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We show how pattern formation in Faraday waves may be manipulated by varying the harmonic content of
the periodic forcing function. Our approach relies on the crucial influence of resonant triad interactions cou-
pling pairs of critical standing wave modes with damped, spatiotemporally resonant modes. Under the assump-
tion of weak damping and forcing, we perform a symmetry-based analysis that reveals the damped modes most
relevant for pattern selection, and how the strength of the corresponding triad interactions depends on the
forcing frequencies, amplitudes, and phases. In many cases, the further assumption of Hamiltonian structure in
the inviscid limit determines whether the given triad interaction has an enhancing or suppressing effect on
related patterns. Surprisingly, even for forcing functions with arbitrarily many frequency components, there are
at most five frequencies that affect each of the important triad interactions at leading order. The relative phases
of those forcing components play a key role, sometimes making the difference between an enhancing and
suppressing effect. In numerical examples, we examine the validity of our results for larger values of the
damping and forcing. Finally, we apply our findings to one-dimensional periodic patterns obtained with im-
pulsive forcing and to two-dimensional superlattice patterns and quasipatterns obtained with multifrequency
forcing.
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I. INTRODUCTION forcing, the damped mode that oscillates at the so-called dif-

. ference frequency is important for selecting superlattice pat-
Parametrically forced surface waves have proven to be gerns[18].

rich and versatile source of patterns since their initial obser- Resonant triad interactions—the lowest order nonlinear
vation by Faraday in 183[l1]. These Faraday wave patterns interactions—provide a useful framework for investigating
are composed of standing waves set up in response to pethe relationship between the many control parameters and
odic vertical vibration of sufficient strength. Early investiga- length scales in the multifrequency forced Faraday wave
tions (see[2,3] for reviewsy used a sinusoidal forcing func- problem. Resonant triads that couple two critical modes with
tion and focused on simple patterns such as stripes, squargsgdamped, spatiotemporally resonant mode play a key role in
and hexagons, which oscillate in subharmonic response té€ nonlinear pattern selection process. Most of these
the forcing. Recently, experimentalists have used multifredamped modes function as energy sinks, effectively creating
quency forcing to generate more complex states such as qu@l antiselection mechanism that suppresses the triad interac-
sipatterns and superlattice patterfids-11. These observa- ton and thereby favors patterns which avoid the correspond-

tions have, in turn, fueled theoretical interest in such pattern!d résonant angle. However, other damped modes act as

and in multifrequency forcingi12—19 energy sources, providing a positive selection mechanism
The use of multifrequency forcing requires the selectionthatlhel.l‘_)ﬁ stafl?ilize ?%t"tf(farns in\éolvingdthe a;sociated resonant

: angle. The effect of different damped modes on pattern se-

of a large number of control parameters. The forcing frel ction is investigated ii20], which, for forcing functions

quencies, their amplitudes, and their relative phases may ith up to three frequency components, determines the most
affect the pattern formation problem in a nontrivial way important damped modes, their ef‘fe(cet’nhancing or sup-
[4,13,19,20. Further complexity arises from the presence of ressing on associated paiterns and the dependence of the
multiple length scales. In addition to the length scales drivery;qiinear interaction on the forcing frequencies, amplitudes,
by the various forcing frequencies in accordz_mce with theand relative phases. These results are used to interpret recent
parametric(i.e., subharmonicresonance conditions, there Faraday wave experiments that produced complex patterns,

are numerous dam.peq.modes: that are drimenlingarly namely, a two-frequency forced superlattice patterr{7h
Many of these can significantly influence the dynamics of theand a three-frequency forced quasipatterr{id]. The ap-

critical modes. For instance, in the case of two-frequenc;broach developed if20] follows from a systematic consid-

eration of weakly broken symmetries: time translation, time
reversal, and Hamiltonian structu¢eee[19]), and is there-
*Electronic address: topaz@ucla.edu fore most relevant for systems with weak damping and forc-
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ing. In this limit the vastness of the control parameter space
can be an asset, enabling one to enhance or suppress partic

lar triad interactions simply by tuning the appropriate forcing ,/ ko
parameters. ; Y

In this paper, we adopt the same prescriptive approach t( ( Q -» ks
Faraday wave pattern formation, describing in more detail \ )
the technique for exploiting weakly broken symmetries, and \ ky ¢
extending the results gR0] to forcing functions containing \\\ ) /

arbitrarily many Fourier components. We determine which
damped modes are favored by a strong nonlinear coupling
and tabulate how the corresponding resonant triad interac- FIG. 1. Fourier space diagram of spatially resonant triads satis-
tions depend on the forcing parameters. A somewhat surprigying Eq. (2). The two neutrally stable modes have wave number
ing result, which makes this project feasible, is that for alk,|=|k,=k. and oscillate with dominant frequency/2. The
given damped mode there are at most five out of the poterdamped mode haks|=k4 and oscillates with dominant frequency
tially infinite number of forcing frequency components in the Q. (a) ky<k.. (b) ke <kyg<2k..
forcing function that affect the resonant triad interaction at
leading order in the damping parameteidefined below.  sjonless timer such that the common frequency is 1, and
We investigate numerically the validity of our predictions expandf(7) in a Fourier series:
with respect to the smalf assumption. This is important for
understanding the extent to which the symmetry-based pic-
ture we develop here can be applied to realistic experiments. f(n= > fe"+cc., f,eC, (1)
We then use several different numerical examples to illus- uez*
trate how the resonant triad interactions most relevant to pat-
tern formation may be controlled through a judicious choice
of forcing parameters. whereu=m,n,p, ... are theforcing frequenciegdistinct and

The remainder of this paper is organized as follows. Incoprime, |f | are the forcing amplitudes, anti,=argf,) are
Sec. Il, we review basic ideas concerning the importance ofhe corresponding phases. Without loss of generality, we take
resonant triad interactions to Faraday wave pattern formamto be the “dominant” frequency, i.e., we assume fiatto
tion, including a discussion of some of the previous theoretlowest ordey is the component that drives the critical modes
ical work. Section 1l contains our symmetry-based analysis(this does not necessarily mean thig{ is the largest of the
We enumerate the most important weakly damped modesfy|). There exists a bifurcation poifty,|=|f°" which de-
calculate their effect on pattern formation, and determine th@ends on the physical properties of the fluid, and on the other
dependence of this effect on the forcing parameters. Sectioh, below which the quiescent fluid state is stable to pertur-
IV contains a general discussion of the symmetry-based rePations of all wave numbers, and at which perturbations of
sults. We study their range of validity with respectydy  (generically one critical wave numbek. become neutrally
comparing the symmetry-based predictions to numerical restable. We consider the properties of resonant triads in a
sults obtained using the Zhang-Vifials Faraday wave equa4cinity of this bifurcation in parameter space.
tions[21]. In Sec. V, we apply our symmetry-based results in  Three-wave, or triad, resonance is the simplest nonlinear
several examples. In the first application, we consideimechanism by which different waves may interact. The three
weakly nonlinear periodic patterns forced by a repeated sevaves involved have Fourier wave vecté&sj=1,2,3,sat-
quence ofs functions of alternating sign. In accordance with isfying
the results first reported if22], we demonstrate how, by
varying the spacing between the pulses, we may control the
amplitude of the pattern. In the second application, we show
how to construct a five-frequency forcing function which

leads to dramatic stabilization of a complex pattern, namelyyn this paper we are interested in the influence of the damped
an SL-I superlattice pattern of the type observefiininthe  modes that are driven nonlinearlyhrough resonant triad
third example, we conjecture about a seven-frequency forgnteraction by the critical modes. Hence two of the wave
ing funct!on which shoul_d be conducive to the experimental,ectors have the critical valuee,| =|k,|=k.. These waves, to
observation(as yet lacking of 14-fold quasipatterns. We first approximation, respond subharmonically to the domi-
summarize and conclude in Sec. VI. nant forcing componenn and thus oscillate with predomi-
nant frequencym/2. The third wave in the triad has wave
number|ks|=ky and is associated with a damped mode with
dominant frequency). The values of() most relevant to

We lay the groundwork for our results here by reprisingFaraday wave pattern formation are determined in Sec. IIl.
basic ideas fron]16,18—-20,23,2)on the role of resonant Figure 1 shows Fourier space diagrams corresponding to the
triads in Faraday wave pattern formation. We consider Fararesonant triad we have described. Through simple trigonom-
day waves on an unbounded horizontal domain subjected tetry, the condition(2) defines an angle of spatial resonance
an arbitrary periodic forcing functiof(t). We use a dimen- 6, [0°,180° between the two critical modes:

kl+k2:k3. (2)

II. BACKGROUND
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0 Ky a
COS?SZ Ec €) b(6red = Do+ Dres  bres=— /1\22- (10
We exclude the casé#,..=120° since this corresponds to The coefficient(6) is the cross-coupling coefficient for SW
hexagons an#éty; would then not be damped. oriented at an anglé relative to each other and, above, it is

In the presence of damping, the primary Faraday instabilevaluated at the angle of spatial resonafied, indicated
ity leads to standing wave€SW). We associate with the in Fig. 1. The resonant contributidn.s arises from the pres-
wave vectors; three complex amplitude%; which describe  ence of the dampeki; mode.
the slow-time evolution of the three standing wave modes The resonant anglé.sranges from 0° to 180° dg var-
indicated in Fig. 1(the fast-time subharmonic oscillation of ies from Z. to 0. Whenkg is such that the natural frequency
the waves has been factored out; see, €ld]). Evolution  Q(ky) of the damped mode equdlsr is nearly equal tpone
equations for theé\; can be obtained by applying a standard of the special values that promotes a strong nonlinear cou-
reduction procedure to the governing equations, as we shalling (as determined in Sec. }lithe contributionb,. to
do in Sec. V. However, at this point we are concerned onlyo(6,.) can be significant. This typically happens when
with the form of these equations, which is determined by theand «, become large in magnitude, and/or whenbecomes
spatial symmetries. The action of spatial translation is small in magnitude. The resonant contribution will then have
a major effect on the stability of associated patterns.

) 0
To:Aj— A, (4) Consider further the systef®) which has as steady-state
. solutions the trivial statéA,|=|A,|=0, the symmetry-related
= (61,05, 61,0, € [0,180), 03= 61+ 6, “striped” stategA;| >0, |A,|=0 and|A,| >0, |A;|=0, and the
while a reflection abouks leads to “rhombic” mixed-mode solutionA,|=|A,|. We assume that
a<0, so that the bifurcation to the striped state is supercriti-
KA Ag, (5 cal. A straightforward analysis yields the following stability

results summarized by Fig. 2. Fosufficiently negative, i.e.,
b=by+b,<a, the (supercritical branch of rhombic states
RA A 6) with angle 6, is unstable. Ifb is increased such thdb|
) ) <|a| (typically due tob,.s>0 balancingo, < 0) then the two
Equivariance under these three symmet(s=e, e.g.[25]) modes mutually enhance each other’s growth, and the rhom-
requires that the differential equations describing the dynambic pattern is stable. It is increased furthefue to an even

and a rotation by 180° acts as

ics of theA; take the form larger, positiveb,.9 such thato>-a, then the rhombic state
) — bifurcates subcritically. However, with the addition of fifth
A= AA+ a1ApAg + (8| Ag]® + gl Al + by | AgP) A, order termgor highey it is possible, even likely, that for the

(7a) ~ Subcritical case, the unstable mixed-mode branch turns
around at a saddle-node bifurcation and creates a branch of
. — 5 5 5 stable, finite amplitude rhombic states. Thus, we do not want
Ao = MAg + anAiAg + (alAg* + bl Al + by Ag*) A, to be unduly limited by the form of Eq9). In the initial
(7b) stages of the pattern selection process, when modes on the
critical circle are beginning to grow and compete, there will
surely be an advantage for combinations that mutually en-
hance each other’'s growth. For these reasons we say that
(70 triad interactions contributindy,.s>0 are enhancing and
to cubic order. The overdot represents differentiation Withthose givingbyes=<0 are suppressing. .
respect to a slow time scale. All coefficients are real . The above example is Just one very l_)asu: instance of the
Because at the bifurcatioﬁ oif and A. are neutrlall importance of resonant triads. In fact, triad resonances have
stable modes ands is linearly gaméedi o ZA —0 andA y implications far beyond thén)stability of rhombic patterns.
<0), a center mar?%ifold reduction can .be',usled to elin12inateThey may affect the stability of pattems within the frame-
A \’Ne find work of any Faraday wave bifurcation problem possessing a
s subspace with dynamics described by E®); see, for in-
stance,[13,16,18,20,21,23 In these cases, the logic is the

As = ApAg+ A A + (D5 Ag|? + byl Agl? + byl A D) Ag,

an

Az A APt oo, (8)  sameb,.s>0 enhances patterns involving the resonant angle
2 6,5 While bc<0 suppresses them.
in a neighborhood of the origin. Theinfolded bifurcation The triad interactions discussed in this paper have impli-
problem, to cubic order, becomes cations for one-dimensional waves as well. In this case, with
. k,=k,, the resonance conditiai2) becomes simply
A1 = AiAL +aAPAL + D669 | Aol *As, (%99 2. = ky. (11
Ay= AA, + alAJ2Ag + b( 6,0 |Ag?A,, (9b) which is the familiar 1:2 spatial interaction. When the natural
frequencies of the two waves are such that a strong nonlinear
where coupling is allowedas we detail in Sec. Ijlwe expect ad-
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| Az pand the fluid surface heightx,7), x € R?, as
3
h(x,7) =2 2 Z(nd® ™7+ c.c., (13)
=1
Whereri are the slowly varying amplitudes and
m‘l=m'2=m/2, W3=Q. (14)
Recall thatm is the dominant frequency in the forcing func-

| A tion (1) and () is the frequency of the damped waves, the

| Az important values of which will be determined below. Spatial
and temporal symmetries constrain the equations for the evo-
lution of Z{, as we now detail.
A. Spatial symmetries
Spatial translation symmetry acts on the TW amplitudes
Z; as|cf. Eq.(4)]

|44 To:Zy — Z7€Y), (15)
|Az|
\

r_// ©=(01,0,), 61,0, [0,180°), 63=0,+6,.

A reflection abouk; acts aqcf. Eq. (5)]

-
v o

K.Z] « Z5, (16)
and a rotation by 180° inducgsf. Eq. (6)]

R:ZE 7. (17)
| As We enforce equivariance under Eq5)—(17) to obtain
. . . the form of the TW amplitude equations to quadratic order.
FIG. 2. Three qualitatively different phase portraits correspond--l_his truncation is sufficient to determine the leading order
ing to Eqg.(9) with a<0, A;>0. Top: b<a. Middle: a<b<-a. L )

Bgttom: g>( —)a. ! P resonant contributiob,. to b(6,c9 in Eq. (9). We have
Zt =L ZF + LoZ; + Q575 + Qo275 + QaZ,Z% + QuZoZ5,
ditional contributions to the cubic self-interaction coefficient ~ Lo 23 278 s

ain the SW equation (183
dA : - - _ i
d_Tl = AJA; +alA?A, (12) Z3 = LaZs + LyZ5 + QsZhZ5 + QeZ1 Z, + Q21 Z5 + Qi 2175,

(18b)

which is simply Eq.(9) restricted to one spatial dimension.
Since there is no spatial angleto tune, we may arrange for
a resonant situatio(l1) by varying parameters in the disper-
sion relation, as i18,23.

where the remaining four equations follow from the applica-
tion of EQs.(16) and(17).
We now apply a standard reduction procedure to(Eg)
and compare this result with the SW equati¢®ds To facili-
tate the subsequent calculations we first introduce a phase

IIl. SYMMETRY CALCULATIONS shift to the amplitudes:

We use the approach developed19,20,24 to determine Zi,— Z; £, (19
how the resonant contributidg, to the cross-coupling co-
efficient b(6,.9 in Eq. (9) depends on the forcing function
(1). We consider a system of six traveling wa\iaV) modes ¢=¢@y,— @ +180°, (20
see alsd18]) having the same wave vectdts as the three . . -

(SW moéies ]éescribgd in Sec. Il. It is advarﬁtageous to conv—vIth ¢1,2 denoting the phases of the coefficiehtsand L,
L . _ o : )

sider TW first because the action of the temporal symmetrieg';,jlec'{lL1vv\7rit|,[|élrf|i(;I tlhzt)a' f-cr)?ri TW equation18) may be com

on TW is simple while on SW it is not. In this way, we make pactly

full use of the temporal symmetry and Hamiltonian structure 5 _ +

before reducing the TW equations to the desired SW equa- Z=LZ+N@), 29

tions by means of a center manifold reduction. We thus exwhereZ =(Z;,2;,2;,2,,23,2Z3)".

where
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The bifurcation to SW occurs wheh,|=|L,|. As we will

see in the next sectiofl,,| ~|f,,|, so this bifurcation condi-
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unbrokenparametersymmetries by allowing an appropriate
transformation of the forcing parametdisand the damping

tion serves to define the critical amplitude of the dominanty. With this generalization the time translation symmetry

forcing component/f,|. The critical eigenvectors arg;
=(1,1,0,0,0,0" andv,=(0,0,1,1,0,0". We use a multi-

scale perturbation calculation to accomplish the reduction to

SW, writing
Z = (A1 + AN + P Zy+ (229
|fm| = |fm|cm+ 772|f2| T (22b)
d_,4
— = —+ 220
dt~ 7 o, (229

where n<1 is a small bookkeeping parameter af, are
the time-dependent SW amplitudes.®¢z) the linear prob-
lem is recovered. AD(77?) Z, is determined. AtO(#°) a

solvability condition yields equations for the slow variation

of the SW amplitudes:

A= ArA +bod A, (239

A= AiPo + bred AP, (23b)

The coefficientsa and by in Eq. (9) do not appear above

because the cubic order terms were omitted in (E8). For

(27) becomes

Ty Zf — Zie™it, f,— £ @i, (29
and the time reversal symmet(g8) becomes
o(ry)—-(rny, Z—-Z, f, —>f_u. (30)

The damping and forcing are both assumed to be small, and
are of the same order, i.¢f,| ~ y<1. A Taylor expansion of

the coefficientd_,, ... ,L, andQ,, consistent with Eqs(29)

and (30), leads to

Li=-vyv, (313
L= —inf, (31b)
L3=-0r7, (319
La=—iuiFa0, (31d
Q¢ =iq(Fy, (318

where only the leading order terms have been kept. The ex-

the purposes of this paper, we need only point out that th@ansion coefficients are all real, andg, > 0 since they cor-

“nonresonant” coefficienta andb, are bothO(y) [18,19,24

(recall thaty is a dimensionless measure of the damjping

The resonant contribution is given by

RelL;S)

= : 24
res Re{Ll} ( )

where
S=QWe ™ + QWe™ + QW+ QuW, (25)

with
W= (LU - LaU)(La2 = LD,

U=€%Qs+2Qs+€7Qy, (26)

and ¢ defined by Eq(20). Our analysis applies whelis|
>|L,, i.e., when thek; mode is linearly damped.

B. Temporal symmetries
Temporal symmetries constrain the coefficienfs... L,

respond to damping terms. The factorfgfin the expansion
of L, reflects the fact that the critical modes respond para-
metrically to the dominant componefji. The factorF,, in
the expansion off , represents an analogous parametric forc-
ing term for the damped mode@vhich has frequency))
composed of products of thg, and f, whose frequencies
sum to 2). When 2) forcing is present in Eq1), then, to
lowest orderF,=",q; otherwiseL,=0 atO(y).

The F, in Eqg. (31e), in accordance with Eq.29), must

contain products of thef, (and f,) whose frequencies
are such that (Q;,Qg)€ @™ (Q,,Qn)e ™™ and

(Q3,Q4,Qe)€™ are time-translation-invariant quantities.
Since we are interested in understanding when the effect of
resonant triads is significant, we focus on those cases where
b.es is O(y) or larger; this requires that one or more of the
quadratic coefficient®, is O(y) or larger. A straightforward
calculation shows that this scaling can occur only(f

e {m,2m,n,m+m,n-m}, >0, for some frequency, and

we henceforth restrict attention to these cases. Note that,

andQ,, ¢=1,...,7, in Eq(18). In the absence of damping Since there are many frequenciesfin), these sets of rel-
and forcing, the problem has an exact time translation symevant(} values can overlap. For instance, an-‘n mode” is

metry

Ty Zf — Zje ™t

(27)

also a ‘p—m mode” if n+p=2m, n<m. An important(and
somewhat surprisingresult of our symmetry calculation is
that the contributiorb,¢g arising from a given damped mode

with w; given by Eq.(14), and an exact time reversal sym- With frequency(} involves(at leading ordéra maximum of

metry

o.T— — T, Zf—>ZjI. (28)

five frequencies: the dominant frequenuoyup to three other
frequencies appearing &i(vy) in the three sets of coupling

coefficients(Q,Qs), (Q,,Q), and (Qg,Q4,66), and poten-

In the presence of finite damping and forcing, these tempordially one more frequency,(2, that parametrically forces the
symmetries are broken. Nonetheless, they can be recast damped mode a®(y), thus makingL, nonzero at leading
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order. The effect on the triad interaction of any additionalare needed to relate the underlying canonical variablé-%to

forcing components in Eq1) will be O(y?) or smaller. and Z* in Eq. (18). For inviscid Faraday waves the surface
heighth and the surface velocity potential are the underlying
C. Results canonical variablegsee, €.9.]26,2§). Using this fact we

_ _find that, to leading orderZ=r3=m/(2k,) andr3=Q/k4 are

We combine the res_ults of Se(_:s. [l A and llIB to Qt_)tam appropriate prefactors in E¢34) (see[32] where a similar
leading order expressions fdxe in Eq. (9) with explicit  ¢50t0r arises in the corresponding canonical transformation
dependence on the damping the forcing amplitudesf,], Requiring that be a real-valued function, invariant un-

and the forcing phaseg,. For each() there are a finite 4o the symmetrie€l5)—(17), (29), and(30), we find that the

number of qualitatively distinct cases to consider. These ar8quations of motiori34) are equivalent to Eqg18) only if
distinguished by the number of relevant frequencies i”V°|Veq11:rq5 0p=107, andds=q,=rqe with r=r2/r2 These condi-

(up to five) and the manner in which they enter the problem;;,,o imply, for the results in Table I, that
(throughL, and theQ,). Having chosen one of these, we
substitute the corresponding expressionsQegr and the ex- a1>0, >0, a3=0, ay=0. (35
pansions for the remaining TW coefficients shown in Eq.
(31), into Eqg. (24) for bs The results are summarized in
Table |, and will be discussed in the next section.

To make this table of results manageable, we make use of \we now discuss Table | in some detail, highlighting the

the following definitions: most important features of the results collected there. We
(329 then investigate the range of validity of these results, which

IV. DISCUSSION

1= s, were derived under the assumption of weak dampingo
_ do this, we introduce the Zhang-Vifials Faraday wave equa-
a2 = 0207, (32b) tions and use them to perform explicit numerical calculations
that demonstrate the range ¢ffor which the symmetry-
a3 = 206(0z ~ 0a) (320 pased results provide an accurate prediction.
a4 = (107 — 0205, (32d) A. Highlights of results

Some general comments on the organization of Table | are

' (329 in order. Note first that there are many cases which do not

need to be listed because they can be obtained simply by

: (32)  relabeling the different frequencies. For example, the case
(m,n,p,q, -;Q2)=(m,n,2m+n,m+n, - ;m+n) is equivalent

a5 ={20,06 *+ 05(0z — 0g) I\i/ |\

a5 ={20,06 — G7(Gz — Ag) PN/ |\

and to the case(fourth up from the bottom in Table)l
b ((D):|L3|+Mi|fm|sintl) (338 (m,n,p,q,-;Q)':(m,n,m+n,r1—m,-;n) with n—q.
20 IL32 = |wifanl® There are six groupings in the table. The first shows the
five important damped modes and their contributiorbfQ
; _ when there is only one type of coupling@(y) or lower and
Roq (P, D)) = |L3|qu)12+ M||f29|205®2. (33b no parametric forcind,,. In these cases there is fleading
Ll = |aif 20l orden dependence on the forcing phasgs In the second
In the above, they, and \; are defined by Eq(31). The section the same damped modes have been parametrically
relevant phase®,®,,®, appear in Table I. forced. The factor 1Lg| is then replaced b,(®) of Eq.

(339. This is a strictly positive oscillatory function
- (JLs|> | uif2| for damped modeswith extrema atb = +90°.
D. Hamiltonian structure The third and fourth sections are analogous to the first and
We now discuss the implications of Hamiltonian structuresecond, but with two types of coupling rather than one—
in the undamped problesee[21,26—31). This is a stronger similarly for the fifth and sixth sections, but with all three
assumption than that of time reversal symmegg) alone.  possible quadratic couplingse., allQ, are linear in thef,).
We suppose, as ifl9,20,24, that the undamped TW equa-  Two of the damped modes appearing in the table warrant
tions(18) can be derived from a Hamiltonid. Because the ~Special mention. Th€)=m mode stands out because its in-
amplitudesti and Zt need not themselves be canonically fluence is especially strong. For this mode, the largest qua-

conjugate Hamiltonian variables, we write Hamilton's equa-dratic terms in Eq(18) areO(1), and the resulting contribu-
tions in the generalized form tion byes is O(y™Y). In contrast, for all of the other damped

modes, the strongest quadratic couplings take placa(at
-, _ i dH and lead tdb.s Of O(y); theseO(y) contributions are of the
Zj‘: T, r1=fy ;e R. (34) d dbn in Ed. (9). but till h ianifi
r? g7t same order aa andby in Eqg. (9), but can still have signifi-
15 cant effects on pattern seelction, as demonstrated in Sec. V.
This takes account of scaling transformations |ﬂ§e—>er~i The second special case is the=2m mode. Although
that preserve the Hamiltonian character of the dynamics, anthis mode satisfies all the necessary temporal constraints to
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TABLE |. Leading resonant contributiop,.sto b in Eq. (9) for the most important damped modes. For a damped mode with frequency
Q, there are at most five forcing frequenciesn,p,q,r which affectb,s Here, m,n,p,q,r,Q0>0 andxe Z*. Each expression for
(m,n,p,q,r), given (), is excluded from those of entries further down the table, in which additional relationships hold. Dots indicate an
arbitrary commensurate frequency, if present, which does not dffgcit lowest order. Entries whose listed frequencies have a common
factor other than unitye.g., those withx,x+ 1) are assumed to be part of a forcing function with other, relatively prime, frequencies. For
* the = follows sgrim-n). See Eqs(32) and(33) for definitions ofay, ... ,as Pon, andRyq used below. Certain entries are reproduced
from [20]; the cases that involve more than three forcing frequencies are new.

(m,n,p,q,r) QO Leading resonant contributidn}eg Relevant phage)
m,-, ) m —ay/|Lg|
(m,-,-,-,) 2m —ay|ff?/|Lg|
(mn,-,-,) n —aglfo[?/]L4
(m,n,-,-,) m+n —ay|fol?/|Ls)
(mn,-,-.) n-m aglfol?/|Ls|
(m,2m,-,-,) m —a1Py(P) D=y 2¢m
(3%,2%, -, -, ) X _al|fn|2Pn(¢’) D =3¢, 2¢nm
(m,4m, -, -, 2m —ay[f[ Py (@) == 4
(m,n,2n, -, ) —ag| o Pp(®) D=2¢,— ¢,
(m,n,2m#2n, -, ) m+n —ay|fo[?Py(D) D=y 2¢pm T 2¢hy
(m,n,2n-2m, -, ) n-m ap|foPp(P) D=+ 2¢h— 2y
(m,2m,-,-,) 2m (_a1|fm|2_a3|fn|2+a5|fm”fn|5inq))/“—3| D=y —2¢y
(m,3m,-,-,) 2m (—a1|fm|2+a2|fn|2+a/4|fm||fn|COS(D)/|L3| D=¢p—3¢m
(m,n,[m-nl, -, ) (—a|fpl2= aglfof 2+ as|f flsin @) /]| D= hn= Pt pp*
(m,n,m+n, -, ) n (a2|fp|2_a3|fn|2+a6|fn”fp|5inq))/|l-3| D=t =y
(m,n,2mn, -, ) m+n (arg|fpf?= g ]2+ ay| || fplcOSD) /] L3 D=2¢n— Ppt Py
(3x,%,2x, -, ) X _al‘fp|2Pp(q)1_q)2)_a3|fn|2pp(q)l+q)2) D1=pp— eyt ¢p
+a5|fn”fp|Rp(q)vaD2) D=+ ¢n_2¢p
(3x,2x,4x, -, ) X _a1|fn|2Pn(ch+(b2)+a2‘fp|2Pn(q)2_(I)1) D=+ dp—2¢n
+ay|fo|| fp|R\(®1- 90", ,+90) Do=2¢n~dp
(m,2m,4m, -, 2m —a1|fm‘2Pp((I)1—(I)2)—a3|fn‘2Pp((IJ1+(I)2) D1=¢y=20p
+a5|fm||fn|Rp(q)lnq)2) ¢2:¢n+2¢m_¢p
(m,3m,4m, -, ) 2m —ay|ff2Pp(@1 = D) + g f | 2P (D1 + D, +180) ®;1= =3¢
"'C“4|fm||fr1|Rp((I)1"'go° P,+90°) q)2:¢m+¢n_¢p
(m,n,|m-nl,2n, -) n _al‘fp|zpq(2®1_¢z)_a3|fn|2Pq((D2) D=y Pt p*
+as|fy ||| Ry(P, P~ P1) Dy=2¢n— oy
(m,n,m+n,2n, ) n a2|fp|zpq(2¢1_¢2)_a’3|fn|2Pq(q)2) D=t dn—dp
+ag| | | Ry(P 1, Py~ D) Dy=2¢y— oy
(m,n,2m+n,2m+2n, -) m+n —ay|fo|2Pg(p= 2D 1) + )| f | 2Py (D)) D=2 by~ by
+ay|f || folRy(®1+90° B~ D1 -90) Dy=2¢m=2¢p+ ¢y
(m,2m,3m, -, ) 2m {(ar|fol? = g frnf? = gl o[+ g | F plCOS D D1=dp=3bm
+ as|fo|| frlsin @, + ag|fo || folsin(@,— D)} |Ly| Dy=pp=2¢n
N, n {(a2|fp|2—a1|fq|2—a3|fn|2+a4|fp“fq|COS(I)1 (D1:¢p_2¢mi d’q*
+ a5|fn”fq|3in(q)l+¢'2)+a6|fn”fp|5in¢’2}/|L3‘ q)2:¢m+¢n_¢p
(3X:X:4X12X: ) X _a’l|fq|2Pq(q)2_¢)1)+a2‘fp|zpq(¢’1+¢)2) q>1:2¢m_¢p_¢q
—ag|f | 2Pg(2D3~ D1~ D)) + g f || o Ry (D1 +90° . B,~90°) Dy=2¢4=dp
+ag|fo || fo| Ry(P3— @1, Pg— D)) + agf || | Ry (D3, D1 + Dy~ D) 3=+ Pn—bp
(m,2m,3m,4m, -) 2m —a1|fm|2Pq(—(I)l—CI)2)+a2|fp|2Pq((I)2—CI)1) (I)l:¢m+¢p_¢q
—ag| f[?Pg (203~ D1~ D) + g | f | Ry(P2+90° , D1 +90°) Dy=3dm* Py
+ag|f | Fo Ry (@3 = D1~ Dy, D3) + g fy || f o Ry (@3~ D, Pz~ D) D3=2¢m+ ¢~ ¢y
n, n a2y (Dy= D) + || 2Py (1 + D) D1=2¢n= dp+ po*

—ag|f | 2P (203~ D1~ D) + ayf || fo| R (D1 +90° D, -90°)
+ag|ffg|R(Pg= Dy, Dy— D) + ag| || f R (D3, Do+ Dy — D)

®,= ¢r_¢pt ¢q*
D3=dm+ Pn—bp
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make a significant contributioln,. it cannot enter into reso- fluid layer. We use the same scaling of the equations as in
nant triad interactions with the critical modes because it§23], writing them in the form
wave number is too large, i.&y> 2k;, and Eq{(2) cannot be

satisfied; one can estimate the relevant wave numbers from (9,- yYV)h=-Dd = F(h,d), (363
the inviscid fluid dispersion relatiorisee [18] and Sec.
IV B). However, this mode may have relevance for other (0,— YWD - [I,V2-G(N]h=G(h,®), (36b

systems such as ferrofluids in a magnetic field where the _ )
dispersion relation is nonmonotor{i83], and hence we have WhereG(7)=Go-f(7) and the nonlinear terms are given by
kept it in the table. 1 R o

A key result of Table | is the important role played by the Fh,®)=-V - (hV ®) + =V¥h?>Dd) — D(hDD)
relative phaseg, in the forcing function(1). For all but the 2
most simple case@n the first section of the tableb,.s de- I N 1
pends on combinations of the forcing phases which are in- +D{ hD(hDD) + EhZVZCD}, (3739
variant under the time translation symmefry of Eq. (29);
one phase is always arbitrary, associated with the choice of
origin in time, while any physically meaningful phase must  g(n, @) = }(5@2_ E(Vq))z_ (DD){hV2D + D(hDD)}
be invariant under Eq29). This phase dependence provides 2 2
a very convenient way to tune the strength of the nonlinear 1
interactions, as the numerical examples of Sec. V will dem- - =TV -{(Vh)(Vh)2. (37b)
onstrate. 2

Another important aspect of Table | pertains to the sign ofHereh(x, 7) is the fluid surface heightb(x, 7) is the surface
bres Recall from the discussion of Sec. Il thatbfes>0  yelocity potential, anck is the two-dimensional spatial coor-

interactions involving critical modes separated by the angle;. - . ,
6. will be enhanced, whereas lif..< 0 they will be sup- Qinate. The operatdP multiplies each Fourier component of

pressed. Relationé5) mean that for simple couplingshe @ field by its wave number, i.eDe = (ke _

first two sections of Table)lthe sign ofb,. is determined, The equations depend on three dimensionless fluid param-

and thus one knows which effe(if any) to expect. In par- €ters: the damping parametgrthe gravity numbe,, and

ticular, theQ=m, Q=2m, andQ=m+n modes are suppress- the caplllarlty num_berI‘O. These fllwd parameters, and the

ing while the Q=n mode is inconsequential. THE=n-m dlmenspnless forcing amplituddégs in Eq. (1) are related to

mode, in contrast, is enhancing, and thus is of great interedp€ physical parameters by

because it may be used directly as a selection mechanism. 22

The effect of this difference frequency mode on pattern se- y= .

lection was examined ifiL8], and indeed, it is likely respon- Q)

ailefo sl e superaice patter obaervedTh . yferev i he kinemai viscosiy i he suface tnsion.
A final noteworthy feature of Table | concerns the effectrs the _dgnsny,_ and and theg, are the Founer amplitudes in

X . ; the original(dimensionegforcing function

of parametrically forcing the damped mode with a frequency

2Q0. A comparison of the factors ], P,(®), and gty = > g +cc.,g,eC. (39)

R0 (P4, P,) reveals the potential for a small denominator in uezt

the latter two cases. The parametric forcing can incrézase -

and amplify the effect of the damped mode provided thisAdditionally, k is defined by the inviscid gravity-capillary

denominator does not become excessively small, whichvave dispersion relation

would indicate that the damped mode is nearly critical and ~ 5

that the reduction leading to E(R3) is breaking down. This ~ ok’ _ <mw) (40)

feature will be exploited as well in some of the examples of p ’

Sec. V.

1GOE

K ok’ K
S To=""3 f,=5. (39

and g, is the usual gravitational acceleration. Note tfEat
B. Zhang-Vifials hydrodynamic equations andI'y are not independent parameters since E8R) and

In this subsection, we investigate the range of damping (40) imply that
for which our symmetry-based results are valid. To carry out m?
this investigation we perform explicit numerical calcula- GO+F0:Z- (41)
tions using the Zhang-Vifals hydrodynamic equations
(introduced below In particular, we use the method des- The dimensionless dispersion relatigef. Eq. (40)] also
cribed in[16] to calculate the cross-coupling coefficiemt —gives the natural frequenc§2(k) of undamped, unforced
in Eq. (9) as a function off, the angle betweelk; and waves as a function of their wave number
k, in Fig. 1. It is sufficient to takefe[0°,90°) since o
b(6)=b(180° ) =b(180° +). 0% =Gek+ T (42)
The Zhang-Vifials equation®1] describe the dynamics For small dampingy, Eq. (42) provides an excellent esti-
of small amplitude Faraday waves on a deep, nearly inviscidnate of the wave number associated with a given frequency,
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even for forced waves; we make use of this fact in Sec. V.
Since the critical modes oscillate with dominant frequency —3.04f
m/2, we havek.~k(m/2)=1, wherek(() is the inverse of

the dispersion relation from E@2). One may then choose a
damped mode with frequendy, find k(€2), and then apply  _3 47}
Eq. (3) to estimatef,es

C. Validity of symmetry-based results -3.10f

To investigate the applicability of our results for finite
values ofy, we focus on an example using three-frequency
(m,n,p)=(8,7,2 forcing and quantify the effect of th@ —3.13F )
=8-7=1damped mode; this corresponds to the penultimate . . . 0
entry in the second section of Table I. Although this mode 21 22 23 24 25
does not necessarily lead to the most significant resonance,

we study it as an instructive example to address gener i B . .
questions about the validity of our symmetry res,ultsi;z:!)'fz3 Tfs "r;?f t|h :re(a)el;fr|efq‘l;ﬁn<|:i(r(r)1,gép()ﬁ—(:8(;)7:,3) fzo(r)quh'ey;notgrig
Damped modes which play a more important role are exam-._ ' .MM T EREEmET M R ¢
. - L . given in degrees.

ined in the applications in Sec. V.

From the Hamiltonian considerations in Sec. Ill we have _ ) ) . _
a;>0, and thusb,..<0. We setl’,=16 in Eq.(36), fix the the proportionality toy. The theoretlcially predicted scz_ilmg
ratios of the forcing amplitudes df,|/|f,/=0.4, |fp|/|fm| holds reasonably well up FQ~O(1CT ), and the_ngmenca}l
=0.08, and compute the coupling coefficidait) using the result does not strongly diverge from the prediction umtil
method described ifi16]. As predicted on the grounds of ~0.5. , , .
symmetry arguments, there is a dip in the plobtd) around _ Next,_we examine the scaling of the half-width of the
the anglef,.s~23° where theld=1 mode is in spatial reso- d!p at 6=bres FOI 07 fres the natural frequency diy will
nance. An example is shown in Fig. 3 for=0.1 with ® _dlffer from th_e resonant frequen_((m, 2m, n, e_t(?). At lead-
(which appears in the fourth column of Tableskt to 0. Ing o_rder, th|sd(_etun|ngappea_rs in the coefficiert; as an

In the discussion that follows, we study various propertieérnagm":lry part, i.e.Lg=—¢,y+ig; [cf. Eq. (310]. If the de-

of byes as the damping parameteris varied. In this discus- UNING 1S small, ﬂ;]e Ilnkear a?]proxmatlorﬁgckd—k,esoc_a q
sion, it is important to realize that the results will depend on~ fres can be usedhereks is the wave number associate

the chosen value af, on whichy in Eq. (38) depends indi- Wit the resonant frequengnd sog; ~c(6- g for some

rectly through Eq(40). When generalizing the results shown €@l constant, i.e.,
below to other forcing functions it is, in fact, better to look at - Cn
the quantityy/m [cf. Eq. (38)]. This alternative nondimen- Ls Qry+1C(0= fred- (44)

sional measure of the damping utilizes the critical wavesubstituting this expression into the result from Table |
number and the dominant frequen@yw, as opposed t@)  shows that¥ =« y. Numerical results are displayed as points

and is therefore better suited for quantitative comparisorn the log-log plot in Fig. 5. For comparison, we plot a line
across forcing functions with very differemh values. We

have used the scalin@®8), which utilizes thecommonfre- 10!
quency, to be consistent with previous wq(8,20,23,24

We first consider the scaling dif,.d as y is varied with
®=0. It follows from the result in Table | that

|Lg| 10
—_—, (43
|Lal? = |mif ol

Furthermore, recall from Eq(31) that |L; 5>y and |L,|
« f,. Since, at the onset of SWL4|=|L,| (see Sec. I, we 107}
have|f|oy. Since|f,|, [f,, and|f | are held in a constant
ratio, we also havéf,|, |f |« y. Thus Eq.(43) becomes sim-
ply byesy. This scaling is confirmed by the numerical re-
sults of Fig. 4. Here, we hold=0 and computéb,.d as a 107 — — — .
function of v. We calculate the resonant contribution as 10 10 10 10 10

|bred =[0(fred =b(6red|, Where b(fed is the cross-coupling FIG. 4. Resonant contribution.sas a function of the damping
coefficient evaluated at the same angle as for the case @hrametery. The dots correspond to a numerical computation using
three-frequency forcing, but wittf,| and|[f,| set to 0. The Eq. (36). The straight line of slope 1 confirms thi..x y scaling
numerical data are shown as points. For comparison, a lingredicted by symmetry arguments. The capillarity and forcing pa-
of slope 1 is drawn through the first data point, confirmingrameters used are the same as those in Fig. 3.

FIG. 3. Coupling coefficienb(6) in Eq. (9) computed from Eq.

|bres |

Bres ™ |fn|2

~
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101 : . . 180
U
Qmin
90 e
107"
O L
Qmax
=90 e
107} L.
9 Y
. . . 150 . . .
107 107 107 107" 10° 10° 107 102 107" 10°

FIG. 5. Half-width¥ of the resonant “dip” as a function of the FIG. 6. The values ofd at whichb(6,.9 takes on its minimum
dampingy. The dots correspond to a numerical computation usindand maximum values as a function of the dampipgThe dots
Eq. (36). The straight line of slope 1 confirms the predictd-y  correspond to numerical data, while the lines at 90° and —=90° show
scaling. The capillarity and forcing parameters used are the same @se predicted minimum and maximum respectively. The capillarity
those in Fig. 3. number and forcing amplitudes used are the same as those in Fig. 3.

of slope 1 fitted through the first data point. As with the dip

magnitude|b,d, the theoretical prediction remains reason—t lati t hich . that t involvi
able up toy~ O(10°Y). ranslation symmetry, which requires that terms involving

additional powers of the forcing amplitudgsonly appear in
certain combinations. The specific orderirat which these
new terms become relevant depends in nontrivial fashion on
the particular choice of forcing frequencies.

In this section we have explored the validity of our sym-
metry results with respect to the smallassumption under
which they were derived. For smaj, the symmetry results
. . are in excellent agreement with the numerical ones. For
Figure 6 shows how the numerically calculated val(ezdy larger v, the scalinggs predicted by symmetry are not correct.

of &, and ®,,,, differ from the theoretical predictions - g
) o . However, many of the importaualitativefeatures are pre-
(lines) asy is increased. To elucidate the departure from the y portau b

. . . . served. In particular, even at larggrincreasingy increases
theoretical prediction, we show three profiles correspondm% 1. Furthermore, even though the dependend,gfon
to three different values ofy in Fig. 7. In Fig. 1@, v  .o'on L ; :
=0.04 and the profile, as predicted, appears sinusoidal, WitS no longer sinusoidal, there are still special phabgg and

the locations of the minimum and maximum values in good_ ™ which minimize and maximizébe, suggesting that
) : o even in experiments with large damping, tuning the forcin
agreement with the theoretical prediction &f=+90°. In b 9 ping 9 9

Fig. 7(b), y=0.2 and, although the profile is still sinusoidal, phases may be an effective means by which to control reso-

o . . ) nant triad interactions important to pattern formation.
it is shifted by approximately 45° with respect to the theo- P P

retical prediction. In Fig. ), y=1, and the profile no longer

resembles a sine function. This is demonstrated further by V. APPLICATIONS

the plot in Fig. 7d), which shows the Fourier transform of  The results in Table 1 may be used to understand—and
the data in Fig. ®). The zero componenti.e., the  control—certain phenomena in Faraday systems. For each of
®-independent payrthas been removed, and the remainingine following examples, we apply our symmetry-based meth-

data have been normalized so that the strongest componegis and demonstrate the results via numerical calculations
has magnitude 1. The data indicate that higher harmonics gfsing Eq.(36).

@ are now important. Note that the phase shift of the maxi-
mum and minimum, relative to their predicted values, ap-
pears well before the higher harmonics come into ke
Fig. 7(b)], a fact that can be understood as follows. The
dependence in Table | originates with the phase of terms in We focus on the cases for whi¢h=m in Table I, so that

the normal form reduction, and depends on products of thée critical modes and the damped mode are in a 1:2 tempo-
coefficients in Eq(31). If the next order terms in the expan- ral resonance. From the Hamiltonian considerations in Sec.
sions describing these coefficients are kept, a phase shift dff, a;>0 and thus,,<0. Also, recall from Sec. IV that for
O(y) is obtained. In contrast, higher harmonics ®fare this case, the modes are coupledat). Therefore, the con-
generally associated with higher ord@s opposed to next tribution byes is O(y %), which is larger than for the other
orden terms in the expansion81). This is a result of time- cases, where,sis only O(y). In short, theQ)=m mode has

Finally, we consider the dependencehbtf,.) on ®=¢,
—-2¢gt+2¢;, and examine how thi® dependence changes
with increasingy. From Table |, we expect that the depen-
dence is sinusoidal and, from the fact that> 0 [24] for Eq.
(36), we anticipateb(6,.9 reaching a maximuni.e., having
the shallowest dip near ®=®,,=-90° and reaching a
minimum (i.e., having the deepest dipear®=®,,;,=90°.

A. 1:2 temporal resonance and impulsively forced Faraday
waves
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b b(o ' FIG. 7. (a)«c) Dependence of
_i93 (6res) (a) e (Bres) (b) b(6,e9 on the phase (P given in

’ : degrees (a) With damping y
=0.04. As predicted by the sym-
] metry arguments in Sec. lll, the
-1.23 phase dependence is sinusoidal
with minimum and maximum near
+90°. (b) y=0.2. The phase de-
pendence is sinusoidal, but there
) ‘ b is a phase shift of approximately
-180 =90 0 90 180 -180  —90 0 90 180 45° (c) y=1. The dependence is
no longer sinusoidal(d) Fourier
transform of the data iric). The
zero component has been removed
and the remaining data have been
normalized so that the strongest
component has magnitude 1. The
dependence on higher harmonics,
e.g., 2b, 3, 40 is apparent. For
all plots, the capillarity number
and forcing amplitudes used are
the same as those in Fig. 3.

-6.35

0.75}

0.25¢
—40

-180 -90 0 90 180 1 2 3 4 5 6 7 8 9 10

a very strong influence oh(¢). The implications of this which is far from the codimension-2 poitft,|/|f|=3.53 at
well-known resonance for Faraday waves have been investiwhich waves with dominant frequenay/2 set in. The()
gated in a number of studies, includif@d]. =m mode has wave numbek(m)=1.83, and thus6es
When f,,, forcing is present, the size dif.s depends on =47.1°. Consistent with Table |, a dip b{6) is found at this
the phase®=¢,,,—2¢,,; see the first entry in the second angle. As predicted, by choosin=90°, we achieve the
section of Table |. This phase dependence has previoushargest dip atf,. and thus a strong suppression of patterns
been calculated ifiL3] by means of a perturbation expansion involving angles near this one. On the other hand, uding
on the Zhang-Vifials mode36). Our work confirms the near —90° actually reduces the effect of the triad interaction
phase dependence in a model-independent manner, i.e., by a factor 1/2<|Lg|/(|Ls|+|mifoq])<1 relative to the
means of symmetry considerations. The phase dependengingle-frequency case, so the suppression is much weaker.
gives us a convenient and powerful means by which to con- As discussed in Sec. Il, the spatiotemporal resonances we
trol the 1:2 resonance and influence the shapé(éf. In  consider in this paper may also affect the self-interaction
particular, usingb=90° maximizes the effect of the reso- coefficient a in the one-dimensional analog of E9),
nance, while®=-90° minimizes it. namely, Eq.(12). In the case of the 1:2 temporal resonance,
In Fig. 8 we show a numerical example fédm,n)  the conditionQ(ky)=2Q(k,) must be satisfied along with Eq.
=(1,2) forcing. The parameters in E(B6) are y=0.008 and  (11). There will then be a contribution to the self-interaction
I',=0.125. The forcing amplitude ratio i$,|/|f,|=0.396, coefficienta in Eq. (12) whose dependence on the forcing

T 0
—————— b(ares)

-5t

0
s
—10} -10}
-15F -15}

20t 201

_25¢ =25t

(@) . o 0 (b) o
0 30 47.1 60 90 —180 -90 0 90 180

FIG. 8. Effect of relative forcing phase on the first harmonic resonance, i.e., resonance vk thenode, for(m,n)=(1,2) forcing.
The relevant phas® is given in Table 1(a) Cross-coupling coefficierti( ) with ®=90° and®=-90°; the single frequency caggashed
line) is shown for referencgb) Dip magnitudeb(6,.) versus®. For these calculations, the parameters in B§) are y=0.008 andl’
=0.125, and the forcing amplitude ratio|fg|/|f,/=0.396. Bothd and® are given in degrees.
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fs fs fcrit(t) — ,yeit + F2e2it +c.c., (48)
T where
t=a«a t=27+a
t=20 t =27 ' [e%
l l FZ:—chos(E). (49
—fs —fs The first entry in the second section of Table | indicates that

the 1:2 spatiotemporal resonance produces a negative contri-
bution a.s to the self-interaction coefficient given by
—a1P,(®) whered=argF,). Using the expressio9) and
simplifying reveals that

FIG. 9. Schematic representation of the asymmetrfanction
forcing specified by Eq45).

and damping parameters is precisely that given in Table I. In S a
practice, one may vary the frequen@yby tuning the capil- ST |Lg| + 2uy cogaf2)’
larity numberT"y which appears in the dispersion relation o .
(42). In an experiment, this might be achieved by varying theWhich decreases asis increased across the interval, 2m),
base forcing frequency [see Eq(38)]. assum|_ng(Li>O (se_e[24]). This is consistent w!th the obser-
The results of Table | for the 1:2 spatiotemporal resonancation in [22], which successfully fits numerical results to
and its effects on the self-interaction coefficienmay be this functional form, at least for smajl. From Eq.(12) we
used to understand certain features of impulsively forced€e that the periodic striped state has a steady state amplitude
Faraday waves, i.e., waves forced by a periodic sequence 8f |A°=—)/a. Thus, experimentally, the wave height may
impulses rather than a smooth forcing function of the form ofo€ controlled by varyingr. Largera causes smallea and,
Eq. (1). Impulsive forcing was studied first i{84] and sub- ~ consequently, larger amplitude waves.
sequently in[22].
In [22] the forcing function takes the form

(50)

B. Stabilization of superlattice patterns with multifrequency
forcing

f(t) = 5>, St - 2mn) — 8t - 27n - a), (45)
n=0 We now generalize the simple one-dimensional example
just presented. Our symmetry-based results suggest a meth-

representing an alternating sequence &ffunctions of R A o ; .
odology for “engineering” specific two-dimensional patterns
strengthf; The sequence has a temporal asymmetry con;

trolled by the parametes e (0, 27), which determines the through a JUd'C'OUS choice O.f forcing fun_ct|on. Tth‘ idea is to

t of ti bet i | d th b exploit the results in Table | in constructing a multifrequency
amOli.n 0 |Ime Aedwe_e? a p?sé Ve pu Sﬁ and. lezz_sugs?que rcing function such that enhancingnd/or suppressing
“Zega;‘(’g F))u'ssec.alc Iearig: dI(:‘Po(r)n E@%)GIS zn?ng :gr :ag. d'. gt resonances occur at carefully chosen angles. We will apply
[22], ol u _q( ), g€ dip this methodology to demonstrate how a superlattice pattern
I'y=T",s is observed, wher&' s is the parameter value for

hich the 1-2 . | _ i<fied of the SL-I type observed ifi7] may be stabilized. Stabili-
which the 1:2 spatiotemporal resonance is satisfie -FOT' Zation of this superlattice patterns can be related to the
sufficiently small, it is noted that this dip becomes more

S h i b damped)=n-m “difference frequency” mode in Table I. A
negative(i.e., the correspon INges DECOMES MOTE ”?‘gatbfe demonstration is provided ifiL6], and further explorations
as the asymmetry parameteris varied across the interval

0 2m. This ob tion | istent with th its i are performed in[18,20. The method we outline below,
(0,2m). This observa lon IS consistent wi € TresullS Mhowever, results in a dramatically more pronounced stabili-
Table I, as we now explain.

zation than was obtained in previous work. In particular, it

From Table |, there are at most two forcing frequencies;qn jead to stable superlattice patterns at onset of the primary
which affect the Q=m damped mode at leading order, instability of the flat fluid surface.

namely,mand 2m. We therefore consider a drastic truncation Step 1 Use geometry to determine the angles for the de-
of thfa Fourier series fqr the forcing functiqd5b), keeplng sired enhancing (or suppressing) effecdr the SL-I pat-
the first two terms, which are the only terms affecting theen the 12 dominant waves have wave vectors that lie at the
resonance at leading order: vertices of two hexagons, one rotated by an aryle 30°

f(t) = f e+, +c.c., (46)  with respect to the other; see Fig. 10. Only a discyétat
countably infinite set of 6, lead to periodic patterns, and so

where we restrict attention to these values; $&8] for details. The
fs . fs L stability of the SL-lI patterns may be studied within the
fy= 5(1 €', f,= Z(l -e ). (47)  framework of a 12-dimensional bifurcation problem which

describes their competition with stripes, rhombic patterns,
For Eq. (36) with weak damping and forcing, and for the and hexagons. This approach is developefll$35,3§ (the
two-frequency truncatio¥6), the Faraday instability occurs full bifurcation equations may be found [86]). A key result
when |f,| =1y (this follows directly from the results ifl8]). is that the stability of the superlattice pattern associated with
By settingf s equal to its critical value and making a trans- 6, depends on coefficients in the bifurcation equations which
lation in time, we can write the forcing function at onset aswe call (by,bs, bg), where
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as close to the optimal wave numbers as possible. In practice
we also vanl’, so as to arrange for frequenci@s, n, p) that
are not too large—this is not strictly necessary but it eases

our numerical computations to use smaller sets of integers.
In this case we obtain reasonable agreement by using
(m,n,p)=(8,10,12 andI'y=5.26. The wave numbers pre-
dicted by Eq.(52) are (K,-m,kp-m) =(0.351,0.682 and the
corresponding resonance angles of E). are (6,_m, fp-m)
=(159.8°,140.1). These will cause spikes ib(6) at ap-
proximately 20.2° and 39.9°, respectively. Note that the
former angle is close to our chosép and the latter angle is

close to 60° 4, [cf. Eq. (51b)].

We compute the coupling coefficient from EH@6) with
damping y=0.1, forcing amplitude ratiogf,|/|f=1.54,
|fol/|fm/=1.85, and forcing phases (¢py, dn,dp)
=(0°,0°,0°). The forcing ratios were chosen to malg,

. . __proportional to|f,|? for 6,.s=20.2° and to|f,|?> for 6
FIG. 10. Schematic of the Fourier wave vectors correspond|n£3g90 as Iargel :;|S possibrres while at the sa|n$|e time a;jts)iding
to the 12 dominant waves which comprise an SL-I superlattice pat;, ..’ '

) ; gwe critical valuegi.e., the modes oscillating a2 andp/2
tern. The vectors point to the vertices of two hexagons, one rotateremain damped The coefficients(b,,be,by) can be ex-
by an angle, <30° with respect to the other. P 41751 -6

tracted from Fig. 1¢a), where we ploth(6)/|al as a dotted
line. As expected, there are two bumps due to the two differ-
ence frequency resonances, though they are quite sthall

b, =b(6,)/|al, (518 jarge dip aroundd=0° is due to resonance with tfe@=m
mode. In fact, though the observed resonances at 20.2° and
bs = b(60° - 6)/|al, (51b)  39.9° are in excellent agreement with the prediction, the ef-
fect is far too weak to stabilize a pattern at the chosen angle,
be=b(60° +6,)/|al, (510  and so more work must be done.

_ o . Step 3. Use the results in Tableto further enhance/
with a and b(6) appearing in Eq(9). In particular, the su-  gppress the nonlinear interactiani this case we add the
perlattice ~pattern is favored over hexagons whengrcing componentgq,r)=(4,6) in order to parametrically
(Ibyl,|bs|,[bg|) are all sufficiently small. Since(6) may be  5rce the damped=2 and Q=3 difference frequency
made sm_all in_magnitude with “(_anhancing” resonances that,odes and obtain largéln,.J. In order to favor our chosen
cause spikes im(6), geometry dictates that we should ar- g _ pattern, we choosg,|/|f,| and|f,|/|f,| as before, and
range for such resonances to occur at one or more of thgke |fq|/|fm|:0_184 and|f,|/|f,|=0.505. These ratios are
angles#, 60°—,, 60° +6,. For a more detailed discussion, cjose to(but below their critical values whenf,|=|f.|c"™.
see[16]. We have chosen the phases to b, dn, by, dg, br)

Step 2. Use the dispersion relation and appropriate reso= e g° 0°,-7°,-109. Though the arguments of Sec. II
nance conditions from Tableto find a good set of forcing suggest that we should make. as large and positive as
frequencies which satisfy the geometrical constraints fro”bossible to favor the pattern, we are working with a cubic
step 1 For our SL-1 example, since we want to Constiuctyncation of the bifurcation equations and so we actually
enhancing resonances, we turn our attention to @wn \yanth  such thatb| is very smallas previously statgdwe
—m “difference frequency” mode. We begin with three- might have adjusted the forcing amplitude ratios to achieve
frequency (m,n,p) forcing, aiming to make two of s sityation, but instead, we find it more convenient to vary
Iy, |bs|, |bg]) small using the two difference frequency the forcing phases away from the optimal values predicted
modes(}=n-m and )=p-m. We choose to stabilize a su- py Taple I.
perlattice pattern having,=20.3°. (This is one of the ad-  ~ The coupling coefficient appears as the solid line in Fig.
missible values of),. The corresponding pattern is a differ- 11(p). It nearly duplicates the result from the three-frequency
ent SL-I pattern from that observed ], but it is in the  case(which is included as a dotted line for comparigdit
same family of patterns; s¢&5,36.) The two wave numbers the two small bumps have become large spikes. We find that
corresponding to the difference frequency modes satisfy thg; 6=20.3°,(b,,bs,bg) =(—-0.02230,-0.01887,-0.040450

resonance conditions study the stability of the superlattice states, we perform a

02k ) =(n-m)2, 52 bifqrcation analysis using the overall forcing strendth
(ko) = ) (629 = | fl2+|fo 2+ [f o2+ |fo|2+[f,]? as the bifurcation parameter.
02k, ) = (p-m)? (52b) (Similar studies were carried out [46], which reprises the
p-m/ = :

full form of the bifurcation equations and expressions for the
With the optimal wave numbers for these damped modesigns of the eigenvalues of various patterns, and also gives
dictated by geometry, the aim is to find a set of forcingsome typical examples of bifurcation scenan@sbranch of
frequenciegm,n, p) such thak,_, andk,_,, of Eq.(52) are  superlattice patterns with,=20.3° bifurcates transcritically
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0.5 b(0) - - - @ obtain dramatically increased stabilization of the desired pat-
- tern.
[al
OF L e
) C. A conjecture on quasipatterns
-0.5
The superlattice pattern discussed above belongs to one
gl ] intriguing class of complex patterns; another such class is
that of quasipatterns. Quasipatterns are the continuum ana-
logs of quasicrystals. Unlike the superlattice patterns, they
-1.5¢ 1 are not spatially periodic. However, their Fourier spectra
e possess discrete rotational symmetry. Quasipatterns have
5 , d been observed in a number of Faraday wave experiments,
0 20.2 39.9 60 90 including [6,7,37.
0.5 . . . A common approach to investigating certain types of qua-
b(9) (b) sipatterns has been to describe them using amplitude equa-
lal tions for the evolution of a number of critical modes equally
or V. e spaced around a critical circle in Fourier space; see, for ex-
ample,[21,38,39. Recent work in[40] elucidates the tech-
0.5} ; nical problems with this approach. The issue is that through
nonlinear interactions, the critical modes generate other
modes which come arbitrarily close to the critical circle, and
-1y ] a center manifold reduction to a finite dimensional bifurca-
tion problem is not possible. The usual amplitude equa-
15tk 1 tion description is thus without a rigorous mathematical
foundation. Nonetheless, our basic physical ideas should
R ‘ 6 still apply to quasipatterns. We may tune our forcing
) 20.2 399 60 90 function to drive energy into modes corresponding to

different resonant angles and thus favor the corresponding
FIG. 11. (a) Coupling coefficient for computing superlattice-l patterns.

pattern stability. We use three-frequency forcing witim,n,p) For example, here we suggest a forcing function which
=(8,10,13. The two small “bumps” at (6r-m,b0p-m) may favor a 14-fold quasipattern, which, to date, has not
=(20.3°,39.99 are due to resonance with the modes oscillatingbeen observed in Faraday wave experiments. We use the
with the difference frequencie@=n-m and Q=p-m. No super- methodology outlined in the previous example. The 14-fold
lattice patterns are stableh) Like (a), but with additional forcing  quasipattern involves seven standing wave modes, and hence
frequency componentg,r)=(4,6) which parametrically force the sjx angles between 0° and 180°. We wish to arrange
difference frequency modes. The result freay is duplicated as a  for >0 at the anglesf;=j(180°)/7, j=1,...,3. This
dotted line for comparison. The two bumps become two very Iarg%ctually accounts for all of the angles in the quasipat-
spikes, and the superlattice pattern with an@le=20.3° is stabi- tern, since as previously mentionedy(6)=b(180°—)

lized. For(a) and(b), we have added vertical arrows to guide the _ o4 ~
eye to the effects at the resonant angles. The fluid parameters us?é) (180° +6) by symmetry. We choose a seven-frequency

are y=0.1 andl'y=5.26. The forcing amplitude ratios and phases_orCIng function  with freqluenC|es (.m,n.,p,q,r,s,t)
used are given in the text. The region around 60° corresponds to a(12,17,20,27,10,16, 30nd fix the capillarity parameter

hexagonal interaction not captured by our calculation, and thus hako=28.8 in Eq.(36). The =n-m=5, (}=p-m=8, and(}
been removed. =g-m=15 difference frequency modes are parametrically

forced by the(r,s,t)=(10,16,30 components and have
resonance anglefestimated using the dispersion relation

from the trivial state, and the subcritical branch then turngdiven by Eq. (42)] of 128.62°=180°-51.38°, 103.28°
around in a saddle-node bifurcation at a particular value=180°-76.72°, and 27.60°, respectively. These modes will
fo=fsn. At a slightly greater forcing strengthy, > <y (still therefore produce spikes b{6) very near the desired angles
in the subcritical regime the superlattice pattern is stabi- of 51.43°, 77.14°, and 25.71°. We take forcing frequency
lized, and remains stable fdi,>fg, (at least within the ratios [fol/|fu|=1.2, [f|/|fe|=1.6, |fo|/[fm[=2.8, [f[/|fy
realm of validity of the weakly nonlinear description pro- =0.62, [f{/|fy/=1.2, and|f{/|f,|=2.2 and computeb(6)
vided by the bifurcation equations from Eg. (36). The results are shown in Fig. 12. The dotted

The methodology here is more successful than our previline corresponds to the naive choice of zero for all of the
ous attempts at stabilizing superlattice patterns. Our work iforcing phases. The solid line corresponds to the optimized
[16] created a spike at only one ang#es opposed to two, as Case prescribed by Table |, namedy,= ¢s= ¢ =90°, which
hera and that in[18] did not parametrically force the leads to larger resonant contributionsii@). In both cases,
damped mode. By combining multiple resonances withthe three difference frequency modes cause spikésénat
appropriately chosen phases, we have used Table | tine desired angles.
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using the governing equations. This is possible because
of the structure imposed by the parameter symmetries of the
problem.

We have applied our results to impulsively forced and
multifrequency forced Faraday waves in several examples,
emphasizing how the resonant interactions can be controlled
by choosing judiciously the parameters in the forcing func-
tion f(7). An appropriate choice allows one to stabilize com-
plex patterns such as the superlattice-I pattern examined in
Sec. V. Techniques based on Table | may be useful to experi-
mentalists wishing to observe specific patterns in the labora-
tory.

The results in this paper tie together many of the ideas
explored in[16,18,20,28and provide an exhaustive descrip-
25.71 51.43 77.14 tion of the important resonant triad interactions for Faraday

) . _ waves(with sufficiently weak damping Recent experiments

FIG. 12. Coupling coefficientb(d) in Eq. (9 as com- ooy mitifrequency forcing of Faraday waves in order to

puted from Eq. (36) for seven-frequency(m.n,p,a.r.s,) control the transition between different nonlinear states and

=(12’l7.’20’19'16’3G°r.c'ng‘ The forcing phases are a_IIOfor th_e to suppress spatiotemporal disordd®]. In particular, the
dotted line, while the solid line corresponds to the optimal choice th fra2 | turbing third f to tw
¢ s1=90°. The three damped modes with frequenciesn, p—m, authors of[42] apply a perturbing third frequency to two-

and g-m are parametrically forced by thé,s.t) components. frequency fqrced pattgrns near a codimension—twlol point and
These three difference frequencies lead to spikes(éh at angles  INterpret their results in terms of the temporal parities of the
which may help stabilize a 14-fold quasipattern; the desired locadominant forcing frequency and the perturbing frequency.
tions of these spike@s determined by geomejrgire indicated by Our results in Table | suggest that the frequencies themselves
vertical arrows. The small spike around 42° is due to another dif{NOt just the parity and the forcing phases are important,
ference frequency resonan¢e-m) not of interest here. As in Fig. thus providing an alternative approach for controlling pat-

11, the region around 60° has been removed. terns.
It will be interesting to extend our work to other systems.

For example, in vertically vibrated convection, Boussinesq
symmetry prohibits three-wave interactiof#s3]. Four-wave
interactions are the important nonlinear interactions, and are
In this paper, we have used methods of equivariant bifurthe building blocks of complex square superlattice patterns
cation theory to study resonant triad interactions in Faradaybserved in[44,45. Applying techniques similar to those
waves. We have shown how the spatial and weakly broke@eveloped here might yield insight into this pattern selection
temporal symmetriegor alternatively, parameter symme- mechanism as well.
tries) may be used to determine which spatiotemporally reso-
nant damped modes play the most important roles in pattern ACKNOWLEDGMENTS
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