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Thep-star model or exponential random graph is among the oldest and best known of network models. Here
we give an analytic solution for the particular case of the two-star model, which is one of the most fundamental
of exponential random graphs. We derive expressions for a number of quantities of interest in the model and
show that the degenerate region of the parameter space observed in computer simulations is a spontaneously
symmetry-broken phase separated from the normal phase of the model by a conventional continuous phase
transition.
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I. INTRODUCTION

There has in recent years been a surge of interest within
the physics community in the properties of networks, includ-
ing the internet, the worldwide web, and social and biologi-
cal networks of various kinds[1–4]. Work has been divided
between studies of specific real-world networks, along with
the development of measures and algorithms for their analy-
sis, and the creation of models to predict and explain net-
work behavior. It is on models that we focus here.

Network modeling goes back at least as far as the well-
known random graph or Bernoulli graph, studied by So-
lomonoff and Rapoport in the early 1950s[5] and famously
by Erdős and Rényi[6] a decade later. The random graph,
however, is a poor model for most real-world networks, as
has been argued by many authors[1,4,7], and so other mod-
els have been developed. Recent attention has focused par-
ticularly on generalized random graphs such as the configu-
ration model[8–10] and on generative models, particularly
models of growing networks[2,4,11,12]. There is, however,
another class of network models that, while widely used and
valuable, has attracted little attention in the physics commu-
nity, namely, the class of “exponential random graphs” or
“p-star models.” Building on early statistical work by Besag
[13], exponential random graphs were first studied in the
1980s by Holland and Leinhardt[14], and later developed
extensively by Strauss and others[15,16]. Today, they are
commonly used as a practical tool by statisticians and social
network analysts[17–19].

Despite their widespread adoption, few analytic results
are known for exponential random graphs: most work has
made use of computer simulation to fit models to observa-
tional data and evaluate model predictions. Exponential ran-
dom graphs, however, are ideally suited to study using the
techniques of statistical physics. Recently, physicists have
examined exponential random graph models of network as-
sortativity [20,21] and transitivity[22]. Here we take a dif-
ferent approach and show how physics techniques can be
used to derive analytically the behavior of one of the most
fundamental of exponential random graph models, the two-
star model. We view this solution not only as a calculation of
interest in its own right, but also as a demonstration of the
way in which physics techniques can be fruitfully applied to
problems from other fields.

II. THE MODEL

The exponential random graph is an ensemble model. One
defines an ensemble consisting of the set of all simple undi-
rected graphs withn vertices and no self-edges(i.e., net-
works with either zero or one edge between each pair of
distinct vertices) and one specifies a probabilityPsGd for
each graphG in this ensemble. Properties of the model are
calculated as averages over the ensemble. Let us define the
graph Hamiltonian, also referred to by statisticians as alog
odds ratio, to beHsGd=F−ln PsGd. HereF (usually called
the free energy) is any convenient origin for the measure-
ment of the Hamiltonian, such as, for instance, the logarithm
of the probability of the empty graph(i.e., the probability of
n vertices with no edges). Then

PsGd =
e−HsGd

Z
, Z = e−F = o

G

e−HsGd. s1d

Z is the graph partition function and many quantities of in-
terest can be calculated from it, or alternatively from the free
energy.

So far, this model is entirely general, but progress is made
by assuming the Hamiltonian to be a linear combination of
scalar graph observables, such as number of edges, degree
sequences, or clustering coefficients. In this paper we study
one of the simplest nontrivial cases, the two-star model, for
which HsGd=u1msGd+u2ssGd, whereu1 andu2 are indepen-
dent parameters,msGd is the number of edges in the graph,
andssGd is the number of “two-stars.” A two-star is a pair of
edges that share a common vertex. By adding a term cou-
pling to the number of two-stars, this model gives us the
ability either to encourage or to discourage the appearance in
the network of vertices with high degree, the number of two-
stars around a vertex increasing quadratically with degree, so
that high-degree vertices are more strongly affected by the
value ofu2 than low-degree ones.

Let us denote byki the degree of vertexi. Then

msGd = 1
2o

i

ki, ssGd = 1
2o

i

kiski − 1d, s2d

and hence we can write the Hamiltonian in the form
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H = −
J

n − 1o
i

ki
2 − Bo

i

ki , s3d

where the “coupling constant”J=−1
2sn−1du2 and the “field”

B= 1
2su2−u1d. The factorsn−1d in the definition ofJ is not

strictly necessary, but it makes the equations simpler later on.
There are a number of analytic techniques from statistical

mechanics that can be brought to bear on problems like this.
As discussed elsewhere[23], the two-star model can be re-
garded as a type of Ising model on the edge-dual of a fully
connected graph, and can thus usefully be treated using
mean-field theory or perturbation theory[22,23]. Alterna-
tively, one can use the Hubbard-Stratonovich transform and
saddle-point expansions to derive nonperturbative results
[20]. Here we make use of the latter approach to solve the
two-star model.

III. ANALYTIC APPROACH

Our goal is to calculate the partition functionZ, Eq.(1), or
equivalently the free energy. First, we introduce auxiliary
fields fi on the vertices of the graph using the Hubbard-
Stratonovich relation

expfJki
2/sn − 1dg =Îsn − 1dJ

p

3E
−`

`

dfiexpf− sn − 1dJfi
2 + 2Jfikig,

s4d

which gives

Z = F sn − 1dJ
p

Gn/2E Df expS− sn − 1dJo
i

fi
2D

3 o
G

expSo
i

s2Jfi + BdkiD , s5d

whereDf indicates the path integral over the fieldshfij and
we have interchanged the order of the integral and the sum
over graphsG.

The sum over graphs can now be performed by defining
the symmetric adjacency matrixsi j equal to 1 if there is an
edge between verticesi and j and zero otherwise. Then, not-
ing thatki =o jsi j , we can write

o
i

s2Jfi + Bdki = o
i j

s2Jfi + Bdsi j

= o
i, j

f2Jsfi + f jd + 2Bgsi j . s6d

Sincesi j is symmetric, its values fori , j completely define
the graph, and hence

o
G

expSo
i

s2Jfi + BdkiD = p
i, j

o
si j=0

1

ef2Jsfi+f jd+2Bgsi j

= p
i, j

s1 + e2Jsfi+f jd+2Bd. s7d

Substituting this result into Eq.(5), we then get

Z =E Df e−Hsfd, s8d

where the effective HamiltonianH is

Hsfd = sn − 1dJo
i

fi
2 − 1

2o
iÞ j

lns1 + e2Jsfi+f jd+2Bd

− 1
2n lnfsn − 1dJg. s9d

Thus we have transformed our network model into a field
theory of a continuous scalar field onn sites, which can be
solved using a variety of methods. The simplest mean-field
approach is to ignore fluctuations and assumefi always to
be equal to its most probable value, which occurs at the
saddle point

] H
] fi

= 0 = 2sn − 1dJfi − J o
jsÞid

htanhfJsfi + f jd + Bg + 1j.

s10d

This has a symmetric solutionfi =f0 for all i with

f0 = 1
2ftanhs2Jf0 + Bd + 1g. s11d

This quantity has a simple physical interpretation. The
mean degreekkl of a vertex in the graph is given by the
derivative of the free energy thus:

kkl =
1

n
o

i

kkil =
1

n

] F

] B
=

1

2n
o
iÞ j

ktanhfJsfi + f jd + Bg + 1lf,

s12d

wherek¯lf indicates an average in thef ensemble of Eq.
(8). Making the mean-field assumption of Eq.(11), this be-
comes

kkl = sn − 1df0, s13d

and hencef0 is simply proportional to the mean degree of a
vertex, within the mean-field approximation. The quantity
kkl / sn−1d is called the “connectance” of the graph—it is the
fraction of possible edges that are actually present and is a
measure of the mean density. So we could also say thatf0 is
equal to the connectance. This allows us to interpret Eq.(11)
very directly. ForJø1, this equation has only a single solu-
tion, but forJ.1 we have three coexisting solutions whenB
is sufficiently close to −J. Only the outer two solutions are
stable, giving us a bifurcation atJc=1 corresponding to a
continuous phase transition at this point to a symmetry-
broken state exhibiting two phases, one of high density(typi-
cally nearly a complete graph) and one of low density. We
show a plot of the solution of Eq.(11) in the main panel of
Fig. 1.

Along the line B=−J the Hamiltonian(3) is symmetric
with respect to the interchange of edges and “holes”—the
absence of edges between vertex pairs. In the inset to Fig. 1
we show the solution for the connectance as a function ofJ
along this symmetric line and the plot shows the bifurcation
clearly.

To move beyond the mean-field result, we make use of the
method of stationary phase. Expanding the effective Hamil-
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tonian (9) about the mean-field solution to leading order we
have

H = Hsf0d + f8Mf8 + Osf3d, s14d

wheref8;f−f0 and M is the Hessian matrix of second
derivatives ofH with respect tof, evaluated atf0. Chang-
ing variables toj=Qf8, whereQ is the matrix of eigenvec-
tors of M , M is diagonalized and

H = Hsf0d + o
i

liji
2 + Osj3d, s15d

with li being theith eigenvalue ofM . Substituting into Eq.
(8) and observing that the Jacobian of the variable change
uQu=1, the path integral becomes a product of independent
Gaussian integrals andZ=e−Hsf0d /ÎuM u, or equivalently

F = Hsf0d + 1
2lnuM u, s16d

whereuM u is the determinant ofM .
Notice that the peak in the Boltzmann factor of Eq.(8)

becomes increasingly narrow asn becomes large because of
the leadingsn−1d in the effective Hamiltonian(9), and hence
we expect the higher-order terms in Eq.(14) to become neg-
ligible in this limit by comparison with the quadratic term.
Thus we expect that the stationary phase approximation will
be highly accurate for large networks, and we show below
that this is indeed the case.

The elements of the Hessian matrix have the values

Mij = H− 4J2f0s1 − f0d for i Þ j ,

sn − 1df2J − 4J2f0s1 − f0dg for i = j ,
J s17d

giving

uM u = f2sn − 1dJgnf1 − 2Jf0s1 − f0dgn−1f1 − 4Jf0s1 − f0dg.

s18d

Then, making use of Eqs.(9) and (11), we arrive at the
solution for the free energy

F = nsn − 1dJf0
2 − 1

2nsn − 1dlns1 + e4Jf0+2Bd

+ 1
2sn − 1dlnf1 − 2Jf0s1 − f0dg, s19d

where we have kept leading order corrections to the mean-
field result but dropped terms of order a constant and smaller
that vanish in the largen limit.

From the free energy we can calculate expected values of
a variety of properties of the model. For instance the mean
degreekkl and the mean squared degreekk2l are given by
derivatives with respect toB andJ and are equal to

kkl = sn − 1df0 +
2Jf0s1 − f0ds1 − 2f0d

f1 − 4Jf0s1 − f0dgf1 − 2Jf0s1 − f0dg
,

s20d

kk2l = sn − 1d2f0
2 +

sn − 1df0s1 − f0ds1 − 4Jf0
2d

f1 − 4Jf0s1 − f0dgf1 − 2Jf0s1 − f0dg
.

s21d

The leading order term in each case is the same as the mean-
field result, so that in the limit of largen both kkl and kk2l
take their mean-field values. The variance of the degree
kk2l−kkl2 on the other hand is zero within the mean-field
approximation because of the cancellation of the leading
terms but nonzero beyond mean field:

kk2l − kkl2 = sn − 1d
f0s1 − f0d

1 − 2Jf0s1 − f0d
. s22d

From consideration of Fig. 1 one might expect this quantity
to diverge at the phase transition, but in fact it does not,
having merely a cusp at that point. In Fig. 2 we show the
form of this function along the symmetric lineB=−J as a
function of J. The figure also shows the results of Monte
Carlo simulations of the two-star model for the same param-
eter values and, as we can see, agreement between the simu-
lations and the analytic solution is excellent.

A divergence does occur in the variance of the number of
edges in the network at the phase transition. This quantity,
which plays the role of a susceptibility for the model, is
given to leading order by

km2l − kml2 =
]2F

] B2 = sn − 1d
2f0s1 − f0d

1 − 4Jf0s1 − f0d
. s23d

This diverges asuJ−Jcu−1 as we approach the transition along
the symmetric lineB=−J. [One might imagine that the vari-
ances ofk andm in Eqs.(22) and(23) would be proportional
to one another, but this is not the case—notice that the de-
nominators of the two equations differ in the multiple ofJ.]

By constrast with the case of conventional statistical me-
chanics, the critical point itself is not usually a focus of in-
terest in network models—there is no reason why a real-
world network should be near this special point and in most

FIG. 1. The mean-field solution for the connectancef0

=kkl / sn−1d in the two-star model from Eq.(11), for values of the
coupling J below, at, and above the phase transition. For the case
J=1.5 we are in the symmetry-broken phase and the hysteresis loop
corresponding to the high- and low-density phases of the system is
clearly visible. Inset: the bifurcation of the connectance as a func-
tion of J along the symmetric lineB=−J.
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cases one is not at liberty to tune network parameters to
make it so. Still, it is reasonable to ask whether the network
has any unusual structure in the critical region. Normally,
however, it will not. Criticality is a property of the ensemble
of graphs rather than any single graph, just as it is a property
of the ensemble in conventional statistical mechanics. No
individual member of the ensemble necessarily has any un-
usual form, but the ensemble as a whole has a critical struc-
ture: there are strong “fluctuations” in the number of edges
from one member to another. In practical cases where we
only observe a single member of the ensemble however, such
fluctuations would not be apparent.

One can also ask whether the network described by the
two-star model possesses a giant component. Molloy and
Reed[8] have demonstrated that a network without degree
correlations possesses a giant component if and only ifkk2l
.2kkl. We can evaluate this criterion using Eqs.(20) and
(21), and find that for all values of the system parameters the
network possesses a giant component in the limit of
largen.

In Fig. 3 we show the phase diagram for the two-star
model as a function of the parametersJ andB. The critical
point is atJ=1, B=−1, and beyond this point there are high-
and low-density phases separated by a phase coexistence re-
gion. In the coexistence region the phase of the model de-
pends on its history in a manner characteristic of hysteretic
systems. Some studies of exponential random graphs have
considered the case in which the number of edges in the
graph is fixed, a “conserved-order-parameter” version of the
current model[20]. In such a case, the phase coexistence
region will correspond to true coexistence; low free-energy
states of the system will be states in which the system prefers
simultaneously to have some high-degree “hub” vertices that
connect to essentially all others and some of lower degree,

rather than being uniform everywhere. Such “degenerate”
behavior has been observed since the earliest numerical ex-
periments on exponential random graphs[14–16,24]. Here
we see that this behavior is the precise network analog of the
phase separation phenomenon known to physicists from
many other systems.

IV. CONCLUSIONS

In this paper, we have given a nonperturbative analytic
solution of one of the oldest of network models, the two-star
model, which is perhaps the simplest nontrivial model of the
class known as exponential random graphs and has been long
studied in the social sciences. The model turns out to be
perfectly suited to solution by the methods of statistical
physics, and among other things the solution shows the de-
generate behavior of the model in certain parameter regimes
to be the result of a symmetry breaking between high- and
low-density phases, which are separated from the “normal”
region of the model by a continuous phase transition.

The exponential random graphs are, we believe, an impor-
tant class of network models, which have largely been ne-
glected despite the high level of interest in networks in the
last few years. We hope that others will also take up the
study of these models, using either methods like those dis-
cussed here or other methods yet to be described.
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FIG. 2. The variance of vertex degree in the two-star model as a
function of the couplingJ along the symmetric lineB=−J. The
phase transition is marked by a cusp in the variance, but no diver-
gence. The solid line represents the analytic solution, Eq.(22), in
the large system size limit, and the points are the results of Monte
Carlo simulations of the model forn=1000.

FIG. 3. The phase diagram for the two-star model. The shaded
region indicates the hysteretic region in which both high- and low-
density phases are possible.
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