that there are differences betwee
the devices. That is, the parameter values of the respons -z ||| :
system are different from the drive system. In this way, the

response system becomes

yi=ax(y2—y1) +u,

Y2=Doy1 = Yo = YaYa,

(32)

(33)

The difference signal Sm(t)—SR(t)
8 T T T T T

4 : -

1-S,0

E
(

S

ob|

—4 : : J

8 I L 1 I 1
0 5 10 15 20 25 30

Time(s)

FIG. 4. The difference signa,(t) - Sg(t) when §=50.
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Synchronization error: e,

.Zl = Ag]_ —-u, 30
v =Agy, I
(35 ok
V= AgS! |
. 4
'g/: 7y, ° ol
wherey is the output of the uncertain system afg;, i=1,
2, 3 are unknown functions. In order to illustrate that system

(35) satisfies the minimum phase assumption, one can show
that Agy=byz1-v1-z(v,+ys)+ 6 and Agz=2z(¥1+Y>)

-30-

+y111—Civ+ 8, Where 5;=(ay—a))(y,—y1) and &,=(c, 0y " 2 % 0 % w
-C;1)y; converge to zero whem;=0. Now, §; and &, are @ Timet)
uncertain; however, it is clear thaf and 6, are bounded. As " ‘ _ povonam e, |
z,— 0 (zero dynamick one has that o-20
30+
v=Ev+F,
whereF=[4,,5,]" and
-1 0
E = |: :| ’ < 0 gAY \]r
O - C]_

which is Hurwitz because; > 0. Hence, since$; and , are
bounded, the zero dynamics subsysteaEv+F is asymp- =or
totically stable. That is, the discrepancy between systems
(32) and(33) is a minimum phase system. Since assumptions

30

(A1)—(A5) are satisfied, defining,=Ag; —u, the augmented 107 m = - - ) %
state can be defined ag=(JAg;/dz;)Ag;+(9Ag;/ Iv1)Ag, @ SyhTm”
+(9Ag/ dy1)[ax(yo—y1) +ul+(9AG1/ dy,) (Dy1= Y2~ Y1Ya)- ® :
Then, systeng6) can be constructed and we get the extended e
state observe(20) as the following form: =
23=2-60C\(z,- 7)), “l 4
: M
2=~ PCyz,-2)) -, (36) ’
7=-60°Cz,-20). -
So the sliding surface and sliding control 1d22) and(23) ol
can be described by
t 4DO 1’0 2‘0 3‘0 4‘0 5‘0 80
S=2,-2,(0) + f [6PK, 2, + OK,2,]dt (37) “ e
0 FIG. 5. Dynamics of the synchronization error of the Lorenz
and system wherg=20.
t
u(t) = —f [BS— 6sgn(S) — 77— 6°K 2, — 6K, 2, dt. Simulation results are shown in Fig. 5. Although the control
0 input u is acting on the state;, v e R? is also stabilized.
(39

Here we choose the initial conditio®0)=0 andu(0)=0. V- CONCLUSIONS
The initial condition for the Lorenz system (8.3, 0, 0. The In this paper, the effort can be classified as follogsA

initial condition for (z;,2,, 7)) is randomly chosen 9.1, 0, general mathematical model for chaotic systems is formu-
0). The eigenvalues corresponding to the sliding surface arkated, which contains most well-known continuous-time cha-
-1 and -2, of which the coefficients of the Hurwitz polyno- otic systems as special casés) The sliding mode control
mial are[K,K,]=[2,3]. The estimation parametef3;,=3, technique is combined with the chaos thediiy) A sliding
C,=3, andC5;=1 were chosen in such a way that the poly-surface was given in terms of a single parameter, which can
nomial s>+ C,s°+C,s'+C5=0 has all its roots located at —1. be easily tuned to trade off between stabiligonvergence
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rate and performancgnoise, amplification (iv) A new  state variables. We finally point out that to realize chaos syn-
feedback controller is proposed for handling the uncertainehronization via output feedback, various observers may be
ties, both internal and external, existing in the chaotic dy-designed, which is beyond the scope of this paper.

namics. The control input in this study is continuous and has

no chattering phenomenon. It provides a method that can
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