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Correlation functions for estimating effects of the physical cluster formation
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Two correlation functions for estimating effects of the physical cluster formation on features of a fluid must
satisfy a system of two integral equations which is equivalent to the Ornstein-Zernike equation and the sum of
the two correlation functions is equivalent to the pair correlation function. A specific effect of the physical
cluster formation persuades the dependence of their sum on the distaaetwgeen particular pair particles to
develop a deviation from the dependence which is expressed as the product of the reciproeaido&
particular function given as the Taylor series due to powers. dthe use of the two correlation functions
allows the formation of extremely large physical clusters to be predicted at least near the triple point. The two
correlation functions can contribute to examining a feature of a fluid in a specific situation where an effect of
the physical cluster formation are considerable.
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[. INTRODUCTION cause the gas-liquid phase transition. A contribution of the
) ) ) physical cluster formation to the transition of a fluid from the
Physical clusters which are formed by attractive forcesjquid state into the solid state is suggested according to the
among particles can allow the density fluctuations to be enfact that the development of physical clusters which are
hanced in a fluid being at least in the gas state. The degree @drmed by attractive forces among colloidal particles allows
the density fluctuations reaches the maximum at the liquida colloidal solution to generate a gel sté@& A contribution
vapor critical point of the fluid. A specific cause of generat-of the physical cluster formation to the liquid-solid phase
ing the density fluctuations makes the dependence of the padiransition is also suggested according to the fact that a fluid
correlation function on the distance between particular paicomposed of the liquid phase and the gas phase makes the
particles near the liquid-vapor critical poiftt,2] differ both  liquid-vapor interface become smooth. The formation of the
from its dependence in the gas state being far from the critismooth liquid-vapor interface means that the situation where
cal point and from that in the liquid state being far from the particles constituting the liquid phase are subjected is differ-
critical point. Moreover, the density fluctuations can result inent from a state which is given by making particles dense in
anomalie3—7] with respect to various properties of fluids maintaining the_ situation where _partlcles constituting the gas
near their liquid-vapor critical points. If a fluid consists of Phase are subjected. At least in order to form the smooth
metallic atoms, inhomogenieties of the fluid due to the physiliduid-vapor interface, the high-density fluid being in the lig-
cal cluster formatior[8] can be observed as anomalies foruld phase must generate a macroscopic force Wh'Ch. contrib-
electrical propertie§3], the optical reflectivity[4], and the ultes to mlnrl]mk;zmg , Its ts)urface. '\fworiqvﬁra generatmgbthe
optical absorptiorj4,5]. The electrical conductivity of liquid clear smooth boundary between the high-density part being

mercury maintained at a temperature near the critical poin, he liquid phase and the low-density part being the gas phase
y P P uggests that particles moving vigorously in the liquid phase

q Th | f the dielectri Have to be comparatively stably confined. The capability to
cury atoms decreas¢S]. The real part of the dielectric con- ., tne narticles moving vigorously can be generated by the

stant determined using optical reflectivity and absorptiony,,ation of physical clusters. Besides, the capability to con-
measurements for a mercury fluid near the critical point in-

) . . fine such particles allows for generating a macroscopic force
creases shar_ply at a particular QenS{IY as the d_ensny c_)f ME{Thich contributes to minimizing the surface of the high-
cury atoms increasepl]. The viscosities of fluids exhibit

Lo 7 » .~ density part. Such a macroscopic force should contribute to
asymptotic divergence near the liquid-vapor critical points

d : he Vi " ¢ carbon dioxid d 'making particles in the liquid phase become close to each
and measuring the viscosities of carbon dioxide and Xenof, . ‘a0 as a result, the presence of the macroscopic force

near _their critical points.allo.wed the critical exponent Char'should aid in transforming the fluid of the liquid phase into
acterizing the asymptotic divergence to b.e deterwf@d. . the solid sate. On the other words, an effect of the physical
Cluster formation on the confinement of vigorously moving
articles can contribute to the liquid-solid phase transition.
he possibility that physical clusters influence a microscopic

increase in the viscosities of fluids near the critical pojits
Various critical phenomena suggest that the formation o

stable physical clusters, which IS not expgcted n t.he 938G istribution pattern of particular atonier moleculeg which
phase, enables features of the fluid found in the liquid statg o yissolved as solute particles in a fluid being in the liquid
to becpme different from its feature§ found in the gas stateqyate makes another effect of the physical cluster formation
and this fact suggests that the physical cluster formation C3fLalized, since a fluid being in the gas state where an effect
of the physical cluster formation is not expected has a ten-
dency to microscopically homogeneously mix with another
*Electronic address: kaneko@mailaps.org fluid being in the gas state where an effect of the physical
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cluster formation is also not expected. Solute particles thagiral equation has played a role for examining the physical
cannot actively contribute to the physical cluster formationcluster formation. In fact, the use of the integral equation
should have a tendency to distribute among physical clustergnade it possible to examine the physical cluster formation
and solute particles that can actively contribute to the physicaused by a contribution of a extremely short-ranged attrac-
cal cluster formation should have a tendency to distribute agve force[13] and to examine the physical cluster formation
a portion of the particle group which consists of particlescaysed by the Yukawa potentidl4,15. Moreover, a proce-
forming physical clusters. Hence, physical clusters can makgyre for making corrections to the Percus-Yevick approxima-
a microscopic distribution pattern of solute particles becomg;q, [16] enabled an estimate of physical cluster formation
inhomogeneous in a fluid mixture such as a liquid of metallicy ;e to the integral equation to be improved considerably

alloy and pther so!utg-solvent mixtures.. A.spe_cific effect of 17]. Although the integral equation enables the physical
such a microscopic inhomogeneous distribution pattern o luster formation to be examined, it is not equivalent to the

solute particles can be found as a macroscopic phenomen . : . . .
. : . rnstein-Zernike equation. The use of the Ornstein-Zernike
called the osmotic pressure, since the osmotic pressure oc- d

curring by dissolving solute particles that cannot activelyfequf"mon has been successful for examining b.Oth. a fluid be-
contribute to the physical cluster formation must be different"d I the gas state and the flu!d belng in the Ilqwd state, so
from that occurring by dissolving solute particles that canth@t resulting from the Ornstein-Zernike equation must be
actively contribute to the physical cluster formation. In addi-considered indirectly to involve the contribution of the
tion, the dependence of the osmotic pressure on the densiBfysical cluster formation. The Ornstein-Zernike equation
of solute particles in a situation where the stability of physi-Should involve the contribution of the integral equation
cal clusters is high should be considerably different from thatvhich enables the formation of physical clusters to be exam-
in a situation where the stability of physical clusters is low.ined. This fact means that subtracting the contribution of the
In a situation where the stability of physical clusters is low, integral equation from the Ornstein-Zernike equation results
both the formation of physical clusters and the decomposil? @n additional integral equation which is equivalent to both
tion of physical clusters can occur as very sensitive re&n integral equation derived by St¢ll6] and another one
sponses to slight variations in temperature. The anomalouderived by Chiew and co-workef48]. If this additional in-
behavior of the thermal conductivity of a fluid should be t€gral equation is coupled to the integral equation which en-
found in such a specific situatigii0]. Then, physical clus- _ables the phys_lcal cluste_r formatlc_m to be examl_ned, the two
ters formed in the fluid do not have the capability to stablyintégral equations provide an integral equation system,
confine particles moving vigorously. Allowing both the con- whlgh is equivalent to the anstem—Zermke equation. Esti-
finement of such particle and the release of them easily t§1ating an effect of the physical cluster formation on a fea-
occur enables the fluid to be stirred. Hence, the thermal corfure of a fluid can be allowed by the use of the integral
ductivity of the fluid should enhance in the situation where€guation system.

physmal c!usters loses the capability to stably confine par- Il. CORRELATION EUNCTIONS AND INTEGRAL

ticles moving vigorously. Although the physical cluster for- EQUATIONS

mation can contribute to the occurence of various phenom-
ena, an effect of the physical cluster formation on the A. Integral equations for correlation functions
magnitude of the pair correlation function might not be suf-
ficiently apparent. It is expected that the fraction of the con
tribution of the physical cluster formation to the pair corre-
lation function can remain sufficiently small in comparison
with the magnitude of the pair correlation function. Even if

the pai.r correlation function which is determingd by X-ray particle of species and a particle of specigswhich consti-
scattering measurements and neutron scattering measu%fe a fluid are denoted bﬁff) andr(zj), the use of the pair

fmentst_ cant e>t<rp])ose .the cor1|tr;puh<;f>n otf. the.tphys'ct"".leLl.JSteEorreIation functiong;; allows for expressing the probability
ormation to the pair correlation tunction, 1ts: CONNBULON 454 e particle and thg particle is located in a volume

;)ne?/kse found only as vague traces of peaks beside normg ementdrg) at rg) and in a(i)voll(J_gne elememlr(z') at r(zl)v
Despite this fact, various phenomena found as effects Orr_espegtlvely. If the d'Stan_Cbl _r2J | betwe(_a._n the two par-
the physical cluster formation allow a procedure for simplyt'des IS re(gre??pted ‘_EIS(_M)’ the probability 'S given _as
estimating the physical cluster formation to become interest?iPidij()dr'dr;” in which p; andp; are the densities of thie
ing in order to try examining their effects on features of a@nd | particles for a uniform distribution, respectively. The
fluid. Each physical cluster which is formed in a fluid systemMagnitude ofg; (r) is proportional to the probability that the
is regarded as an ensemble of particles linked each other hiyparticle in the volume elementr}’ is located at the dis-
bonds. Then, each bond is defined as a bound state in whi¢ancer far from thej particle in the volume eIememir(z”.
a contribution of attractive forces between pair particlesThis feature of the pair correlation function suggests that
dominates a contribution of the relative kinetic energy be-maximum values ofy;(r) should become larger when par-
tween them, according to Hi[l11]. A useful procedure for ticles in a fluid system are prevented from moving easily
estimating the physical cluster formation due to such bondshan when they can move easily.
can be found according to a concept of Coniglio and co- Thei particle and thg particle have the possibility that
workers[12], and it results in an integral equation. The inte- both of them belong to the same physical cluster. Then, the

The pair correlation functiory;; is useful for knowing
‘Whether particles in a fluid system can move easily or can be
prevented from moving easily, and the useggfallows for
estimating the density fluctuations for the fluid system even
near the critical point. If three-dimensional coordinates for a
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use of the pair correlation functigh;; allows for expressing

the probability that both theparticle in the volume element

drg) and thej particle in the volume eIememI“(Z') belong to
the same physical cluster is expresse¢ia§}3ij(r)drg)drg).
The pair connectednedg;(r) is important in order to esti-
mate the mean size of physical clustgtg]. If the probabil-
ity that thei particle in the volume elememirg) and thej
particle in the volume eIemerdr(Z” belong to a physical

cluster and another physical cluster respectively is express

aSpiijij(r)drg)drg), the pair connectedne$;(r) is related
to g;(r) as

gij(r) =P;(r) + Dy(r). (2.1
According to Kirkwood and Buff19], the pair correlation
function g;;(r) has the normalization given as
1 N;) = &
_f gij(r)dr = LJ. +
\4 \Y

11
v VZFPJ_[(NiNQ —(NiXNp],

(2.2

where (N;) is the mean number of particles of species

within volumeV [11]. The dependence @j;(r) onV is neg-
ligible for macroscopicv, and the dependence @fi;)/V on
V and the dependence GMN;N;)—(N;}N;))/V onV are also
negligible. Thus, Eq(2.2) results infyg;;(r)dr/V=1 in the
limit V—ce. This relation and Eq(2.1) require P;;(r) and
D;;(r) to satisfy

. 1 1 :
\I/|anl\—/fv7>ij(r)dr + VLD”(r)dr] =1. (2.3

Moreover, the pair correlation function behayesg'p}$|rf)
—rJ}) =1 when two particles located gf’ andry’ in a fluid
system are widely separated. In the lidit> o andr — o, it
behaves ag);(r)=1 [11]. According to this fact, Eq(2.1)
allows the physical meanings &f;(r) and those oD;;(r) to
result in

lim?P;(r)=0 and limD;(r)=1.

r—oo r—oo

According to Eqy(2.1), the pair correlation functiog;;(r)

is expressed as the sum of the contributiorPgfr) and the

contribution of D;;(r). Owing to this fact, each term of the
pair correlation function which is expressed in the form of a
density expansiofi20,2] should be divided into terms con-

tributing to 7;;(r) and terms contributing t®;;(r) [12]. Di-
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between ani particle and aj particle retains effective
strength. The functiori;(r), however, is positive within the
range where the attractive force retains effective strength,
and it expresses the strength of the attractive interaction in
this range.

Each term found in the form of the density expansion of
gij(r) is formed by the integrals of a product bffunctions,
although the two coordinates corresponding to the root
fpints labeled 1 and 2 in the present work are not integrated
over in each term. The other coordinates which are integrated
over in each term are field points, and they are labeled 3, 4,

. in the present work. Both the root points and the field
points correspond to particle coordinates.

An ensemble of particle pairs which are specified byfthe
functions forming a product in the density expansion is re-
garded as an ensemble of particle pairs linked byfthends
defined as the functions. Since this ensemble is a math-
ematical clustef21], it cannot simply correspond to a physi-
cal cluster. The ensemble can be symbolized as a diagram
having a structure which is formed from particle pairs linked
by f bonds. Every diagram which is found in the density
expansion has the same pair of root points. The density ex-
pansion corresponds to the sum of all the diagrams having
specific structures which forrh bonds’ paths joining a root
point to the other root point20,21]. The paths off bonds
allow for propagating effects of the behavior of a particle
corresponding to a root point to the other particle corre-
sponding to the other root point.

On the other hand, pair particles which are specified by an
f function have two possibilities. One is a possibility that a
contribution of attractive forces between the pair particles
exceeds a contributioB of their relative kinetic energy, and
the other is a possibility thdE exceeds a contribution of the
attractive forces. If a pair of an particle and a particle
which are specified by ahfunction are located a1§> andr(z”
in terms of the distance:|rg)—rg)|, the probability p;;(r)
that the pair satisfies the conditi& u;;(r) <0 [11] is given
as

p;j(r) = 2 Y4 (3/2) - T'(3/2,-Buy)], (2.9

since the integralf;eYy™1dy due to the definitiony
=[BE]Y? expresses the incomplete gamma functidim,t).
This probability should behave ax(r)=0 if u;(r) is a re-
pulsive potentiali.e., Bu;j(r) >0]. The use ofp;(r) enables
fj;(r) to be given as the sum of the contributitbﬁ(r) of a
bound stateE+u;(r)<0 and the contribution‘ij(r) of an

viding into these two kinds of terms contribute to deriving anunbound statee+u;(r)>0. Then, the relatiorf; (r)=fj(r)

integral equation which should be satisfiedBy(r) and an-
other integral equation which should be satisfiedIhyr).

The pair correlation function expressed in the form of a
density expansiorj20,2]] is obtained from the use of the
Mayer f function instead of the use of the factor &xp

—-Bu;j(r)]. The Mayer f function is defined asfj(r)
=e A4 -1 in which Bu;(r) is a pair potential multiplied by
B which is defined a@=1/kT. Here,k is Boltzmann’s con-
stant andT the temperature. The functidi)(r) becomes -1
in the region of the hard core in whicty(r)=o, and it

+f?j(r) allows thef* function and thef” function to be ex-
pressed as

() = py (e, fi(n) =[1-py(n]e? - 1.
(2.5
If each f bond in a diagram which is found in the density
expansion ofg;(r) is, according to Eq(2.5), expressed as
the sum of theéf* bond defined as the contribution of a bound

state and thé” bond defined as the contribution of an un-
bound state, the diagram is given as the sum of diagrams

becomes zero outside the range in which an attractive forceesulting from products of* functions andf” functions.
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Then, it is possible to find a diagram in which a root point is £

connected to the other root point through at least one path of Pij(riy) = Cij(ryg) + 25 Pkf Ci(ri Pyj(rg)dry,  (2.6)

all f* bonds given as a product &f functions. This diagram k=1 Vv

can be regarded as a physical cluster, and it means that théhere £ is the number of constituents angis|r$)—r(2“|=r.

two particles corresponding to the two root points are two ofthjs equation, which is used in the limit— o, has the same
particles constituting the physical cluster according to Hillmathematical structure as the Ornstein-Zernike equation, and
[11]. The second simplest diagram in the diagrams which ar@ﬁ in Eq. (2.6) is an unknown function.

found in the density expansion @;(r) consists of three Finding an integral equation for the correlation function
particles linked by twdf bonds, and the three particles cor- Dj(r) is possible by considering the Ornstein-Zernike equa-
respond to two root pointérg),rg)) and one field poin(r(gk)) tion. Owing to EqQ.(2.1), the Ornstein-Zernike equation is
which corresponds to a coordinates of particle of spekies €xpressed as

According to Hill [11], the three particles are bound each c

other when thd‘_bonds retain the t_h_ree particles(‘in akbound Pyi(ry) + Dy(ry) = L=cy(ryj) + > ok Cik(Fik) P (M) dr

state characterized as the condltloﬁg_,3)+uik(|r1')—r(3)|) k=1 JVv

<0 and Egg 5+ Uy (r¥-rP)<0 in which the suffix ofE £

indicates a particle pair contributing B This situation cor- +2 Pkf Ci(Fik) [Dyj(ri) = Ldr.
responds to that represented as a diagram in which a root k=LY

point is connected to the other root point through at least one (2.7

+ : .
path of allf _bonds givén as a product 6f functmns,_and This equation must involve the contribution of the pair con-
the two particles corresponding to the two root points ar

. on : .enectednes§>ij expressed by Eq2.6). If the contribution of
two of particles constituting the same physical cluster. Th'%on-nodal diagrams which do not include paths of fall

fact a_IIowsPij(r) to bg given as _the sum of contributions Ponds between and ] is expressed a€’(r;), the direct
]E?St:‘cl)tr']régs fgngggﬁ%g'?gé?glomzmg at least one path of alcorrelation functiorc;;(rj;) which represents the contribution
. . : . . f all non-nodal diagrams consisting of paths fobonds
The dlagrgms .Wh'Ch are found'ln the density expansion Ogetween the two root points must be equal to the sum of
g;j(r) are divided into two categories. One group of diagram () andCE(rij) which is the contribution of all non-nodal

corresponds to the group of nodal diagrams having nOdadiagrams having at least one path offdlbonds between the
points, and the other group of diagrams corresponds to th

group of non-nodal diagrams having no nodal point. A nodaiﬁv0 root points. According to this faot;;(r;) is expressed as
point is a specific field point in a diagram, and missing the Gij(rij) = C;}(rij) + C;].(rij)_ (2.9
field point in the diagram means that the diagram is sepa-

rated into a group including a root point and the other groug! E: (2.6) is considered, the substitution of E@.8) into
including the other root point. Eq. (2.7) results in an integral equation which is equivalent

Similarly, the diagrams contributing t&;(r) should be to both an integral equation derived by S{dlf] apd .another
separated into the group of nodal diagrams and the group &€ derived by Chiew and co-workef2g]. This integral
non-nodal diagrams. This fact means ti#tr) is expressed equation is expressed as
asP;(r)=Ng(r)+Ci(r), in which N (r) is the contribution of . £ .
all nodal diagrams having at least one path offalbonds Hij(rj) = Cj(rj) + 2 Pkf Cik(ri) Pij(ridr
between the two root points, aﬁdj (r) is the contribution of k=1 v
all non-nodal diagrams having at least one path offall £
bonds between the two root points. In the Ornstein-Zernike +> Pkf Ci(ri) Hi(re)dr
equation[20Q], the contribution of all non-nodal diagrams k=1 JV
consisting of paths of bonds between the two root points £
corresponds to the direct correlation functigytr). Accord- + E pkf C:k(rik)ij(rkj)drk, (2.9
ing to the Ornstein-Zernike equatiog;(r)—1 is equal to k=1 JVv
N;j (r) +c;;(r) in which Nj;(r) represents the contribution of all
nodal diagrams consisting of paths fobonds between the
two root points, and\;;(r) is given as the convolution inte- Hij(rij) = Dyj(rij) = 1. (2.10
gral Elepkfcik(rik)[gkj(rkj)—1]drk, which is simplified by

using rikEJrg)_r(sk)" rkjE,|rgk)‘rg)|v and qu_dr(sk)- If an  equation system consisting of Eq8.6) and(2.9) is equiva-
analogy _W|th_the Ornstein-Zernike equatJlron is assumed, thg it to the Ornstein-Zernike equation. Equati@rs) contrib-
convolution mteqral of Lthe prcgduct o€i(r) and Py(r)  tes to estimating the formation of physical clusters, and Eq.
should result inNj;(r) =X, _;piJ Ciy(ri) Pij(rig)dr. This fact —(2.9) contributes to estimating an effect of the physical clus-
and the relatiorP;;(r)=Cj(r)+Nj(r) results in an integral ter formation. In fact, the second term and the third term
equation which is required in order to estim&g(r) [12].  on the right-hand side in Eq2.9) represent a way to have
Thus, the pair connectedneBg(r) is given as a solution of an effect of the formation of physical clusters on the corre-
the integral equation expressed as lation function’;;. An effect of these terms might play a role

where

According to the relation given by Ed2.8), an integral
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for explaining phenomena due to the formation of physicalin a specific situation where a contribution of an attractive
clusters. force between the pair particles exceeds a contribution of
their relative kinetic energy. Owing to this fad®;;(r) might
contribute to explaining the transition from the liquid sate of
a fluid to its solid state as a phenomenon due to the growth of
Representing the Ornstein-Zernike equation as an integrghysical clusters. The growth of physical clusters can be
equation system which consists of Eg.6) being relevantto known from the mean siz8 of physical clusters which can
P;j(r) and Eq.(2.9) being relevant td;(r) is equivalent to  be estimated through the use7f(r). The equilibrium num-
actively considering that a fluid consisting of particles inter-ber n, of physical clusters consisting of particles can be
acting each other with attractive forces has a tendency teelated to the pair connectedneBg, and according to the
become inhomogeneous. Considering the two correlatioformula given by Coniglio and co-workef42], the relation
functionsP;(r) and ;;(r) means that particle pairs consti- betweenn, andP; is given as
tuting a fluid are divided into two groups. One is a group of L r
particle pairs characterized as pair particles interacting in a _ — , f f (e D — r Opygr Dgr D
specific situation where a contribution of an attractive force z‘v vv=1n, z %p.p, v VP”(|rl rfdridry
between the pair particles exceeds a contribution of their (2.13
relative kinetic energy. The other is a group of particle pairs '
characterized as pair particles interacting in a specific situaf the probability p(i) that ani particle exists in a cluster is
tion where a contribution of the relative kinetic energy of theindependent ofy, then the factor=,vn, included in Eq.
pair particles exceeds a contribution of the attractive forcg2.13) can be related to the densityof thei particles in the
between them. Particle pairs belonging to the former grougolumeV asp;=[p(i)/V]Z,vn,. If ziﬂzlp(i):l is considered,
contribute to the magnitude d%;(r), and particle pairs be- the sums,vn, is estimated as
longing to the latter group contribute to the magnitude of £
Dj;(r). Since the particle pairs contributing to the magnitude S o =vS )
of P;;(r) form physical clusters, particle pairs contributing to > 3 pi-
the magnitude ofP;(r) cannot homogeneously be mixed ) S
with particle pairs contributing to the magnitude®§(r). In Slncezthe mean physical cluster si&is given asS
addition, it is possible for physical clusters to be made grow (£.#"M,)/(£,n,), the substitution of Eq$2.13 and(2.14)

B. Effects of the physical cluster formation

(2.19

in Shapes Sim“ar to branchegz]' into this formula results in

The formation of physical clusters should be neglected in L 1L L
the gas state of a fluid being at least far from the critical S= 1+(E pk) > Epipjf Pj(rdr.  (2.15
point. This means thaP;;(r) should always remain much k=1 i=1j=1 %

smaller in the gas phase of a fluid th@m(r). Then, it is

. ) If the percolation of physical clusters does not occur in mac-
possible to make an assumption as

roscopicV found in a fluid system$S which is estimated for

L L the fluid system by Eq2.15) should be sufficiently indepen-
> pkf ka(rik)ij(rkj)drk+ > pkf Cii(ri) Higj(ri)dr dent ofV, and the limitV— « does not influenc&. Then, the
k=1 JVv k=1 Jv limit V—oo allows Eq.(2.15 to result in[(S—l)/V]E‘,f:lpk

< |Hij(fij)|- (2.11) =0 anQ(l/V)fVPij(r)dr;O. This-f.act allpws_ Eq.(2.3).to
result in the normalization condition which is given in the
Hence, the correlation functiok;(r) being equal taD;;(r) limit V—o as (1/V)fyDj(r)dr=1. If the percolation of
-1 approximately satisfies an integral equation which has thghysical clusters occurs in macroscopicfound in a fluid
same form as the Ornstein-Zernike equation and is given asystem,S which is estimated for the fluid system by Eq.

C (2.15 shoulﬁd be dependent ovi. Then, the magnitude of
Ho(r) = C (1) + C(r ) Hui(ro)dr e [(S-D/VIZ,L,p« can have a finite value being different
i (f) = i) glpkfv (Mg from zero. If a state of the fluid is in the immediate vici-

(2.12 nity of the liquid-solid transition point where the relation
' 0<pi¥-pli<1 (p* denotesp, in a solid state, and®

When the gas phase of a fluid and the liquid phase of theélenotesp; in a liquid state which can be transformed into
fluid are in equilibrium, Eq(2.12) is applicable to examining the solid statgis satisfied, the dependence $bn V might
the behavior of this gas phase, and E2}9) should be ap- be estimated aS/VzElepiSd. Then, Eq(2.15 should result
plicable to examining the behavior of that liquid phase. Inin (1/V)EZ, S pipi /Py (Ndr =208y in the limit
addition, Eq.(2.12 can be an appropriate approximation V—o. This situation allows Eq.(2.3) to result in
even for a fluid involving the formation of physical clusters, (1/V)[yD;;(r)dr =0. Moreover, the state specified by
if the condition|P;;(r)/D;;(r)| <1 is satisfied for the fluid. (1/V)[yDjj(r)dr =0 should extremely lack particle pairs

In the case that the contribution of the formation of physi-characterized as pair particles interacting in a specific situa-
cal clusters is significant, the pair connectedn@3gr)  tion where a contribution of the relative kinetic energy of the
should be estimated. Particle pairs contributing to the magpair particles exceeds a contribution of an attractive force
nitude of P;(r) are characterized as pair particles interactingbetween them. This fact means that the fluid might lose a
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feature found as liquid. Thus, the growth of physical clusters 2I'(3/2,~ Bu; (1))

can aid the transition from the liquid state of a fluid to the Djj(r) = — a1 (r) — 112 Lo G, (3.3
. : 20'(3/2,-Buyj(r)) — 2P

solid state through the occurrence of the percolation of

physical clusters in macroscopit although the relations expressed by E@sl) and(2.8) have

to be considered to obtain E(B.3h). Equations(3.39 and

Il APPROXIMATE FEATURES OF CORRELATION (3.3b enableP;;(r) andDy;(r) to be characterized by a pair

FUNCTIONS potential, if ¢fY(r), Cjj(r), and Cj(r) are given. Moreover,
_ _ Eqg. (3.39 can be used as a closure scheme for ), if
A. Approximate expressions of P; and Dj; ci'l?Y(r) is given. If P;(r) is estimated with the use of Eq.

The characterization dP;;(r) due to a pair potential can (2-6), 7¢;;(r) can be obtained from solving E@.9) with the
be performed through an aid of the Percus-Yeviek) ap-  Use of Eq.(3.3b. Moreover, Egs(3.39 and(3.3b suggest
proximation. Simultaneously, the characterizationyf(r) ~ that separating;(r) from g;;(r) allows a pair potential char-
due to a pair potential can be performed. Then, the PY apactenzmg??ij(r) to be made different from a pair potential
proximation results in the approximate relation betweercharacterizingD;(r). Even if a pair potential controlling the
P (r) andCG(r) [12] within the range where the contribution behavi(_)r o_f pair particles WhiCh interact in a situation where
of u;(r) to i andj particles is not neglected, and also it & coptnbyuon of an attra_ctlve_forqe betwee_n th.em exceeds a
results in the approximate relation betweBp(r) andCTj(r) contribution of their relative kinetic energy is different from
within the range. a palr_potentla_l controllm_g the behavior of pair partlcle_s
The pair correlation functiorlgiF-’Y(r) due to the PY ap- which interact in a situation where a contribution of their

proximation is expressed ﬁY(r)eﬁuii=l+Nij(r). If the re-  relative kinetic energy exceeds a contribution of the attrac-

. —BU; (1) — £+ * (O =N* . tive force between them, the use of E¢3.39 and (3.3b
lations e i f”(r)+f”(r)+1 andN;;(r) NIJ(r)+N”(r) are enablesP, (1) and D (1) to be estimated.

considered, the PY approximation is rewritten as
g "(r) = F5(NIL + N (r) + Ny (n)] + [ (r) + 1IN (r)

+ [ (r) + ][ + N (], 3. The direct correlation function; () is the contribution of

whereN];(r) is all nodal diagrams which do not include any all non-nodal diagrams consisting of paths fobonds be-
paths of allf* bonds betweenandj. The right-hand side of fWeen the two root points. Slmllarl)cij(r) is the contri-
Eqg. (3.1) should be the sum of the terms contributing to Pution of all non-nodal diagrams having at least one path
P,;(r) and the terms contributing ®;;(r) owing to Eq.(2.1). ~ of all f* bonds between the two root points, a@(r) is
Considering this fact allows E3.1) to be divided into two  the contribution of non-nodal diagrams WhICh'dO not mcl_ude
formulas. Owing twij(r):cﬁ(r)+NE(r), one of the two for-  paths of allf* bonds between the two root points. The simi-

B. Behavior of Cj and behavior of C}

mulas is larity among these diagram structures suggests that both
the behavior ofCﬁ(r) and the behavior oC”-(r) should be
Pyi(r) =5 (N g; (i@ + [ () + 1][P; (r) = C(1)], similar to the behavior ofc;(r). According to the mean

(3.23 spherical approximatiotMSA) [23], the direct correlation
' function ¢;;(r) is given as the sum of the short-ranged con-

and owing to 1-Nj(r)=gfY(r)e®i~Nj(r), the other is tribution expressed ag(r) and the long-ranged contribution
. oy oy . given as Bu;(r), and the MSA shows thag;(r) behaves as
Dyj(r) = [f;;(r) + 1][g;; " (r) —cij " (r) = Py(r) + Cj5(r)], cij(r)/[-Bu;(r)]=1 and c}(r)=0 outside the range of the

(3.2p  hard-core potential. Thus, the similarity betwegyr) and
_ _ _ _ Cﬁ(r) suggests that the behavior ﬁfj(r) should is given as
Wherecﬁy(r) is the direct correlation function due to the PY the sum of the short-ranged contribution expresse@ﬂéﬁr)
approximation and is given &§"(r)/(1-e™i)=g{¥(r). In  and the long-ranged contribution 1©:(r). Moreover, the
addition, Eqs(3.29 and(3.2b) correspond to formulas hav- similarity betweerg;;(r) andCj(r) suggests that the behavior
ing specific forms which can be derived from general formsys C:J-(r) should is given as the sum of the short-ranged con-

given by Stell[16] and Chiew and co-workers.8]. tribution expressed a8{) (r) and the long-ranged contribu-
By considering Eq(2.4) and the relations expressed by tion to C'(r).

. i
Eq.(2.5), Egs.(3.29 can be rewritten as A long-ranged contribution t@i’](r) is obtained from Eq.

21°(3/2,- Bui (1)) (3.39 by considering an assumption which is made as
Pyj(r) + 1/2eﬁ“ij(”—2,1“(3/£ - ())Cﬁ(r) Pij(r)~[-Bu;(r)]” and 1s=wv for 1<r/oy. Here, o is
7 BT given asa=5(ai+0)) for the diameters; of the hard
_2I'(3/2) - I‘(3/2,—ﬂuij(r))}eﬁ“ij(r> CEY(r) core of ani particle and the diametex; of the hard core of a
- ﬂ_lIZeBUij(r)_2I‘(3/2,_ﬂuij(r)) (1 - iy j particle. Since at least the conditidhj(r)/[gij(r)—1]$1

(3.39 is always satisfied,P;;(r) for 1<r/oy should satisfy
' [gij(r)—1]/[-Bu;(r)]="P;(r)I[-Bu;j(r)]. The MSA gives
Similarly, Eq.(3.2b) can be rewritten as cﬁY(r)/[—,Buij(r)]:l for 1<r/oy. By considering this fact,
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the relationgf"(r)=c"(r)/{1-exd Bu;(r)]} due to the PY IV. CHARACTERIZATION OF CORRELATION
approximation results in lim...[g;(r)—1]/[-Bu;(r)]=1/2 FUNCTIONS

owing to a general assumption lim,u;(r)=0. This re-
sult suggests 1/2 P;(r)/[-Bu;(r)] for 1<r/oy, and the

behavior of 7(r) for 1<r/oy is expressed asP(r) cij(r) can be effective within the range where the magnitude
~[~Bu;(r)]” and 1<v. Owing to this behavior oP;(r), a ¢ u;;(r) cannot be neglected, and it decays to zero as rapidly
long-ranged contribution t@(r) is found from Eq(3.33 as 55 —Bu;i(r), which expresses a microscopic feature. The cor-
Cjj(r) = 4/(3\m)[~Buy(r)*2 [14]. Therefore, this result and relation function gij()—1 can decay to zero much more
analogy with the MSA should allow the behawor(DT(r) to  slowly than c;(r) [1,2]. Thus, the behavior of;(r)-1 is
be approximately expressed as different from the behavior of;(r), which has a tendency to
maintain the microscopic feature. This fact can be suggested
4o 3/2 even by a solution which is obtained by solving the Ornstein-
i = C 0+ r[ Puy (7= for fuy(r) < Zernikg equation recursively, and the);olutior(iJ is given as

A. Recursive solutions of integral equations
According to the MSA, the direct correlation function

L

(3.9
9~ 1=Gj+ 2 pi | Gk, CiyIr 5
k=1 Jv

and

Ciq+(r) =0, forr> i (35) * 2 E pklpk2f J Clklcklkzckzldr(kl)drEIkZ) +

Then, the expression &;; (r) should enable Eq2.6) to be ptet 4.1

readily solved. (4.0
On the other hand, Eq.(2.1) and the relation Particles(kq,ks,...) distributing around an particle and

g '(n=c"(n/{1-exdpu;(r)]} result in Dy(r)-1 aj particle cannot always be positively contribute to the

~~(1/2)Bu;(r) for 1<r/oy owing to the MSA and the be- probabillity that the particle exists away from thppartiqle

havior of P; (r) The behavior oD;;(r)-1 allows Eq.(3.3b at the distance. In the case of Eq4.1), every convolution

to lead toC (1) = —PBuy(r) for 1<r/<T|J Therefore, this re- integral must not always be positive for the reason that)

sult and analogy with the MSA allow the behavior@f(r) ~ 2'® negative for at least<Or/oj<1 owing to g;(r)—1
to be approximately expressed as 5«—1 (O<_r/oij <1). This fact means thqt_ every con_voluuon
integral in Eq.(4.1) cannot always positively contribute to
Ci*j(f)=Cﬁ*(f)-,3Uij(f) for Buy(r) <0 (3.6) the magnitude ofg;;(r)-1. The magnltude.ogij(_r).—l at
larger wherec;(r)~=0 can, however, remain a finite value
and which is not zero, in the case that convolution integrals
which can positively contribute to the magnitude gf(r)
Cl(n=0, forr>oy. (3.7 -1 are dominant in Eq4.2).
In a way being similar to that of solving the Ornstein-
Moreover, Eqs(3.4—3.7) are consistent with the MSA ac- Zernike equation, solving E@2.9) for 7;; recursively results

cording to Eq.(2.9). in
c c
Hij=Cjj + 2 PkJ i, Cidr 3 + E E Pk PKZJ J Cik, Gyl Chdr 3V + Pk1J Cik,Pijar 5
- k=1 k=1 k=1

kp) gy (K * o)y (K
+ 2 E Pi, Pk, f f C|k1Ck1k2Pk ]dr( 1)dr£‘2)+ E E 2 Pi,Pi,Pks J J f Ciklck1k2Ck2k3Pk3jdr dr k) 4
viviy

ky=1 kp=1 k=1 ky=1 kg=1
(4.2

In the case of E(4.2) also, every convolution integral must the case that convolution integrals which can positively con-
not always be positive for the reason tt@{}(r) and c;;(r) tribute to the magnitude dff;;(r) are dominant in Eg4.2).

are negative for at least Or/o;;<1 owing to H;(r) Even if C;, i(r), according to Eq(3.6), decays to zero as rap-
~-1(0<r/o;j<1) andg;(r)-1=-1 (0<r/g;;<1). This idly as Bu,l(r) which expresses a microscopic feature,
fact means that every convolution integral in B42) cannot  7¢;;(r) might still have a finite value which is not zero in the
always positively contribute to the magnitude ®f;(r).  specific situation.

However, it is possible that the magmtude?ﬁi]j(r) at large Moreover, Eq.(2.6) can be solved recursively fdp; to

r WhereC (r) 0 remains a finite value which is not zero, in give as
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c o physical custers tg;;(r), is hidden in the expression of Eq.
— + ~+
P =G + kE_l Pklfv Cik,Cijdrs™ 4.1.
=
L B. Expressions given as differential equations
+ 2 2 pugpr, J f Cf{(lCElkZCEZjdrgkl)drgk? +oee The ranges within which the correlation functiogg(r),
k=1 kp=1 VIV Cﬁ(r), andCij(r) are not zero can remain microscopic sizes,
(4.3 according to the perspective of the MSA and the perspectives
of the approximations given as Eq®.4) and (3.6). These
_ _ 3 perspectives allowP;;(r) andH;;(r) in the convolution inte-
This equation means that the probability that both the grals in Egs(2.6) and(2.9) to be expressed as Taylor series

andj particles belong to the same physical cluster can enexpansions. One of the Taylor series expansions allows Egs.
hance via the contribution of other particlék; ks, ...). (2.6) to be given as

Even if Cﬁ(r), according to Eq(3.4), decays to zero as rap- r

idly as[ Bu,J(r)] ,_V\_/hlch expresses a microscopic feature, Pij(r):Ci‘](r)+2ka C;Ir((|r(3k)|)7)kj(|r|)dr(3k)
Pij(r) can have a finite value which is not zero. The convo- =1 Jv

lution integrals on the right-hand side of Eg..3) are posi- 1 C

tive for the reason thatﬁ(r) must everywhere be positive + = f CHr 9O ®Ry2p, (Irdr ¥
owing to 0<7P;(r) (0<r). If the contributions of particles GEPK v i3 DIrg PV Pig(Irrs
(kq,ks, ...) distributing around the particle and thg par-

L

ticle cannot be negligible, it is possible f@%;(r) to remain + 1 f CEr®nr 1A 2 (rhdr® + -
not zero even out of the range Wh@ﬁ(r)aﬁO.Although the 1621’” v illrDlrs"la, k'(| e '
contributions of particlegk; ks, ...) distributing around thé (4.4)
particle and thg particle toP;;(r) seems different from their where '
contributions tog;;(r), according to Eq(2.1), Eq. (4.1) re- 20 27 818 14

i in- i i A=—-——+5—S+——+——. 4,
sulting from the Ornstein-Zernike equation corresponds to r Bar r2ar2  15r a8 " 60ar’ (4.9

the sum of the contribution of E@4.2) and the contribution
of Eq. (4.3. The contribution of Eq(4.3) to g;(r), which  The other of the Taylor series expansions allow E8%9) to
should be considered as the contribution of the formation obe given as

L

Hi(r) =Cji(n) + > Pkf Cicl
k1 Jv

r¥)

c c
1 . 1 .
rgk)|)73kj(|r ar + 62 Pkf Cik( rgk)|)|rgk)|zvzpkj(|r|)dr(3k) + 1_62 Pkf Cik(
k=1 Jv k=1 Jv
L c
1

X|f(3k)|4Arij(|r|)drék) +o Dy Cik(|rgk)|)ij(|r|)dr(3k) + 62 ij Cik(|rgk)|)|rgk)|2V2ij(|r|)drgk)

k=1 vV k=1 \%

c
1
+ EE P Cik(|r(3k)|)|r(3k)|4Aerj(|r|)dr(3k)+ R (4.6)
kel Jv

Even when the distance between aparticle and aj _Cﬁ(r)=4/(3\s’7_-r)[—,8uij(r)]3’2. According to Eq,(4.7), P;(r)
particle is much farther beyond the range where the magnis generated fronC;(r) regarded as a source. Thus, the re-
tude ofu;(r) cannot be neglected, if the correlation between|ation betweerP; (r) andC; (1) in Eq. (4.7) is similar to that
thei ;‘”dltparticfi can db'; four:'d,l theﬁijt(_rij) and 7'f|1[j,(rii)]c in Eq.(4.3) since Eq(4.3) represents tha®;;(r) is composed
can be estimated from differential equations resulting fro - e v
Egs. (4.4) and (4.6). A differential equation resulting from "bf contributions of quantitiey Cy, ... Cigj (1=1,2, ...

Eq. (4.4) is expressed as The behavior ofP;;(r) out of the range in which the magni-

’ tude ofu;;(r) can effectively contribute to the attractive force
1 between an particle and g particle expresses a long-ranged
= * (1r 9N | 9120y Wy 2P,

E pkfv Cik(Ir5"Drs”|dr 5"V Pii(r) feature ofP;;(r) which involves contributions of a number of
particles. In the case of Eq4.3), the contributions of
Ci\Cis -+ ,Cy; (1=1,2,..) are required to estimate the
long-ranged feature aP;(r). In the case of Eq4.7), it is
4 possible to estimate the long-ranged featur@gfr) without

(4.7) knowing the contribution oCﬂ*(r). This is an advantage of
where Ci‘](r) on the right-hand side should be given asEq.(4.7).

61

L
-> {(sik—pk f C&(lré”l)drg”}m(r) ~-Ci(n),
k=1 \Y
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pre,iSZlgf(;rsntlal equation resulting from Eq4.6) is ex- OsE*(O)sl. (5.3)
1 £ If the relation (dp/dP)yr=0 is generally satisfied at the
62 ka Cil[r¥DIrf2dr v2py(r) triple point, Eq.(5.2) and the relation?(0)=1/(1-C*(0))
k=1 \%

. -1 require that the relation 4—6*(0) be satisfied at the
. triple point owing to the relation given by E¢.3).
+ Z Pkf Cik(|r(3k)|)dr(3k)73kj(r) The relation (dp/9P)yt=0 makes Eq.(5.1) require
k=LY ((N/V)?=(N/V)?>~0, since the density fluctuations are ex-

1 < Ry (K240 (K2 pressed a$(N/V)2>—<N/V>2:(<N/V>/V)[P(O)+7~i(0)+1] if
* 6K§1’kavcik“3 DIra”dr?V=Hign) the number of particles in volumé is expressed ail. The
c relation (dp/ dP)y1=~0 shows that the density fluctuations
K K P are prevented at the triple point. This fact suggests the oc-
B gl {dk B pkfv C‘k(|r(3)|)dr(3)]HkJ(r) ~ -G, currence of two phenomena. One of the two phenomena rep-
resents that particular particle pairs contributing to the mag-
(4.8 nitude of D(r) are confined among branches of physical
where ij(r) on the right-hand side should be given ascClusters. The other represents tha_t the p(_arcolation of phys.ical
Ca-(r)=—,8uij(r). If a fluid exists as the gas state without Clusters occurs at least near the triple point. If the percolation
physical clusters, the first term and the second term on thef pbyswal clusters occurs near the triple point, the relation
left-hand side of Eq(4.8) should be completely neglected. If 1<7P(0) should be satisfied according to E&.15. Then,

physical clusters contribute to features of a flui(r)  the relation k7P(0) requires k—H(0) at the triple point.

should be estimated as a solution of E4.7). Next, using The relation & -H(0) is equivalent to(1/V) [yD(r)dr =0

the solution,H;;(r) should be estimated as a solution of Eq. _ . _ . v .

(4.8). In the case that the first term and the second term or(1)Wlng to D=H(r)+1, and decreasing Fhe ma~gn|tuc'je of

the left-hand side of Eq4.8) can be regarded as more im- P(r) toward zero means that the magnitude &f(6) is

portant sources tha@j (1), the formation of physical clusters Made diverge. Each particle pair which contributes to the

should considerably influences a feature of a fluid. magnitude ofD(r) corresponds to a specific particle pair
characterized as pair particles interacting in a situation where
a contribution of the relative kinetic energy of the pair par-

V. SPECIFIC BEHAVIOR OF CORRELATION EUCTIONS ticles exceeds a contribution of the attractive force acting
) ) between them, and such particle pairs should contribute to
A. Features found near the triple point maintaining the density fluctuations. This fact suggests the

The behavior of the pressuReat the triple point enables assumption that particle pairs which contribute to the mag-
specific features of correlation functions to be revealed. Achitude of D(r) are confined among branches of physical clus-
cording to the compressibility equation, the relations giverters formed by particle pairs which contribute to the magni-
by Eq.(2.1) and(A4) allow the pressur® of a single com- tude of P(r). The more densely branches of physical clusters

ponent fluid to be expressed as are developed, the more frequently particle pairs which con-
1 tribute to the magnitude oD(r) and which are confined
oP —_ — -
[,3(—) } =P(0) + H(0) + 1. (5.1) among the branches of physical clusters can be exchanged
/v for particle pairs which contribute to the magnitudeRif).

In addition, suffixes added to quantities such73gr) and This effect allows for decreasing the magnitudeDdf) and

H;;(r) are omitted owing to considering a single-componentllows 1<-7(0) to be caused. This fact, which results in

fluid in this section. IfP(0) being found from Eq(A2) and  (2/V)JvD(r)dr ~0, allows a fluid to be transformed from the
~ . ) ] liquid state into the solid state. It can become consistent with
H(0) being found from Eq(A3) are substituted into Ed. e hehavior which is found from the discussion of Sec. Il B

(5.1, Eq.(5.1) is rewritten as since the behavior is expressed near a liquid-solid transition
~ ~ N point as(1/V)[yD(r)dr =0. If the percolation of physical
l(@) - c'0 + C () +C OPO +1. clusters does not occur even at the triple point, the magnitude
B\dP/yr 1-C*H0o) 1-C*(0)-C(0) of P(0) should not be large according to E@.15. Then,

(5.2 the magnitude of #(0) also should not be large, since the

According to Eq.(2.15), the mean physical cluster sigsis  relation (dp/ dP)yr~0 _requiresﬂ(O)z—l—%(O). This fact
given asS=1+$(O) in which the relation &73(0) is always means that the magnitude ®f(r) can decrease not toward

satisfied. If a relation given by E@A2) is considered, it is ZET0 as the de_nsny Increases toward a specific value being
given at the triple point. It is somewhat unreasonable to al-

expressed a8=1/[1-C*(0)]. Since the relation £Sis al- o\ a fluid to be transformed from the liquid state into the
ways satisfied, the value @*(0) must satisfy the relation solid state under the condition that the magnitudeDof)
given as does not become sufficiently small. Therefore, the condition
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1<P(0) corresponding to the occurrence of the percolatioagnitude ofP(r) should be raised when the particle pairs
should be satisfied near the triple point. Ultimately, the asfontributing to the magnitude aP(r) are confined among

sumption of 1<P(0) means that branches of physical clus- the branches of physical clusters. Raising this probability

hich develop d | he wholeVot i should contribute to a decrease in the magnitude>af).
ters'w Ich develop densely over the Wwholewbtan confine e effect of raising the probability should, however, be less
particle pairs contributing to the magnitude Bfr) among

" dominant than the effect of the movement restriction if
them, and the assumption ofP(0) near the triple pointis branches of physical clusters are not dense. Then, the occur-
effective for explaining the reason that the density fluctua+tence of confining particles among branches gf the physical
tions decease toward vanishing@icreases toward a spe- clusters can efficiently enhance the magnitudé{¢®). This
cific value being given at the triple point. means that the critical point should correspond to a specific
situation where branches of physical clusters do not become
. _ dense yet even if large physical clusters beyond semimicro
B. Features found near the critical point and far from that sizes might be included in a fluid. Owing to such a specific
According to the magnitude qg—l(ap/ap)w estimated Situation, the occurrence of confining particles among
by differentiating the equation of state of the hard-spherdranches of the physical clusters allows the magnitude of
fluid [21] with respect top, the density fluctuations in a 7£(0), which should behave &%(0)~0 atp=~0, to increase
hard-sphere fluid system are simply reduced as the density ¢dward an extremely large positive value @sncreases to-
hard spheres increases. However, the presence of an attragard the critical point.
tive force acting between particles enables the density fluc- The behavior of(0) must be changed when the value of
tuations to become extremely large@mcreases toward the p exceeds that at the critical point. An increase in the value
critical point. If a contribution of the hard-core potential to of p allows the contribution of attractive forces to the growth
maintaining the average distance between patrticles in a fluidf physical clusters to become more effective since the in-
system is less important than a contribution of an attractiverease decreases the average distance between particles. The
force to minimizing the average distance, the attractive forcelevelopment of branches of physical clusters should raise the
acting between particles can contribute to developing thé@robability that particle pairs contributing to the magnitude
density fluctuations. If particle pairs which correspond toof D(r) are exchanged for particle pairs contributing to the
particle pairs contributing to the magnitude Bfr) start to ~ magnitude ofP(r). These effects should decrease the magni-

be confined among branches of physical clusters, then thgide of D(r) as p increases. This suggests that affe(o)

occurrence of dense regions due t.o confining the partic'?eaches the maximurffi(O) must decrease asincreases. If
pairs among the pranches can considerably develop the .degﬁ increase in the value pfallows a condition of a fluid to
sity fluctuations since the occurrence of such dense regions

in the fluid system makes the other regions 2. reach the triple point, then the magnitudef¢f0) must reach
The growth of physical clusters, which is important for @n extremely large negative value as discussed in Sec. V A.

confining particle pairs among their branches, cannot, how- For a fluid consisting of particles interacting without at-

ever, simply develop the density fluctuations. The percolairactive forces, the sun€*(0)+C"(0) being equal tac(0)

tion of physical clusters cannot result in developing the denalways behaves as a negative quantity according to the mag-

sity fluctuations. Although the percolation of physical nitude of gY(dp/dP), estimated by differentiating the

clusters occurs at the condition given as%0)=0, the  equation of state of the hard-sphere fl{@d] with respect to

relation P(0)=1/[1-C*(0)]-1 prevents the magnitude of p, although the magnitude @*(0)+C’(0) approaches zero
B XaplP)y 1 given as Eq(5.2) from diverging to the infin-  as the density of hard spheres approaches zero. As the den-

ity at the condition 1-€*(0)=0. This fact and Eq(5.1) sug- ~ Sity of hard spheres increases, the negative valu€"¢p)
gest that the occurrence of the extremely large density fluc+ C*(0) decreases simply. If a solution given by Cummings

tuations must be interpreted through the behavior6). ~ and Smith[24] is used, it is, however, shown that a contri-
The magnitude of%(0) is given as the contribution of par- bution of attractive forces among particles allows the mag-

ticle pairs characterized as pair particles interacting in a spélitude ofC*(0)+C’(0) to increase toward the maximum as
cific situation where a contribution of the relative kinetic increases. After reaching the maximum, the magnitude of

energy of the pair particles exceeds a contribution of theC*(0)+C"(0) decreases toward a large negative valug as
attractive force between them. If particles belonging to theincreases. This fact means that the presence of an attractive
group of particle pairs which contribute to the magnitude offorce acting between particles enables the magnitude of
H(0) are confined among branches of physical clusters, th€(0) to reach the maximum at a particular valueppkince

movements of the particles belonging to the group are rege magnitude ofC*(0) is maintained within the range 0
stricted. The movement restriction of the particles should<6+(0)<1 M the aid of fini feul
enhance maximum values &¥(r), and then, an increase in =-. Moreover, the aid ot confining particular par-

maximum values of(r) defined asH(r)=D(r)-1 should ticles among branches of physical clusters should make the

increase the magnitude f(0). On the other hand, the prob- mf';\.)qmum_value ofc (O)TC (O):} approgch zero near the
ability that particle pairs contributing to the magnitude of Cfitical point. If the relation 8=C*(0)<1 is expected even
D(r) are exchanged for particle pairs contributing to thenear the critical point, then the maximum value ©f(0)
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reaches a particular value given @50)~1 at the critical @ particular feature of a fluid which is caused in a specific

. : ~ situation by the formation of physical clusters. According to
point. Therefore, the magnitude 6f (0) should always sat- Eq. (4.7), a differential equation whic#®(r) should satisfy in

isfy the relationC’(0) <1. _ the region specified by 4r/ ¢ is given as
Owing to Eq.(5.1) and a relation due to EqA4), the

quantity6+(0)+6*(0)—1 can be related to the pressitas
B(3PIdp)y1=1-C*(0)-C"(0). If the pressureP which is
given for a single component fluid by the pressure equation

SR = (- U,

V2p(r) -[1-C*O
P -[1-C1O1% e

BP=p—(p?16)Bfyr[du(r)/dr][P(r)+D(r)]dr is differenti- (5.9
ated with respect te, consideringB(dP/dp)y+=1-C*(0) where
-C’(0) allows the pressure to be expressed as
p=. du(r) { dP(r) _ Pl e~z

pP=p-2C'(0)+ ,8 f ( dr =5 ,corde. (5.6
ap vt

*( ﬁ f du(r)(ﬂD(r)) dr. (5.4 Equation(5.6) expresses that at Ieexﬁ@'t*(0)<6§+ is always

2 v,T satisfied. Equatio5.5) represents a contribution of a micro-

~ scopic quantityBu(r) to P(r), and Eq.(5.5 shows that a
If the relation 0<C*(0) <1 is satisfied for a fluid, then itis |5ng-ranged feature aP(r) can be found as the behavior of
expected that both the second and third terms on the rlghtp(r) out of the range within which the magnitudedf) can
hand side of Eq(5.4) are negligible owing to the relation efectively generate the attractive force between two par-
0<7P(0)<1 due toP(0)=1/[1-C*(0)]-1. Moreover, the ticles. This means that the long-ranged featur@eh which
relation, the relatior{[dP(r)/dply /<1 might be expected is estimated by solving Eq5.5) is caused by involving con-
according to the behavior of the pair connectedness founttibutions of a number of particles.
from the previous wor22]. The fact that the second and If a form of Bu(r) is assumed asBu(r)=—a¢(r)/r
third terms on the right-hand side of E(p.4) can be ne-  X[lim, . ¢(r)<«], a solution of Eq.(5.5), which repre-
glected suggests that particles contributing dominantly to thgents the long-ranged feature ®fr), is given as
pressureP are those which belong to a group of particle pairs
characterized as pair particles interacting in a specific situa- 1 1 1 5
tion where a contribution of the relative kinetic energy of the P(r) = Tf = exp{— ———[1- C+(0):|l/2t}
pair particles exceeds a contribution of the attractive force 3t (&
between them. Moreover, the fact that the pressure at the )
critical point is given asP= (p/28)+(p3/12) fyr[du(r)/dr] x[—
X[dD(r)/ dp]y1dr owing to Eq.(5.4) persuades the relation Ir =t
1>—(Bp?16)fyr[du(r)/dr][oD(r)/dply+dr to be found at
the critical point. The factor (p3/12)fyr[du(r)/dr]  If the value ofr is larger than the value df for which O
X[dD(r)/dp]y+dr should, however, have a large negative <t™*exp{—({") Y91~ CHO)Yt <1 is satisfied, Eq(5.7)
value in a situation being far from the critical point since can be rewritten as

C'(0) has a large negative value in the situation. Thus, Eq.
;E;t.ﬁureﬂuwes the relation Ef\_,r[du(r)/d_r][aD(r)/&p]dr_, P(r) = _f 1ol - 1 [1-CH0)]
gh the pressure equation requires the relation 0 3732 ), t (HY2
< [yr[du(r)/dr]D(r)dr. This fact means that a contribution
of fyr[du(r)/dr]D(r)dr to the pressure decreases at least in a (n-
situation being far from the critical point, gs increases. X[p(Ir —th 2 x [E o 2 (n+ )| Pm(cosﬂ)
Since the factor[yr[du(r)/dr]D(r)dr corresponds to the n=0" m=n
contribution of particle pairs characterized as pair particles . o, 32
interacting in a specific situation where a contribution of the xeM"Pl(cosd)e™e | dt, (5.8
relative kinetic energy of the pair particles exceeds a contri-
bution of the attractive force between them, a decrease in the

magnitude off\r[du(r)/dr]D(r)dr due to an increase in the WherePi(cosd) are the Legendre functions, and the spheri-
value ofp is reasonable. cal coordinates of andt are expressed a8 ,d,¢) and

(t,9,¢"), respectively. If¢(r) is expressed as the Taylor

series, which is a power-series expansionpf) in powers

of r, Eq.(5.8) shows that the dependenceZ(r) onr can be
The use of Eqs(4.7) and (4.8) allows long-ranged fea- dominated at least by the term including?’2.

tures of the correlation functiori®(r) and H(r) to be esti- According to Eq(4.8), a differential equation whict(r)

mated. Their long-ranged features should aid in interpretinghould satisfy in the region specified byt /o is given as

3/2
} dt  (t=|t|). (5.7

C. Long-ranged features of correlation functions

066143-11



TETSUO KANEKO PHYSICAL REVIEW E70, 066143(2004

1 least ag %2, This fact means that the dependence of the sum
2 ~
VEH(r) - Z[l —CO)JH(r) P(r)+D(r) onr develops the deviation from the dependence
¢ expressed as the product of the factot and a particular
_1 L = = function given as the Taylor series due to powers,afs the
- g,Bu(r) g{ (*[1 co]+C (0)}P(r) magnitude of" increases. This means that an effect of the

. physical cluster formation on a specific feature of a fluid is
+i_§_[_ Bu(n 2, (5.9 made become apparent wheh is large. Both the factor
var P(|r —-t|) and the factof ¢(|r —t|)/|r —t|]*?in Eq. (5.11) are
directly relevant to the formation of physical clusters, and
the terms including these factors should be neglected if the
. P ‘o p 5 influence of their formation on features of a fluid are negli-
;= gf C(tdt, ¢= éf c®tdt.  (5.10  gible. If the dependence af(r) onr deviates from the de-
v v pendence expressed as the product of the factoand a
The magnitudes of” and ¢ subjects the dependence of a particular function which can be given as the Taylor series
solution of Eq.(5.9) onr. The value ofc(t) is negative in a [2], then it is suggested that its dependencerocan be
specific range & t<t, and positive out of the range. More- represented as a specific series including integer powaers of
over, the value ofC’(t) is negative in a specific range and half integer powers af. This means that it should be
0<t<t} and positive out of the range, since the behavior oféffective to consider the possibility that the dependence of
C'(t) is similar to that of c(t). Despite this fact, if P(r)onr anddthe dependence ?f(r)for:” are eﬁplressed by
t o0k . . £ Egs. (5.8 and(5.11), respectively. If this possibility is true
4mp[gC (Ydt+4mp[, C ()dt is positive, 4rp[gC Ord (s specific gas-liquid critical phenomenon, it is inferred
+47Tpf:ZC*(t)t2dt should be positive. Then, the relation that the formation of physical clusters plays a role for driving

= g . . the critical phenomenon and for characterizing the fluid as
C'(0)<6¢ should be satisfied. Similarly, if #pfPc(t)dt . L
+47rpf§;c(t)dt is positive, 4-rpf50c(t)t2dt+4q-rpf§;c(t)t2dt is liquid. Then, the possibility should demonstrate the value of

o D a separating the Ornstein-Zernike equation into the two inte-
positive. Then, the relation(0) <6¢ should be satisfied. In gral equations given by Eq&2.6) and (2.9).

addition, the value of(0) is the maximum at the critical

point, and the value OE*(O) should be the maximum near
the critical point. This fact allows for making the assumption VI. CONCLUSIONS

that both{” and{ reach the maximum near the critical point. A system of two integral equations corresponding to the

Owing to the contribution of the powef to the '”E??“a's Ornstein-Zernike equation should make it possible to show
being estimated from Eq5.10), it is assumed thaC (0)  the contribution of the physical cluster formation to the pair
<6{" andc(0) <6{ are satisfied near the critical point where correlation function and should aid in estimating an effect of
the maximum values &*(o) and¢(0) are given asH(‘:*(O) the physical cluster formation on a feature of a fluid. Here,
~1 and¢(0)=1, respectively. each physical cluster is regarded as an ensemble of particles
If a form of Bu(r) is assumed asgu(r)=-¢(r)/r  linked each other by every bond which is defined as a bound
x[lim, .. #(r)<=], a solution of Eq.(5.9), which repre- Statein wh|ch.a contr|but|0n. of attractive forces betyvee_n pair
sents the long-ranged feature ®r), is given as particles dominates a contribution of the relative kinetic en-
ergy between them. The system of two integral equations
1 1 1 _ makes the pair correlation function represented as the sum
H(f)=4—77§J ;eXP[-ZT,Z[l-C(O)]Mt} of two correlation functions. One of the two correlation
v functions is the pair connectedness, which contributes to es-

where

o(r —t|) e ~, ~, timating the formation of physical clusters. The other is a
X3~ = E[l -C(0]+C(0 correlation function expressing the correlation between par-
ticles interacting in a specific situation where a contribution
3 Ll o(r—t]) [¥? of the relative kinetic energy between pair particles exceeds
XP(|r =) + 4\_7_75 W dt (t=|t]). a contribution of attractive forces between them. Represent-

ing the pair correlation function as the sum of the two cor-
(5.11) relation functions might contribute to explaining phase tran-
sitions and critical phenomena due to the formation of

Equation (5.11) shows that the dependence #f(r) on r X
physical clusters.

depends on the magnitude 6f. If the magnitude off" is
sufficiently small, a contribution ofe(|r —t|)/|r—t| can

dominate the dependence Hf(r) onr, and then its depen- APPENDIX: FOURIER TRANSFORMS OF INTEGRAL

dence can be expressed as the product of the factand a EQUATIONS
particular function given as the Taylor series due to powers
of r. If the magnitude of” is sufficiently large, both a con- If each correlation function is expressed Rgr) which

tribution of P(Jr—t|) and a contribution of[ ¢(|r —t|)/|r satisfies lim_q rF;;(r)=0, then a Fourier transform &f;(r)
-1|]7%2 can make the dependence &fr) onr behave at is given as
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Eij(k) = \|/im (Pin)llzf Fij(exdik - r]dr
— Vv

oo

= 47T(Pin)l/2f

0

coskrdrf tdtF;; ()
r

X(r=r|, k= k]). (A1)

If V is macroscopic, the integralpip;/Fij(r)€"dr can be
expressed aBj;(k) given by Eq.(Al). According to the ex-

pression of Eq.(Al), a Fourier transform of Eq(2.6) is
given as

L
kE [8 ~ Ch(K)TPyi(k) = Cjj (k). (A2)
=1

Similarly, a Fourier transform of Eq2.9) is given as

PHYSICAL REVIEW E 70, 066143(2004)

L L
> [k = Ci(K) = CiWTHi(K) = C;(K) + X Cr(K Py (K).
k=1 k=1

(A3)

Moreover, a Fourier transform of the Ornstein-Zernike equa-
tion expressed as E@R.7) is given as

L
D 6k~ TIPG(K) + Hig(0]1=T;(K),  (A4)
k=1
where, owing to Eq(2.8),
T (k) = Cjj(k) + Cjj (K. (A5)
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