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We study level correlations of disordered systems with chiral unitary symriglilysymmetry). We use a
random matrix model with a finite correlation length to derive a supersymmetric nontineadel. The result
is compared with existing results based on other models. Using the methods of Kravtsov andmikttima
Zh. Fksp. Teor. Fiz60, 645(1994 [Sov. Phys. JETR0, 656(1994]) and Andreev and AltshulgPhys. Rev.
Lett. 75, 902 (1995], we calculate the density of states and two-level correlation function. The result is
expressed using the spectral determinant as in traditional nonchiral systems. We discuss the renormalization of
the mean level spacing which is not present in the traditional systems.
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[. INTRODUCTION modify the universal result of level correlation functions
o ) ) [7-9]. Kravtsov and Mirlin(KM) treated the zero and non-
The classification of disordered systems is based on synyero modes separately and found firgteorrections to the
metries of the Hamiltonian. According to invariance proper-universal resulf8]. Due to technical problems, the result was
ties under time-reversal and spin rotation, three symmetryestricted to the domaim<g wherez is the scaled energy
classes—unitary, orthogonal, and symplectic—are wellariable. Using another method, Andreev and Altsh(hek)
known since the work by Wigner and Dys@iti. The modern  considered the domair>1 where the perturbative expan-
classification is based on the notion of symmetric spg2es sion makes seng®]. They reached the nonperturbative re-
and indicates that ten universality classes exist. Althouglgime by noticing the existence of a set of nontrivial saddle
there was an early effort at a universality classification in thepoints. Considering the expansion around two saddle points
1980s[3], the additional seven classes did not attract muctihe result was expressed using the determinant of the diffu-
attention until physical applications were foufd,5. The  sion propagator, which is c_alled the sp_ectral determinant in
importance of chiral symmetry in disordered systems wadhe literature. Although their mgthod did not treat the zero
first noticed in Ref.[4] by using random matrix theory @nd nonzero modes separately, it was shown in Réf.that
(RMT) in the context of quantum chromodynami¢@CD) the separation, just as in KM's method, gives the same result.
and mesoscopic quantum wires. In systems with chiral sym- USing the derived result, the authors in REg] found a

metry, eigenvalues of the Hamiltonian appear in pairgad smearing of the singularity at the Heisenberg time in the
the origin =0 plays a special role for level correlations. form factor (the Fourier transform of the two-level correla-

In order to analyze such systems, the supersymmet tion function. Furthermore, the use of the spectral determi-

. net¥ant represents a link from disordered to chaotic systems.
method[6] is knovyn to be a u_seful toql for both perturbative The autF;]ors in Refl11] noticed that a similar treatmen){ can
and ponpertu_rbauve calculayons. This m<_athc_)d allows one Be applied to general chaotic systems just by replacing the
obtain a nonlinear- model with supermatrix fields as effec-

. : o __diffusion operator in the spectral determinant by the Perron-
tive modes. One can discuss weak localization effects usin

; S 'S USINBropenius operator. For a chaotic system, the expression of
perturbation theory, where an expansion in terms of diffusion, o “jeterminant using the trace formula was discussed in

propgga;orng) is_bﬁ)erforr;ed. Al\(c:iagrlgmmati(_:al ill_"nterprtlata- Ref.[12]. Thus the expression using the spectral determinant
tion Is thus possible, and weak localization Implies a larg€g jnortant for a unified treatment of disordered and chaotic

conductanceg>1, whereg is proportiona_ll to the diffusion systems. The result was applied to critical statisti¥ and
constant in the propagator. The localization property can alsg1e relation to the density-density correlation in the

be discussed using the renormalization group method. Thiéalogero—Sutherland model at finite temperature was
expansion is justified only for nonzero modgs-0 in the discussed.
propagator. The ze.ro—mode sector contains a totqlly different In this paper we consider systems with chiral unitary sym-
contribution and gives the ergodic resgee. psmg thg metry. Starting from a chiral random matrix model with a
Z€ero m'ode, we can calculate level correlation funcponsnnite correlation length, we derive a nonlinearmodel and
scaled in terms of the mean level spaciBy The resultis -50jate the density of statéBOS) and two-level correla-
nonp_erturbatwe, parameter-free, and _unlversal. We know th"%Fon function(TLCF). Our aim in this paper is not to discuss
treating the zero mode perturbatively gives only the, ghecific model but to discuss the generic properties of chi-
asymptot_lc.fo.rm of the exact (esult. . ral symmetric systems. Actually the model we use in this
Thus it is important to notlcg Fhe different roles of the paper is believed to be applicable to a broad range of physi-
zero and nonzero modes. At finig; the nonzero modes cal systems and we discuss the relation to otharodels for
specific systems. Then, we calculate the DOS and TLCF us-
ing a nonperturbative method which is equivalent to both
*Present address: RIKEN, Wako, Saitama 351-0198, Japan. methods of KM and AA. Our method is similar to that in
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Ref.[10] and the zero and nonzero modes are separated ex- 1

plicitly. For chiral symmetric systems, the calculation using ¢ =wa1,2(~--)exp[— pf [w1(X%,Y) 01(y,X)

the KM method has been carried out in R@f4]. In contrast xy

to the approach in Ref$8,14], we integrate the zero mode

first, and then treat the nonzero modes perturbatively. The +w2(x,y)w2(y,x)]] (5)
advantage of this method is that all domains are treated in a

unified way. We also discuss the effect of the DOS renormal-

ization, which is specific for nonstandard symmetry systems. , )
We restrict our discussion to chiral unitary symmegyll ~ Where is a free parameter. The functiatr) represents a

symmetry and the extentions to other chiral symmetric finite correlation of the Hamiltonian. We assume the range of
classes, chiral orthogonéBDI) and chiral symplecti¢Cll), ~ the correlation, denoted by, is large so that the saddle
will be discussed elsewhere. point approximation is applicable in the following calcula-
The organization of this paper is as follows. In Sec. II,on. In the limit r<ro, a(r)~1 and we have the fully
starting from the random Hamiltonian, we derive the super3aussian correlation. In the opposite limit ro, we assume
symmetric nonlinearr model. It differs from the traditional the correlation decays fast enough, eagr) ~ exp(~|r|/ro).
o model written in terms of a supermati@ by symmetries This finite-range model is more realistic than chiral RMT
of the matrix and the presence of an additional term. wen which all the matrix elements correlate with each other in
discuss relations to other models. Next, the DOS and TLCEhe same way. The finite-range effect can be realized as a
are calculated in Sec. Ill. In Sec. IV, we discuss the effect ofv€ak localization correction and a new energy schle

the additional term and the DOS renormalization. Section V=D/L? (Thouless energy whereD is the diffusion constant
is devoted to discussion and conclusions. and L the system length, comes into the analysis. Another

interesting situation is when the decay of the matrix is power
law. For a certain range of parameters this model reproduces

IIl. SUPERSYMMETRIC NONLINEAR MODEL . . .
v the physics of the Anderson transitifitb]. Extensions of the

A. Derivation present work to the power-law case are discussed in
, e Ref. [16].
In this paper we treat the Hamiltonian in the form . . . .
pap We mention related work17-27 in which similar non-
0 W linear o models were considered for systems with chiral
= w o/’ 1) symmetry. Our model is a simple generalization of models

used in[17,2Q. In other works, the random flux modgl8],
whereW is an arbitrary matrix. This Hamiltonian possessesthe random gauge field moddR1], and the partially
chiral symmetry, which means that the eigenvalues appear iguenched chiral perturbation theory as the low-energy model
pairs . The matrix W can be a rectangular matri¢n of QCD [19] were considered. The derived nonlingamod-
xm) as well as a square orte=m). v=|n—m| is the topo- els differ from the standard diffusion model for nonchiral
logical number and is equal to the number of zero eigenvalsystems by symmetries of the matrix. Furthermore, an addi-
ues of the Hamiltonian. Here we consider0 and the ex- tional term was found in Ref§17-19 although it was not
tension to a finiter will be discussed elsewhere. Making a found in Refs.[20,21. Here we rederive thee model and

unitary transformation, we have discuss relations to these models. In fact the additional term
can exist and can be derived by a careful treatment of the

e (Ql Q, ) ) massive mode integration. Although these models are differ-

Q, -y ent, we expect common low-energy properties. Our goal is to

. . : . investigate them in the framework of the nonlingamodel.
Q4 ,aren X n Hermitian matrices. Treating these matrices as . . i
: Let us derive the nonlinear model using the supersym-

random ones, we can obtain the original chiral RMJ. Due metry method. Our derivation is similar to that in Refs.

to the chiral structure of the Hamiltonian, two random ma-[15,za. We first define the generating function for the single

trices couple in the single Hamiltonian and nontrivial corre- . ; ) X :
; . . . Green function. Following Efetov’s notation and conventions
lations of the single Green function are expected. We restrlc? —

our discussion to the chiral unitary ensemble, which mean£], we define it a<Z;[J]=/D(¢, y)exp(=L), with
Q, , are arbitrary Hermitian matrices.
We consider a system written in field theoretical form as
L=- if YN[ X~ y) — H(x,y) +kIX) 3(x ~ y) Jy),
H= f ¢ OOHOGY) y), €) xy
Y (6)
where ¢ is the fermionic field operator anfl,=/d%. The
random HamiltoniarH(x,y) has the chiral structur€) and
0 B 4 where k=diag1,-1) operates in superspace, is a four-
14%Y) = 012X y)a(x = y]). @ component supervector, ant= ¢!, The source field is a
w;  are random matrices and are averaged using the Gaus3x 2 matrix in chiral space. We take the ensemble averaging
ian integral to obtain
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L=~ i J Alx,y)strp(x)p(y) —i f YL+ kI X), SUNE % J R(x,y)strQ(X)Q(y) + —;Z strX,Q(x)
Xy X Xy X
" + m strJ(x)k2,Q(x)
— X)K2,Q(x),
whereA(x,y)=a%(x-y), and 2VA Jy

1
P00 = =[p00) = Zup ()24, ~
V2 Fo=2 j (A (x,y) + 8x =) AgIstr Q(X) 6QUY),
Xy

p(X) = SH2y(x) () S L2, ®)

>, . are the Pauli matrices in chiral space. The Hubbard-|:<1'>:'i°f R(x,y)str{Z[?(y)Q(x)T(y)—EJ(S’Q(y)
Stratonovich fieldQ is introduced in the standard way. After 2 Jyy
integrations over 4y and ¢, we have (Z;[J])=/DQ

xXexp(=F4[J]) with +T(X) QM) T(X) T(y) SQ(Y) T(y) = Q(X) 8Q(y) + - }.

(13

P (A _
FiJ]= > JX y(A H(x,y)strQ(x)Q(y) QX =TS, ROGY) =AM, y) - dx-YAT, and A

N = =m\Ay/ 2V (V is the system volume, and we put the lattice
~ strin(e"2,+ Ik, +IMAQ), (9 constanta=1) is the inverse of the DOBmean level spac-

. _ (0) L .
whereAO:fyA(x,y)~rg. Q is a 4x 4 supermatrix and has |~ng) at €=0. F,"[J] is independent of the massive modes,

the same symmetry ap(x), which gives the condition Fi IS the purely massive mode, afyl’ is the mixing term.
{Q,3=0 Using the cumulant expansion and integrations of the mas-
, . . . 0 Dy~
We consider the saddle-point approximation. We are inSive modes we Obtalﬁl~F(1)[‘]]+<F(1)>F(lO) where
terested in the vicinity of the origie=0 where chiral sym-

metry becomes important. At this point, the saddle-point 1 _ _
equation givesQizl and the saddle-point manifold is ob- (F(l')>,’5(10)= Zf R(x,y)[str T(y) T(x)str T(x) T(y)
tained asQ=T2,T whereT is the inverse ofl. Symmetries 4
of theT matrix were considered in Rei23] and the explicit _ str?(y)T(x)EXstr?(x)T(y)EX]. (14)
parametrization was obtained as
0t a o This calculation can be systematically done by using con-
T=y1-P?-iP, P= <t 0), = (p i ) (10 traction rules derived in Appendix A. We neglected contribu-

tions that can be considered higher-order ones. The first term
wherea, b are real variables and,p Grassmann variables. in the abgve equation is also neglected since the exp.ansion
In addition, we must take into account the massive degree20€s not include second orderfnfsee Eq(10)]. We obtain

of freedom which are not on the saddle-point manifold. Usu-

ally, in nonchiral systems, integrations of the massive de- Ay

grees of freedom do not give any contribution. However, in Fi= > f R(x,y)strQ(x)Q(y)

the present case, the integrations give additional contribu- v
tions written in terms of the massless modes. We can write

the Q matrix asQ=T(Z,+ 8Q)?where5Q denotes the mas-

l — J—
2 f R(X,y)str T(y) T(X)2,str T(X)T(y) 2,
sive modes and changes the saddle point. Sinc®timatrix v

anticommutes witl,, the structure of5Q in chiral space is ime im J
determined as + oAV XstrEZQ(x) + AV XstrJ(x)kEZQ(x).
5 0 ) (15)
= , 11
Q ( 0 - (11)

The second term has a double-supertrace form and is not
wheredq is a 2x 2 supermatrix. Thi€ is substituted in the ~present in nonchiral systems. The crucial point is that the
generating function and the functionB), is expanded in Mmassive modes were parametrized as in(&t). They have

powers of5Q. We have the structure, in chiral space.5Q in a form &Q
=diag(89;, 60,) would give the first term 0f<F(l')) only,
Fi[J]= |:<10>[J] +E<10> + |:<l'>, (12)  which is the case for nonchiral systems.
Using the gradient expansion, we obtain the final form of
where the o model
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7D D 2 1
Fi=—— | stV 2——lf strQV 2 =——fstrVT‘1VT——f strT 1V T)?
1=y | SMVQP- 1ot | (srQV sy Se=- 4K )
ime 2iw
+—— | st , 16 - — [ st(T+T7), 21
oav ) SQ (16) L | st ) (21)
where we neglected the source tet@(x)=T(x)EZ?(x) isa whereT e GL(n|n). This model is reduced to our model by
4X 4 supermatrix, and using the parametrization
f r2..512(r) f r2a2(r) T= [t + (1 +t2)1/2]21 (22)
7T_D _ 701 _ ! 17) and puttingn=1. The “flavor” degrees of freedom repre-

B ' B 2 sent different species of electrons and are not important for
AV f a(r) Av {J az(r)} the present problem. We note that different notation and con-
r r ventions are used in this expression. In contrast with our
definition of supermathemati¢6], the definition in Ref[24]
was used in Eq(21), which explains the difference in ap-
r1pearance between Eq4d.6) and(21).
It is worthwhile to mention the relation of the coupling

Due to the relatiorD =D, [, a(r) ~D,rd, the constanD; is
smaller tharD by the factor 11‘8 and the second term in Eq.
(16) can be neglected. However, it can be important whe

the quantum effect is taken into account by the renormal'zaéonstantsb andc. The authors in Ref18] found the relation

tion group method. It |s_d|sc_ussed in Sec. V. _ b~c/N whereN are the “color” degrees of freedoiN. must
Th_e gengratlng functiod, is used only for a S'”g"? Green be large in order to justify the saddle-point approximation.
function. It is straightforward to extend the calculation to the-l-huS the second term in E(1) is small compared with the
case of products of Green functions. The generating functimﬂrst term. This is precisely what we found, and the correla-
for the product of the retarded Green functign G ;o lengthr, corresponds td\. We also note that we ne-
X(e)tr GP(ey)) s defined as glected the topological term coming from the boundary con-
. . dition [18]. Such a term is expected to be derived in our
ZZ[‘]]ZJD('/” z//)exp{i f (e —H +kJ)1//], (18)  model by considering a finite topological numberand it
will be discussed elsewhere.
In a similar way, our result is compared with Gade’s rep-

where g, y are eight-component —supervectorse lica o model based on the sublattice modgl3]

=diad €, 5) is the matrix in “two-point” space. In chiral
symmetric systems, the identityGf(e) =—trGR(-¢) holds 5
and the generating function for the advanced Green function = b f tr V(Z+W)V(Z-W)
can be found fron¥,. Repeating the calculation in a similar
way, we find theo model(Z,)=DQ exp(—F,) with 1 4

Y 2 P=F2 —Ef[tr(WVZ—ZVV\/)]Z—watrW, (23)

7D D4
Fo=—— | st(vVQ)?2- J [(strQV Q3
27 4AV 32AV * whereZ is a matrix with some symmetry aif=(1+22)%2,
i The parametrization
+(strAQV Q3 )%+ —— f stres,Q, (19
¥ 2AV ‘ Z=2t(1+t)¥2, w=1+22 (24)
whereQ=TX,T is an 8<8 supermatrix and\=diad1,-1) s used to find a formal agreement with our model. We note
In two-point space. that Gade’s model was obtained by using the replica method
and the structure of the matrixs different from ours. How-
B. Comparison with other models ever, we show in the following that, at least in the perturba-

tive regime, both calculations give the same result. It is

Our derived nonlineas- model is equivalent to the mod- . .
: known that the replica and supersymmetry methods give the
els in Refs.[14,20 except for the presence of the double- .
same perturbative result for the same symmetry class.

Fﬁ:zqteir:lh;hﬁ]erer?qzc;gi\%h?ngéaet itnet;mrg?osn a\l/\t/);:nr:oltnt;(eef: The relation of the coupling constantsand ¢ was not
' 9 discussed in Refl17]. It is not clear what is the large param-

carefully. ; N . L
In order to compare our result with the models in Refs.fater in the model _t01ust|fy.the saddle-point approximation. It
: " is expected that introduction of such a parameter leads to a
[17,18 we use theQ-matrix parametrization . S - -
similar relation just as in other calculations.
0t Both works[17,18 did not use theQ-matrix representa-
P= t o) (200 tion. It has been used in traditionalmodels and is useful for
comparison of models and for formulation of perturbative
wheret is a 2X 2 supermatrix. The random flux model in and nonperturbative calculations as we demonstrate below. It

Ref. [18] is mapped onto the effective action is also important to find gauge invariance of the model.

Q=3[(1-P)2+iP?,
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lll. LEVEL CORRELATION FUNCTIONS =T
Q) =TQ(X)T. (31

In this section, we calculate the DOS and TLCF by using~
the nonlinearo models derived in the previous section. We Q Parametrizes the nonzero modes and is expanded in pow-
neglect the double-trace term contribution and pyt0. ers of theP matrix as in Eq(28). The zero mod@=TX,T is
This is becaus®, is smaller tharD by the factor 1/, at the treated nonperturbatively so that the ergodic result is ob-
classical level. The effect of the double-trace term is distained. This parametrization is reminiscent of the renormal-

cussed in Sec. IV. ization group calculatiolsee, e.g., Ref6]) and was used by
We write down the DOS and TLCF in a functional inte- KM. They considered integrations of the nonzero modes first
gral form. The DOS is given by and found corrections to the ergodic result. For a technical
reason the result was applicable only to the domaig
-Fy wherez=mel A is the scaled energy variable. Here we con-
{ple)= 4AVRef DQ{L strkEZQ(x)]e . (29 sider the zero-mode integration first and then integrate the

o . nonzero modes. This method allows us to consider the do-
whereF, is given by Eq.(16) (we putD;=0) andQis a4  mainz>1 discussed by AA. For comparison, we present the

X 4 supermatrix. The TLCF is KM method in Sec. Il C.
1 The zero-mode model is equivalent to chiral RMT. This
(p(e1)p(€)) = =[W(ey, &) + W€, — €) + W(- €4, €) ergodic limit can be obtained by puttirgr in the above
4 functional integral form. The result is scaled by the mean
+W(- €,- &)], (26)  level spacingA to give
1 p1(2) = Mp(e=AZm)) = pi2(2), (32
W(e, D tr kA
e = sz | QUXS r 122Q(X)} po(21,2) = A(pley = Azl m)pley = Azl ) = - KAz 2,
(33
X [ fy strkAZEZQ(y)]e‘Fa 27 \where
whereF, is given by Eq(19), Q is an 8x 8 supermatrix, and P(2) = E[JS(z) +J4(2)],
Ay ,=(1%A)/2. In the following we use the connected part 2
of the TLCF{(p(€1)p(€2))) =(p(€1)p(€2)) —{p(€1) ) p(€2)). —
TNZZ
K(z1,2) = 22—1222[2131(21)30(22) —2)0(2)d1(z)]. (34
A. Summary of the result 1~ 22

Before entering into the detailed analysis, we give an outThis result does not depend on any parameter and is univer-
line of the derivation and the result for reference. For pertursal. It was obtained in Ref25] by using the orthogonal
bation theory, théQ matrix is expanded in powers of tie  polynomial method and in Ref23] using the supersymme-

matrix: try method.
) How is it changed if we include the nonzero modes? If we
QX =3,—— 1+1P _ =3 (1+2P-2P2+ ---). (28) treat all the modes perturbatively, the result is expressed by
‘1-iP 77 the diffusion propagator. The expansi@8) is used to give
Correspondingly, the result is expressed by using the expan- 1 1 2
sion of the diffusion propagatd6] {p(e)) ~ |1 +—Re(2 H(q,e)) , (35
1
M(g,9= - (29 ,
™D’ - (pledp(e)) ~ AZReE [I1°(a (€ + €2)/2)
The expansion parameter is dl/ where g=wE/A
=7D/AL? is the dimensionless conductance. It does not ap- +112(q, (€, - )/12)]. (36)

pear in the zero-mode sector of the propagégerO) and the
expansion is not justified. Actually, treating the zero mode
exactly (nonperturbatively, and neglecting other nonzero
modes, we can obtain the ergodic result. Thenatrix for

This expression includes the zero mode and is justified for
g>1 and z>1. The zero-mode contribution gives the
asymptotic form of the ergodic result as was shown in

. i Ref. [14].
the zero mode is written as Before discussing the exact treatment of the zero mode
Q=TI T, (30) e must mention the effect of the renormalization of the

mean level spacing. The quantity was introduced as the
whereT is independent of the spatial coordinate and its exmean level spacing at=« andz=cc. For traditional symme-
plicit parametrization is given in the following. In order to try classes, it remains unchanged even if we include the non-
incorporate the zero and nonzero modes into the analysis weero modegfinite-g effect, which is a consequence of the
should use the parametrization particle conservation law. However, this is not the case in
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chiral systems. For finitg, the nonzero modes contribute to (Dg?)? g%(4m°n?)?
A, which means that the DOS is renormalized as was dis- P(2) = 11 (DP)? + & = 11 24722+ 2
cussed in Ref[17]. Referring to Eq.(35), we define the g=0g?#0 -4 n=0r?#0 9
renormalized mean level spacing (42)
1 1 1
:~—{1+—R > H(q,e)>2+---]. (37)  The TLCFis
A A 2 q#0

Note that the zero mode is excluded in this expression. Con- 1 by s
tributions of the zero mode are totally different from those of p2(z1,22) ~ ZRe >, (I3 +112)

other modes. The nonzero modes determine the macroscopic ?#0
behavior of the DOS 1A, while the zero mode determines sin 2z;
the universal microscopic behavior after scaling in terms + 27 Dylm > (I, +11)
of A ' @0

A naive calculation shows thaﬁ is divergent in some L sin 222D2Im S (I, -TL)
cases and should be renormalized to a finite value using a 2z,

2
o . . . . - q°#0
regularization. We are interested in the microscopic behavior

after the mean level spacing is scaled out. The effect of non-
zero modes in the microscopic domain is present even after
the scaling and we discuss it in the following.

We turn to the main results in this section. We use the
parametrization(31) to treat the zero and nonzero modes
separately. The zero mode is parametrized so that the ergodic
results(32) and(33) are reproduced and the nonzero modes

1

+ —Z[Dlpz(DED:Z - 1)cos 4z, +2,)
122

+ D]_Dz(DEDIZ - 1)COS ZZ]_ - Zz)]

- m[l +D,D,D*D cos Az, + 2,)]
1 2

are treated perturbatively. The domaiz g was first consid- 1 92
ered by KM for nonchiral systems and we call it KM’s do- B 2(z, - 22)2[1 ~D1D;D-D,"c0s 22, - 2))]
main. Up to second order in §/the DOS in KM’s domain 1
is given by t 5 22(Dlsin 22, — D,Sin 2z,), (43
1~ 42
X Y g 0

=AMp(e=AZm)) ~ | 1+—5| 22—+ 22—) O

p1(2) = Alp(e m)) { 8q° ( Z ot T2 } (2.

where  D;,=D(z;,), D.=D((z1£2)/2), and I,
(38 =II(q,e.,), II.=11(q, (e;£€,)/2). The result is expressed

ag is the momentum integration using the spectral determinant as the AA re§8ijt Equation
(41) can be interpreted as follows. Consider the asymptotic
1 1\2 form of the ergodic resuk32),
=g S (—2> . (39 ’ ©2
T om0 \ 1
o . ) cosz 1
We used the periodic boundary condition. The TLCF is p(2) ~1- >y + 872 o (44)
pa(21,20) = AX(pl€y = Azy/ m)p(€; = Azol )
3 9 ay J Then, including the spectral determinant in the oscillating
~— {1 ( —) + —2(21— term, one finds Eq41). Equation(43) is more complicated,
89°\ dz; “dz,/ 8g but we can see that the ergodic limit gives the asymptotic
g \2 2 form of the exact result33). While standard perturbation
+7 ) :|K(21122) (40) theory gives nonoscillating terms, expansions around two
2

saddle pointg9] are required to get oscillating terms.
The result was scaled by the renormalized mean level spac- We emphasize that Eqg38), (40), (41), and(43) are the
ing (37). The calculation of the DOS for chiral systems hasmain results in this section. They have the following
been done in Ref14] but the renormalized mean level spac- Properties.
ing was not introduced. It leads to a different conclusion on  Common domail<z<g. The KM and AA results have

level statistics as we discuss in Secs. Il C and V. a common domain ¥z<g where the asymptotic expansion
We now consider the AA domair>1, g>1. The scaled of the Bessel function and the expansion of the spectral de-
DOS is given by terminant inz/g can be used. In this domain, the DOS and
TLCF are approximated as
cos Z 1
p1(2) ~1- Z—D(Z) * 82’ (41)
z cosz 1

2 &
. 822+ 5ZCOS Z, (45)

z2)~1-
whereD(z) is the spectral determinant P2
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Sin(Zl - 22) COS(Zl + 22)
L-7 L+tz 89

po(21,2) ~ = { 2( 1 (p(€)) ~ %Re<1 -— f (strkP?) + — f (strkP* + - )

? (52)
and using the contraction rules derived in Appendix A as Eq.
(46) (A6), we obtain the result35).

As we emphasized in the previous subsection, this pertur-
bative calculation of the nonzero modes suggests that the

mean level spacin§ is renormalized as E@37). The exact

+2,)0087 +2,) - %(zl - 2)sin(z - 2,)

Small z At small energies, the expansion of the Bessel
function inz is used in Eqs(38) and (40) to give

7TZ . . ~ .
p1(2) ~ ?(1 +%> (47) definition of A can be written as
1 1 ~| 1
== f DQ{ J strkEzQ(x)} QL (53)
T2z, A A A W
pz(Zl,Zz) ~—-——1+ Sy E (48) . . . . .
4 29 Thus effect of the self-interacting diffusion bubble is renor-

These results show that level repulsion at the origin weaken&halizéd to the mean Ievel spacing. It corresponds to impos-

which is consistent with the intuitive picture. ing the constram(Q)F =3,. In Sec. Il C we give a detailed
Unitary limit. Takingz, z;+z,—, we obtain the unitary analysis using the KM method.

limit as p,(z)— 1 and

2. Ergodic limit
p2(21,2) 1 2 1 At the ergodic limitg— o, spatial dependence of th@
R(z;,z)=1+—>=+*— ,1+-Re> I’-——— . : .
v p1(z1)p1(2) 2 P70 2(z, - 2,)? matrix is neglected and the DOS is reduced to the form
1 iz
4 08 Az, - 22)D< 4 - Zz) _ (49) p(2) = p f DQstrkz,Q exp(— EstrEZQ) . (59
2(21 - 22)2 2

This result is consistent with the AA resyifi] for the unitary Following Ref.[23], we parametrize thQ matrix as

class. We note the relatiod(q,e/2;g9)=2I1(q, €;2g) and Q:TE? T:UTOU
D(z/2;9)=D(z;2g). The coefficient 2 in front ofg origi- 2 ’
nates from chiral symmetry. Comparing owrmodel (19) - ~

with the model for unitary symmetr§6], we see the size of cosg —j sing
the Q matrix is doubled due to chiral symmetry. 2 ~ (6 O
— H — 2 B TO - - - ] 9 - . 1]
2,=2,. The relationp,(z,z)=—p7(2) holds for arbitraryg. 0 ifg
It can be used to derive the DOS from the TLCF. =i siné cosé
B. Density of states U= (U 0)' U= ex;<0 f)’ (55)
1. Perturbative calculation 0 u 7 0

Now we go into details of the calculation of the DOS Where -r= ¢< 7 and O< fg<cc. The measure is given by
(25). The perturbative calculation for nonzero modes is con-

1
sidered using the expansion of tQematrix in P as Eq.(28). DQ =dbzd-dé dnz—
The P matrix is parametrized for the chiral unitary class as &
coshégcosé: — 1 —i sinh #zSin 6
0t a o X > (56)
P , t= . (50 (coshfg — cosér)
t 0 p ib

We note that the compa¢honcompadt variable 6 (6g) is
used for the fermion-fermioboson-bosonblock [6]. Sub-
stltutlng this parametrization into E¢h4) and integrating the
Grassmann variables, we find

wherea, b are real variables, angd, p Grassmann ones. The
measure of this parametrization is normalized to unity. We
define the average

B ) ) © T 1
<'“>—fDQ('“)e e pl(z):1+|mf dtf der d6-—(cosh@gcosbg — 1)
z 0 0 ™
7D iTe it*(cosh, b)) =1 _ 1T ) 204 _ 12
FY =7 Xstr(VP)Z—E fxstrPZ, (51) e =L 2L A0 = 0]
(57)

WhereF(lo) is the second order part &f;. Performing expan-
sions inP as Here we introduced the auxiliary variablé=t+i0 and as-
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sumedz>0(t>0). For the Bessel function, we used integral asymptotic ones for the orthogonal and symplectic classes

representations [9]. It has been used even for the repli@b] and Keldysh
o [27] o models. For chiral symmetric systems at the ergodic
Y2 = Re— 2'f daBeifcoshaB (58) limit, a similgr technique has been u_sed in Red| 'go find

T Jg the asymptotic resul@4). In the following, we examine how

_ the effect of nonzero modes is incorporated into the
for the noncompact variable and asymptotic form.

Jo(2) = lf dgpe” cos (59) 3. Integration of the zero mode
m™Jo

We write theQ matrix as Eq(31) and use the parametri-
for the compact variablel; is given byJ;(2)=-Jy(2). Inte-  zations(28) and (50) for Q, and (55) for T. It is slightly

grating the variable, we obtain Eq(32). modified as
The asymptotic form az>1 is given by Eq.44). This . o o
cannot be obtained by standard perturbation theory which Q(X) = UTUQ(X)UTU — UTQ(X) ToU. (63

gives only nonoscillating terms, the first and third terms in . .
Eq. (44). The oscillating second term can be obtained b;/*s a resultF, becomes independent of th? Grassmann vart-
taking into account two saddle points for integralsggf in gbles_, of the Z€ro mod_e. The preexponential term (25

Eq. (57). In addition to the “standard saddle poirts, 6) is written explicitly using the Grassmann variables as
=(0,00 we have another “supersymmetry-breaking saddle . DT + -

point” (0, ). We note that the point0,0) corresponds t@® Strk=,Q(X) — strk2,ToQ(X) To + 27 Str2,TeQ(X) To.

=3, and(0,m) to Q=-kZ,. This is precisely the idea of the (64)

calculation in Ref.[9]. Taking into account fluctuations e neglected contributions that vanish after integrations
around these points, we can obtain the desired result. ~ gver ¢ and . The first term does not include those variables
In fact this idea is used to find the correct asymptotics ofand we can puT,=1 for the integrations. The second term is

the Bessel function. The noncompact representai@ is  a|so easily integrated out and we thus hdpée))=(p(e)),
used for 63 and has the saddle poifk=0. The compact +(p(€)), where

representation59) for 6 has the saddle pointg-=0,.
Expanding around these saddle points, respectively, we have

(o)1= —Re J D?w[é]{ f strkizé}e‘Fl[é],

Jo(2) ~ \/— (1——+-~~)cosz+<1+—+-~~)sinz .
Tz 8z 8z

(60 (oo =5 Re| s oo
27TA 0 -
It is interesting to note that the expansion around a single o i
saddle point is required for the noncompact representation < (coshfgcos e — 1 +i sinh fgsin 6)
(58) and two points for the compact representati@®). (cosh@g — cosbg)?

When Eq.(58) is deformed to Eq(59) the single pointfg

=0 splits into the two point®)-=0,. It can be shown by x1(€, O, 0),
considering the deformation of the integral contour used in 5 b
Ref. [23]. We find I(€, 0g, ) = —i— f Df)j[é]exp{——w f StV Q)2
. /2 . e Jdz 4AV
__2| deeiz+coshezgf deeizcos()_aj dee—zsinhf}_ i o
7 Jo 7)o 7)o - % strEzToQTo}. (65)
(61)

(p(€)); gives the perturbative resul85) without the zero-
mode contribution and is equal to the inverse of the renor-
" " malized mean level spacin.g Z/(p(e))z includes the ergodic
32 =1f 4062 C039+1f 46290, (62) result and is nonperturbatl_ve.~ o o
mJo mJo We note that the Jacobiaff Q] contribution exists in the

present parametrizatio@3l). It depends on the nonzero
modes only and can be written as

This representation is known as the Hankel functityxJ,
+iNg. Taking the real part, we obtain

This expression is reduced to E&9) by changing the vari-
able #— 7— 6 in the second term. Thus the point O in the
second term is changed te. Note that the real part of the ~ 1 5 .
integral is taken in the noncompact representati6s), JQI=exp - f (strPZ,)°+ O(PY) |. (66)
which gives the second term.

This method, taking into account a set of nontrivial saddleThis contribution changes the renormalized mean level spac-
points, is the main idea of the nonperturbative calculation. ling slightly and the scaled DOf,(2) is not changed in our
produces the exact result for the unitary class and thepproximation. For this reason, we neglect this contribution
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in the present section. It is treated in Sec. IV when we disimann variables. We get the Hankel functidg=Jy+iN in-

cuss the DOS renormalization. stead of the Bessel functialy [see Eq(61)]. However, the
Let us turn to the calculation djp(€)),. The kinetic term  imaginary partiN, does not contribute to the final result

in F, does not include the zero mode and is expanded iisince the functionalg is reduced to a real function in the

powers ofP. The second term i, (and the preexponential end. This is valid in our approximation keeping contributions
term) is expanded as up to second order in B/ Thus we neglect the imaginary

1 part and obtain
-= J strEZToéTo =V(coshfg - cosbr) "
2 T d
(p(€)s~ —Re—j dt(t — 2)(Jo(t + zAg) Jp(t — zAr) — Iy (t
2A  dzJ,

+ | [str(k-P?)cos 6
f +2Ag)J1(t = ZA0) hin- (70)
2

+ stikgP?)coshdg] The ergodic limit g=« can be found easily by putting

B 3 Ar g[Q]=0. We note again that this equation was obtained by
J[Str(kFEXP )sin O neglecting contributions including st or sinhdg. This ap-

. 3 proximation is valid up to second order ind./It still re-
istrikg2xP")sinh 6] + -, mains to carry out integrations over the nonzero modes. In

(67)  the following we consider two limiting cases.

wherekg g=(1£Kk)/2. In the following calculation we neglect
odd terms in theP matrix. Their contributions give 1f
corrections at most. Another reason to neglect them is that The case<g can be considered using KM's meth{f].

they involve a factor si which goes to zero at the saddle For chiral systems, it was considered in REf4]. In our
points /=0, 7 and #;=0. Using this approximation, we method, the Bessel functions in E(/0) are expanded in

4. KM’'s domain (z<g)

find the simplified expression powers ofzA: g~ O(z/g) to find
- 0 i20gNp)y ZApAGH 1 1 d 1
l(Ea aBy gF) -~ = |(9_Zelz(}\B }\F)<e|2)\BAB IZ)\FAF>kin1 <p(€)>2 ~ ZRQ|: 1+ §<AB - A|:>kind_zz+ §<(AB
-1 . - AP Ezzﬂ}[p&")(a -~ @
ArplQl =~ v strke g2 Q- 3], "dz dz

Combining with the perturbative contribution

¢ Min = J DQ(- )€ Fiin, 1 1
(p(€))1 ~ XRQ{l +E<AB_AF>kin+ } (72

) ~
Fin = 71y f st(VQ)?, (68  we find
where z=me/ A, A\g=coshfz, and A\p=cosbg. Ar B[é] in- 1 1 d 1
' BT P - FBLY (p(€)) ~ ~Rel 1+ —(Ag = Ap)in -2+ 5((Ag
clude even powers iR. Introducing the auxiliary variablg A 2 dz 8
we obtain d . d
- AF)2>kind_Zzzd_Z:| p(2). (73

1 oo es} T N

<p(6)>2 = _Almf dtf der dHF()\B)\F - 1)elt ()\B_)\F) 1

T z -0 0 Up to here the DOS is scaled in terms of the bare mean level
spacingA. We introduce the renormalized mean level spac-

ing as 1E=<p(e)>1. Defining the energy variable &8
=7re/Z, we use the transformation formula for a function

ol .
- (t- Z)&—Z] (e2hefer AR (69)

Now the problem is how integrations of the variabliag
are performed. They can be done by noting that the variablé(z)
t in the exponential is shifted t3+zAg or t—zA- compared -
with the ergodic limit. For the fermion pa#g, there is no _ é_ ~-a
convergence problem and the Bessel function is derived. It is f@=)1+ A Lz o+ f@
also the case for the boson pdk since the convergence 1 q
problem does not arise for the part including Grassmann 1= A= AN T— 4 - £ 74
variables and the other parts are real. The only difference is 2< 8~ Apkin @. (74
that we cannot take the real part for the expression after
integration of#g since the argumerit+zAg includes Grass- It is applied to Eq(73) to find
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p1(2) = Alp(e = AZ/m)) D(z,1,-1 ~ f 'Dée_F(Z)(Z'l’_l)[l - [:(4)(21 1,- 1]
- Liia_ayzy 991 o
Re|:1+8<<(AB Ar) >>k|nd-222d~2 P1 @, :'D(Z)[l+iZR E H(q,é))2:|, (79)
(75) q#0
whereF™ denotes thenth order part in the expansion. The
where second term cancels with a contribution coming from the
, , ,  ag transformation (74). ~N0ting D(z,9)=D(z,9), where g
(((Ag = Ap)Dkin = ((Ag = Ap) Hin = (A = Apdiin ~ @ =mE /A andg§==E,/A, we finally obtain the result Eq41)
for 1<z
(76)
This is obtained by expanding in powers ofP and using C. Comparison with the KM method
the contraction/A6) with e=0. a4 is momentum summation  The obtained resul(38) for the KM domain differs
and is given by Eq(39). Thus we obtain E(38). slightly from Eq.(21) in Ref. [14] by the presence of mo-
mentum integration of the propagatdy..o[l(q,0). As we
5. AA's domain(1<2) can understand from E@37), the difference comes from the
In the limit 1<z, the asymptotic form of the Bessel func- Introduction of the renormalized mean level spaciig).
tion (60) is used to write (73 co_|n0|des. W|th.Eq(.21) in Ref. [14]]. Itis expressed as
a self-interacting diffusion diagraiffit can be understood by
1 d[” t=2, nia noting the coordinate representat®gll(q) =II(x,x)] and is
(p(€),~ KRed_zf dt| - F@'Z( 52 )iin renormalized to the mean level spacing. In order to make this
z difference clear, we repeat the calculation using KM's
t-z Pitsiz(Ag-Ap) method considered in Ref14]. In this method, the nonzero
- 'T< B Din modes are integrated out while keeping the zero mode vari-

ables. It allows us to obtain the renormalized effective zero-
1 1. i ' intro-
D11 - —D(z1,-1) |, mode action and is useful to understanq how we can intro
72 2z duce the renormalized mean level spacing.
We start from the functional for the DOS with the source
term

1
~ <R
A

(77)

where

D iTe
F=— | stiVQXF+ - | strQX3,
D(z,\g,Np) = f Dée_F(Z')‘Br}\F), 4AV 2AV

i7d
+—— | strk . 80
oAy | STKQUOZ, (80
iZ\g =~ . L . .
F(Za)\Ba)\F):Fkin"'W strke2,(Q -2 The Q-matrix parametrization31) is substituted and the
nonzero mode®) are expanded P as Eq.(28). In our
iz\g =~ approximation, keeping second order inglthe expansion
" 2V fStrkBEZ(Q 7). (78) is performed up to fourth order iR. The functionalF con-

sists of four parts:
F(z,1,1)=F; does not break supersymmetry, which means it

does not include the supermatixdiagl,-1). As a result F=Fo+F+F +F,. (81)
we obtain D(z,1,1)=1. On the other handF(z,1,-1) _

breaks supersymmetry and the functiftiz,1,-1) is not Fo is the zero-mode pae,=F[Q=TX,T], F the nonzero-
normalized to unity. It is calculated @8(z,1,-1)~D(2),  mode partF=F[Q], F, the mixing part, and~; the source
where the spectral determinaBtz) is given by Eq(42). We  term. They are expanded P as

used the approximation of keeping second ordePitior

F(z,1,-1). We refer to Appendix A for detailésee also the F=F@+F@4 ...
following paragraph
Equation(77) is rewritten in terms of the energy variable F=F2+F@+F@ 4 ...
. ~ ~ —hl | | ’
scaled by the renormalized mean level spa@ngre/ A. We
use the formulg74) and the difference betweek andA is F=FO+FP Q4+ F@0 4 ... (82)

expressed by the diffusion propagald(q, €). It represents

the self-interacting diffusion bubble and should be canceledvhereF™ denotes theith order part inP.

out. Actually we have contributions from the function The effective functional is obtained by integrating the
D(z,1,-1 by keeping higher-order terms . We find nonzero modes. We defirie as
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) nontrivial saddle points, which is an important idea for non-

_ ~ o F o, F@4._p po
g et = f DQe = e P ze,  (83)  perturbative calculations.
where the average is performed with respedFQ’é. We use D. Two-level correlation function
the contraction rules derived in Appendix A. Up to second
order in the cumulant expansion, Now we turn to the calculation of the TLGR6). Q is an
. 8X 8 supermatrix and the explicit parametrization is differ-
T FxFO L (F@N L@y _ Ze@2yy _ Q2 ent from the previous case.
Fert ~ Fo+ Fy7+ (R7) + (R 2<<F' = CRTRT) For the standard perturbative calculation, we use the ex-
. pansion Eq(28). The explicit parameterization of tHe ma-
|T€e 1 2 . .
=—|1+>( > (g,e) | [strQs, trix is given by
2A 2\ 470
& (03] el
*gaz| S @0 (s c o) iy, b )
gq#0
imd 1
P > 1I(q,e) z strk2.,Q a o P 0y
2A 2\ 470 ty= N O o]
2 p1 by p2 by
J
+ 62 (2 Hz(q,e))strQEZstrkEZQ. (84)
4A° \ 470 c iy c* &
. . . . _ to=\ . ) ta=|. . ) (88)
Since momentum summations potentially involve diver- & id in* id

gence, this expansion is somewhat cumbersome. This can be

clearly seen by considering the KM domaireg. Then the @i, b1 > are real variables;, d complex variables, and the
energye in the propagator is neglected in our approximationgreek symbols denote Grassmann variables. As the explicit
I1(q,e)~1I(g,0) and the effective functional can be written parametrization impliest; , represent the “chiral” part and

as t;5 o1 the “unitary” part. Starting from the expressi(®v), we
_ w2 Y have
Feft ~ §{1+%}strQEz+ W%(strQEZ)2 1
9 9 W(El,ez) = P f DQe‘F(20>(Zl,Zl,22,22)+---
i) &2 el
+ IZLA{I - % strks,Q+ 4T:Z%strQEZstrkizQ, 1
g 9 X 1——f StrkA,P?(x) + - -+
(85) 2V Jy
whereay is given by Eq.(39) and 1
% Is given by Eq(39) x{l—z—fstrkAsz(y)+---] (89)
P> 3 (86) o
5
Wzni20’n2¢0 n

F(ZZ)(zl,zl,zz,zz) given by Eq.(A11) is second order i? and
This summation is divergent at=2 and we need some IS the base of the perturbative expansion. The contraction
regularization. Fortunately, and as it should be, the quantitjule given by Eq(A14) is used to evaluate the above expres-
agb can be renormalized to the mean level spacing by definsion. The leading order_contribution to the connected part
ing the renormalized spacing comes from the contraction

(1)2
1 1{“%

NER— 0(1/g3>] (87) (strkAPZO)strkALP(Y)) = 4TT2(x ~ ¥, (&1 + €/2).
8¢° '

(90)

1A

This is nothing but the expressia87) at the KM domain. 11,5 we obtain the resu(86) which is valid atg>1 and
afjl) corrections come from the averag@(x)). On the other 7 _=7¢ JA>1.
hand the second and fourth terms in E86) come from the "The érgodic limitg— o was considered in Ref23]. The
contraction{{Q(x)Q(y))) and cannot be renormalized Q matrix is parametrized as
They give the corrections obtained in E§S).

Thus the KM method makes the problem of the renormal- - TS T _
ization transparent. The idea of integrating out fast variables Q=TT T=Telu. (1)
matches the philosophy of the renormalization. NeverthelesgT is the chiral part
we did not use this method for the reason that it is not con- "
venient for calculations in the AA domair»> 1. Integrations —
of zero-mode variables naturally bring contributions from Ten=UehTeaUcn,
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KAZUTAKA TAKAHASHI
791 _“ DO = doredrdod 1 coshé,gcos0;—1
cos, 0 —isin= 0 Q=d6;gdb;rdoy p147r(cosh013 c0S6,0)°
p; p; 1 coshf,pcosbr -1
0 .0 X dbedo,d 28— 2%
. 0 cos 0 ~isin 2FRT2002 4 (cOShb,s — COS Oy )2
for b, b1 ' x dQedQ) d‘PBd‘DFd de* dn*
—i sinE 0 cos_; 0 gd{2r £dg
- ) sinhQgsin Q¢ 4 coshQgcos e
. 2 .
0 —isin_ 0 cos 7 (coshQg - cosQp)? (coshQg + cosQp)?

6 O 0 O
@(@1 0): 0 i 0 O

0 0 6 0|
0 0 0 iby

Upy O O 0

(94)

Using this parametrization, after a laborious calculation, we
can obtain Eq(33) (see Ref[23] for the details.

The nonperturbative calculation using the parametrization
(31) can be done in the same way as that of the DOS. First
we integrate the zero-mode variables. The details are pre-
sented in Appendix B, and we find fa¥

W=W, + W,
0 uchz 0 0 O 0'1'2
Uen= 0 0 U 0 1 Uchg,2= €X pro O 1
chl 1, . iz1(A_1+AL 1)
0 0 0 Ugp Wy Az [1 +-(Ag1— AFl):| €

andT, the unitary part

(92)

dty(t; — z)[Jo(ty + A1) Jo(ty — Z1Ag7)

il

T
+—_
29z

T,=U,ToU, 1
Lo = Ji(ty + 2 Ag) di(t; - ZlAFl)]}{ [1 + E(ABZ
T J-
Q - ~Ar2) ] ezt 4+ 2 | dylty = 2)
cos; 0 0 ie'fsin— 2J 2,
- - X [Jo(tz + 2oAg2) Jo(tz — ZAR))
0 cos— ie1%sin—
- =1tz + 2Ag) (12 — AR ;
A () kin
0 ie'®sin— cos—
’ : 29,
N N W, ~ dsds,—5——55l(zs
» Q A? f
ie7¢sin— 0 0 cos, (S% i
I(zs)-ﬂ—2<z 2(s1 =5, + Cy)(s1 +5,— Dq)J (zs
A_(QF 0) A_(QDF 0) d 4 1462\ 21 1 1 Y0\ 41-1
“\o g/ 0 o¢p C,-D C,+D
t7; 12 . Jol 218 — 79 12 L (51— %+ CH(s;
U, 0 0 O
C,-D,
U. = 0O up, 0 O +5,-Dy)d| 251+ 2 Jo| 2252
“1o 0 u, o0/
C,+D
0 0 0 uy - 22#>> , (95)
2 kin

wheres; =cosh(g, s,=c0s{)g, and

0 ¢ B 0 iy
ex;(_g* 0), uuz—exp<_i77* 0). (93

o, p, & and 5 are Grassmann variables. The integration
ranges of the real variables (), and ¢ are chosen properly
according to the compact or noncompact parametrization
[23]. The measure is given by

1 ~
Ag1p=- oV J strkgA; 22,(Q-2,),

1 -
Ar1 o=~ v J strkeA; 22,(Q-2)),
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1 -e?@2p,p,D?D;?
Cio= [SlAB + A+ (Agp +Apy)], {p(epp(e))), ~ — —Re - L g i

A 2(zy-2)

. (1 +e?@*2p, p,p>D?)

2(z, +2,)?
Dy 2= [ S1As + AR (= Agp + ARy ], o e

|(e2|21D1 - 62|22D2) } (99)

+ .

4-2
Arg=Arp1t Arp2, The derived expressions are written in terms of the un-

renormalized quantith and we must carry out rescaling in

terms ofA. Additional contributions coming from the rescal-
ing should cancel out with terms we did not show explicitly
here. This situation is the same as the DOS case and we
We neglected odd terms iR as before.W, includes the finally arrive at Eq.(43).

perturbative contribution§36) and W, includes the ergodic

ArgA =Ar g1~ Ar o (96)

result(33).
In the KM domainz ,<g, the expansion irzA can be IV. THE DOUBLE-TRACE TERM AND THE DOS
used. The integrations of the nonzero modes are calculated RENORMALIZATION

up to second order in B/ Introducing the renormalized

mean level spacing we have In the previous section, we neglected the second term in

Egs.(16) and(19). This double-trace term includes nonzero
modes only and changes the perturbative result. It appears

1 ag &y d d only in systems with chiral symmetry and we therefore con-
(plevpled) ~ 1 1+ 5+ 2 a\a *2— centrate on the DOS.
A g g°\ dzy  In . .
At second order irP, we have instead of E¢51)
& a9 &
e o
' , a0z ? FO="= | si(vp)2+ —J (str VP32
X[p2(20)p(20) = K3(21,2))], (97) AV
_ime [ e, (100)
wherez; ,=me; /A, andA is given by Eq(87). Subtracting Y,

the disconnected part, we derive E40).

The AA domain }<z ,, 1<g is considered using theé The presence of the second term modifies the contraction
asymptotic form of the Bessel functiq0). The details are yje as Eq(A9). In this case perturbation theory is formu-
presented in Appendix B. From/, we obtain the first part  |ated by expansions ifil, Eq. (29), and

1 2
(ple)plex)s ~ Az SReX (IE+11) 10,6 = 2 11%(q,e). (101)
q 240
+ sin 221D1Im > (I, +11) The corresponding expansion parameters age<1//D and
221 q2¢0 gl/g20c D1/D2.
. The perturbative expansion gives the DOS
sin 2z,
+ D,olm >, (I, - I1.)
2z,

2 1
e (&)= KRe[l + X TMy(q€) + = (E H(q,e))

N cos Az, +2,)

D, D(D2+D2-1
82122 1 2( + )

2
cos Az - 2,) A * 2(2 HZ(q’e)) * } ' (102
+———— DiDy(D-D;" - 1) d
82,2,
The new propagatofl, contributes to the DOS at one-loop
order. The renormalized mean level spacing is defined as the
inverse of Eq(102) excluding zero-mode contributions. Ac-
where D, ,=D(z; 5), D.=D((1+2,)/2), and I1.=II(q,(e; tually this result was derived by Gade using the renormaliza-
+e,)/2). The first term represents the purely perturbativetion group method17]. In our model(16), following the
contribution. The second connected paff is calculated in  calculation in Ref[6], we can obtain the same renormaliza-
the same way. We obtain tion group equations at one-loop order as

(98)
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db dc ) b? models treated in Refd17,18,2Q0. The double-trace term
Bp=- du eb, Bc=- du €t {= o was not derived in Ref[20]. This is because the massive
s H mode integration was not considered carefully.
(103 For the calculation of the DOS and TLCF, we stressed the

need for the renormalization of the mean level spacing. This
renormalization is absent in traditional nonchiral systems.
After separating the renormalization effect, we found the re-

whereb~1/g andc~1/g. We usede expansion,e=d-2,
andu is the renormalization scal@, . are the beta functions

for b anql c. (s the zeta function for the wave function sults (38) and (40) in the KM domain and41) and (43) in
renormalization and corresponds to the result in E62). . o . .
. : . he AA domain. It is interesting to note that the results in the
These equations imply a divergence of the DOS and delocal; . - .
. . . ! . AA domain are expressed using the spectral determinant. It
ization of eigenstates in two dimensions. Thus the presence . . o . _
) ontributes to oscillating terms only, in a similar way as for
of the double-trace term changes the behavior of the DO s ) )
L L e traditional classes. Thus we conclude that the singularity
significantly. We note that the renormalization procedure . o
) of the form factor at the Heisenberg time is washed out due
produces the double-trace term even if we start the analysis .. -
. ; o finiteg effects[9].
from a model without that term. The quantum effect in two . . .
. . ; . Our formulation of the perturbative and nonperturbative
dimensions increases the coupling constant

We consider the scaled DOS(2) to examine how the calcu_latlons can be useful not only for the level correlaypn
functions but also for the conductance and other quantities.

double—tracg term contr ibutes to the result. The pe_rturbativ?n the present work we concentrated on the level correlation
rt_esglt(lOZ) IS renormallzeq to_the meanllevel spacing. Ir! 4functions. In Ref[20], the same quantities were calculated
similar way as the calculation in the previous section we fin

. ; erturbatively. The different result obtained there is due to
in the KM domainz<g another parametrization of th@ matrix. Additional contri-

ag ag(01)\? d g2 © butions coming from the integration measure would give the
p(2) ~ 11+ ot 16\ |\ &gt sz_zz p1 (2. correct result. In Ref[14], the DOS in the KM domain was

g g calculated from the model derived in R¢R0]. The result
(104 was scaled in terms of the bare mean level spagingnd the

In the AA domain 1<z, the spectral determinant is modified renormalized mean level spacidgwas not introduced. This
as Eq.(A10). Subtracting the renormalization effect, we ob- leads us to a different conclusion on level statistics as we

tain mention below.
(DR Let us discuss the importance of introducing the renor-
q malized mean level spacing. There are numerous works on
D(z) ~ ———|1-87 I1,(q,€)?], . pacing o .
@ q>}_[q2¢0 (Dg?)? + 62[ q>(§’2¢0| 20, } the behavior of the DOS at the origgx0. The main ques-

tion is whether the DOS diverges or not, and analytically it
(109 has been considered using perturbation theory at weak disor-
which is consistent with Eq104). derg> 1. On the other hand, chiral RMT, which corresponds
Finally we mention the Jacobian contribution in £g6). 0 the model ag==, predicts the vanishing of the DOS at
It includes a term second order M and changes the con- the originz=0. This is not a contradiction and indicates the
traction rules. Since this term is similar to the last term in EqJmportance of scaling. The macroscopic behavior is deter-
(100) it can be easily incorporated into the contraction rulesmined by the nonzero modes and a divergence df Was

by the replacement reported in Ref[17]. The zero mode has nothing to do with
5 this behavior and determines the universal behavior at the
[15(q,€) — T1x(q,€) - 11%(q, €). (106 microscopic scale. It can be seen by scaling the energy vari-

Thus this Jacobian contribution is always subleading com@ble € in terms of the mean level spacing. _
pared to the propagatdF,. We also note that this contributes Generally speaking, the behavior at the macroscopic scale

only to A and not to the scaled DOS(2) in our approxima- depends on the model. From a flgld theoretical point of view,
tion the divergence can be renormalized to the mean level spac-

ing and a definite conclusion as to whether it is a real diver-
gence or not can be obtained by referring to other approaches
V. DISCUSSION AND CONCLUSIONS sych as numerical simulations. Our result relies on perturba-
tion theory and the divergence may be cut off somewhere
We have studied disordered systems with chiral unitarybefore the origin. This crossover to the universal microscopic
symmetry. Using a chiral symmetric random matrix modeldomain is highly nonperturbative. Since a high resolution is
we derived the nonlinearr models(16) and (19). We dem-  required, it may be hard to see such a crossover numerically.
onstrated that they are equivalent to related chiral symmetric From the viewpoint of level statistics, the DOS must be
models. Using ther models, we calculated the level corre- scaled(renormalizegito unity at all energies to find the uni-
lation functions. We exploited the nonperturbative methodssersality. This unfolding procedure cannot be applied to the
developed by Kravtsov and Mirlin and Andreev and Alt- present chiral case because the DOS itself has universal fine
shuler for the traditional classes. structure(oscillations due to level repulsiprat the origin.
The equivalence of the models shows the universality ofor this reason, we usk, the (inversg DOS atz=« (e=0),
disordered systems. Our derivedmodels are applicable to for scaling in the ergodic regime. It is modified by finige-

066147-14



NONLINEAR o MODEL APPROACH FOR LEVEL... PHYSICAL REVIEW E 70, 066147(2004)

effects and we usA to see the microscopic domain closely. SCfipt. The financial support by the SFB/Transregio 12 is
Thus using the renormalized mean level spacing, we cafcknowledged.
separate problems at both scales. The effects of nonzero
modeg(finite-g effect) cannot be scaled out completely in the
microscopic domain and deviations from the universal be-
havior are obtained as we have shown in the present work.
Such an example can be found in Rf6]. The generalized Consider the functional
random matrix model was used there and it was found that

the quantityA is different from our result. However, after |:<12>: @D J str(VP)z—E)\,:fstrk,:Pz— E)\Bf strkgP?,

scaling in terms of the nonuniversal quantlty we can find Av v v

complete agreement up to finigeeorrections. This demon- (A1)

stration of “universal deviation” justifies the introduction .
wherekg g=(1+k)/2 andz=me/A. The P matrix is a 4< 4

of A. L ) o
The double-trace term contribution is small at the cIassi-SUpermat”X including nonzero modes and is given by Eq.

cal level because the coupling constant is small compareﬁso)' Since this functional breakf Supersymmetry for
with that in the diffusion propagator. However, quantum ef-# \g, the functionD;(z,\g,\¢) =/ DQ exp(-F'?) is not nor-
fects affect this coupling and the contribution becomes im-malized to unity. We calculate this function and derive the
portant in some cases. It significantly affects the DOS renoreontraction rules.

APPENDIX A: CONTRACTION RULES

1. Calculation for F4

malization and a diverging DOS was found in ReL7]. Using the explicit parametrizatiofb0), we write F(lz) as
Concerning level statistics, this term modifies the spectral
determinant as EqA10). o
Our calculation is only for the chiral unitary class. The @ _ | e
other chiral classes, chiral orthogonal and symplectic, can be FP?=>(-p o a b)(-9G (@)

calculated in the same way. The problem is that the proper a#0

parametrization of the zero mode has not been found. How-

ever the KM domain can be considered without knowing the _ o -1
zero-mode parametrization as was done in R&#]. The =2 DG y(a),
obtained result is valid only at first order in d./Repeating
the same calculation up to the next order and introducing the — i

renormalized mean level spacing, we found the same form as G = diad I1(q, ex.),T1(q, ex.), T1(q, eAr) 11(G, ehg) ]

Eq. (38). The coefficient of the second term in E@8) is (A2)
changed but with the same sign for all the_classes. This res%here)\+:()\5+)\,:)/2 and the diffusion propagator is given
also holds for the TLCK40). We thus obtain the same con- by Eq.(29). Then the functional integral is given by
clusion as KM, namely, the weakening of level repulsion

q#0

[this can be seen, e.g., in E@8)]. The authors in Refl14] —

drew a different conclusion by looking at the first order cor- Dy(z\g,\p) = J D(¢, e

rection to the mean level spacing. It is renormalized to the

mean level spacing and should be applied to the DOS behav- . {H(Q-E)\B)H(q,f?w) ]1/2
ior and not to level repulsion. I1%(g, eN,)

- . o . 2#0
As an interesting application, we mention a related work q

in Ref.[29]. For traditional nonchiral systems, the authors in -1 (DQ? - ie\,)?
Ref. [13] pointed out that the AA result is related to the (DR - ieNg) (DGR —ieNg)’
Calogero-Sutherland model at finite temperature. It is shown
in Ref. [30] that this model is equal to the generalized ran- (A3)
dom matrix model proposed in R¢B1]. In this problem the
nonlinearo model is modified due to power-law correlations —  — 2 1
of random matriceg15] and the diffusion propagator and fD(lﬂ, Pyye T = Epl(Z,RB,RF)G- (A4)
spectral determinant are modified. As a result agreement with
the result in Ref[31] was found and a conjecture to more Sincey(q) and¢{(—q) are not independent of each other, the
general cases was made. We expect this holds also for chirafjuare root appears if?. We used the periodic boundary
systems and the result is presented in RE®]. condition andg;=2wn;/L, n; is integer.

Another future problem is the wave function statistics. Using the result we obtain the contraction rules for the
For traditional classes, it was considered in R82] using  matrix P as
the KM method. It will be interesting to see how this result is

modified in the chiral symmetric case. (str AP(X)BP(y)) = 1 D H(x—y,e)\i + )\')(str KAStrkB
gy 2 j
ACKNOWLEDGMENTS L=k,

q>0,q2¢0

The author is grateful to A. M. Garcia-Garcia, S. lida, and = StrkiAZStrkjB3:, + striiAZ,strkjB3
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1 INE DY 1
(strAP(x)strBP(y)) = a2 > H(x -y, e'—21> (strAP(x)BP(y)) = ZH(X -y, €)(strAstrB—strA3,strBS,
i,j=F,B
X str(kAkB - kA3 kB3, + StrAX,strBX, — strAX, strB.,)
. : —k : 1
+ kIAEXkJ BEX k,AEykJ BEy), _ _Hz(X _ y' G)StrAEXBEX,
(A5) 2
where A and B are arbitrary supermatrices and--) 1
:DIl(Z, )\B-)\F)IDQ(' . ')eXp(—F(f))- <SII'AP(X)SIF BP(y)> = ZH(X -y E)SII'(AB - AEZBEZ
We are mainly interested in the cag@s, \g)=(1,1) and B
(1,-1). The first casdl, 1) corresponds to standard pertur- +ASBI, - A,B3,)
bation theory. The free energy does not break supersymmetry 1
and we findD(z,1,1)=1 and - EHZ(X Y, OStrAL,strBE,,
AP(X)BP 1H AstrB A3 strBY, A9
str =—II(x—y,e)(strAstrB - str tr , L
( CIBRY)) 4 x=y,e)( = z where the propagatdi, in momentum space is given by Eq.
+ SIAS, SrBS, — SIAS, StrBS, ), (101). For (\g,\p)=(1,-1), Eq. (A7) is replaced by
Diz1,-D= ]I (De)® (A10)
_1 e 2,0 (DO)? —ieD1? + €
(strAP(x)strBP(y)) = ZH(X -y,e)st(AB- A3 B, 0=00°#0

+A3,B3, - AS,B3,). A6
e Y y) (A6) 3. Calculation for F,
In the casd1,-1), supersymmetry is broken and this is used

for calculations in the AA domain %z The functionD is Consider

given by D i
oy F(20,25,23,24) = % st(VP)? - Izvl f strkeA,P?
q
Dyz1-)= |l —S5— . .
4=0,4°#0 (D) + & -2 f strkgA,P? - s f strkeA,P?
g?(4m°n?)? v v
1 dati 2 AT 2 2
n=0,n’+0 g - v strkgA,P~, (A11)

whereA; ,=(1+A)/2 andz, , 3 7~ 7€ 5 34 A. The P matrix
is an 8x 8 supermatrix and is parametrized as EB8). This
. . . 2
We consider the effect of the double-trace term. The secc@se is considered in the same way as the C"?‘frél 'bf'We
ond term of Eq(100) is included in Eq(A1). In this case, neglect the double-trace term contribution for simplicity. The

2. Effect of the double-trace term

the matrixG in Eq. (A2) is replaced by result is expressed for the functional integral as
G(q) = diagIl,,I1,,CIIg,ClIlp) D20, 7,25 22) = J Dée_F(ZZ)(ZLZZ’ZS'w
00 O O
7D, 00 0 O = Den(21,20) Denl(Z3,24) D24, 22,25, Z4)
_:HFHBC001—"
0o i1 putzy= [ RE-[a+f
T e DT —ie) (DA -ie)’
A 1
ego=r——", Dy(z1,2,,23,
F.B, 277Dq2— EV u(Z1,2,23,24)
- ] D@’ - (i/2)(e, + €5) DG* -~ (i/2) (& + €3)
1 T oo DA = (i12)(er + €) DA - (i12)(e+ &)
C= 5 : (A8) =
1+ (7D, A) (I - I1g) (A12)
As a result,D and the contraction rules are modified in the For example, D,(-2;,2,,2,,2,) =D1(z1), Dx(21,21,-25,2))
following way. The contraction fo\g,\g)=(1,1) is ex- =D,(z), and Dz(—zl,zl,—22,22):1)1(21)2)1(22)1)%[(21
pressed as +2,)/ Z]DIZ[(zl—zz)IZ]. The contraction rule is given by
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0 (x)TOT.
<StrAP(X)BP y)>_ E E HIa],B X — y) XStrAzzzTChTu Q(X)Tu TCh' (BZ)
a,B—F Bi,j=1,2
X (strk,AjAstrksA;B The neglected terms do not contribute to integration of the
Grassmann variables. The first term does not include the
Strkai2 A stripA 28 Grassmann variablesand 7. We can seff”’=1 and have
+ str kaAiEXA str kﬁAJEXB
—str kaAiEyA str k,BA]EyB) , 1
W]_(El, 62) GAZVZJDQ JStrkAlEZQ(X)
X
(strAP(x)str BP(y)) = 2 > Migipx—y)
4, pFBij-12 f strkA,3,Q(y) |e 2, (B3)
X str(k,AjAkgA B y
-k AiZAKA 2B —
_ _ where Q=T QT It still includes the zero-mode variables
*KAZAkgA 2B of the chiral parfT, Since the chiral part parametrization is
— K, AiZyAKsA 2 B), (A13) the same as that of the DOS, the calculation can be done as
_ _ in Sec. lll B. As a resuliV, (&, €,) in Eq.(95) is obtained. It
\ivhere f[i“jﬂ(x) __H(X’()‘i“H\iﬁ)/z)’ and Me=€n, Ms jncides a perturbative part and connected and disconnected
=€, Nop=€3, App=€;. The case  (,%,23,2)

—(24,21,2,,2,) corresponds to standard perturbation and w

arts.
Next we consider the second contribution which includes

find only the connected part. It is obtained by integrationst of
and 7 as
(strAP(x)BP(y))— 2 H(x Y, )(strAA StrBA;
| J=1,2
—StrAA:S strBA.S _ 1 d‘PBd(PF
SIrAA 2,;SIrBA 2, Wz(flifz)—p d51d922 o (52 §)2|(212-512v908|:)
+StrAA 2, strBA 2,
- StrAA 2 strBA;S,),
Jd d ~ _
(Z12810087) ==~ | DQDQue™?,  (B4)
(strAP(X)strBP(y)) = E I{ x - y, str(AA BA; Hozp
Ij =1,2
_AAiEZBAiEZ+AAi2XBAjEX where Q(X):TchTfJO)é(X)ﬂO)iha Qch:TchEz?ch and Z1 2
~AAS,BAS,). (A14) =12l A We examine steX,Q(x) to integrate out variables

APPENDIX B: CALCULATION OF THE TWO-LEVEL
CORRELATION FUNCTION

1. Zero-mode integration

In this section we derive E¢95) by integrating the zero-
mode variables of the nonperturbative parametrizatgi).
As before, the parametrization is slightly modified as

Q) = U, T TP TOT,,U,, (B1)

in Q.. The expression is simplified if we apply the saddle-
point apprOX|mat|on we use in the following. At the saddle

point we have siM=0 and sim=0. This approximation
leads to the reduction

. cosQ)+A -
stre2,Q(x) — e;str [cos#, + (coshby g
— COSOyp)p10° 1]2260()

cosQ - A -
+ €,Str [cos 6, + (coshb,g

to eliminate the Grassmann variables of the unitary part in
F,. For the preexponential term, dependence of the Grass-
mann variables otJ, is explicitly written as

strkA12,Q(X)strkA,3,Q(x)

— COSO,¢)p202]3,Q(X). (B5)

Again we stress that this approximation is justified at second
order in 1. Substituting this expression, we have

— str kAlzzTché(X)?chStr MZEZTChé(X)ih

— 4ge* pm*str A3, T TPQTOT,,

|(Z.3.<P):—fDée_':k"‘l1(21-5)|2(22-3), (B6)
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d iz cosQ + A
Ii:l,Z(sz) = a_z DQch 1- X/ XStrT(COShGIB

— COSOi)p; O'izzé(x):| exp[ - ZI_f/

X f str%cos Aﬁ@{@(x)] , (B7)

where Fy;, is the kinetic part inF,. The variablee is not

PHYSICAL REVIEW E 70, 066147(2004)

7D
F(z1,2,,23,24) = AV

f st(VQ)2 + i/ f Str(zyke
+ ZZkB)Alzz(é -2)+ i/ f Str(zzke
+ 2kg) A3,(Q-3,). (B11)

The conditionz; =z, and zz=z, recovers supersymmetry. As
before we expand the nonzero modgsn terms of theP

included in the integrand in our approximation. Integrationsmatrix and use the contraction rules derived in Appendix A.
of the remaining zero-mode variables are carried out and wéhe first term in Eq.(B9) does not break supersymmetry

find
li(z,s)=i(s,— S+ Ci){eiz(sl_SZ)+iZCi
1 NeNe— 1]
+ - f daineiFﬁ{l + 'Z<317\i3 - SHNiE
1 1 .
+ E(Ci -DAp+ E(Ci + Di))\iF):|eXP[IZ(S]_)\iB
1 1
— S\ t+ E(Ci -DjA\ig + E(Ci + Di))\iF):|}

iz
= 7(81 -5+ C)(s1+8,— Di)‘JO(ZS.L

+zCi_Di>J (z —z—Ci+Di)
2 Jo\=TE L)

(B8)
where\;z =cosé and\;g=coshé,g. This result yieldd\, in

Eq. (95).
2. AA's domain
We consider Eq(95) in the AA domain 1<z, , using the
asymptotic form of the Bessel functiqf0). For W,
Wi (€, €) ~ éqfl(zl)eizl(ABﬁAFl) +0y(z) 2171 Rer AR

X [falz) w2 e ) + gylay) P el hed]),

1 ~
_ p DQ[e—F(ZlvzlezZZ)f1(21)fz(zz)
+ ezizl—F(—zl,zl,zz,Zz)gl(zl)g2(22)

+ % FmnnR)f (2))0,(2,)

+ @@t FCan Bl (7))g,(2,)], (B9)
where
1 1
fi(2) = 1+8—22 + E(ABi_AFi)"' e
(z)-—i+i—+ (B10)
9= 5, 82 ’

andF is the supersymmetry breaking functional

[F(z1,21,2»,2)=F,] and is nothing but the purely perturba-
tive contribution. Its connected part gives the first term in
Eq. (98). The secondthird) term in Eq.(B9) gives the sec-
ond (third) term in Eq.(98). For the leading order contribu-
tion, we use

f Dée‘F(—zlvzerZ*ZZ) ~ Dy,

(str kA2P2>F(0)(—zl,zl,22,zz) == 22 (I, - Hi):
q#0

f Dée—F(zl,zl,—zz,zz) ~D,,

(StrkAIPAROG, 2, 2,2 = =22 (L~ IL). (B12)
q#0

For the last term in Eq.B9), we have

f DQe Faa 22  p,p,D?*D2, (B13)

The disconnected part is included in this contribution and is
subtracted to give the fourth and fifth terms in £88).

The purely connected pailV, is calculated using the
asymptotic form of the Bessel function. We obtain

1

0 1
Walene) ~ —5 f ds, f dsy({ealserSATA 2 imla 4 ()

x {gzalsz (AFAN 24 4 (4
x {ezdsrHsA A 21-inia 4 (4o

x {eds2 AAN 2T 4 (st (B14)

where (*¥) denotes the complex conjugate of the preceding
term. Integrations 0§, , are evaluated to find the asymptotic
form
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1 ~ 1 -
W2(61, 62) ~ = E f DQ{ m[e_lz(zlyzb_zz,—lz) _ e2|(Zl—zz)—F(—zl,zlyzz,—zz) + (21,2 - 21'2)] +

+ 2@t )-F-z.21,-22) 4 (Zyo——719)]+

+ @Az Flu 1.5, _ (zg— - 21,2)]} .

|
Z2-2

PHYSICAL REVIEW E 70, 066147(2004)
—F(21,2,25,2))

e
(z+ 22)2[

[eZizl—F(—zl,zl,zz,zz) + eZizl—F(—zl,zl,—zz,—zz) + e—2i22—F(zl,21,22,—22)

(B15)

Finally, keeping second order ia for the functionalF and using the formuléA12), we obtain the resul{99).
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