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Multiple invaded consolidating materials
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We study a multiple invasion model to simulate corrosion or intrusion processes. Estimated values for the
fractal dimension of the invaded region reveal that the critical exponents vary as a function of the generation
numbergG, i.e., with the number of times the invasion process takes place. The averagell méi® invaded
region decreases with a power law as a functio®pM ~ G#, where the exponeng~0.6. We also find that
the fractal dimension of the invaded cluster changes fdam1.887+0.002 tads=1.217+0.005. This result
confirms that the multiple invasion proce$sr the case in which uninvaded regions are forbigdeilows a
continuous transition from one universality cldasntrapping invasion percolatipio another(optimal path.

In addition, we report extensive numerical simulations that indicate that the mass distribution of avalanches
P(S,L) has a power-law behavior and we find that the expornegbverning the power-lawP(S,L) ~S"
changes continuously as a function of the param@téie propose a scaling law for the mass distribution of
avalanches for different number of generatiéhs
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I. INTRODUCTION cal processes can take place. In this way slowly the material
is again strengthened partly repairing the damaged region.
The veins of gems and ores are often the product of &hen suddenly due to some tectonic mechanism like an
multiple intrusion of a reacting fluid into a porous soil in earthquake or volcanic activity again an invasion takes place.
which dissolution and subsequent recrystallization processds will favorably follow along the weakest regions of the
are the determining factor. Some examples like porphyrsolid which typically will be along previously damaged re-
copper deposit§l] or olivine [2] have been studied in the gions. The interest in the problem is to understand to which
literature and it is known that the surviving network of ore degree this reinvasion will either fully or only partially co-
deposits has a fractal structur 4] that can be considered incide with the first one. The process of reinvasion can be
for mineral exploratior}5]. A similar situation can be found repeated many times and only the final product is observed at
in vulcanology when magma is repeatedly injected througtihe end like the scars of many wounds on the skin of an old
the same pathway, each time melting up again the most rexnimal.
cent formations to find its way oUi6]. The theory of avalanche dynamics has been studied in a
The evolution of the pore structure after several invasionvariety of contexts, for example in growth models, interface
frost-thaw events has been investigated numerida@llyand  depinning, and invasion percolatid®]. The formation of
results indicate that the fractal dimension of invasion clusterfractal structures, diffusion with anomalous Hurst exponents,
varies with the number of invasion cycles. In this work, afterand Lévy flights, can all be related to the same underlying
invasion takes place, the structure of the porous pathway igvalanche dynamic§9]. Normally, the presence of ava-
randomly healed. In a similar approa¢8], an optimized lanches in the invasion process supposes unchanged porous
version of the multiple invasion percolation model was stud-media. In this work we also investigate the mass-distribution
ied. Some topological aspects as the acceptance profile ad avalanches and determine how the exponent that charac-
the coordination number were investigated and compared tterizes this distribution changes for different cycles of the
those of ordinary invasion percolation. invasion process. This paper is organized as follows. In Sec.
In the cases mentioned aboy&-5 and also in other Il we present the model and simulate the multiple invasion in
cases of repeated invasions of corroding, dissolving, or melteonsolidating medium for the case in which uninvaded re-
ing fluids into a strongly heterogeneous substrate, slowlgions are forbidden. In Sec. Ill we show the results for the
consolidating matrix fractal patterns are created that refledhvaded cluster mass. The results and analysis of the numeri-
the history of the material. It is the aim of this paper to cal simulation for avalanche distribution are shown in Sec.
develop a model of multiple invasion in order to simulatelV. In Sec. V we present simulation results of the multiple
how these patterns form and how their fractal dimensiorinvasion model for the case where the noninvaded regions
changes. In fact, we propose a complete theoretical frameare not completely forbidden, while the conclusions are pre-
work based on scaling law$]. sented in Sec. VI.
The basis mechanism behind the multiple invasion pro-
cesses in rock evolution is the following: A first invasion
takes place within a geologically speaking very short time
and leaves behind a certain damaged re@dnich typically In order to simulate the injection process we use the stan-
has a fractal shapeThen during a long period nothing dra- dard nontrapping invasion percolatigNTIP) [10]. In this
matic happens so that, e.g., crystallization or diverse chemimodel the invaded solid is considered to be very heteroge-

Il. MODEL
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FIG. 1. Typical cluster for different generations on a 25856 lattice, forp”=1. The injection point is localized in the center of the
lattice.

neous and the invading fluid can potentially enter anywhere Let us first consider the cagg=1. In this situation, the
along the interface. Here the consolidating medium is repreinvaded cluster is after each time a subset of the previous one
sented conveniently as a square network. The sites of thgo that after a finite number of iterations the cluster does not
lattice can be viewed as the smallest units of constanfiecrease any longer. The number of generations needed to
strength and the randomness of the strength of the medium f§ach a cluster whose mass remains unchanged depends on
incorporated by assigning random numbers to sites. For sinfhe size of the original lattice because the number of possible
plicity, we consider the case in which dissolutions control the2vailable sites is proportional to the system size. Therefore
fluid invasion. the saturation number is dlﬁeren'g for each lattice size. In
On our heterogeneous medium we start by applying th@rder to illustrate these changes in the structure after each

standard invasion process of NTIP. For completeness the _roce;sf of |nlva§|on, fwe. sh_o;v gn fF'gf' 1 t;(/jpflfcal clusters gen-
gorithm is described as follows. Initially, let us assign a ran-rated for a lattice of size=256 for four different genera-

dom number,p, drawn from a uniform distribution in the tions G. Another important quantity is the probability distri-

interval[0,1], to each site of the lattice. We choose one site bution .Of Pi O.f th_e mvaded sites. In Fig. 2 we present the
in the center of the lattice and occupy it. This site represent§0rmalized distributionP;,,(p) for different generationss
the injection point of the fluid and is the seed of the invadingPPt@inéd from 1000 realizations of side=512. After the
cluster. We look among the neighboring sites of this clusteFPMPIetion of the first invasion process, the distribution ex-
(the growth sites and choose the one which carries thePeCtedly displays a transition pt=pc, wherep, is the criti-

smallest random number. This site is then invaded and addél_Sité percolation pointp.=0.59275 for a square lattice
to the cluster. Then we increase the list of sites that arélll- The same behavior has been observed by numerical

eligible to be invaded. At each step of the invasion processsimulation in Refs[7,8]. For G=2 the distributionPiy,(p)

the perimeter of the nearest neighbors of the sites that forfi€comes flat and the profile does not change any more as a

the invading cluster is investigated and the site that has thiinction of G. This happens because when-1 sites with

smallestp, is chosen. This procedure is repeated until thd@rgerp; are also invaded.

edge of the lattice is.reached. At this poiint the sim.ulation IIl. CLUSTER MASS

stops and the masd (i.e., the number of sites belonging to

the invaded clustgrof the cluster is computed. The number N our simulations we used the NTIP algorithm for square

of sites of the invaded cluster is very often considered as #ttices of sized =64, 128, 256, 512, and 1024. For each

time parameter. 0.01
Now we present the new feature introduced to the stan-

dard invasion percolation. After we finish the above de-

scribed simulation in agreement with customary NTIP, the  ¢.008

simulation is performed again starting every time at the same

injection point. New random numbers chosen from a uniform

distribution in the intervaJ0,1] are assigned to all sites be- 0.006

longing to the previously invaded cluster before a new inva- 2

sion process starts. To all other sites, i.e., namely, those themg

are outside the cluster, we assign a random number homoge ™ 0.004 +

neously distributed in the intervip*, 1] wherep” is a num-

ber close to unity. Compared to the support used in the firsi

generation where all sites can be invaded, the second generi  0.002 A A Golb

tion appears substantially reduced, because it mostly corre

sponds to the cluster invaded in the first generation. In this

way we generate again an invasion cluster for wigich1 is 0, 02 0.4 & i 2

a subset of the previous one and so necessarily smaller. Thi

procedure is repeate@ times, whereG is the number of

generations. Standard invasion percolation coincides with the FIG. 2. The probability distributiof?;,,(p) of invaded sites for

caseG=1. At each new generatia8, the sites of the previ- different generation&=1 (circles, 2 (squarey and 16(triangles,

ous invasion are reinvaded. L=512 andp’=1.

T ) ////////////A
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FIG. 3. The evolution of the ratMg/Mg_, as function of the

logarithm of the generation numb& for p'=1. HereMg is the

mass at generatio® for different sized. =64, 128, 256, and 512.

FIG. 5. Log-log plot of the average mass of the invaded cluster
M normalized by the masil; of the first invaded cluster, against
the number of generationS for different sizesL=64, 128, 256,

. . . 512, and 1024, ang"=1. The inset shows the collapse following
value of G, we perform simulations for 10 000 realizations e scaling relation of Eq2).

and compute the madd of the invaded cluster. In Fig. 3
we show the ratidMg/Mg_; as a function of the generation

. . ) increasing the generation number the fractal dimension de-
numberG. For each sizé, G is defined as the number of 9 9

. , . creases continuously until it reaches a saturation value of
generations at which the mass of the invaded cluster reach%ls:_1 217+0.005 aG, This value agrees with the fractal

- . —_ s_ . —_— . St
a constant value, i.e., for whicklg /Mg _1=1. The results i, 0nqion of the optimal path in the strong disorder limit
of our ;lmulatlogj@‘;h(éyvn in r']:'g- h4 for fourhvalues of the dop=1.22+0.01[15]. As shown in Fig. 5 for large system
generation numbe@ indicate that the masldl has a power-  gjze5 we find that the average mass of the invaded cluster

. J .
law dependence on the siig M~L%, wheredg is the g mpotically follows a power-law behavior
fractal dimension of the invaded cluster. The cé&sel cor-

responds to the standard invasion percolation model. The M~ GF. (1)

value obtained from our simulationd,=1.887+0.002, is in 14 petter analyze the data, we normalize the mass by the

good agreement with the current estimalg=1.8959 for  ;ongtantv,, which is the average mass of the invaded clus-
NTIP [11-14. The results shown in Fig. 4 indicate that by
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FIG. 4. Log-log plot of the mash! of the invaded cluster versus FIG. 6. The mass distribution of avalanches for different gen-
the system size for different generation numb@rsl (circles, 100 eration numbersz=2, 4, 8, 16, 32, 64, and 128 far=512 and
(squarey 500 (diamond$, and 3000(triangleg, andp'=1. The  p'=1. The slopes of the straight lines follow power laws with ex-
straight lines are best fits to the data and their slopes are the fractpbnentr. The solid lines indicate the two limit cas&=1 (lower)
dimensions of the invaded clusters. and G=128 (uppe).
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From these relations, we obtain that
14 -
O o
o) z=—, (4)
13l o | B
© and from the fact that the fractal dimension has reached the
e 1ol o | saturation valueds~1.22, it givesa=-0.68. The inset of
' Fig. 5 shows the data collapse obtained by rescalirig/
o andG according to the scaling form E@). In this case the
1.1+ . best fit to the data give8~0.6. Substituting into Eq4) we
find z=1.13.
o)
1+ O o o . IV. AVALANCHE DISTRIBUTION
It has been known for a long time that avalanches occur in
0.9 : s ' invasion percolation and that these avalanches obey scaling

0 1 2 3 4

log,. G relations related to percolation theddy7]. An avalanche oc-
1

curs when a sit¢ is invaded at a valup; and then a series of

FIG. 7. Log-linear plot of the avalanche exponers a func- si_tesi connectgd to this original site are sequentially invaded
tion of the generation numb&, for L=512 andp*=1. with p;<p;. Itis also known that the system reaches a self-
organized critical state characterized by avalanches of all
sizes distributed according to a power law. In the case of
NTIP, the exponent corresponding to the power-law behavior
for the distribution P(S) of avalanche sizesS is 7

ter at G=1. Similar to some problems that involve growth
surfaceq 16], this process has two characteristic regin@s:
power-law evolution andii) saturation wherG — . To de-

; ; ; - . =1.527[17].
scribe this behavior we propose the scaling relation In our simulation we found that the exponent correspond-
M(GL)  ..[G—-Ng ing to the caseG=1 is 7=1.46+0.03. The expected value
M, =Lt Lz /) 2 [17] is outside of our error bars, which we attribute to the

fact that we have not reached the asymptotic limit because
whereN, is an offset value for the generation number and our systems are too small.

and z are scaling exponents. We assume that the scaling We performed simulations for different generatiddson
function f(x) has the formf(x) ~x? in the limit x<1 and lattices of sized =64, 128, 256, 512, and 1024, and calcu-
f(x)=const wherx> 1. Furthermore, a direct relation among lated the size distribution of avalanches. In Fig. 6 we show
exponentsa, B, and z can be obtained. We find1/M; P(9) for sizeL=512 andG=2, 4, 8, 16, 32, 64, and 128. It is
~GP for L>1 and, sinceM/M;~L¢% in the saturation re- clear from this figure thaP(S) displays power-law behavior

gime (G>1), we obtain thatw=ds—d;. with the exponent dependent of the number of generat®ns
In the crossover region, when the fractal dimension goeJhe solid lines indicate the slopes in the two limit cages
from d; (G=1) to d (G=G,) we have =1 (lower) and G=128 (uppe).
0 . . , . . 0 .
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FIG. 8. Log-log plot of the probability distribution of avalancheS, L) for various size =64, 128, 256, 512, and 1024,=1.(a) G=2
and(b) G=128.
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FIG. 9. Log-log plot of the distributiofP(S) for p*=1 and gen-
eration numbeiG=2 for L=1024 (circles, 512 (squares 256 (up
triangles, 128 (diamonds, and 64(down triangles The solid lines

7

correspond to the scaling functigre AyS ™ exd —(S/ A)?] with the

parameterr=1.37. The inset shows the log-log plot of the crossover
amplitude A; versus the system size for G=2 (circles, 32
(squares 128 (diamonds$, and 256(triangles. The lines are the
least-squares fits to the data and the slopg is

changes as a function of the number of generat@ngor
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FIG. 11. Log-log plot of the rescaled distribution of avalanches
sizes P(S/L”) for generation numbe6G=16 and different lattice
sizesL=64, 128, 256, 512, and 1204 apt=1.

sudden cutoff that decays faster than exponential due to a
finite size effect. The range of the power-law region is pro-
portional to the lattice size. As a consequence the biggest

avalanches occur in the largest lattice. The position of the
cutoff depends o1& for fixed L. We propose a scaling form
In Fig. 7 we show how the exponent of the power-law for the mass distributiorP(L,S), which accounts for finite

large values of5 the exponent converges te 1. This value
is the same found for the distribution of avalanci&s) in
the one-dimensional ca$&8]. This is consistent with Fig. 1

for G=100 where the avalanche process is limited to a thinyhere the functiorf(x) has a Gaussian form
path that is essentially an one-dimensional topology.

size effects and power-law behavidr9]

S
P(SL) Sff(u>, (5

In Figs. 8§a) and &b) we show the log-log plot of the f(x) = exd - x. (6)

distribution of avalanche sizes. It is clear from these figuregy practice, the appropriate parameters of the scaling func-

that P(S) displays a scaling region for intermediate ava-tjon Eq. (5) have been determined here through a nonlinear
lanche sizes. In addition the scaling region is followed by &itting procedure of the function

2 T T T T T T T T T
3.75 | p =09 i
19 © © © i
O
O
@]
1.8 1 3.25 1
=
- ~ ®
g p=0.9999
1.7 F o .
2.75 B
16 | . .
O p =0.999999
225 1 1 1 1
1.5 L L L 1 L 0 200 400 600 800 1000
0 0.5 1 1.5 2 25 3 G
log,, G

FIG. 12. Linear-log plot of the invaded mass for a typical real-
ization as function of the generation numtier for L=512. From
top to bottom,p”=0.9,0.9999,0.999999.

FIG. 10. Log-linear plot of the exponent vs the generation
numberG. p"=1.
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FIG. 13. Typical configurations of invaded clusters at different generat®m@sd L=256. The random numbeg; is drawn from a
uniform distribution of probabilities in the intervip®, 1] for p*=0.9.

P(SL)=A,S "exd - (JA)?] (7) pact and sometimes changes the point where it reaches the

border. Whenp”=0.999999, the cluster becomes smaller at
to the avalanche data. We observe that both the prefagtor .., generation.

and the crossover amplitudg depend on the system size. |, order to be more quantitative we calculate the fractal

The solid line in Fig. 9 corresponds to the best fit usingyimensiond,. We measure the mass of the invaded cluster

Eq. (7) for G=2 and many different size with 7=1.37. 5 gifferent generationss for two different probabilities
The inset of Fig. 9 shows the power-law dependence of =0 9 and 0.999999. Numerical simulations were carried

crossover amplitude on the system si&ex L”. The straight .+ for 1000 realizations on lattice sizes 64, 128, 256, and

lines are the least-squares fits to the data, with the slope$; > | Figs. 15 and 16 we present log-log plots of the av-
corresponding to the exponeptn Eq. (5) for different gen-  graged mass of the invaded cluster versus the latticeLsize
eration numbers. The linear fit to the data yields the fractal dimensibmof the
In Fig. 10 we plot the exponen versusG, and see that i, aded cluster. In the cagi=0.9, the fractal dimension is
the exponent has a monotonic behavior as a function of thﬂf:1.9010.01 for all generations. Fpr=0.999999 the frac-
generation number. ) ) tal dimension decreases whénincreases. This implies that
In Fig. 11 we show the rescaled functi®iS/L?) for G e fractal dimension of the invaded cluster has a behavior

=16. The data collapse obtained validates the scaling form afimjjar to the previously studied case in whiph=1.
Eq. (7). This confirms that the system is self-organized criti-

cal and the rescaled distribution shows the asymptotic scal-
ing behavior of Eq(7). VI. CONCLUSIONS

We have presented a comprehensive model to study a
multiple invasion process. We have shown that the nhdgs
of the invaded cluster decreases with the generation number
In the first part of this work we consider@d=1. Nowwe  G. In addition, the fractal dimension of the invaded cluster
present simulations for differeni” very close to unity. In  changes fromd;=1.887+0.002 tods=1.217+0.005 corre-
Fig. 12 we show how the mass of the invaded cluster variesponding toG=1 andG=Gg, respectively. This result con-
as a function of the generation numi@rfor a typical real-  firms that the multiple invasion process follows a continuous
ization of the multiple invasion process. In the caée0.9  transition from one universality clagbiTIP) to another(op-
the value of the mass shows strong fluctuations. If the probtimal path. We confirmed by extensive simulations that the
ability to occupy sites outside of the previously invaded clusinvaded mass follows a power-lam ~ G# with an exponent
ter is raised, the previous invaded region of the porous medig=0.6. In addition the probability distribution of avalanches
is more likely invaded. To understand the qualitative behavP(S,L,G) has been studied for different system sizes as a
ior of the invaded cluster as a function of the generat®n function of the paramete®. We found that the mass distri-
we show in Figs. 13 and 14 typical clusters for two valuesbution of avalanches follows a power law where the expo-
p'=0.9 andp'=0.999999, for five different generatio® nent 7 changes as a function of the generation numBer
=1, 5, 10, 25, and 50. F@"=0.9, the cluster is more com- Based on this fact, we suggest that the avalanche process

V. RESULTS FOR p" #1

G=50

FIG. 14. Typical cluster configurations for invaded clusters at different generd@i@msl L =256. The random numbe is drawn from
a uniform distribution of probabilities in the intervgh”, 1] for p*=0.999999.
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FIG. 16. Log-log plot of the averaged maskagainst the sys-
tem sizel for p'=0.999999 and@=5 (circles, 10 (squarek and 50
(diamond$. The straight lines are least-squares fits to the data, with
the numbers corresponding to the fractal dimensions of the clusters.

FIG. 15. Log-log plot of the averaged madsas a function of
the system sizé& for p"=0.9 andG=5 (circles, 10 (squarey and
50 (diamonds$. The solid line with slope 1.90+£0.01 is the least-
squares fit to all data sets.

belongs to a differenuiniversality clasfor eachG since no ~ verges well to a different universality class, namely, that of
crossover scaling seems possible. Our results also indicatge optimal patfj13]. In the opposite case corresponding to
that this change in universality class occurs in a continuou$ # 1, the classical invasion percolation holds for all genera-
way. Concerning the reinvasion of crystallizing, solidifying, lONs.
or healing fluids we conclude that only in the case in which
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healed parts typically do not get much stronger than they We thank CNPq, CAPES, FINEP, FUNCAP, DFG Project
were before the invasion, the multiple invasion process con404, and the Max Planck grant for financial support.

[1] J. H. Dilles and M. T. Einaudi, Econ. Geo87, 1963(1992. Theory(Taylor Francis, Philadelphia, 1994
[2] B. J. Wanamaker, T. F. Wong, and B. Evans, J. Geophys. Re$12] J. FederFractals (Plenum, New York, 1988
95, 15623(1990. [13] S. Schwarzer, S. Havlin, and A. Bunde, Phys. ReG%: 3262
[3] D. L. Turcotte,Fractals and Chaos in Geophysi@Sambridge (1999.
University Press, Cambridge, England, 1992 [14] M. A. Knackstedt, M. Sahimi, and A. P. Sheppard, Phys. Rev.

[4] C. E. Manning, Geology22, 335(1994).

. E 65, 101R) (2 .
[5] A. Panahi, Q. Cheng, and G. F. Bonham-Carter, Geochem['ls] M 62. O?Skoi )lv(l O?a 41 R B Phvs. Rev. Lett
Explor., Environ., Anal.4, 59 (2004, and references therein. - “leplak, A. Maritan, and J. K. Banavar, Fhys. Rev. Let.

[6] E. Luijten, H. W. J. Blote, and K. Binder, Phys. Rev. 5, 72, 2320(1994.

6540(1997). [16] A.-L. Barabéasi and H. E. Stanlefractals Concepts in Sur-
[7] E. Salmon, M. Ausloos, and N. Vandewalle, Phys. Re\6E face Growth (Cambridge University Press, Cambridge, En-

R6348(1997). gland, 1995.
[8] R. A. Zara and R. N. Onody, Int. J. Mod. Phys. 0, 227  [17] S. Roux and E. Guyon, J. Phys. 22, 3693(1989.

(1999. [18] A. M. Alencar, S. V. Buldyrev, A. Majumdar, H. E. Stanley,
[9] M. Paczuski, S. Maslov, and P. Bak, Phys. Rev5E 414 and B. Suki, Phys. Rev. B8, 011909(2003.

(1996. [19] J. S. Andrade, Jr., S. V. Buldyrev, N. V. Dokholyan, S. Havlin,
[10] D. Wilkinson and J. F. Willemsen, J. Phys. 6, 3365(1983. P. R. King, Y. Lee, G. Paul, and H. E. Stanley, Phys. Rev. E
[11] D. Stauffer and A. Aharony,Introduction to Percolation 62, 8270(2000.

066150-7



