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The coupling induced stabilization of a steady state, which is called amplitude death, cannot be observed in
identical nonlinear oscillators coupled by diffusive connections. However, it has been analytically confirmed
that amplitude death can be induced by using a diffusive time-delay coupling. In this paper, a one-way ring
time-delay coupled system consisting ofN identical oscillators is proposed. This system is equivalent to a
delayed-feedback control system whenN=1, and to a time-delay coupled oscillator system whenN=2. In the
proposed system, amplitude death never occurs at a steady state when the Jacobi matrix evaluated at a fixed
point has an odd number of real positive eigenvalues. Furthermore, a simple systematic graphical procedure to
test the stability of the system is presented. This procedure is illustrated in two numerical examples: coupled
Rössler oscillators and coupled Lorenz oscillators.
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I. INTRODUCTION

Diffusive coupled nonlinear oscillators exhibit several at-
tractive phenomena[1]. Among them, coupling induced sta-
bilization of an unstable fixed point, which is called ampli-
tude death or oscillation death, has been actively investigated
[1–7]. Previous studies have revealed that at least one of the
following conditions is required to produce the death phe-
nomenon in coupled nonlinear oscillators:(a) the oscillators
have different parameter values[1]; (b) the coupling unit has
its own dynamics[6]; or (c) the signal propagation in the
coupling unit includes a time delay[7].

The death phenomenon under condition(c), discovered by
Reddyet al. [7,8], has gained popularity[9]. Since the dis-
covery of this phenomenon, it has been thoroughly investi-
gated using experimental and theoretical approaches. It was
been observed in real physical systems such as electronic
circuits[10], living oscillators[11], and thermo-optical oscil-
lators [12]. Atay enlarged the death region in the parameter
space by introducing a distributed delayed connection[13]
and derived the condition for death stability in networks of
time-delay coupled two-dimensional oscillators[14]. Dodla
et al. investigated the stability of phase-locked patterns and
death in two-dimensional limit cycle oscillators coupled by a
both-way ring time-delay connection[15]. In addition, a
simple sufficient condition for avoiding time-delay induced
death has also been derived[5,16].

Delayed-feedback control(DFC) is well known as a prac-
tical method for stabilizing unstable periodic orbits and fixed
points embedded within a chaotic attractor[17]. In particular,
stability analysis and controller design problem of the DFC
method have generated considerable interest[18]. However,
the DFC method has a crucial defect: a class of unstable
periodic orbits and fixed points that satisfies theodd number
property cannot be stabilized by the delayed feedback con-
troller [19–22]. In order to overcome this defect, several
modifications have been proposed[18].

It has been discovered that both time-delay induced am-
plitude death in coupled oscillators[5,16] and stabilization
with the DFC method[19–22] never occur when the Jacobi
matrix at a fixed point in oscillators satisfies the odd number
property. In fact, there has been no theoretical framework for
explaining this common feature. This paper proposes the
m-dimensional nonlinear oscillators coupled by a one-way
ring time-delay connection illustrated in Fig. 1. It is assumed
that the individual oscillators are identical and the coupling
scalar signal propagates in one direction. The proposed sys-
tem with N=2 is equivalent to the time-delayed coupled os-
cillators proposed by Reddyet al. [7,16]. Moreover, the DFC
system is identical to the proposed system withN=1 [21,22].
Therefore, the proposed system can be considered as an ex-
tension of both the time-delayed coupled oscillators and
DFC systems. This paper also presents a framework for ex-
plaining the common feature. Two main results are pre-
sented. First, the odd number property is valid for any num-
ber of oscillators. Then, a simple systematic and graphical
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FIG. 1. Nonlinear oscillators coupled by one-way time-delay

connection.
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procedure is proposed to test for death stability. Numerical
examples using the Rössler and Lorenz oscillators are pre-
sented in order to verify the theoretical results.

II. COUPLED OSCILLATORS

This section describes them-dimensional oscillators and
the coupling structure. Consider the individual oscillators

j̇i = Fsjid + bui

hi = cji

si = 1,2,…,Nd. s1d

The ith oscillator has the system variableji

=fji
s1dji

s2d
¯ji

smdgTPRm, the coupling input signalui PR, and
the coupling output signalhi PR. The input and output vec-
tors are denoted bybPRm andcPR13m, respectively.N.0
is the total number of oscillators. Suppose that the nonlinear
function F :Rm→Rm has the fixed pointj f =hjPRm:Fsjd
=0j. The individual oscillators are connected by the coupling
signals

u1 = kfhNst − td − h1stdg,

ui = kfhi−1st − td − histdg si = 2,3,…,Nd, s2d

wherekPR represents the coupling strength. The one-way
ring coupled oscillators described by Eqs.(1) and (2) are
illustrated in Fig. 1. Theith oscillator is influenced by only
the delayed signalhi−1st−td of the si −1dth oscillator. Due to
diffusive coupling, this coupled system has the steady state

fj1
T j2

T
¯ jN

TgT = fj f
T j f

T
¯ j f

TgT s3d

which is identical to that of the individual oscillators without
coupling.

When N=2, the one-way time-delay coupled system is
equivalent to the delay coupled oscillators proposed by
Reddy et al. [6,7]. When N=1, it is equivalent to the
delayed-feedback control system[21,22]. Thus, amplitude

death for N=1 corresponds to the stabilization of a fixed
point in a nonlinear oscillator controlled by delayed feed-
back. Accordingly, the one-way time-delay coupled system
can be considered as an extension of both the delay coupled
oscillators and DFC systems.

III. INSTABILITY CONDITION

This section presents an instability condition under which
death never occurs via linear stability analysis. Letxiªji
−j f and yiªcsji −j fd so that the originxi =0 becomes a
fixed point. It is obvious that the behavior ofji si
=1,2,… ,Nd near fixed point(3) is equivalent to that of
xi si =1,2,… ,Nd governed by

ẋi = Ax i + bui

yi = cxi s4d

with the connection

u1 = kfyNst − td − y1stdg,

ui = kfyi−1st − td − yistdg si = 2,3,…,Nd. s5d

The Jacobian matrix

A ª U ] Fsjd
] j

U
j=jf

s6d

is evaluated at the fixed pointj f. As a result, we say that the
stability analysis ofji can be reduced to the stability of a
linear system consisting of(4) and (5). It is assumed
throughout this paper thatA does not have an eigenvalue on
the origin.

Substituting the coupling signals(5) into the linearized

system(4) and definingĀªA − b̄ , b̄ªbkc, the linear sys-
tem can be written as

3
ẋ1

ẋ2

A
ẋN−1

ẋN

4 = 3
Ā 0 ¯ 0 0

0 Ā � 0 0

A � � � A

0 0 � Ā 0

0 0 ¯ 0 Ā

43
x1

x2

A
xN−1

xN

4 + 3
0 0 ¯ 0 b̄

b̄ 0 � 0 0

A � � � A
0 0 � 0 0

0 0 ¯ b̄ 0
43

x1st − td
x2st − td

A
xN−1st − td
xNst − td

4 . s7d

The characteristic function of system(7) is
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gsl,td = det3
lI m − Ā 0 ¯ 0 − e−ltb̄

− e−ltb̄ lI m − Ā � 0 0

A � � � A

0 0 � lI m − Ā 0

0 0 ¯ − e−ltb̄ lI m − Ā

4
= det3

lI m − Ā − e−ltb̄ 0 ¯ 0 0

− e−ltb̄ lI m − Ā + e−ltb̄ � e−ltb̄ e−ltb̄

A � � � A

0 0 � lI m − Ā 0

0 0 ¯ − e−ltb̄ lI m − Ā

4
= g1sl,tdg2sl,td,

where

g1sl,td = detflI m − Ā − e−ltb̄g = detflI m − A + b̄s1 − e−ltdg,

g2sl,td ª det3
lI m − Ā + e−ltb̄ e−ltb̄ ¯ e−ltb̄ e−ltb̄

− e−ltb̄ lI m − Ā ¯ 0 0

A � � A A

0 0 � lI m − Ā 0

0 0 ¯ − e−ltb̄ lI m − Ā

4 .

The following result is obtained from the above characteris-
tic function.

Lemma 1.Suppose that the fixed pointj f of individual
oscillators without coupling is unstable; that is, the Jacobian
matrix A is an unstable matrix. Steady state(3) is unstable
(i.e., amplitude death never occurs) for anyk, b , c, andN, if
the coupling signalsui include no time delayst=0d.

Proof. For no time delayst=0d, the instability condition
for steady state(3) is that at least one rootl of the charac-
teristic equationgsl ,0d=0 is in the open right half of the
complex plane. It is obvious that the roots ofgsl ,0d=0 in-
clude those ofg1sl ,0d=0 andg2sl ,0d=0. Since the equation
g1sl ,0d=0 can be rewritten as

g1sl,0d = detflI m − Ag = 0,

its roots are equivalent to the eigenvalues of the unstable
matrix A. Thus, for t=0, there exists at least one root of
gsl ,0d=0 in the open right half of the complex plane for any
k, b , c, andN. j

Lemma 1 agrees with the death stability analysis[7].
WhenN=2, Lemma 1 is derived for both discrete-time and
continuous-time dynamics[5,16]. The following theorem
summarizes this paper’s main result.

Theorem 1.Steady state(3) is unstable(i.e., amplitude
death never occurs) for anyk, b , c, t, andN, if the Jacobian

matrix A has an odd number of real positive eigenvalues
(odd-number property).

Proof.The roots ofg1sl ,td=0 are the primary focus. The
function g1sl ,td is continuous inl; hence liml→`g1sl ,td
=`. Substitutingl=0 into g1sl ,td,

g1s0,td = detf− Ag = p
q=1

m

s− sqd,

wheresq are the eigenvalues ofA. If A has an odd number
of real positive eigenvalues, theng1s0,td,0 ∀ t.0. Ac-
cordingly, the equationg1sl ,td=0 has at least one positive
root. This means that steady state(3) is unstable. j

When N=1, this theorem reduces to the odd-number
property of a DFC system derived in[21,22]. Furthermore,
whenN=2, this theorem becomes a limitation to amplitude
death in time-delay coupled oscillators[6,16]. This theorem
guarantees that death never occurs for any coupling strength,
input and output vectors, time delay, and number of oscilla-
tors. Therefore, if it is desirable to avoid amplitude death, the
oscillators should be designed so that the odd-number prop-
erty is always maintained.

IV. STABILITY CRITERION

This section proposes a simple systematic and graphical
procedure that guarantees the stability of steady state(3).
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This procedure is based on the frequency domain descrip-
tion. In individual oscillators, the transfer function from
yi−1st−td to yistd is

Hs jvd ª cs jvI m − A + bkcd−1bk,

where jªÎ−1. Therefore, the transfer function fromyi−1st
−td to yist−td is

Gs jvd ª e−jvtHs jvd,

wheresA −bkc,bk,cd is assumed to be controllable and ob-
servable[23]. Figure 2 illustrates the coupled linearized sys-
tem consisting of Eqs.(4) and (5) in the frequency domain
description. According to the famous Nyquist criterion[23],
the following lemma holds.

Lemma 2.Suppose thatA −bkc is a stable matrix. Steady
state(3) is stable if the vector locus ofGs jvdN svP f0,`dd
does not intersect with the half line

L0 = h1 + m:m P R ù 0j

on the complex plane.
Lemma 2 requires the calculation and plotting of the vec-

tor locusGs jvdN. Therefore, ifN is large, the calculation is
not easy. Furthermore, ifN is changed, the vector locus must
be recalculated and replotted. Instead, the following theorem
provides a simple systematic procedure that guarantees sta-
bility by using the vector locusGs jvd.

Theorem 2.Suppose thatA −bkc is a stable matrix.
Steady state(3) is stable, if the vector locus ofGs jvd sv
P f0,`dd does not intersect with any ofN half lines

Lsl,Nd = hmej2sl−1dp/N
:m P R ù 1j sl = 1,2,…,Nd

on the complex plane.
Proof. It is obvious that the following two statements are

equivalent: the vector locusGs jvdN intersects the half lineL0

of Lemma 2 and the vector locusGs jvd intersects with at
least one ofN half linesLsl ,Nd sl =1,2,… ,Nd. Hence, if the
vector locusGs jvd does not intersect with any ofN half lines
Lsl ,Nd, then steady state(3) is stable. j

Figure 3 illustrates the half linesLsl ,Nd for N=1, 2,…, 5.
Lemma 2 is based on the sufficient condition for the stability
of coupled linearized systems. Therefore, there is a possibil-
ity that a system would be stable even if Theorem 2 is not
satisfied.

V. NUMERICAL EXAMPLES

The previously described procedure is illustrated using
two numerical examples.

A. Rössler oscillators

For the first example, the Rössler equation

Fsjid = 3 − ji
s2d − ji

s3d

ji
s1d + p1ji

s2d

p2 + ji
s3dsji

s1d − p3d
4

is used for the individual oscillators, wherep1,2,3 are the
system parameters. One of the two fixed points is

j f = fj f
s1d j f

s2d j f
s3dgT = F1

2
g −

1

2p1
g

1

2p1
gGT

,

g = p3 − Îp3
2 − 4p1p2.

The purpose of this example is to know whether amplitude
death occurs. The input and output vectors areb=f0 1 0gT

andc=f0 1 0g, and the Jacobi matrix evaluated at the fixed
point j f is given by

A = 3 0 − 1 − 1

1 p1 0

j f
s3d 0 j f

s1d − p3
4 .

Assume that the system parameters are set top1=p2
=0.2, p3=5.7. For the no-coupling casesk=0d, the indi-
vidual oscillators exhibit the famous Rössler attractor. Since
the eigenvalues of A are s1=−5.687 and s2,3
=0.097±j0.995,A is an unstable matrix and does not satisfy
the odd-number property presented in Theorem 1. Therefore,
Lemma 1 guarantees that death never occurs atj f for any
k, b , c, and N when the coupling does not include a time
delay. Theorem 1 does not guarantee that steady state(3) is
stabilized by the time-delay coupling. Fork=1.5, the matrix
A −bkc is stable(eigenvalues −5.687, −0.653±j0.763) and
sA −bkc,bk,cd is controllable and observerable. Therefore,

FIG. 2. Coupled linearized systems in frequency domain
description.

FIG. 3. Half linesLsl ,Nd on the complex plane.Ls1,p d denotes
Ls1,nd for n=1, 2, … , N.
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Theorem 2 can be employed. The vector locus ofGs jvd with
t=1.0 is plotted in Fig. 4. Because it does not intersect any
of the half linesLs1,p d , Ls2,2d , Ls2,3d, andLs3,3d, Theo-
rem 2 guarantees that steady state(3) is stable forN=1, 2,
and 3. However, because the vector locus intersects the half
lines Ls4,4d andLs5,5d, the stability of(3) cannot be guar-
anteed forN=4 and 5.

Figure 5 shows the temporal behavior of the coupled
Rössler oscillators(N=1, 2,…, 5). The individual oscillators
without coupling behave independently untilt=50. At t=50
one-way time-delay coupling is achieved. Figure 5(a) reveals
that the oscillator variablesji

s2d for N=1, 2, and 3 converge
to the fixed pointj f after coupling: That is, amplitude death
occurs. This result agrees with the stability analysis shown in
Fig. 4. On the other hand, the variablesji

s2d for N=4 and 5 do
not converge to a fixed point. This fact does not contradict
the stability analysis.

B. Lorenz oscillators

The Lorenz equation

Fsjid = 3 p1sji
s2d − ji

s1dd
− ji

s1dji
s3d + p2ji

s1d − ji
s2d

ji
s1dji

s2d − p3ji
s3d 4

has three system parameters denoted byp1,2,3. For p2.1,
there are three fixed points:

j f 0:f0 0 0gT,

j f+:fÎp3sp2 − 1dÎp3sp2 − 1d p2 − 1gT,

j f−:f− Îp3sp2 − 1d − Îp3sp2 − 1d p2 − 1gT.

The input and output vectors areb=f0 1 0gT andc=f0 1 0g,
and the Jacobian matrix

A = 3 − p1 p1 0

p2 − j f
s3d − 1 − j f

s1d

j f
s2d j f

s1d − p3
4

is evaluated at the fixed points. The system parameters are
set top1=10.0,p2=28.0, andp3=8.0/3.0. Without coupling,
the individual oscillators exhibit the famous Lorenz attractor.

For the fixed pointj f0, the eigenvalues ofA are estimated
to be s1=11.828,s2=−2.667, ands3=−22.828; therefore,
A is an unstable matrix that satisfies the odd-number prop-
erty in Theorem 1. According to Lemma 1 and Theorem 1,
both systems with no time-delay coupling and time-delay
coupling never induce amplitude death at the steady state

fj1
T j2

T
¯ jN

TgT = fj f0
T j f0

T
¯ j f0

T gT.

For the fixed pointsj f±, on the other hand,A has the
eigenvaluess1=−13.855 ands2,3=0.094±j10.195, which
do not satisfy the odd-number property. Fork=2.0 andt
=0.5, the matrixsA −bkcd is stable andsA −bkc,bk,cd is
controllable and observable. From Fig. 6, it can be seen that
the vector locus ofGs jvd does not intersect the half lines
Ls1,p d , Ls2,2d , Ls2,3d, and Ls3,3d. This fact guarantees
that both steady states

fj1
T j2

T
¯ jN

TgT = fj f−
T j f−

T
¯ j f−

T gT, s8d

fj1
T j2

T
¯ jN

TgT = fj f+
T j f+

T
¯ j f+

T gT s9d

are stable forN=1, 2, and 3. However, since the vector locus
intersects with the half linesLs4,4d andLs5,5d, the stability
of the steady states forN=4 and 5 cannot be guaranteed.

The system variables of the coupled Lorenz oscillators are
shown in Fig. 7. The oscillators remain uncoupled untilt
=50. As shown in Fig. 7(a), steady states(3) for N=1, 2, and
3 are stable. The oscillators converge on(8) or (9), depend-
ing on the initial condition. In contrast, all of the oscillators
do not converge to the steady states forN=4 and 5, as shown
in Fig. 7(b). These facts also do not contradict the stability
analysis in Fig. 6.

FIG. 4. Vector locus(dashed line) of Gs jvd for the coupled
Rössler oscillatorssk=1.5,t=1.0d.

FIG. 5. Temporal behavior of the coupled Rössler oscillators
sk=1.5,t=1.0d. (a) N=1, 2, and 3,(b) N=4 and 5.
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VI. CONCLUSIONS

This paper has proposed a system consisting ofN oscilla-
tors coupled by a one-way ring time-delay connection, which
is an extension of both the time-delay coupled oscillator and
the DFC systems. It was verified that the odd-number prop-
erty is a sufficient condition under which amplitude death
never occurs in the proposed system. Furthermore, a system-

atic and graphical procedure to check the stability of the
steady state on the basis of the Nyquist criterion has been
proposed. Numerical simulations using the Rössler and Lo-
renz oscillators have been conducted to confirm the theoret-
ical results.
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