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This paper addresses the problem of robust adaptive control for synchronization of continuous-time coupled
chaotic systems with uncertainties. A general model is studied using measured output state feedback control.
An adaptive controller is designed based on a sliding mode control design. When only the output variable is
measurable for synchronization, the adaptive controller is designed by incorporating with an observer. Two
numerical examples are presented to show the effectiveness of the proposed chaos synchronization method.

DOI: 10.1103/PhysRevE.70.066217 PACS number(s): 05.45.Xt, 05.45.Vx, 02.30.Yy

I. INTRODUCTION

Motivated by the study of chaotic phenomena(see, e.g.,
[1,2]), recent years have seen an increase in the interest in
synchronization. The idea of synchronizing two identical
systems that start from different initial conditions was intro-
duced by Pecora and Caroll[3]. It investigates the linking of
the trajectory of one system to the other system with the
same values parameter(solution), such that they remain to-
gether in each step through the transmission of a signal. Ad-
hering to the Pecora-Caroll drive-response concept, several
chaos synchronization schemes have been successfully estab-
lished [3–7]. But to have an exact synchronous system, a
response system must have an identical copy of the chaotic
system used by the drive system. However, it is practically
impossible to have two identical chaotic systems because of
impossible-to-avoid tolerances in the real-world physical
control parameters. For example, the tolerances of the vari-
ous electric elements in two “identical” electronic circuits
will certaintly lead to small but definite differences in the
physical parameters and thus the operations of the circuits.
Thus by definition synchronization cannot occur. It has been
proposed that one replace it with a generalized(or practical)
synchronization.

Recently, specialists from(nonlinear) control theory
turned their attention to the study of controlled synchroniza-
tion. It has been demonstrated for important special cases of
“drive/response” and coupled systems that synchronizing
control may be designed using feedback linearization or pas-
sification methods. Incomplete information about the system
parameters has been taken into account(adaptive and robust
synchronization[7–11]) as well as incomplete information of
the state of the system(observer-based synchronization

[12]). Although the parameter structure can be known in
some cases, it would be desirable to have a feedback scheme
to achieve synchronization in spite of the slave oscillator
having the least prior knowledge about the structure of the
master system. This necessity for robustness can be required
in some systems(for instance, the multimode laser, animal
gait, or oscillatory neural systems). Thus, it is important and
necessary to design robust synchronization schemes for un-
certain chaotic systems with various types of uncertainties.

As an alternative, in recent years sliding mode control has
received much attention and become an active research area.
Sliding mode control is a nonlinear control strategy. It in-
cludes two parts: switched control and equivalent control.
Traditional sliding mode control cannot assure system ro-
bustness. It also often has chattering phenomena for which
the sliding mode controller is applied. Therefore, designing a
sliding mode controller involves selecting a correct update
law or a suitable switching manifold(e.g., [14]). Sliding
mode control has a learning capability for improving the
feedback control performance by incorporating useful up-
dated information on line. An advantage of sliding mode
control, on the other hand, is the system robustness with
respect to certain system parameter variations and external
disturbances[13–15]. Since sliding mode control is suitable
for the synchronization of uncertain nonlinear systems, it is a
good candidate for synchronizing uncertain chaotic systems
[16].

Previous work of others[17–19] has presented interesting
results on the synchronization of chaotic systems based on
the sliding mode control design. In particular, the authors of
[19] studied the synchronization of chaotic systems with un-
certainties. Although their analysis ensured synchronization
stability, it is not clear when synchronization can be achieved
for a given estimation of the system’s uncertainties and how
to choose the estimated value of the uncertainties. This is
because the estimated value of the system model uncertain-
ties depends on the state of the observer in a complex man-
ner.

We believe that this difficulty to estimate the system’s
uncertainties arises because the system structure information
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Js·d involving the modeling differences, uncertain param-
eters, and the unknown external perturbations has been used
in the sliding control law[see Eq.(14) in Yang and Shao’s
paper]. In principle, an analysis that focuses on geometrical
control theory[7] could exploit the specific property and
structure of the system to provide a dynamic estimation of
the system’s uncertainties.

This paper, in the spirit of previous works[17–19], stud-
ies the synchronization of chaotic systems with uncertainties
based on a sliding mode control design. The proposed
scheme consists of a dynamical output feedback which per-
forms the suppression of chaos on the uncertain system. The
main idea behind our proposal is, departing from the uncer-
tain system, to construct an extended nonlinear system which
should be dynamically equivalent to the canonical represen-
tation. In this way, the system’s uncertainties are lumped into
a nonlinear function, which is rewritten into the extended
nonlinear system as a state variable. By using the results
reported by Teel and Praly[20], an observer can be con-
structed to get an estimated value of the lumping nonlinear
function via the augmented state variable. More importantly,
we show how the convergence rate can be assigned by tuning
the switching parameter of the sliding surface. Numerical
simulations on the synchronization off6-Duffing and
f6–Van der Pol oscillators as well as two Lorenz systems
with parameter mismatching are used to illustrate our find-
ings.

With respect to existing results in the literature(see
[17–19]), our contribution in this paper can be summarized
as follows.

(i) An explicit construction of the estimation of the sys-
tem’s uncertainties is provided, while in[19] the procedure
to estimate the system model uncertainties is not clear.

(ii ) A prescribed synchronization error convergence rate
can be assigned. This can be done easily by tuning a single
parameter of the sliding surface. To the best of author’s
knowledge, this issue has not been previously studied.

The paper is organized as follows. In Sec. II, the class of
uncertain chaotic systems is established. In Sec. III, the prob-
lem of chaotic system synchronization based on a sliding
mode control design is analyzed. In Sec. IV, some numerical
simulations to illustrate our findings are carried out, and fi-
nally in Sec. V, some conclusions are presented.

II. A CLASS OF UNCERTAIN CHAOTIC SYSTEMS

To investigate synchronization, we consider two noniden-
tical chaotic systems with uncertainties. The drive system is

ẋ = fsx,td,

yd = Cdx, s1d

wherexPRn is a vector of drive system states,f is a non-
linear vector function defining the flow, andydPR denotes
the measurable output state that can be transmitted.Cd is a
vector of proper length which defines the output channel.
Note that, without loss of generality, we can assume that the
measured state is given byyd=x1. For the following, it is

assumed that system(1) exhibits chaotic dynamics. The re-
sponse system is

ẏ = gsy,td + Bu,

yr = Cry, s2d

whereyPRn is a vector of the response system states,g is a
nonlinear vector function defining the flow,B is a constant
matrix which defines the control channel, anduPR is a con-
trol input which has to be chosen. The vectorCr defines the
measured state of the response system. Note that we can
assume thatCd=Cr. The role of the feedbacku is thus to
force the convergence of the response towards the drive or-
bit. To carry out such an investigation, let us introduce the
variablee=y−x, which is the measure of the nearness of the
response to the drive. Introducinge in Eq. (2), we obtain the
following equation:

ė= gse+ x,td − fsx,td + Bu,

ye = Ce. s3d

The synchronization is achieved whene goes to zero ast
increases or, practically, is less than a given precision.

Now, let us define a coordinates transformationz=Fsed
such that the error system(3) can be globally transformed
into the canonical form[21],

żi = zi+1, i = 1,2, . . . ,r − 1,

żr = asz,nd + gsz,ndu,

ṅ = zsz,nd,

ỹ = z1, s4d

whereỹ is the system output,r is the relative degree of the
error system(i.e., the lowest-order time derivative such that
the control commandu is directly related to the outputỹ),
and nPRn−r is the unobservable states vector(internal dy-
namics).

Often, the constant matrixB can be selected to make pos-
sible the transform from Eq.(3) to the assumed format(4).
System(4), which is very general, contains most well known
chaotic systems and some special models for chaotic systems
like those proposed in[13]. For example, the Lorenz dy-
namical, the Rössler system, and several types of Chua’s
circuits can be transformed into the canonical form with a
relative degreer,n. On the other hand, a nonautonomous
second-order chaotic system such as the Duffing oscillator
and the Van der Pol system can be written as the canonical
form with r=n. In addition, if r=n, the transformed system
(4) is the so-called fully linearizable nonlinear system, and if
r,n, the system(4) is called a partially linearizable nonlin-
ear system.

Nevertheless, if the vector fieldsfsx,td andgsy,td are un-
certain, the coordinates transformationz=Fsed, bringing the
error system(3) into the canonical form(4), is uncertain. In
principle, since the coordinates transformation is a diffeo-
morphism, one can suppose that the uncertain transformation
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exists and it is invertible. However, sinceFsed is uncertain,
the nonlinear functionsasz,nd andgsz,nd are also uncertain,
hence they cannot be directly used in a linearizing-like feed-
back.

In the next section, the detailed design procedure of the
feedback control lawu is described with detailed explana-
tions.

III. SYNCHRONIZATION VIA MEASURED OUTPUT
FEEDBACK

In this section, we present a robust control design for
uncertain chaotic systems in canonical form(4). The main
idea is to construct a dynamically equivalent system which is
itself uncertain. Dynamic output feedback is applied to per-
form chaos synchronization in spite of modeling differences,
parameter variations, and noisy measurements.

To describe the new design and analysis, the following
assumptions are needed:sA1d Only the system outputỹ=z1 is
available for feedback.sA2d gszd is bounded away from zero.
However, an estimateĝszd of gsz,nd, satisfying sgnfĝszdg
=sgnfgsz,ndg, is available for feedback.sA3d System(5) is
the minimum phase, i.e., the subsystem of the zero dynam-
ics, ṅ=zs0,nd, wherenPRn−r, is asymptotically stable. The
first assumption is realistic because in many applications,
due to the difficulty in measurements or demand for security,
some state variables cannot be measured. For example, in
secure communication, a signal is transmitted from the drive
system to the response system, where the transmitted signal,
which is kept unmeasurable, is part of state variables. The
second assumption implies that the origin is not a singularity
point when a linearizing-like feedback is used to perform
synchronization. The minimum phase supposition is a stron-
ger condition, which implies that the uncontrollable states
nPRn−r of the uncertain system are asymptotically stable.
This is reasonable for the boundness of the chaotic attractor
in state space and the interaction of all trajectories inside the
attractor. So when we taken actions to achieve limt→` zi =0,
i =1, . . . ,r, the partzs0,nd→zs0,nd→0 asymptotically for
the so-called minimum phase character. Fortunately, most
chaotic oscillators satisfy this assumption.

In order to determine the sliding mode control law, the
reformulation of the state space equation of system(4) into
an extended controllable canonical form is required. To this
end, let us define

dszd = gsz,nd − ĝszd, Qsz,n,ud = asz,nd + dsz,ndu,

zn+1 = Qsz,n,ud + ĝszdu,

and

h = o
k=1

n

zk+1]kzn+1 + dsz,ndu̇ + zsz,nd]nzn+1 s5d

with ]kzn+1=]zn+1/]zk, k=1,2, . . . ,n, and]nzn+1=]zn+1/]n.
Then, there exists a time-invariant manifold

csz,zn+1,h ,u,u̇,üd=0 such that the solution of system(4) is
a projection of the solution of the following dynamical sys-
tem:

żi = zi+1, 1 ø i ø n,

żn+1 = h + ĝszdu̇,

ḣ = Jsz,zn+1,h,n,u,u̇,üd, s6d

ṅ = zsz,nd,

ỹ = z1,

where

Jsz,zn+1,h,n,u,u̇,üd = o
k=1

n

zk+1
2 ]kzn+1+o

k=1

n−1

zk+2]kzn+1

+ fh + ĝszdg]nzn+1

+ o
k=1

n

zk+1]kfzsz,nd]nQsz,n,udg

+ zsz,nd]nfzsz,nd]nQsz,n,udg

+ u̇Fdsz,nd + ĝszd + zsz,nd]ndsz,nd

+ o
k=1

n

]kdsz,ndG + dsz,ndü

with ]nQsz,n ,ud=]Qsz,n ,ud /]n, ]kdsz,nd=]dsz,nd /]zk, and
]kzsz,nd=]zsz,nd /]zk, k=1,2, . . . ,n, i.e., system(6) is dy-
namically equivalent to system(4). It must be pointed out
that the manifoldcsz,zn+1,h ,n ,u,u̇,üd=h−ok=1

n zk+1]kzn+1

+dsz,ndu̇+zsz,nd]nzn+1=0 is, by definition, time-invariant.
In fact, it is straightforward to prove that the set

C = hcsz,zn+1,h,n,u,u̇,üdj

= h − o
k=1

n

zk+1]kzn+1 + dsz,ndu̇ + zsz,nd]nzn+1,

ḣ = o
k=1

n

zk+1
2 ]kzn+1 + o

k=1

n−1

zk+2]kzn+1 + fh + ĝszdg]nzn+1

+ o
k=1

n

zk+1]kfzsz,nd]nQsz,n,udg

+ zsz,nd]nfzsz,nd]nQsz,n,udg

+ u̇Fdsz,nd + ĝszd + zsz,nd]ndsz,nd + o
k=1

n

]kdsz,ndG
+ dsz,ndü

satisfies dc /dt=0 for all tù0. Now, from the equality
csz,zn+1,h ,n ,u,u̇,üd=0 and conditiondc /dt=0, one can
take the first integral of system(6) to get h=ok=1

n zk+1]kzn+1
+dsz,ndu̇+zsz,nd]nzn+1. When the first integral is backsub-
stituted into system(6), we obtain the solution of system(4).
Hence, the solution of system(4) is a projection of system
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(6) via the modulepsz,zn+1,h ,nd=sz,nd. This is, system(6)
is dynamically equivalent to system(4) if initial conditions,
(zs0d ,zn+1s0d ,hs0d ,ns0d) are contained in
csz,zn+1,h ,u,n ,u̇,üd, i.e., the augmented stateh provides
the dynamics of the uncertain functionQsz,n ,ud which in-
volves modeling differences, uncertain parameters, and un-
known external disturbances.

The following must be noted. Since the nonlinear func-
tionsasz,nd andgsz,nd are uncertain, the nonlinear function
Qsz,n ,ud is also uncertain, hence it cannot be directly used
in a sliding mode control law.

A key feature of Eq.(6) is that the uncertainties have been
lumped in an uncertain functionQsz,n ,ud which can be es-
timated by means of the nonmeasured but observable stateh.
By an observable state, we mean that the dynamics of such a
state can be reconstructed from one-line measurements(for
example,ỹ=z1). Furthermore, if one is able to stabilize the
system (6) without making use of the constraint
c(zs0d ,zn+1s0d ,hs0d ,us0d ,ns0d ,u̇s0d ,üs0d)=0, one would be
able to stabilize system(4) and its equivalent system(3).

By the concept of extended systems, a suitable sliding
surface can be chosen as

S= zn+1 − zn+1s0d +E
0

t

o
j=1

n+1

usn−j+1dKjzj = 0, s7d

wherezn+1s0d is the initial state ofzn+1std, u.0 is the switch-
ing gain which is determined such that the sliding condition
is satisfied and sliding mode motion will occur, andKj, j
=1,2, . . . ,n+1 are constant parameters of the sliding surface
which are computed from the following procedure.

Equation(7) can also be reformulated as

żn+1 = − o
j=1

n+1

usn−j+1dKjzj . s8d

Therefore, the sliding mode dynamics(the desired dynamics)
can be described as

żi = zi+1, 1 ø i ø n,

żn+1 = − o
j=1

n+1

usn−j+1dKjzj ,

s9d
ḣ = Jsz,zn+1,h,n,u,u̇,üd,

ṅ = zsz,nd,

or in a matrix equation form as

Ż = uDu
−1ADuZ,

ḣ = JsZ,h,n,u,u̇,üd, s10d

ṅ = zsz,nd,

whereZ=sz,zn+1dT, Du=diagsu−1, . . . ,und with Du
−1 its inverse

and

A =3
0 1 0 . . . 0

0 0 1 . . . 0

] ] ] � ]

0 0 0 . . . 1

− K1 − K2 − K3 . . . − Kn+1

4 .

ThenKj, j =1,2, . . . ,n+1 are chosen such that the matrixA
has all its eigenvalues at the open left-half complex plane
(i.e., all roots of polynomialsn+1+Kn+1s

n+¯ +K2s+K1=0
have negative real parts).

The sliding surface used in this paper is one dimension
higher than the traditional sliding surface, which guarantees
that it passes through the initial states of the system being
controlled. The reaching law is chosen as

Ṡ= bS− u sgnsSd, s11d

where 0øb,1 and sgns·d denotes the signum function.
From Eqs.(7) and (11), it can be found that

Ṡ= bS− u sgnsSd = żn+1 + o
j=1

n+1

usn−j+1dKjzj , s12d

or, alternatively,

żn+1 = h + ĝszdu̇ = bS− u sgnsSd − o
j=1

n+1

usn−j+1dKjzj . s13d

So if the initial conditionus0d=0, then the differential equa-
tion of control inputu can be determined as

u̇ =
1

ĝszdFbS− u sgnsSd − h − o
j=1

n+1

usn−j+1dKjzjG . s14d

Therefore, the control input can be obtained as

u =E
0

t F 1

ĝszdSbS− u sgnsSd − h − o
j=1

n+1

usn−j+1dKjzjDGdt,

s15d

with us0d=0. It should be pointed out that a largeu is im-
portant for the realization of synchronization, which is asso-
ciated with the system information of the two chaotic sys-
tems. This question can be qualitatively analyzed with the
Lyapunov stability theory as follows.

Substituting the control law of Eq.(14) into the extended
system(6), the dynamics of the closed-loop system can be
described as

żi = zi+1, i = 1,2, . . . ,n,

żn+1 = bS− u sgnsSd − o
j=1

n+1

usn−j+1dKjzj ,

ḣ = Jsz,zn+1,h,u,u̇,üd,

ṅ = zsz,nd. s16d

Let the Lyapunov function of the system be
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V =
1

2
S2, s17d

thereforeV is a positive semidefinite function. The first de-
rivative of V with respect to time is obtained as

V̇ = SṠ= SSżn+1 − o
j=1

n+1

usn−j+1dKjzjD
= SfbS− u sgnsSdg

= bS2 − uabssSd

ø abssSdfabssSd − ug. s18d

If V̇ø0 is satisfied, the sliding mode will exist. From Eq.(7),
we know that the sliding surfaceS depends onsz,zn+1d,
hence one or x and y. For the boundness of the chaotic
attractor, we know thatS is bounded. So a large enoughu

will lead to V̇ø0. Convergence ofhstd to zero follows from
the fact that the closed-loop system is in cascade form. In

many situations, the conditionV̇ø0 can be satisfied by
choosing a large enough switching gainu. On the other hand,
the u parametrization of the feedback control law(15) pro-
vides a simple tuning procedure. In fact, in a matrix equation
form, the first equation of the closed-loop system(16) can be
rewritten as

Ż = uDu
−1ADuZ + VsSd, s19d

where A is defined as in Eq.(10) and VsSd=f0, . . . ,0 ,bS
−u sgnsSdgT. The integration of the closed-loop system(19)
yields

Zstd = expsuDu
−1ADutdZs0d + expsuDu

−1ADutd

3E
0

t

exps− uDu
−1ADusdVsSdds.

Since the matrixA is Hurwitz and the surfaceS is
bounded for alltù0, VsSd is also a bounded function, i.e.,
iVsSdiøL. Then using the triangle and Schwartz inequali-
ties, one has the following inequality:

iZstdi ø iexpsuDu
−1ADutdZs0di + LE

0

t

iexps− uDu
−1ADusddsi.

Then, the trajectoriesZstd are bounded for alltù0, that is,
Zstd→B(Rsu−1d), whereB(Rsu−1d) is a ball with radius on
the orderu−1. In fact, as the switching parameteru increases,
iZstdi decreases, and the faster the convergence ofZstd is.

Note that the sliding surface(7) and the sliding controller
(15) require full information about the states of system(6).
In this sense, the following comments are in order.(i) The
augmented stateszn+1 and h are not available for feedback.
This fact is obvious becausezn+1 andh represent, by defini-
tion, the mismatches between the drive and response sys-
tems. (ii ) It is desired that only one state is available for
feedback from one-line measurements. Consequently, esti-
mated values of the statessz,zn+1,hd are required for practi-
cal implementation. To this end, the following uncertainty
estimator is proposed:

ż̂i = ẑi+1 − uiCisẑ1 − z1d, 1 ø i ø n,

ż̂n+1 = ĥ + ĝszdu̇ − un+1Cn+1sẑ1 − z1d, s20d

ḣ̂ = − un+2Cn+2sẑ1 − z1d,

whereCj, j =1,2, . . . ,n+2 are estimation parameters. Appro-
priately choosing parameters Cj, j =1,2, . . . ,n+2,
sẑ1, . . . ,ẑnd, ẑn+1, and ĥ will converge tozj, 1ø j øn, zn+1,
and h, respectively. Note that sinceQsz,n ,ud is uncertain,
the function Jsz,zn+1,h ,n ,u,u̇,üd correspondingly is un-
known. Thus, such a term has been neglected in the construc-
tion of the observer(20).

In order to determineCj, j =1,2, . . . ,n+1, let ẽPRn+2 be
an estimation error vector whose components are defined as
follows: ẽi =un+1−isẑi −zid, i =1,2, . . . ,n and ẽn+2=ĥ−h.
Then, the dynamics of the estimation error can be written as
follows:

ė̃= uDẽ+ Gsz,zn+1,n,h,u,u̇,üd, s21d

where

Gsz,zn+1,h,u,n,u̇,üd = f0,0, .. . ,0,Jsz,zn+1,h,n,u,u̇,üdgT

and the matrixD is given by

D =3
− C1 1 0 . . . 0

− C2 0 1 . . . 0

] ] ] � ]

− Cn+1 0 0 . . . 1

− Cn+2 0 0 . . . 0
4 .

The estimation parametersCj, 1ø j øn+2 are chosen in
such a way that the polynomialPn+2ssd=sn+2+C1s

n+1+¯

+Cn+1s+Cn+2 is Hurwitz. In addition, since the trajectories
xstd and ystd are contained in some chaotic attractor, then
Jsz,zn+1,h ,u,n ,u̇,üd is a bounded function. Consequently,
after choosingCj, j =1,2, . . . ,n+2 so that all the eigenvalues
of D are located in the left-half complex plane, we can con-
clude that for a sufficiently large value ofu.0, ẽ→0 as t
→`, which implies thatẑj →zj, j =1,2, . . . ,n, ẑn+1→zn+1,
and ĥ→h. So we can get the information of unmeasurable
states fromẑi, i =1,2, . . . ,n and the model uncertainties from
ẑn+1 andĥ. Then, the sliding surface(7) and the sliding con-
trol law (15) become

S= ẑn+1 − ẑn+1s0d +E
0

t

o
j=1

n+1

usn−j+1dKjẑj = 0 s22d

and

u =E
0

t S 1

ĝsẑdFbS− u sgnsSd − ĥ − o
j=1

n+1

usn−j+1dKjẑjDGdt

s23d

with us0d=0.
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Notice that the sliding surface(22) and the sliding con-
troller (23) only use estimated values of the uncertain terms
asz,nd andgsz,nd (by meanszn+1 andĥ) andẑ. So Eqs.(22)
and(23) neglect the system uncertainties and are more physi-
cally realizable than Eqs.(7) and (15). Thus, the robust ex-
ponential stabilization is given by the dynamic compensator
(20), the sliding surface(22), and the sliding control law
(23).

The proposed controller has the following advantages re-
garding the adaptive control schemes:(i) the order of the
proposed controller does not increase with the number of
parameters;(ii ) if the system is nonlinear in its parameter
structure, the proposed controller does not change because
the controller does not require information about system pa-
rameters; and(iii ) a largeu in the sliding surface will in-
crease the robustness of adaptive control, while a smallu
will be good for robust stability. Therefore, in practice, a
trade-off will be made according to the purpose of the de-
sign. As a result, the robust feedback controller(20), (22),
and (23) can be experimentally implemented to perform
chaos synchronization on a class of uncertain chaotic sys-
tems.

Feedback control based on a high-gain observer can in-
duce undesirable dynamics effects such as the peaking phe-
nomenon[22]. This phenomenon leads to closed-loop insta-
bilities which are represented by finite-time escapes and
large overshooting. To diminish these effects, the control law
can be modified by means of

u = satHE
0

t S 1

ĝsẑdFbS− u sgnsSd − ĥ

− o
j=1

n+1

usn−j+1dKjẑjDGdtJ , s24d

where sath·j :Rn→S,Rn, S is a bounded set[6].
A similar synchronization scheme to that described above

has been studied previously[19]. A drawback of such a
scheme is that it is not apparent how one chooses the esti-
mated value of the system’s uncertainties so that the sliding
surface and the control law become physically realizable.
Our procedure has no such drawbacks. In fact, an estimate of
the uncertainties is obtained via the new stateszn+1 andh by
means of a state estimator. Stability is guaranteed for suffi-
ciently large values of the switching gainu.

In the next section, we will show that the control strategy
(20), (22), and(23) can be used to address problems of syn-
chronization of chaos. In fact, we will illustrate via numeri-
cal simulations that the previously developed control strategy
is able to synchronize uncertain chaotic systems with only
knowledge of the outputỹ.

IV. ILLUSTRATIVE EXAMPLES

We present two examples in this section to illustrate the
above given results. The first example consists of the syn-
chronization of two strictly different oscillators. The aim is
to show that the synchronization can be attained in spite of
model differences between the drive and response systems.

We choose two second-order driven oscillators to illustrate
this case. The drive system is given by thef6-Duffing equa-
tion, whereas the response system is given by thef6–Van der
Pol oscillator. The second example consists of the synchro-
nization of two Lorenz systems whose model is similar but
whose parameter values are different. Here, the objective is
to show that the synchronization can be achieved in spite of
parameter variations and to illustrate that the chaotic
minimum-phase assumption is satisfied.

A. Synchronization in spite of a strictly different model

The goal of this example is to illustrate that the synchro-
nization can be attained in spite of a different model for the
drive and response systems, which is the extreme case of
drive/response mismatch and external perturbations by an
oscillatory signal which can be interpreted as noise. We
choose thef6-Duffing oscillator as the drive system and the
f6–Van der Pol oscillator as the response system. The equa-
tions of the drive system are given as follows:

ẋ1 = x2,
s25d

ẋ2 = fsx,td,

where fsx,td=−r1x2−r2x1−r3x1
3−r4x1

5+r5 cosvt. The equa-
tions of the response system are given by

ẏ1 = y2,
s26d

ẏ2 = gsy,td + u,

wheregsy,td=ms1−y1
2dy2−v0

2y1−dy1
3−ly1

5+ f0 cosVt and u
is the control input which has to be chosen. Ifyd=x1 and
yr =y1 are, respectively, the outputs of the drive and response
systems, and by definingei =yi −xi, i =1, 2, one gets the fol-
lowing uncertain system:

ė1 = e2,

ė2 = gse+ x,td − fsx,td + u, s27d

ye = e1.

Thus, the coordinates transformation is given byz1=e1 and
z2=e2. In this way, system(27) is transformed into

ż1 = z2,

ż2 = asz,x,td + u, s28d

ỹ = z1,

where ỹ is the output of the uncertain system andasz,x,td
=gsz+x,td− fsx,td denotes the uncertainties of these two sys-
tems (parameter mismatching and external perturbations).
Note that system(27) is fully linearizable, i.e., there is no
unobservable statesn in the uncertain system because
the relative degreer=n. Now, defining z3=asz,x,td+u
and h=s]a /]z1dz2+s]a /]z2dz3+s]a /]x1dx2+s]a /]x2dfsx,td
+s]a /]td, the dynamical system(6) can be constructed. So
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the extended state observer(20) can be described in the fol-
lowing form:

ż̂1 = ẑ2 − uC1sẑ1 − z1d,

ż̂2 = ẑ3 − u2C2sẑ1 − z1d,
s29d

ż̂3 = ĥ − u3C3sẑ1 − z1d + u̇,

ḣ̂ = − u4C4sẑ1 − z1d.

Hence the sliding surface and sliding control law(22) and
(23) can be described by

S= ẑ3 − ẑ3s0d +E
0

t

fu3K1ẑ1 + u2K2ẑ2 + uK3ẑ3gdt s30d

and

ustd =E
0

t

fbS− u sgnsSd − ĥ − u3K1ẑ1 − u2K2ẑ2 − uK3ẑ3gdt.

s31d

To ensure that both systems are chaotic, we select the
parameter valuesr1=1, r2=1, r3=−3, r4=1.5, r5=480, v
=1.221, m=0.4, v0=0.46, d=1, l=0.1, f0=4.5, and V
=0.86. Initial conditions for thef6-Duffing andf6–Van der
Pol oscillators were selected asx1s0d=0, x2s0d=0, y1s0d
=0.1, and y2s0d=0. Then e1s0d=0.1 and e2s0d=0. This
choice of initial conditions is arbitrary: control can be ap-
plied for any initial conditions. The initial condition for
sẑ1, ẑ2, ẑ3,ĥd is randomly chosen as(0.2, 0, 0, 0). The initial
condition for the sliding surface(29) is Ss0d=0 and us0d
=0 for the control input(31). The eigenvalues corresponding
to the sliding surface are −10, −10+6i, and −10−6i, of
which the coefficients of the Hurwitz polynomial are
fK1,K2,K3g=f30,336,1360g. The estimation parametersC1

=4, C2=6, C3=4, andC4=1 were chosen so that the poly-
nomial s4+C1s

3+C2s
2+C3S+C4=0 has all its roots located

at −1.
Let u=50. If the control input is activated att=15 s, the

synchronization error can be regulated effectively and effi-
ciently to zero, as shown in Fig. 1. The performance of the
error system is presented in Fig. 2. The corresponding con-
trol input is continuous, as shown in Fig. 2(a). The resulting
control does not have an abrupt change and chattering phe-
nomenon. The sliding surface dynamics is shown in Fig.
2(b).

To illustrate the fact that an arbitrary convergence rate of
the synchronization error can be prescribed, Fig. 3 presents
the position of the synchronization errore1=y1−x1 for three
different values of the switching gainu. As expected,e1 con-
verges to zero and the larger the value ofu, the faster the
convergence.

After the synchronization of the transmitter(drive) and
receiver (response), one would like to know if a message
signal can be recovered in spite of model differences be-
tween the transmitter and receiver. The information signal
was chosen to be a periodic functionSmstd=1.5 sin 20t. The

frequency was chosen such that the dynamics behavior of the
drive system remains chaotic. Figure 4 shows the time re-
sponse of the error betweenSmstd and the recovery signal
SRstd when u=50. The message signal is decoded with ac-
ceptable accuracy.

B. Synchronization in spite of parametric variation

Here, the aim is to show that synchronization can be
achieved in spite of parametric drive/response mismatches.
The Lorenz system has been chosen to illustrate the proposed
synchronization scheme. The Lorenz system consists of three
simple nonlinearly coupled ordinary differential equations
that depend on three positive parameters obtained from the
Navier-Stokes equations for viscous fluids, originally derived
for studying large-scale atmospheric behavior. It can be nu-
merically integrated and the unexpected results have initiated
the new and ubiquitous field of deterministic chaos, which
occurs in many branches of physical, mathematical, biologi-
cal, as well as social sciences.

FIG. 1. Dynamics of the synchronization error whenu=50. (a)
Positione1. (b) Velocity e2.
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The drive system can be written in dimensionless form as
follows:

ẋ1 = a1sx2 − x1d,

ẋ2 = b1x1 − x2 − x1x3, s32d

ẋ3 = x1x2 − c1x3.

Suppose that the same configuration is used as a response
system. However, assume that there are differences between
the devices. That is, the parameter values of the response
system are different from the drive system. In this way, the
response system becomes

ẏ1 = a2sy2 − y1d + u,

ẏ2 = b2y1 − y2 − y1y3, s33d

ẏ3 = y1y2 − c2y3,

whereu is the control input which has to be chosen. From
the differencesei =xi −yi, i =1, 2, 3, the uncertain system(3)
can be obtained as follows:

ė1 = a1se2 − e1d + sa1 − a2dsy2 − y1d − u,

ė2 = b1e1 − e2 − e1se3 + y3d + sb1 − b2 − e3dy1, s34d

ė3 = e1se2 + y2d + y1e2 − c1e3 + sc2 − c1dy3.

Now defining the drive output byyd=x1 and the response
output byyr =y1, one has thatye=e1. This implies that coor-
dinates transformation is globally defined byz1=e1, n1=e2,
andn2=e3. In this way, the smallest integer isr=1. Then the
uncertain system can be rewritten as

FIG. 2. Performance of the error system whenu=50.(a) Control
input. (b) Sliding surface dynamics.

FIG. 3. Dynamics of the synchronization errore1=y1−x1 for
three different values ofu.

FIG. 4. The difference signalSmstd−SRstd whenu=50.
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ż1 = Dg1 − u,

ṅ1 = Dg2,
s35d

ṅ2 = Dg3,

ỹ = z1,

whereỹ is the output of the uncertain system andDgi, i =1,
2, 3 are unknown functions. In order to illustrate that system
(35) satisfies the minimum phase assumption, one can show
that Dg2=b1z1−n1−z1sn2+y3d+d1 and Dg3=z1sn1+y2d
+y1n1−c1n2+d2, where d1=sa1−a2dsy2−y1d and d2=sc2

−c1dy3 converge to zero whenz1=0. Now, d1 and d2 are
uncertain; however, it is clear thatd1 andd2 are bounded. As
z1→0 (zero dynamics), one has that

ṅ = En + F,

whereF=fd1,d2gT and

E = F− 1 0

0 − c1
G ,

which is Hurwitz becausec1.0. Hence, sinced1 andd2 are
bounded, the zero dynamics subsystemṅ=En+F is asymp-
totically stable. That is, the discrepancy between systems
(32) and(33) is a minimum phase system. Since assumptions
sA1d–sA3d are satisfied, definingz2=Dg1−u, the augmented
state can be defined ash=s]Dg1/]z1dDg1+s]Dg1/]n1dDg2

+s]Dg1/]y1dfa2sy2−y1d+ug+s]Dg1/]y2dsb2y1−y2−y1y3d.
Then, system(6) can be constructed and we get the extended
state observer(20) as the following form:

ż̂1 = ẑ2 − uC1sẑ1 − z1d,

ż̂2 = ĥ − u2C2sẑ1 − z1d − u̇, s36d

ḣ̂ = − u3C3sẑ1 − z1d.

So the sliding surface and sliding control law(22) and (23)
can be described by

S= ẑ2 − ẑ2s0d +E
0

t

fu2K1ẑ1 + uK2ẑ2gdt s37d

and

ustd = −E
0

t

fbS− u sgnsSd − ĥ − u2K1ẑ1 − uK2ẑ2gdt.

s38d

Here we choose the initial conditionSs0d=0 and us0d=0.
The initial condition for the Lorenz system is(0.3, 0, 0). The
initial condition for sẑ1, ẑ2,ĥd is randomly chosen as(0.1, 0,
0). The eigenvalues corresponding to the sliding surface are
−1 and −2, of which the coefficients of the Hurwitz polyno-
mial are fK1,K2g=f2,3g. The estimation parametersC1=3,
C2=3, andC3=1 were chosen in such a way that the poly-
nomial s3+C1s

2+C2s
1+C3=0 has all its roots located at −1.

Simulation results are shown in Fig. 5. Although the control
input u is acting on the statez1, nPR2 is also stabilized.

V. CONCLUSIONS

In this paper, the effort can be classified as follows.(i) A
general mathematical model for chaotic systems is formu-
lated, which contains most well-known continuous-time cha-
otic systems as special cases.(ii ) The sliding mode control
technique is combined with the chaos theory.(iii ) A sliding
surface was given in terms of a single parameter, which can
be easily tuned to trade off between stability(convergence

FIG. 5. Dynamics of the synchronization error of the Lorenz
system whenu=20.
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rate) and performance(noise, amplification). (iv) A new
feedback controller is proposed for handling the uncertain-
ties, both internal and external, existing in the chaotic dy-
namics. The control input in this study is continuous and has
no chattering phenomenon. It provides a method that can
achieve desired specification with less control energy by
comparing against the results of other research.(v) An ob-
server is used for estimating those unmeasured and model
uncertainties but necessary information about the system

state variables. We finally point out that to realize chaos syn-
chronization via output feedback, various observers may be
designed, which is beyond the scope of this paper.
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