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Amplitude death in oscillators coupled by a one-way ring time-delay connection
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The coupling induced stabilization of a steady state, which is called amplitude death, cannot be observed in
identical nonlinear oscillators coupled by diffusive connections. However, it has been analytically confirmed
that amplitude death can be induced by using a diffusive time-delay coupling. In this paper, a one-way ring
time-delay coupled system consisting Mfidentical oscillators is proposed. This system is equivalent to a
delayed-feedback control system whgr 1, and to a time-delay coupled oscillator system whNer2. In the
proposed system, amplitude death never occurs at a steady state when the Jacobi matrix evaluated at a fixed
point has an odd number of real positive eigenvalues. Furthermore, a simple systematic graphical procedure to
test the stability of the system is presented. This procedure is illustrated in two numerical examples: coupled
Rossler oscillators and coupled Lorenz oscillators.
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I. INTRODUCTION It has been discovered that both time-delay induced am-

Diffusive coupled nonlinear oscillators exhibit several at-Plitude death in coupled oscillatof$,16 and stabilization
tractive phenomenfl]. Among them, coupling induced sta- With the DFC method19-22 never occur when the Jacobi
bilization of an unstable fixed point, which is called amp"_ matrix at a fixed pOInt in oscillators SatISer§ the odd number
tude death or oscillation death, has been actively investigatefoperty. In fact, there has been no theoretical framework for
[1-7). Previous studies have revealed that at least one of thexplaining this common feature. This paper proposes the
following conditions is required to produce the death phe-m-dimensional nonlinear oscillators coupled by a one-way
nomenon in coupled nonlinear oscillato¢a) the oscillators  ring time-delay connection illustrated in Fig. 1. It is assumed
have different parameter valugl; (b) the coupling unit has that the individual oscillators are identical and the coupling
its own dynamics[6]; or (c) the signal propagation in the scalar signal propagates in one direction. The proposed sys-
coupling unit includes a time deldy]. tem withN=2 is equivalent to the time-delayed coupled os-

The death phenomenon under conditiop discovered by  cillators proposed by Reddst al.[7,16. Moreover, the DFC
Reddyet al. [7,8], has gained popularit}9]. Since the dis- system is identical to the proposed system With1 [21,22.
covery of this phenomenon, it has been thoroughly investiTherefore, the proposed system can be considered as an ex-
gated using experimental and theoretical approaches. It Wagnsion of both the time-delayed coupled oscillators and
been observed in real physical systems such as electron§rc systems. This paper also presents a framework for ex-
circuits[10], living oscillators[11], and thgrmg—opncal oscil- laining the common feature. Two main results are pre-
lators[12]. Atay enlarged the death region in the paramete@ented_ First, the odd number property is valid for any num-

space by introducing a distributed delayed connecfi] ; . . .
and derived the condition for death stability in networks ofber of oscillators. Then, a simple systematic and graphical

time-delay coupled two-dimensional oscillatqdst]. Dodla
et al. investigated the stability of phase-locked patterns and
death in two-dimensional limit cycle oscillators coupled by a
both-way ring time-delay connectiofil5]. In addition, a
simple sufficient condition for avoiding time-delay induced
death has also been derivgEgi16]. N
Delayed-feedback contr¢DFC) is well known as a prac-
tical method for stabilizing unstable periodic orbits and fixed
points embedded within a chaotic attraditbr]. In particular,
stability analysis and controller design problem of the DFC
method have generated considerable intgfE&8ft However, 15
the DFC method has a crucial defect: a class of unstable
periodic orbits and fixed points that satisfies tus number
property cannot be stabilized by the delayed feedback con-
troller [19-23. In order to overcome this defect, several
modifications have been proposgis].

Oscillator

FIG. 1. Nonlinear oscillators coupled by one-way time-delay
*Electronic address: kkonishi@fun.ac.jp connection.

1539-3755/2004/16)/0662016)/$22.50 066201-1 ©2004 The American Physical Society



KEIJI KONISHI PHYSICAL REVIEW E 70, 066201(2004)

procedure is proposed to test for death stability. Numericatleath forN=1 corresponds to the stabilization of a fixed

examples using the Roéssler and Lorenz oscillators are prgsoint in a nonlinear oscillator controlled by delayed feed-

sented in order to verify the theoretical results. back. Accordingly, the one-way time-delay coupled system
can be considered as an extension of both the delay coupled
oscillators and DFC systems.

Il. COUPLED OSCILLATORS

This section describes the-dimensional oscillators and

the coupling structure. Consider the individual oscillators I1l. INSTABILITY CONDITION
This section presents an instability condition under which
&=F(&) +by . death never occurs via linear stabil_ity analysis. ket &
l--cg-l '(i=1,2,..,N). (1) -g& andy:=c(&-£&) so that the originx;=0 becomes a
=L fixed point. It is obvious that the behavior of; (i

=1,2,...,N) near fixed point(3) is equivalent to that of
The ith oscillator has the system variableg x; (i=1,2,...,N) governed by
:[gfl)gf”- . -gi(m’]T e R™, the coupling input signal; € R, and
the coupling output signal; € R. The input and output vec-

tors are denoted bly e R™ andc e R¥™™, respectivelyN >0 Xi = AX; +bu
is the total number of oscillators. Suppose that the nonlinear
function F:R™—R™ has the fixed point;={&e R™ F(§)
=0}. The individual oscillators are connected by the coupling Yi =X (4)
signals with the connection
b =Kot =) =m0, 0y = Kyn(t = 1) = a(t)],
U =k7(t-7-nM] (=23,...N), (2 U =Kyiy(t- D -yi(] (=2,3...,N). (5)
wherek e R represents the coupling strength. The one-wayra jacobian matrix
ring coupled oscillators described by Edq4) and (2) are
illustrated in Fig. 1. Theath oscillator is influenced by only
the delayed signa#;_,(t—7) of the (i—1)th oscillator. Due to IF(&)
diffusive coupling, this coupled system has the steady state A= IE | e (6)
—Sf
T T T1T _r&T T T is evaluated at the fixed poigt. As a result, we say that the
[ & -+ &I =[& & - & 3 stability analysis of¢ can be reduced to the stability of a
which is identical to that of the individual oscillators without linear system consisting of4) and (5). It is assumed
coupling. throughout this paper th#& does not have an eigenvalue on

When N=2, the one-way time-delay coupled system isthe origin. - _ . . . _
equivalent to the delay coupled oscillators proposed by Substituting the coupling signal$) into the linearized
Reddy et al. [6,7]. When N=1, it is equivalent to the system(4) and definingA:=A-b, b:=bkc, the linear sys-
delayed-feedback control systef@l,22. Thus, amplitude tem can be written as

X1 A 0 01 x 00 0 b Xq(t=7)

X 0O A = 00|l x| b0~ 00| xt-7

N N : : (7)
XN-1 00 X 0 (| Xn-1 0 Xn-1(t = 7)
_XN_ 0 0 - 0 A | XN b _XN(t_T)_

The characteristic function of systef¥) is
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Mn,-A 0 -+ 0  —gMpy
-e™ Ny-A .0 0
g(\, 7) = det : r : :
0 0 Np-A O
o 0 e Mp-A _
Mp—A-eMo 0 0 0
-eMp M,-A+e™M . ey e’
- def . . . . .
0 0 . My-A O
0 0 My N, -A

=0:(\, DG\, 7),
where

9:(\,7) = defAl ,— A - e™b] = defAl ,— A +b(1 -e™],

M- A+e M eMp o My  eMp
€M AM,-A 0 0
0o(\,7) = det : ) : : :
0 0 . My-A O

0 0 ce _e N Mm—K

The following result is obtained from the above characterisimatrix A has an odd number of real positive eigenvalues
tic function. (odd-number propery

Lemma 1.Suppose that the fixed poidk of individual Proof. The roots ofg;(\, 7)=0 are the primary focus. The
oscillators without coupling is unstable; that is, the Jacobiarfunction g;(\,7) is continuous in\; hence lim_..g;(\,7)
matrix A is an unstable matrix. Steady std®) is unstable =c. Substituting\ =0 into g;(\, 7),
(i.e., amplitude death never occpufer anyk, b, c, andN, if "
the coupling signalsy; include no time delayr=0). _ _

Proof. For no time delay(7=0), the instability condition 0:(0,7) =de{~A]= }:[1(_ 7q),
for steady stat€3) is that at least one root of the charac-
teristic equationg(\,0)=0 is in the open right half of the Whereoy are the eigenvalues &. If A has an odd number
complex plane. It is obvious that the rootsgth,0)=0 in-  Of real positive eigenvalues, then(0,7)<0 O 7>0. Ac-
clude those ofj;(\,0)=0 andg,(\,0)=0. Since the equation cordingly, the equatiom,(A,7)=0 has at least one positive

g1(\,0)=0 can be rewritten as root. This means that steady st&® is unstable. |
When N=1, this theorem reduces to the odd-number
g:(\,0) =defrl,,—-A]=0, property of a DFC system derived [21,22. Furthermore,

whenN=2, this theorem becomes a limitation to amplitude

its roots are equivalent to the eigenvalues of the unstabldeath in time-delay coupled oscillatdi$,16]. This theorem
matrix A. Thus, for 7=0, there exists at least one root of guarantees that death never occurs for any coupling strength,
g(\,0)=0 in the open right half of the complex plane for any input and output vectors, time delay, and number of oscilla-
k, b, c, andN. [ | tors. Therefore, if it is desirable to avoid amplitude death, the

Lemma 1 agrees with the death stability analyi$  oscillators should be designed so that the odd-number prop-
WhenN=2, Lemma 1 is derived for both discrete-time anderty is always maintained.
continuous-time dynamic$5,16. The following theorem
summarizes this paper’s main result.

Theorem 1.Steady state3) is unstable(i.e., amplitude This section proposes a simple systematic and graphical
death never occuydor anyk, b, c, 7, andN, if the Jacobian procedure that guarantees the stability of steady s@te

IV. STABILITY CRITERION

066201-3



KEIJI KONISHI PHYSICAL REVIEW E 70, 066201(2004)

L2s\ | L2 L(2,5)
0 G(_](l)) —> G(jco) > ... = G(jo))

+
—

. . . . é ," N
FIG. 2. Coupled linearized systems in frequency domain i *
description. e ' L(3,4) : : L(1,%) |
£ 22t '
This procedure is based on the frequency domain descrip- ‘_E“ i

tion. In individual oscillators, the transfer function from

Yira(t=17) to (1) is L@5,
H(jo) = c(jol m— A + bke) bk, 1k / --------------- ]
3)

— L(3,
where j:=\-1. Therefore, the transfer function froym ,(t ( L(a 4)‘ L(5,5)
-7) to yi(t—17) is , e

_ -1 0 1
G(jw) =€’ H(jw), Real Axis

where(A -bkc,bk,c) is assumed to be controllable and ob-  FIG. 3. Half linesL(l,N) on the complex plane.(1, *) denotes

servable[23]. Figure 2 illustrates the coupled linearized sys-L(1,n) for n=1, 2,..., N.

tem consisting of Eqs4) and (5) in the frequency domain

description. According to the famous Nyquist criteri@3], A. Rossler oscillators

the following lemma holds.

Lemma 2Suppose thaf —bkc is a stable matrix. Steady For the first example, the Rossler equation

state(3) is stable if the vector locus dB(jw)N (w €[0,%)) y Cay )
does not intersect with the half line
Fi&=| & +pg?
Lo={l+up ek =0} po+ £3(EY - py)
on the complex plane. is used for the individual oscillators, whem , 5 are the

Lemma 2 requires the calculation and plotting of the vec-gystem parameters. One of the two fixed points is
tor locusG(jw)N. Therefore, ifN is large, the calculation is

not easy. Furthermore, M is changed, the vector locus must Z[ED 42 g = 11 1

be recalculated and replotted. Instead, the following theorem §=l& & &1 = 27 2p17 2p17 '

provides a simple systematic procedure that guarantees sta-

bility by using the vector locu&(jw). N v ey
Theorem 2.Suppose thatA-bkc is a stable matrix. Y= Ps™ NP3 ™ APiP2:

Steady stat€3) is stable, if the vector locus dB(jw) (o The purpose of this example is to know whether amplitude

€ [0,»)) does not intersect with any of half lines death occurs. The input and output vectors lard0 1 0]
P~ andc=[0 1 0], and the Jacobi matrix evaluated at the fixed
L(ILN) ={ue mweR=1(1=1,2,..,N) point & is given by
on the complex plane. 0 -1 -1

Proof. It is obvious that the following two statements are
equivalent: the vector locu3(jw)N intersects the half ling, A=l 1 p 0
of Lemma 2 and the vector locuS(jw) intersects with at §<f3) 0 f@ ~Ps3
least one oN half linesL(l,N) (I=1,2,...,N). Hence, if the
vector locusG(jw) does not intersect with any &f half lines =0.2,ps=5.7. For the no-coupling cas&=0), the indi-

L(I’N)’ then_ steady state) is s.table. u vidual oscillators exhibit the famous Rdssler attractor. Since
Figure 3 illustrates the half linds(I,N) for N=1,2,...,5. 1o eigenvalues of A are o,=-5.687 and o4

Lemma 2 is based on the sufficient condition for the stability:0_097ijo_995,A is an unstable matrix and does not satisfy
of coupled linearized systems. Therefore, there is a possibikhe odd-number property presented in Theorem 1. Therefore,
ity that a system would be stable even if Theorem 2 is no{ emma 1 guarantees that death never occurg dor any
satisfied. k, b, ¢, andN when the coupling does not include a time
V. NUMERICAL EXAMPLES dela_y_. Theorem 1_does not guarantee that steady (ﬁ)ite_;
stabilized by the time-delay coupling. Fke 1.5, the matrix
The previously described procedure is illustrated usingA —bkc is stable(eigenvalues -5.687, —0.653&.763 and
two numerical examples. (A-bkc,bk,c) is controllable and observerable. Therefore,

Assume that the system parameters are setptep,
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B. Lorenz oscillators
The Lorenz equation
pu(E? - &Y)
F(6)=| - 6969+ pot - 62
£VE7 - o

has three system parameters denotedppys For p,>1,
there are three fixed points:

&ol000,

-
8% o,
ans

%%
o
it
*
pLITTY A

o
2!
s .
*
*.

Imaginary Axis
(=)

&.:[Vpa(p2— 1) Vps(p2— 1) po - 177,

& [ Vps(pa— 1) = Vps(p— D p,— 11"
The input and output vectors abe=[0 1 0]" andc=[0 1 0],

-1 F{eaIOAxis 1 and the Jacobian matrix
FIG. 4. Vector locus(dashed ling of G(jw) for the coupled -pr pr O
Rossler oscillatorgk=1.5,7=1.0). A=|p,- g?) -1 - ggl)
Theorem 2 can be employed. The vector locu§gfw) with 522) f(fl) - Ps3

7=1.0 is plotted in Fig. 4. Because it does not intersect an¥ . .

of the half linesL(1,+), L(2,2), L(2,3), andL(3,3), Theo- s evaluated at the fixed points. The syst_em parame.ters are
rem 2 guarantees that steady st@pis stable forN=1, 2, set Fopll—llo.o,p2.—28.0, ancp3.—8.0/3.0. Without coupling,

and 3. However. because the vector locus intersects the haft€ individual oscillators exhibit the famous Lorenz attractor.

linesL(4,4) andL(5,5), the stability of(3) cannot be guar- For the fixed poing, the eigenvalues ok are estimated
anteed forlN=4 and 5. to be 0y=11.828,0,=-2.667, ando3;=-22.828; therefore,

dA is an unstable matrix that satisfies the odd-number prop-

erty in Theorem 1. According to Lemma 1 and Theorem 1,
both systems with no time-delay coupling and time-delay
coupling never induce amplitude death at the steady state

Figure 5 shows the temporal behavior of the couple
Rossler oscillatoréN=1, 2, ..., 5). The individual oscillators
without coupling behave independently uritd50. At t=50
one-way time-delay couplin% is achieved. Figu(e)Seveals
that the oscillator variable§“ for N=1, 2, and 3 converge T £l o eI T =gl &1 .. &1 7T
to the fixed pointé; after co§;pling: That is, amplitude de%th 6 & &l =L10 &ro ool -
occurs. This result agrees with the stability analysis shown in  For the fixed points§;,, on the other handA has the
Fig. 4. On the other hand, the variablé® for N=4 and 5do ~ €igenvaluess,=-13.855 ando 5=0.0944j10.195, which
not converge to a fixed point. This fact does not contradicflo not satisfy the odd-number property. Hor2.0 andr
the stability analysis. =0.5, the matrix(A-bkc) is stable and A -bkc,bk,c) is
controllable and observable. From Fig. 6, it can be seen that
the vector locus ofG(jw) does not intersect the half lines
L(1,+*), L(2,2), L(2,3, and L(3,3). This fact guarantees
that both steady states

(& & - &T=[& & - &, (8)

(£ & - &0'=1&. &, - &I 9)
are stable foN=1, 2, and 3. However, since the vector locus
intersects with the half linek(4,4) andL(5,5), the stability
of the steady states fdd=4 and 5 cannot be guaranteed.

The system variables of the coupled Lorenz oscillators are
shown in Fig. 7. The oscillators remain uncoupled uhtil
=50. As shown in Fig. (@), steady state) for N=1, 2, and
. . . 3 are stable. The oscillators converge (8nor (9), depend-

50 100 150 200 ing on the initial condition. In contrast, all of the oscillators
do not converge to the steady statesMer4 and 5, as shown

FIG. 5. Temporal behavior of the coupled Réssler oscillatorsin Fig. 7(b). These facts also do not contradict the stability
(k=1.5,7=1.0. (@) N=1, 2, and 3(b) N=4 and 5. analysis in Fig. 6.
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FIG. 7. Temporal behavior of the coupled Lorenz oscillators
(k=2.0,7=0.5. (a) N=1, 2, and 3(b) N=4 and 5.

0
Real Axis

FIG. 6. Vector locus(dashed ling of G(jw) for the coupled atic and graphical procgdure to check the'sta}bility of the
Lorenz oscillatordk=2.0,7=0.5). steady state on the basis of the Nyquist criterion has been
proposed. Numerical simulations using the Rossler and Lo-
VI. CONCLUSIONS renz oscillators have been conducted to confirm the theoret-
' ical results.
This paper has proposed a system consisting oscilla-
tors coupled by a one-way ring time-delay connection, which
is an extension of both the time-delay coupled oscillator and This research was supported by a Grant-in-Aid for Young
the DFC systems. It was verified that the odd-number propScientists(No. 15760326 from the Japanese Ministry of
erty is a sufficient condition under which amplitude deathEducation, Culture, Sports, Science, and Technology and by
never occurs in the proposed system. Furthermore, a systertiie Special Research Funds of Future University—Hakodate.
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