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Solution of the two-star model of a network
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The p-star model or exponential random graph is among the oldest and best known of network models. Here
we give an analytic solution for the particular case of the two-star model, which is one of the most fundamental
of exponential random graphs. We derive expressions for a number of quantities of interest in the model and
show that the degenerate region of the parameter space observed in computer simulations is a spontaneously
symmetry-broken phase separated from the normal phase of the model by a conventional continuous phase
transition.
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I. INTRODUCTION Il. THE MODEL

There. has in recent years been a surge of interest within The exponential random graph is an ensemble model. One
the physics community in the properties of networks, includ-gefines an ensemble consisting of the set of all simple undi-

- rected graphs witm vertices and no self-edgdase., net-

ing the internet, the worldwide web, and social and biologi-
cal networks of various kindgl—4]. Work has been divided works with either zero or one edge between each pair of

between studies of specific real-world networks, along with

the development of measures and algorithms for their anal distinct vertices and one specifies a probabiliy(G) for

sis, and the creation of models to predict and explain net(-each graplG in this ensemble. Properties of the mode! are
work behavior. It is on models that we focus here. calculated as averages over the ensemble. Let us define the

Network modeling goes back at least as far as the WeIIgraph Hamiltonian also referred to by statisticians adog

known random graph or Bernoulli graph, studied by So—Odds ratiq to be'H(G):F—In P(.G)' nggF (usually called
lomonoff and Rapoport in the early 195(F and famously the free energyis any convenient origin for the measure-
by Ercbs and Rényi6] a decade later. The random graph ment of the Hamiltonian, such as, for instance, the logarithm
however, is a poor model for most real-world networks, a<>f the probability of the empty grapfi.e., the probability of

has been argued by many authftst,7], and so other mod- " Vertices with no edggsThen

els have been developed. Recent attention has focused par- “H(G)
ticularly on generalized random graphs such as the configu- P(G) = € , Z=eF=> gHo), (1)
ration model[8—1(0 and on generative models, particularly Z G

models of growing networkg2,4,11,12. There is, however,

another class of network models that, while widely used and is the graph partition function and many quantities of in-

valuable, has attracted little attention in the physics commuterest can be calculated from it, or alternatively from the free

nity, namely, the class of “exponential random graphs” orenergy.

“p-star models.” Building on early statistical work by Besag  So far, this model is entirely general, but progress is made

[13], exponential random graphs were first studied in thédy assuming the Hamiltonian to be a linear combination of

1980s by Holland and Leinhardii4], and later developed scalar graph observables, such as number of edges, degree

extensively by Strauss and othdik5,16. Today, they are sequences, or clustering coefficients. In this paper we study

commonly used as a practical tool by statisticians and sociaine of the simplest nontrivial cases, the two-star model, for

network analyst$17-19. which H(G) =6;m(G) + 6,5(G), where#; and 6, are indepen-
Despite their widespread adoption, few analytic resultsdent parametersn(G) is the number of edges in the graph,

are known for exponential random graphs: most work hasnds(G) is the number of “two-stars.” A two-star is a pair of

made use of computer simulation to fit models to observaedges that share a common vertex. By adding a term cou-

tional data and evaluate model predictions. Exponential rangling to the number of two-stars, this model gives us the

dom graphs, however, are ideally suited to study using thebility either to encourage or to discourage the appearance in

techniques of statistical physics. Recently, physicists havéhe network of vertices with high degree, the number of two-

examined exponential random graph models of network asstars around a vertex increasing quadratically with degree, so

sortativity [20,2] and transitivity[22]. Here we take a dif- that high-degree vertices are more strongly affected by the

ferent approach and show how physics techniques can bglue of 6, than low-degree ones.

used to derive analytically the behavior of one of the most Let us denote by the degree of vertek Then

fundamental of exponential random graph models, the two-

star model. We view this solution not only as a calculation of mG) =Xk, s(G)=3> ki(k-1), 2)

interest in its own right, but also as a demonstration of the i i

way in which physics techniques can be fruitfully applied to

problems from other fields. and hence we can write the Hamiltonian in the form
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J

H=—rlz K -B2 K, (3) z:fpf/)e-H(@, (8)

where the “coupling constang=-3(n-1)6, and the “field” ~ Where the effective Hamiltoniak is
le(e —0,). The factor(n—1) in the definition ofJ is not 2 1 b
A ] —(n— 2_1 + 2)(¢i+¢))+2B
strictly necessary, but it makes the equations simpler later on. H($)=(n 1)‘]; ¢ 2% In(L + e
There are a number of analytic techniques from statistical 1
mechanics that can be brought to bear on problems like this. - 3nIn[(n-1)J]. 9)
As discussed elsewhef@3)], the two-star model can be re- Thus we have transformed our network model into a field

garded as a type of Ising model on the edge-dual of a fuIbfheory of a continuous scalar field ansites, which can be
connected graph, and can thus usefully be treated usin

: . Sbived using a variety of methods. The simplest mean-field
trir\'/e?n'f'ild thre]ory otrh p(:tubrsa:ggt:h?or?azg'trA:efmr?T; N pproach is to ignore fluctuations and assufnalways to
€ly, one can use the Hubbard-stratonovich transtorm ang equal to its most probable value, which occurs at the
saddle-point expansions to derive nonperturbative resultg :
addle point
[20]. Here we make use of the latter approach to solve the
two-star model. dH

—=0=2n-1)J¢ -J X {tanfI(¢; + ¢;) + B] + 1}.
I1l. ANALYTIC APPROACH d ¢i j(#0)

Our goal is to calculate the partition functi@gnEq. (1), or (10

equivalently the free energy. First, we introduce auxiliaryThis has a symmetric solutio = ¢, for all i with
fields ¢; on the vertices of the graph using the Hubbard-

Stratonovich relation #o = 3[tanh(23¢py + B) + 1]. (11

(n-1)J This quantity has a simple physical interpretation. The
mean degredk) of a vertex in the graph is given by the
derivative of the free energy thus:

exdJk/(n-1)]=

X f deexp— (- 1)3¢f + 23k, _1g, _10F_1
- W =12 (=75 = o (antii(di+ dy)+ Bl + 1)y,

o (@) w2
which g|ves( 3] where(: --), indicates an average in th# ensemble of Eq.
_| (h=1J|" (o 2 (8). Making the mean-field assumption of E41), this be-

Z_[ m ] fqu exp( (n 1)‘]2;' d)i) comes
x> exp(E (23 + B)ki), (5) (k)= (n=1)o, (13)
G i

and hencepy is simply proportional to the mean degree of a
whereD ¢ indicates the path integral over the fieldg} and ~ Vertex, within the mean-field approximation. The gquantity
we have interchanged the order of the integral and the suk)/(n—1) is called the “connectance” of the graph—it is the
over graphsG. fraction of possible edges that are actually present and is a

The sum over graphs can now be performed by definingneasure of the mean density. So we could also saygifist
the symmetric adjacency matrix; equal to 1 if there is an equal to the connectance. This allows us to interpret(ED.
edge between verticésandj and zero otherwise. Then, not- Very directly. ForJ<1, this equation has only a single solu-

ing thatk==,0;;, we can write tion, but forJ>1 we have three coexisting solutions wh&n
is sufficiently close to 3. Only the outer two solutions are
2 (¢ +B)k = X, (2)¢; + B) oy stable, giving us a bifurcation at,=1 corresponding to a
i i continuous phase transition at this point to a symmetry-
- ! ) - broken state exhibiting two phases, one of high der{gjiyi-
%BJ% + &) + 2Bloy;. ©) cally nearly a complete graptand one of low density. We

] ) o o . show a plot of the solution of Eq11) in the main panel of
Sinceoj; is symmetric, its values far<j completely define  fig. 1.

the graph, and hence Along the lineB=-J the Hamiltonian(3) is symmetric
1 with respect to the interchange of edges and “holes”—the
> exp(E (23 + B)ki) =[] S 2o+l absence of edges between vertex pairs. In the inset to Fig. 1
G i i<j 0;;=0 we show the solution for the connectance as a functiod of
_ e along this symmetric line and the plot shows the bifurcation
- EJ (1+e2 28 (7) clearly.
To move beyond the mean-field result, we make use of the
Substituting this result into Eq5), we then get method of stationary phase. Expanding the effective Hamil-
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/ IM|=[2(n=1)J]1 - 23¢ho(1 = o) I" [ 1 = Ahy(1 = by) .
T o (18)
=
2 Then', making use of Egqg9) and (11), we arrive at the
g solution for the free energy
=1
ros 8 F =n(n- 1)J¢2 - In(n - Din(L +eM%0*28)
— +3(n=1)In[L - 23¢g(1 - Go)], (19)
where we have kept leading order corrections to the mean-
1 field result but dropped terms of order a constant and smaller
A that vanish in the larga limit.
2 -1 0
_ From the free energy we can calculate expected values of
external field B g i 5 3

a variety of properties of the model. For instance the mean
degree(k) and the mean squared degréé) are given by
FIG. 1. The mean-field solution for the connectangg  derivatives with respect tB andJ and are equal to

=(ky/(n—1) in the two-star model from Eq11), for values of the _ _

couplingJ below, at, and above the phase transition. For the case (k)= (n—1)¢,+ 23¢o(1 = ¢o)(1 ~ 240) ,

J=1.5 we are in the symmetry-broken phase and the hysteresis loop [1-4Jpo(1 = po)][1 — 2]ho(1 = )]

corresponding to the high- and low-density phases of the system is (20

clearly visible. Inset: the bifurcation of the connectance as a func-

tion of J along the symmetric lin&=-J. <k2> ( )2 ) (= 1) (1 — o) (1 — 4\]%)
=(h—-1D“¢gy+ .

tonian(9) about the mean-field solution to leading order we [1=Aho(1 = )11 -~ 2o ¢0)(]21)

have
The leading order term in each case is the same as the mean-
H=H(o) + p'M ' +0(¢), (14 field result, so that in the limit of larga both (k) and (k?)

_ ) ) take their mean-field values. The variance of the degree
where ¢’ = ¢— ¢ andM s the Hessian matrix of second (k2)—(k)2 on the other hand is zero within the mean-field
derivatives ofH{ with respect tog, evaluated aipo. Chang-  gnproximation because of the cancellation of the leading
ing variables t&€=Q¢’, whereQ is the matrix of eigenvec- tarms but nonzero beyond mean field:
tors of M, M is diagonalized and

00 - (2= (n-n— 2P

H=H(go) + 2 Ni& +O(£), (15) 1= 230(1 - o)
' From consideration of Fig. 1 one might expect this quantity

to diverge at the phase transition, but in fact it does not,
having merely a cusp at that point. In Fig. 2 we show the
form of this function along the symmetric linB=-J as a
unction of J. The figure also shows the results of Monte
Carlo simulations of the two-star model for the same param-
eter values and, as we can see, agreement between the simu-

(22)

with \; being theith eigenvalue oM. Substituting into Eq.
(8) and observing that the Jacobian of the variable chang
|Q|=1, the path integral becomes a product of independe
Gaussian integrals arig=e %)/ |M|, or equivalently

_ 1
F=H(¢o) +3InM], (16) lations and the analytic solution is excellent.
) ) A divergence does occur in the variance of the number of
where[M| is the determinant oi1. edges in the network at the phase transition. This quantity,

Notice that the peak in the Boltzmann factor of B8)  which plays the role of a susceptibility for the model, is
becomes increasingly narrow adecomes large because of given to leading order by
the leadingn-1) in the effective Hamiltoniaii9), and hence
we expect the higher-order terms in Kfj4) to become neg- (mP) = (m)2 = ﬁ =(n- 1)M_
ligible in this limit by comparison with the quadratic term. B? 1-43¢(1 - )
Thus we expect that the stationary phase approximation wiI.II.his diverges al-J/ ! as we approach the transition along
be hig_hly a_ccurate for large networks, and we show IOEEIOV\fhe symmetric IineB;—J. [One might imagine that the vari-
tha%r:t:Sellzr;nedn?:ci)fﬂ:ﬁeciseeslsian matrix have the values ~ 21¢€S ok andmin Egs.(22) and(23) would be proportional

to one another, but this is not the case—notice that the de-
o nominators of the two equations differ in the multiple Jof
{_ APo(1~ o) fori#j, (17) By constrast with the case of conventional statistical me-
(n=1)[2] - 43%¢o(1 - ¢p)] fori=j, chanics, the critical point itself is not usually a focus of in-
terest in network models—there is no reason why a real-
giving world network should be near this special point and in most

(23)

ij—
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FIG. 2. The variance of vertex degree in the two-star model as a 1
function of the couplingd along the symmetric lind8=-J. The -100 Bl e e
phase transition is marked by a cusp in the variance, but no diver- )
gence. The solid line represents the analytic solution,(E#), in FIG. 3. The phase diagram for the two-star model. The shaded
the large system size limit, and the points are the results of Mont&9ion indicates the hysteretic region in which both high- and low-
Carlo simulations of the model far=1000. density phases are possible.

cases one is not at liberty to tune network parameters téather than being uniform everywhere. Such “degenerate”
make it so. Still, it is reasonable to ask whether the networlpehavior has been observed since the earliest numerical ex-
has any unusual structure in the critical region. Normally,periments on exponential random gragtig-16,24. Here
however, it will not. Criticality is a property of the ensemble We see that this behavior is the precise network analog of the
of graphs rather than any single graph, just as it is a propertphase separation phenomenon known to physicists from
of the ensemble in conventional statistical mechanics. Ndénany other systems.

individual member of the ensemble necessarily has any un-

usual form, but the ensemble as a whole has a critical struc-

ture: there are strong “fluctuations” in the number of edges V. CONCLUSIONS

from one member to another. In practical cases where we

only observe a single member of the ensemble however, such In this paper, we have given a nonperturbative analytic
Y Obs 9 ’ "7 8olution of one of the oldest of network models, the two-star
fluctuations would not be apparent.

One can also ask whether the network described by th(renodel, which is perhaps the simplest nontrivial model of the

two-star model possesses a giant component. Molloy anglass known as exponential random graphs and has been long

Reed[8] have demonstrated that a network without degreestud|ed in the social sciences. The model turns out to be

correlations possesses a giant component if and orth2if perfectly suited to solution by the methods of statistical
2. Wi P | % -omp ing Eq80) and physics, and among other things the solution shows the de-
>2(k). We can evaluate this criterion using Eq&0) an generate behavior of the model in certain parameter regimes

(21), and find that for all vqlues of the system parame.terls th€y pe the result of a symmetry breaking between high- and
network possesses a giant component in the limit ofoy._density phases, which are separated from the “normal”
largen. . region of the model by a continuous phase transition.

In Fig. 3 we show the phase diagram for the two-star “The exponential random graphs are, we believe, an impor-
model as a function of the parameterandB. The critical (5t class of network models, which have largely been ne-
pointis atJ=1, B=-1, and beyond this point there are high- gjacted despite the high level of interest in networks in the
and low-density phases separated by a phase coexistence fgst few years. We hope that others will also take up the
gion. In the coexistence region the phase of the model desy,qy of these models, using either methods like those dis-

pends on its history in a manner characteristic of hystereti¢;,ssed here or other methods yet to be described.
systems. Some studies of exponential random graphs have

considered the case in which the number of edges in the

graph is fixed, a “conserved-order-parameter” version of the ACKNOWLEDGMENTS

current model[20]. In such a case, the phase coexistence

region will correspond to true coexistence; low free-energy The authors thank Julian Besag, Mark Handcock, and Pip
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