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Statistics of spectra for critical quantum chaos in one-dimensional quasiperiodic systems
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We study spectral statistics of one-dimensional quasiperiodic systems at the metal-insulator transition. Sev-
eral types of spectral statistics are observed at the critical points, lines, and region. On the critical lines, we find
the bandwidth distributiorPg(w) around the origin(in the tail) to have the form ofPg(w)~w*Pg(w)
~ e A" (a, B,y>0), while in the critical regiorPB(w)~w‘a' (a’>0). We also find the level spacing dis-
tribution to follow an inverse power lawg(s) ~s™° (6> 0).
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I. INTRODUCTION Recently, Evangelou and Pichaf&0] investigated the
The universality of statistical properties of the energyb"’md"vIdth distributionPg(w) (w is the bandwidth of the

spectrum is ubiquitously found in quantum physiits rang- one-dimensional Harper model at the incommensurate Iimit
ing from quantum chao$2] to quantum chromodynamics qf o. They found that' it agrees W|th.the seml-P0|sson.stat|s-
[3] In condensed matter physiCS, the meta|_insu|am|') tics PB(W):4WG_2W with the sub-Poisson number variance
transition in disordered electron systems gives a notable ex2(E)~const+E (y<1) at the critical point. They argued
ample of such universality. On the metallic side, the energyhat it is related to the universal characterization of quantum
level statistics can be described by random matrix theorghaos.

[4,5]. The level spacing distribution is close to the Wigner  Although this suggests that a characterization by level sta-
surmise. The universality class is classified by the symmetryistics is possible for the Ml transitions of a larger class of
of the system. On the insulating side the level spacing distriquasiperiodic systems, the universal appearance of the semi-
bution is Poissonian. At the Criti_cal point, different Statisti_cal Poisson statistics may be questioned from the experience in
features emergs,7]. They are different from random matrix critical level statistics of disordered systems. In Rél, it

theory and Poisson statistics. The universality of these staligiags peen suggested that the level spacing distribution
tics dubbed “critical level statistics” is also classified by themay be described by a more generalized foiPfs)

symmetry of the ensembl&-13. _ oY o .
Quasiperiodic systems are other interesting ones showin@AS&e P (a,B,y>0). Although this simple form is not

the MI transition. The universality of the transition has beenvalid, the power-law behavior at the origin and the exponen-
characterized by multifractal structures of bandwidths andial decay in the taiwith y=1) have been observed in nu-
wave functions(see Ref.[14] for a review. The Harper ~merical studies and classified according to the symmetry of
model [15-17 is obtained by gauge fixing of two- the system[9-13. A similar rich structure of critical level
dimensional electrons on the square lattice in a uniform magstatistics should be expected for quasiperiodic systems.
netic field. In particular, the incommensurate limits of the Motivated by this idea, we investigate a generalization of
flux per plaquette, such as the inverse of the golden meathe Harper model, namely, the extended Harper model,
o=(-1+\5)/2, have been extensively studied. On thewhich is obtained from two-dimensional electrons on the
atomic scale, the penetration of flux for each plaquette resquare lattice with next-nearest-neighbor hopping in a uni-
quires an enormous strength of magnetic field, but nowadayerm magnetic field21,23. We find that such a rich struc-

it is realized in the laboratory on a quantum dot lat{it.8]. ture indeed emerges for the critical level statistics of this

The quasiperiodic system can be seen as a system be-

tween “periodic” and “random,” thus giving an interesting (n+1,m+1) nt (b)
example of quantum “chaos.” Classically an open orbit {nm+1) 4.0 x

(separatrix of equienergetic curves appears at the Ml transi- sngn 2,“,,(,1%)

tion point. But the quantum transition cannot be understood ™ Sy, o) I

by classical considerations. It is not characterized by a single A . 20 N

energy band corresponding to the separatrix but the wave(nm) n (

functions for all the energy bands become critical with " ; atlm) 1.0

power-law decay. The energy level statistics are different @) I I R
from those of disordered systems. It is not close to the 0 10 20 30 40 50 2
Wigner surmise on the metallic side nor is it the Poisson

statistics seen on the insulating sid&9]. Spectra of FIG. 1. (a) Transfer integrals and phases of the extended Harper

guasiperiodic systems have a fractal strucfd®16, which  model[Eq. (9)] and(b) its phase diagrartsee[21]). In region | the
hinders established techniques used in the disordered casave function(spectrum is extendedabsolutely continuoysand
such as “unfolding” from extracting universal properties ofin region Il it is localized(pure point$. In region Ill and on the
fluctuations. three boundary lines, it is criticasingular continuous
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extended model, but with some substantial modifications, B. Extended Harper model
even for the case treated j20]. We explain this variety of
critical level statistics by the quantum nature of the system.
The extended Harper model is considered as a single param- H =t,cosx +t,cospy + t,,cOgpy, — X) + t,,COLP, + X).

eter deformation of the Harper model and contains the 7)
Harper model as a special value of the parameter. The MI

transition point in the Harper model continues to a critical The lattice version of the model is obtained with introduction
line with the introduction of the deformation parameter andof next-nearest-neighbor hopping to the mod8). The
the line extends to a critical area with increase in the paramHamiltonian is

eter. Therefore, the extended model has the unique property N . N o

of perturbing the universal behavior at the MI transition H=t2 Cre1m® n+l”“‘”’”‘Cn,m*'tyz Cn m+1€ M EMMCy

The continuum version of the extended Harper model is

point. a .
t 6, ;
+ by2s Crag e € M EMENMC
nm
Il. MODEL 2 t
+1t c efnm+Ln+1me +H.c. (8)
yX n,m+1 ntlm
A. Harper model nm

The Harper modef23] is derived as a model for a two-
dimensional electron in a magnetic field and a periodic po
tential. The Hamiltonian can be written in the form

We set nearest-neighbor hopping for the perpendicular direc-
tion as\, and next-nearest-neighbor hopping @aswhere
nearest-neighbor hopping for the horizontal direction is set to

H = t,cosx + t,cosp, (1)  be unity. The corresponding single-electron Schrodinger
Y equation is
where
1
- d {1 +,LLCO{2’7T<”+—)QD+ v]}¢n+1+)\cos(27rn<p+ V)i
px=—2mo—— (2 2
dx 1
is the variable conjugate to the coordinat&he correspond- + {1 +tup Co{zﬂ(n - 5) e+ V} }l/fn—l =Ein. 9

ing model defined in a two-dimensional lattice is written as
; ; At ©=0, this is reduced to the Harper model. The phase
H=t,> Cn+1,meg”+1"“?”'"‘cn,m+tyE Cn,m+190”'””1?”'"‘Cn,m+ H.c. diagram is shown in Fig. (b). The scaling property of the

nm nm bandwidths was studied if21].
)
wherec, n, is the annihilation operator of a lattice fermion at Ill. NUMERICAL ANALYSIS
a site(n,m) and>,,quendr=2m¢ is the magnetic flux around '
a plaquette. Here we assume a uniform flux. We take the A. Method
Landau gauge, I-Q@n+1,m;n,m_:0 and by me1.0,m= 27 eN. To investigate the incommensurate limitof- o, we use
Let [¥) be a single-particle state, the rational approximation of;=p/q where p and q are
_ + relatively prime. We also set=0 for simplicity. We will use
V)= %n\lf(n,m)cn’mm). ) the Fibonacci sequence;=F;_;/F;, where F; is the Fi-

bonacci number satisfyingr;.,=F;+F;_; with F;=1 and
By actingH on|¥), we obtain the Schrodinger equation ~ F,=1. For rationalp; Eq. (9) reduces to @ < g matrix with
[W(n+1.m) + ¥(n-1.m)] +ty[e‘2”‘<"“\1f(n,m+ 1 the boundary condition),,,=expika) #,, which is

- ik
+ M (n,m=1)] = EW(n,m). (5) Moo O 0 €
. . . . A o -- 0
We consider anisotropy in hopping and set the transfer paohe M2
integral in thex direction as 1, and that in thedirection as 0 B2 N3 pz O - 0
\. Since Eq(5) is translationally invariant in thg direction, B O mus Ny wmg O 0
we may writeW(n,m)=e"""™y;, and we obtain H= : T ; ,
Yne1+ N COS2TNP + V)i + 1 = Edhyy. (6) 0 0 Mq-3 Ng-2 Mg-2 0
This describes a one-dimensional quasiperiodic system when _0 00 pg2 N1 Mo
¢ is irrational. It is known[17] that if 0<\A <2, all the e""q,uq 0 00 wgr A
eigenstates are extended and # 2, all the eigenstates are (10)

localized. At the transition point=2 the spectrum is singu-

lar continuous; moreover, the states are neither localized novhere A,=\ cod2mne), uy=1+u cog27(n+1/2)¢], and
extended. The phase diagram is shown in the0 line of  the basis iy, s, ..., ¥).

Fig. 1(b). Thek dependence of the energy barkls obtained from
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the consideration of the characteristic polynomial of Eg.eitherk=0 or 7/q. Thus to obtain the bandwidths, we only

(10). According to Ref.[22], the k dependence arises only
from the constant term independent &f The term is pro-
portional to cogik for fixed v. The extreme ok is deter-

need to consider these two values.
If the matrix sizeq is an odd integer, the matrix can be
transformed to be tridiagonal by a simple base chdagg

mined by the extreme of the constant term. Then the mini-The first transformation is just a rearrangement of the order
mum and maximum of each energy band are obtained aif the base andl is transformed to

As Ms1 O
Ms1 Ns1 Ms2 O
: M2 Ny g
0 . 0 N
H = M1 —'kl
0 e 0 e ! q’uq
0 ... 0
0
Ms 0

wheres=(q—-1)/2. We have used the following properties.

(i) Since ¢,=p/q=F,_,/F,, the value of\,=\ cog2mq¢,)
is always equal to M. (i) Nj=Acod27jp/q)
=\ cog27(=j)p/q+2mp]=\ cog 2m(q—])p/q]=Nq;. (iii) In
the same wayp; = pg-j-1-

We need the eigenvalues of matii0) for k=0 andk
=/q. For these value$]’ becomes a real symmetric matrix
and can be transformed to a tridiagonal mati%® as fol-
lows:

H"=p~H'P (12
where
L L
5 0 O 0 0 O 7
- 1 1 -
_0 E 0 0 0 E 0 _
0O O S 0 0
L 1 1 L
- \‘JE 0 \”E -
p= 01 0
L 1 1 L
- 0 2 0 - 7 0 _
0 0
L 1 1 L
-0 2 - 2 0 —
1 1
= 0 .. ... O 0 -—F=d
V2 V2
(13

0 Ms
0
0 :
gka 0 .. 0
Ho , (11)
)\q ILLq_l 0 O
Mg-1 Ng-1 Mg2 O 0

0 sz Nsi2 Hsn
0 mer1 Asr

and P"'=P'=P. Finally we can get the tridiagonal Hamil-
tonian

ag bp 0 -« 0 0 O
b, aa b, ~. . 0 0
0 b, ag ~. . . 0
Htd = (14)
0 . . . agp bgp O
0 0 Dg-2 g1 Bg1
0 0 0 =+ 0 by a

where the diagonal elemerag (n=1,2,...,q) are

{ant = (ag,a,,...,89-1,89)
=(Ns* UsAs 1, hs 21001,
)\2! )\11)\q1 )\q—l! e 1)\s+3a )\s+21)\s+1 - Iu’s)

and the off-diagonal elemenks, (n=1,2,...,q—-1) are

{bn} = (b11 b2! L] bq—21 bq—l)

1
= (Ms—lrMS—Za o M \,_E(e'kqﬂo + tg-1),

1
E(e Mo = Mg-1), Mg-2: Mg-3s -+ 7,U~s+1> :
We numerically diagonalize thgXx g matrices(14) and cal-

culate the band edge. We obtain the bandwidth distribution
Pg(w) by subtraction of them. The normalizations are

[

Pew)dw=1, (w)= f waB(w)dw:L (15)
0
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0

] mPBiw) 3 TABLE I. The optimized indices on the critical line=2 and in
05 s 3 the critical region. For the definitions ef, 3, and 6, see Eqs(17),
1y 3 (18), and(22), respectively. Also the value af in the critical region
P 3 is defined as «'.
‘3& 2p 2 451050 051
25 P Inw 1
2 4 A M a B 13
| e - : 20 00 2.5£0.1) 1.39+0.07  1.50.2
45 g=.1213.93 Lo %&g . 2.0 0.1 2.5+0.1) 1.41(+0.07) 1.5+0.2)
0051 152 253 35 4 45 5 20 0.2 2.5+0.1) 1.39+0.06 1.5+0.2)

w

2.0 0.3 2.51+0.08 1.34+0.05 1.5+0.1)
FIG. 2. The bandwidth distribution &k, x)=(2.0,0.4, and the 2.0 0.4 2.51+0.08 1.35+0.05 1.5+0.2)
one near the origiinsed for severalqg. 20 05 2.50+0.06) 1.26+0.04) 1.5+0.2)

2.0 0.6 2.52+0.07 1.26+0.09 1.5x0.2
Similary, the gap distributiofP(s) is obtained and the nor- 55 o7 2.54+0.07) 1.12+0.07) 1.5+0.2)

malizations are 20 08 252007 1054008  1.50.1)
= = 20 09 248004  098+0.11)  1.47+0.04

f Pg(S)dS: 1, <S> = f SPG(S)dS: 1. (16) 2.0 1.0 1.2+0.9
0 0 20 20  -1.46:0.06 1.34+0.07)

20 40  -15:0.1) 1.1(+0.1)

20 60 -1.370.08 1.3+0.2)

B. Bandwidth distribution on A=2

First, we study the bandwidth distribution along the criti-
cal line A\=2. In Fig. 2, we plot thePg(w) at (\,w) only one parameter with B=a+1 andA=(a+1)*"Y/T'(a
=(2.0,0.9 for j=25, 27, 28 wherq is the index ofF;. It +1). Itis clear that such relations are not consistent with our
shows a good convergence to a limiting distribution, indicat-results as shown in Table I. Especially the semi-Poisson sta-
ing the existence of the limit of the bandwidth distribution at tistics witha=1 do not reproduce the index of the power-law
the incommensurate fluxp. For O<u<1, we find that behavior around the origin at=0. Using a one-parameter fit
Pg(w) exhibits a continuous change. It has been concludeby Eq.(19), we geta~ 0.7 for the overall distribution, which
[21] that the scaling property of the bandwidths is invariantis much smaller than that estimated by E#8). For u#0,
on this line, implying that the system belongs to the samave get similar deviations. Thus we may conclude that the
universality class. The continuous change meansRgat) semi-Poisson form foPg(w) is only an approximation to the
is not a universal quantity. overall distribution.

In Fig. 2, one sees linear behaviors at langemplying an
asymptotic form

C. Bandwidth distribution on =1 and u=\/2
Pg(w) ~ e P asw — = (17

whereB=> 0. The optimized values g8 are shown in Table I. Next, we investigatd®z(w) on the other critical lines. It

It suggests a quadratic dependencegafn «. The best fit is turns out that the behaviors are different from those on the

attained by a quadratic function1.4-0.53.2 (Fig. 3). This E”t'cal line \=2. Figure 4 showsPg(w) at (\,u)

rather simple dependence may be related to the universalify(1-0,1.0. The largew behaviors do not show an exponen-

class on this line. tial decay, but a milder one. Thus we make a generalized
Pg(w) is estimated to be zero at the origin. The inset ofansatz of

Fig. 2 showsPg(w) near the origin, indicating a power law.

To characterize this behavior, we make an ansatz of 09|
Pg(w) ~w* asw — 0 (18) -1t +/%
where «>0. The optimized values of(u) are shown in B L1r %
Table I. One sees that thgu)'s are stable, suggesting that ‘12t 7
a(w) is independent ofx at the incommensurate limit. 13l ;{“}
These numerical results suggest that the overall distribu- )}%f}/%
tion is given by a generalized semi-Poisson form 14 ""{'
_ s ..
Pg(w) = Awte PV (19 0 01 02 03 04 05 0.6 07 08 09
whereA is a normalization constant. The exact semi-Poisson "
form, ie., a=1,B=2, has been reported at\,u) FIG. 3. u dependence of indeg along the critical line\=2 for

=(2.0,0.0 [20]. Actually the normalization conditions allow g=514 229.
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1 — transport property becomes different wheigets sufficiently
05 1, 53 ] large. To supplement this observation, we investigate the
0‘5’ 50%’% £9 . bandwidth distribution in the critical regidithe region Il in
5 .l @%@o = _é _ Flg._ ]’(b)]. Pg(w) follt?ws an inverse power lawPg(w)
2 sl o S ~wW “_(a’ >0) therc_e(F|g. 6): The values ofa’ are summa-
g Ll % " hmw rized in Table I. This behavior sharply contrasts with the one
251 ogooé‘\ ] seen on the critical lines. The divergence Rj(w) at the
31 =771 o 06‘@%_09 ] origin implies the dominance of relatively flat bands, indicat-
35T Paw) ~ exp(-193wOSH %OQOOO ing that in most of the bands the wave function is close to
4 S —— being localized. Also, the power-law decay in the tail means
0 05 115 225 3 35 A the appearance of bands whose wave function is close to

being extended.
FIG. 4. The bandwidth distribution &k ,x)=(1.0,1.0, and the

one near the origiiinsey for q=17 711. F. Gap distribution

Ly We also investigate the gap distributié®(s). The gap
Pg(w) ~ e77" asw — = (200 gistribution at(x,u)=(2.0,0.0 is known to follow an in-
with 0<y<1. The optimized curve agrees well with the verse power lawW24,23, which diverges at the origin,
obtained datdFig. 4). The behavior near the origin is also Pu(s) ~ 570 22)
found to follow a power law(inset of Fig. 4. On the line G
p=1, the indexa seems to be constant around 1.5. We findwith 6~ 1.5. We findPg(s) along the three critical lines and
that the numerical data on the critical line=2u can be also in the critical region it also follows an inverse power law
described by each ansgfi) and(20). The indexa is stable  (inset of Fig. §. The values ob are shown in Tables | and II.
around 1.5 as in Table Il, which is near the values on the
critical line u=1.
The overall distribution on the critical lineg=1 and\
=2u except for the bicritical point may be cast in the form  From the two-dimensional point of view, the next-nearest-
neighbor hopping ternju-dependent terinis dominant in
Pg(w) = Awe P, (21) Eq.g(9) in thse:rigcal rrggion.pSincq' tranZI]ation is canoni-
This form of distribution was suggested in Rg#] for the  cally conjugate tox translation in a uniform magnetic field,
level spacing distribution of disordered systems at the Mithe extension(localization) of the wave function in they

IV. DISCUSSION

transition. The normalization conditions constrain direction must be balanced by the localizatextension in
thex direction to satisfy the uncertainty principle. Wheris
r a+2)\” small, thex dependence of the wave function is determined
Bl by A, the anisotropic parameter for tlyedirection. On the
_ Y _ Y . -
B= Tatr1) andA= Tatl\l other hand, whem is sufficiently large, ag. acts on thex
F(—) F( ) andy directions equally, the wave function is sensitiveito
Y Y in both itsx andy dependences. This makes the MI transition

Our analysis does not support these constraints. Again, wid the critical region different from that on the critical line
tried a one-parameter fit varying(y) in Eg. (21) with the

observed value ofy(a) fixed. We got values much smaller TABLE II. The optimized indices for the bandwidth distribution
(largen than the observed indices(y) around the origir(in and level spacing distribution on the critical lines @£1 and\
the tail) for all the points we studied on the critical lings ~ =2#- For the definition ofy, see Eq/(20).

=1 and\=2pu.

A i a b% )

D. Bicritical point 0.5 1.0 1.55:0.14  0.41+0.04  1.29+0.089

We also investigate the bicritical point at\,u) 0.75 1.0 1.48:0.17)  0.52+0.08 1.3£0.2)
=(2.0,1.0. We show the results in Fig. 5 a=4181. The 1.0 1.0 1.48:0.12  0.65+0.07) 1.3(#0.2)
convergence of the obtained distribution is slow, and we 1.25 1.0 1.60+0.17) 0.53+0.05 1.4(+0.2)
have not got information about the incommensurate limit. 15 1.0 1.48+0.13 0.60+0.07) 1.2940.10)

2.5 1.25 1.44+0.10 0.54+0.06) 1.31(+0.10

E. Bandwidth distribution in the critical region 3.0 15 1.6120.13 0.51(+0.04) 1.30.2)
The values ofa and y on the critical linesu=1 and\ 3.5 1.75 1.49+0.14 0.38+0.09 1.5+0.2)
=2u are considerably smaller than those ar2 (y=1 4.0 2.0 1.48+0.13 0.60+0.06) 1.3(+0.2

therg. This smallness o&r and y indicates the tendency of 45 2.25 1.64+0.15 0.64(+0.03 1.3+0.3
Pg(w) on these critical lines to broaden both to the originand 5 25 1.36+0.19 0.50+0.04) 1.4+0.2)
the tail compared t&g(w) on A\=2. This may imply that the
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3 2 .
25 || The bicritical point  — ; [
2 E at
15 R
)] | | g 3} g
4T3
" thﬁm - o] %
6 ) . )
0 o5 1 15 2 25 3 35 4 3 25 2 5 -1 05 0 05 1
w Inw
FIG. 5. The bandwidth distribution dh,x)=(2.0,1.0 with q FIG. 6. The bandwidth distribution and level spacing distribu-
=4181. tion (insed at (A, w)=(2.0,2.0 for q=17 711.

A=2, resulting in the increase of the bands close to beingonential decayPg(w)~e?¥ (a,8,y>0) on the critical
localized as well as the bands close to being extended. Thyges, while in the critical regiorPg(w) follows an inverse
the appearance of the inverse power law in the critical reglorE)OWer law~w' (o' >0). We gave an explanation for this
and the differences o and y among the critical lines are variety of Pg(w) by the quantum nature of the system. The
consequences of the quantum nature of the system. ) PV .
surmise of a formPg(w)=Aw*e #"" gives only an approxi-

mation. The gap distributioR(s) shows an inverse power

law ~s7? for the whole phase diagram. For the bicritical
We have seen that a systematic characterization by levgloint, we did not get a conclusive result.

statistics for a quasiperiodic system is possible. We have in-

vestigategl the t.)andwidtﬁa(w).an.d gap q'isFributionﬁ’G(ts) ACKNOWLEDGMENTS

for one-dimensional quasiperiodic Schrédinger equations at
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