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Recently an interesting phase transition scenario in the context of a planar Ising system with a grain
boundary was revealed[Abrahamet al., Phys. Rev. Lett.93, 076101(2004)]. In this paper we study in more
detail the relaxation dynamics of this system and show how the grain boundary acts as a guide spatially
confining matter transport. This is done by performing simulations using the continuous time Monte Carlo
algorithm with Kawasaki dynamics. We also set up the problem as a solid-on-solid model and formulate
corresponding Langevin equations for the dynamics in two cases, with and without matter conservation.

DOI: 10.1103/PhysRevE.70.066138 PACS number(s): 05.70.Np, 68.08.Bc, 68.35.Rh

I. INTRODUCTION

Analytic approaches to equilibrium interfacial phase tran-
sition are now well developed within the context of statistical
mechanics. Detailed and precise theories of the equilibrium
properties of the delocalization or wetting transition have
been developed in all dimensions[2,3]. In two dimensions,
where an exact transfer matrix solution is possible via the
Ising model[4], the transition is very well understood and
we have a precise way of understanding the unbinding
mechanism. The solid-on-solid(SOS) limit [5], where over-
hangs in the interfacial configuration are ignored, may also
be considered. This approximation allows the interface loca-
tion to be defined easily as a single valued function in the
coordinate direction parallel to the wall. The problem can
then also be formulated as a, albeit simpler, transfer problem
which can then be critically compared to the exact Ising re-
sults [4,6–8]. In common with most areas of statistical me-
chanics, however, the understanding of nonequilibrium prop-
erties or dynamics within these systems, even in low
dimensions, is less complete.

Simulation studies have made increasingly significant
contributions to understanding the dynamics of systems ex-
hibiting phase transitions. Especially in more recent years
Monte Carlo and molecular dynamics simulations, combined
with modern computing power, have enabled more realistic
situations to be tackled[9–14].

An approach should be possible through the use of a
Langevin equation[15], but this formalism cannot be well
defined for a simple SOS model of an interface running next
to a wall in two dimensions. The strict restriction,.0,
where , is the distance of the interface from the wall, is
difficult, if not impossible, to implement without losing the
Gaussian properties of the noise term. If the white noise term
is left unaltered in the problem, as a “small” parameter in
some sense, then the model cannot hope to sample from
trajectories that move close to the wall. It is well established,
in the equilibrium theory, that including excursions of the
interface that closely approach the wall is crucial to correctly
define physical parameters, i.e., contact angles and point ten-
sions, see for example Ref.[16].

Despite this, some analytic progress has been made with
this approach[17], but with a model defined using a horizon-

tal solid-on-solid(HSOS) model [18] (i.e., ignoring over-
hangs so that the interface function is single valued in the
coordinate direction perpendicular to the wall). This situation
was adopted to model the immediate vicinity of the three
phase contact point and thus to model the dynamics of the
contact angle. The similar approach has also been used by
Collet and co-workers[19], who consider a situation where
the matter in the system is conserved.

In this paper we present a detailed analytic and numerical
study on the relaxation dynamics of a system exhibiting the
geodesic-to-zigzag(GZZ) transition. This continuous interfa-
cial transition has been recently reported and an exact solu-
tion presented[1]. We will show how certain features of this
exact solution combined with our Ising simulations strongly
suggests that studying the problem within ahorizontalsolid-
on-solid approximation will give comparable results. Recent
work confirmed this hypothesis in the equilibrium case[20].
Here we demonstrate how this HSOS formulation enables us
to apply previous work[17,19] to study the dynamics of the
system with a grain boundary. We can then compare these
HSOS results with the data garnered from MC simulations of
the corresponding Ising system.

The paper is arranged as follows. In Sec. II we define the
model to be studied. In Sec. III we present the details of our
Ising simulations by examining both the static, equilibrium
properties, and the dynamical, nonequilibrium ones. We are
thus able to carefully cross check all our simulations with
analytical results where available. In Sec. IV we introduce
the appropriate solid-on-solid model for the static problem
with two alternative approximations. In Sec. V we derive
Langevin equations for the HSOS. We present a full analytic
result for the matter nonconserving case and a similar result
for the matter conserving case up to the level of computer
algebra. Finally we study numerically, with simplistic ana-
lytical justification, the matter conserving case when the
HSOS system is inhomogeneous. In this case we show that
the conflicting energy balances induce a form of frustration.
We then summarize our paper and findings in Sec. VI.

II. MODEL AND THE “GZZ” TRANSITION

Consider a planar Ising ferromagnet with nearest-
neighbor interactions and zero bulk magnetic field with a
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strip geometry and at a temperatureT below the bulk critical
valueTc. By fixing the spin values to be all11 on one edge
and 21 on the other and taking the system size to be ther-
modynamically large we will have two oppositely magne-
tized bulk phases separated by a single interface with aver-
age orientation(1,0). The positivity of the surface tension
ensures that we have only a single such domain boundary in
the system. Suppose additionally that the bonds in the(0,1)
direction between a single pair of adjacent rows of spins are
weakenedto form simple model of a grain boundary.

The investigation of models of this type has been the sub-
ject of much study in the wetting community for the last
twenty years. It is now well understood that for a system
described above with a central grain boundary the interface
will be bound to the defect line for all temperaturesT,Tc.
If, in the thermodynamic limit, the boundary is afinite dis-
tance from one of the walls or lies next to one of the walls
then a phase transition will occur at some temperatureTw,
with Tc.Tw.0. This transition is identified as the well un-
derstood delocalization or wetting transition. An elegant ar-
gument, due to Fisher, described this by understanding the
typical wandering of the interface from the defect line in
terms of the first return times of a suitably chosen random
walk. By utilizing the Boltzmann weights of the differing
interfacial steps as the probability parameters in the stochas-
tic process the mapping can be made explicitly[21].

Here we consider an interface crossing such a grain
boundary, which is centrally positioned, at an angle imple-
mented as in Fig. 1 by fixing spins at the edges with a given
offset. As the width of the system diverges, the limit must be
carefully taken to ensure that the angular boundary condition
is preserved. Whenb=1 (no grain boundary) the optimal,
most likely, path is the shortest,geodesicone. But suppose
0,b,1 (ferromagnetic grain boundary); a zigzag path as in
Fig. 1 allows the interface to profit energetically from inter-
secting the weakened bonds.

An analytic study of this phenomenon was presented re-
cently as well as simulations of the relaxation dynamics of
this system implemented using Kawasaki dynamics[1]. The
exact solution for the phase boundary is

b* =
1

2K1
lnS tanf cosh 2K1 + Î1 + tan2f sinh22K1

tanf + 1
D

s1d

which is explicitly independent of theK2 bond strength; an
unexpected result. We shall utilize this observation later to
motivate an approximation. As the phase boundary forms a
plane in the three dimensional parameter spacesb,f ,Td we
may express it in several differing forms. The form(1) phase
turns out to be algebraically convenient and thus determines
the critical value ofb=b* at which we may expect a transi-
tion for a given value off andK1s~1/Td. Also note that this
transition is not a necessary precursor transition as we ap-
proach bulk criticality; the system may be ineither configu-
ration asT→Tc. The reader is referred to Fig. 2 for an ex-
ample of three curves at a given, fixed angle in thesb,td
plane(t is a reduced temperature).

Here we study the relaxation dynamics in more detail. In
all cases the interface will relax from a perfect zigzag(see
Fig. 1 withu=0) to zigzag configurationu.0. We show that
when the zigzag configuration equilibrates in this manner,
the dynamics of approach to equilibrium favors, in the main,
motion of matter(in the lattice gas interpretation) along the
line of defect bonds. This, as a generalization of what hap-
pens at equilibrium, may be termeddynamical confinement.

FIG. 1. A schematic picture of the simulatedsM 32Nd Ising
system described in the text. The spins at the solid horizontal
boundaries are fixed to be positive and the ones at the broken hori-
zontal boundaries are fixed to be negative. Vertical bondsK1 in the
middle are weakened by factorb; this is the grain boundary. The
dashed line depicts a mean macroscopic interface crossing the sys-
tem at an anglef, the heavy solid line shows a typical zigzag
interface configuration, where the middle section is pinned to the
grain boundary. The transition studied, the GZZ, is the crossover
between these two configurations. A perfect zigzag is formed when
u=0, this corresponds to the zero temperature configuration for a
system with a grain boundarysb,1d and is also one of the degen-
erate ground states for a system without a grain boundarysb=1d.
This configuration is the initial configuration for the relaxation pro-
cess studied in this paper. The bond strengths of the model are
included for reference, whereKj =Jj /kBT, in all our simulations
K1=K2. The circled plus(minus) sign depicts that the bulk is on
average at plus(minus) magnetization on the left(right) hand side
of the interface separating the phases.

FIG. 2. Lines depict the phase diagram of the GZZ transition for
three different angles calculated from the exact result(1). Phase
transition points defined by MC for these angles are plotted forb
=0.95, 0.9, 0.85. The error bars are the standard deviations over ten
realizations. Starting from point(b=1, t=0) when the phase bound-
ary for a given angle is being crossedgeodesicinterface configura-
tion changes to azigzag.
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It is the primary purpose of this paper to investigate this
phenomenon and the relaxation dynamics further.

III. ISING SIMULATIONS

A. Statics

Before considering the dynamics of the model we studied
the statics of the GZZ transition to gain understanding on the
finite size effects, and to get information about the equilib-
rium state. This is necessary to ensure that our simulations
with Kawasaki dynamics are performed at the right point of
the phase diagram and that they indeed reach the correct
equilibrium state.

Defining phase boundaries for the GZZ transition using
conventional Monte Carlo methods would be a daunting task
because one would be forced to do a number of simulations
with different bond weakening factorsb, anglesf, and tem-
peraturesT. We could of course use the exact solution as a
guide to limit our parameter space, and do the simulations
only in the vicinity of the predicted transition line but this
would not be an independent and unbiased test for the pre-
dictions. Instead we useN-fold implementation of the Wang-
Landau sampling[22] introduced by Schulzet al. [23]. In
Wang-Landau sampling, a random walk in energy space is
performed to get accurate estimates for the energy density of
statesgsEd. The main advantage of the method is thatgsEd
allows us to calculate information about thermodynamic
quantities forall temperatures Twith a single simulation.

Our simulated system is depicted in Fig. 1 To create the
interface we fix spins on the upper and lower boundaries;
furthermore, an antiperiodic boundary condition is used in
the (1,0) direction. While performing the last few iterations
of the energy random walks we also compute averages of
magnetization and its moments in the microcanonical en-
semble. After the random walks in energy space have con-
verged and appropriate normalization has been done for the
energy density of states, we can calculate canonical averages
of magnetization,

kumulT = o
E

kumulEgsEde−E/kBT/Z s2d

and its second moment

km2lT = o
E

km2lEgsEde−E/kBT/Z, s3d

whereZ is the partition function. Now we can evaluate sus-
ceptibility xsTd=NM /Tskm2lT−kumulT

2d for all T and define
the GZZ transition points from the susceptibility peaks for
different weakeningsb and anglesf. We performed simula-
tions described above for three different bond weakenings
b=0.95, 0.9, 0.85 and for three anglesf=75.97°, 41.64°,
10.31° [corresponding latticess63314d, s47346d, and s23
378d, respectively]. Results are shown in Fig. 2. Finite size
effects change the phase diagram obtained from MC simula-
tions; we find that the transition temperature is lowered(see,
for example Ref.[24]), but this correction is small and in-
deed with low temperatures becomes of the order of statisti-
cal error. Our exact analysis allow us to treat the finite size

effects analytically and we find that the corrections become
significant only when the system approaches the bulk critical
point [25].

One conclusion of the simulations for the statics is that
the phase diagram is virtually untouched by the finite size
effects; this is true for low temperatures. In the next section
we operate only in this region of the phase diagram.

B. Kawasaki dynamics

In studying out-of-equilibrium properties of systems one
usually focuses on one of two things; one can either study
systems with driving forces which prevent them to reach
equilibrium [26], or the relaxation of systems from an initial
state to an equilibrium configuration at a given temperature.
In the context of an Ising system with a grain boundary,
keeping in mind the lattice gas interpretation, a very interest-
ing question is how the matter is transported in thermalizing
from theT=0 configuration as an initial configuration(inter-
face in a zigzag configuration withu=0 in Fig. 1) to equi-
librium at T.0. The standard chemical physical idea is that
the most important paths are those involving the least exci-
tation energy. This picture is complicated here because there
are many such paths in principle, furthermore diffusion
through the bulk phase as a relaxation mechanism cannot be
ruled out without a careful analysis. What we show here is
that matter flows along the grain boundary, by creating spin
flip pairs alignedon (0,1), which dissociate and then diffuse
freely along either side of the boundary, except for occa-
sional trapping or collision; see Fig. 3. They are then ab-
sorbed in the corners formed by the junctions of the vertical
interface sections and the interface section pinned at the
grain boundary, promoting relaxation to the equilibrium
wedge angle.

The fundamental difficulty of performing simulations of
relaxation processes is that the choice of dynamics changes

FIG. 3. A schematic picture showing the basic microscopic pro-
cesses starting the relaxation process. The dashed horizontal lines
depict the interface at the grain boundary. From the top, initially the
interface is at the grain boundary, first possible move costsdE
=12. Then the created spin pair either recombines, dissociates along
the grain, or evaporates to the spectator phase. Importantly this
evaporation is suppressed by the energy costdE=2−2b.0 confin-
ing the matter transport in the grain boundary.
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the rates and the way the systems equilibrate. We want the
dynamics to capture two features of a realistic physical sys-
tem, first, matter must be conserved and second, the dynam-
ics must be local. Using Kawasaki dynamics with local up-
dates fulfills these requirements. In order to make simulation
efficient at low temperatures, we implemented the Kawasaki
dynamics with the continuous time algorithm[27]. The Ising
system is set up as in the static case. We considered two
systems, one without a grain boundarysb=1.0d and one with
sb=0.85d. The lattice size wasM =139, 2N=34, f=75.97°

and temperature in scaled units t=sTc−Td /Tc=0.65. The sys-
tem with the grain boundary will relax to a zigzag configu-
ration since the fieldb,bc for the given parameters; see the
phase diagram in Fig. 2.

In Fig. 4 typical snapshots of the simulated interfaces are
shown and in the following we make the observedconfined
matter transportphenomenon quantitative. The main interest
of the matter transfer mechanism is the movement in the
(1,0) direction. Accordingly, we define the total matter trans-
fer for each row of spins as

S j
bstMCd = S j

bstMC − 1d + oi
fssi,j,si+1,j ;tMCdsi+1,j , s4d

where tMC is the number of MC steps,f =1 if the spin pair
si,j, si+1,j is flipped betweentMC−1 andtMC time steps, oth-
erwise f =0 andb the bond weakening in the middle.

In Figs. 5 and 6 the time evolutions of total matter transfer
for each row of spins are plotted forb=1 andb=0.85, re-
spectively. It can be clearly seen that whereas the sum of
total matter transfers for the caseb=1 gets contributions
from several rows near the central line, in the case ofb
=0.85 the main contribution comes only from the middle
pair touching the grain. To make this observation clear we
calculate the normalized average total matter transferI j

b

=kS j
bl /o jkS j

bl. Looking at these fractions for theb=1 case,
we find that the middle two rows contribute less than quarter
of the total, i.e., I17

1 +I18
1 =0.23, the next onesI16

1 +I19
1

=0.14,I15
1 +I20

1 =0.09,I14
1 +I21

1 =0.06, and all the rest,0.02
each, this is diffusion through the bulk phase.

Consider now the system with a grain boundarysb
=0.85d. The two middle rows, i.e., the grain boundary, con-
tribute more than two-thirds of the total,I17

0.85+I18
0.85=0.68,

and the rest of the rows each contribute,0.02. Comparing
these fractions leads to the following conclusions. While the
system without a grain boundary equilibrates using capillary
fluctuations, the case with the grain boundary will relax us-
ing an alternative mechanism; the section of the interface
pinned to the grain boundary will act as a diffusive guide for
the particles. It is also important to notice that in the case
b=1 the amount of total matter needed to transfer before the
system reaches equilibrium is greater,o jkS j

1l /o jkS j
0.85l

FIG. 4. The qualitative picture. Typical snapshots of the simu-
lated Ising systems showing the middle section of the interface
early on the relaxation process. The system above does not have a
grain boundarysb=1d and system below has onesb=0.85d. The
snapshots give qualitative confirmation of the capillary fluctuations
[the middle line is explicitly depicted for casesb=1d] as the relax-
ation mechanism for the system without a grain boundary and also
show the confined matter transport happening at the grain boundary
when there is one.

FIG. 5. The quantitative picture for a system without a grain
boundarysb=1d. The time development of total matter transfer for
each row of spins as a function of timetMC. The matter transfer is
divided between the rows close to center, the relative importance
gradually lowering as the distance from the middle increases, con-
firming that the system relaxes using capillary fluctuations. Lines
are averages over 450 MC realizations, time units are arbitrary.

FIG. 6. The quantitative picture for a system with a grain
boundarysb=0.85d. The time development of total matter transfer
for each row of spins as a function of timetMC. The middle two
rows touching the grain dominate the matter transfer process, con-
tributing together 68% of the total, whereas all the rest contribute
less than 2% each. This confirms the picture of spatially confined
matter transport. Lines are averages over 450 MC realizations, time
units are arbitrary.
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=1.47, but stillskS17
1 l+kS18

1 ld / skS17
0.85l+kS18

0.85ld=0.51, mean-
ing that the absolute number of particles using the middle
two rows is doubled when the grain boundary is introduced;
see Fig. 7. This means that by introducing a defect line in the
system oneconfines spatiallythe bulk of the matter transport
to the minimum energy pathways.

The conclusions made above, combined with the striking
fact that the phase boundary for the GZZ transition was
found to be independent of theK2 bond strengths, suggest
strongly that we should study the system with a solid-on-
solid approximation.

IV. SOLID-ON-SOLID MODEL FOR GZZ SYSTEM

We set up a horizontal solid-on-solid(HSOS) model[18]
to study the relaxation dynamics of the system with a grain
boundary and an interface crossing it at an anglef; see Fig.
8. Following the logic where one needs to understand statics
before trying to understand dynamics, we first solve(or
quote the results) of the static case and then derive Langevin
dynamics for the model in the next section.

The Hamiltonian for an HSOS model can be written as

Fsh1,…,h2Nd = o
j=1

2N

ushj − hj−1d, s5d

where the functionu is chosen to be

ushj − hj−1d = tÎ1 + shj − hj−1d2. s6d

This generic description for an HSOS model is derived by
applying the Pythagoras theorem to the exposed length of an

interface section connecting neighboring columns. Equation
(5) should be interpreted mesoscopically; the units do not
necessarily correspond to atomic lengths. Instead we may
considerhj’s as continuous variables.

We have studied two approximations of Eq.(5) in the
context of the GZZ transition:

F = o
j=1

N

t1uhj − hj−1u + bt0u2n − hN+1 − hNu + o
j=N+2

2N

t2uhj − hj−1u

s7d

and the Gaussian case,

F = o
j=1

N

t1shj − hj−1d2 + bt0u2n − hN+1 − hNu

+ o
j=N+2

2N

t2shj − hj−1d2. s8d

Equations(7) and(8) represent the two possible approxima-
tions of the interfacial free energy function defined in Eq.
(6). Essentially, forhj −hj−1 large, usxd,t uxu but for hj

−hj−1 small it is more appropriate to perform the usual bino-
mial expansion on Eq.(6) to find the familiar square gradient
term (and a constant which is removed by normalization). It
is clear that in both cases the former, modulus approximation
will be the most appropriate for the term considering the
defect line. However, the choice is not so clear for the re-
maining terms. For large angles, we may expect Eq.(7) to be
the most appropriate. For small angles, or at small times(in
the relaxation from the perfect zigzig sense), then the Gauss-
ian terms, Eq.(8), should be a better approximation. In other
words, keeping in mind the physical picture established by
studying both dynamics and statics of the full Ising descrip-
tion of the problem, we need to resort to the Gaussian form
of the interaction between columns other than the middle two
as they show long wavelength, i.e., capillary fluctuations.
However, as mentioned already, the modulus approximation

FIG. 7. The non-normalized average total matter transfer as a
function of row numberj after the systems have equilibrated. Black
squares are for the the system with a grain boundary and empty
squares for the system without one. The error bars are standard
deviations defined over 450 MC realizations. Inset: the same data
but with connected points and error bars left out. The solid line
corresponds to a system with a grain boundary and the dotted line to
one without. These transport “spectra” demonstrate that also the
absolute number of particles going through the middle two rows is
increased when the grain is introduced even though the system
without a grain boundary needs to move more matter to reach
equilibrium.

FIG. 8. HSOS setup for studying the GZZ transition and the
relaxation dynamics of the model. The system has 2N rows and
fixed boundary conditions. In the upper half system the couplings
between HSOS variables aret2 and in the lower halft1. The grain
boundary is modeled by modified couplingbt0 between thehN and
hN+1. The anglef is defined similarly to the Ising system. The
boundary conditions force the interface withbt0=t1=t2 to cross
the system on average at an anglef whereas a symmetric zigzag
configuration is formed ifbt0,t1=t2.
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needs to be chosen for the columns touching the grain
boundary. The 2n term in the energy connecting the two
middle columns in Eqs.(7) and (8) is a result of a mapping
hj →2n−hj for the columns j .N+1. This mapping will
make the initial condition for our Langevin study equal to
zero and in what follows the derived equations will appear in
more concise form.

In Ref. [20] we studied the equilibrium properties of Eq.
(7) and the exact Ising result for the phase boundary was
recovered in an appropriate scaling limit. We have also done
similar calculation for Eq.(8) and for completeness the main
results of this calculation are presented in the Appendix.
Note that Eq.(8) explicitly treats the central column sepa-
rately and thus fails to recover the expected behavior in the
limit b→1. Our results reflect this.

The incentive for doing the HSOS calculations in the first
place is the relative ease of generalizing the system to be
inhomogeneous, i.e., the couplingst j are different below and
above the grain boundary. Furthermore, the HSOS formula-
tion, with the Gaussian approximation(8), allows us to study
the early time relaxation dynamics of the system analytically.

V. LANGEVIN DYNAMICS OF THE HSOS MODEL

In this section we formulate Langevin dynamics for the
studied system(see Fig. 8) and solve the following equations
within the Gaussian approximation(8). The dynamics are
presented both for a matter nonconserving system and for a
matter conserving system.

The dynamics of a time-dependent interface can be writ-
ten in terms of the Langevin equation[15,28,29],

] hj

] t
= −

l

2

] F
] hj

+ h jstd, s9d

where the white noisehstd is defined by

kh jstdl = 0, kh jstdh j8st8dl = Vd j ,j8dst − t8d. s10d

In the following the arbitrary time scalel−1 and noise am-
plitude V are set to 1.

As we observed in the preceding section, the Gaussian
approximation used subsequently is valid for either small
times or small angles. The reader should be aware of this
limitation when examining our results. Certainly Eq.(8) is a
very poor approximation as the system approaches the geo-
desic configuration. Ideally we would like to model the com-
plete relaxation process, from perfect zigzagsu=0d to this
point su=fd, by understanding the crossover from Eq.(8) to
Eq. (7), but this scheme is beyond the scope of the present
paper.

A. Matter nonconserving dynamics

Using Eq.(9) directly with Eq.(8) leads to the following
set of coupled differential equations:

dh = − SAxh +
bt0

2
seN+1 + eNdDdt + dh, s11d

whereej is a unit vector in a 2N space withj th element being
1,

Ax = St1A1 0

0 t2A2
D , s12d

A1 =1
2 − 1 0 0 0 … …

− 1 2 − 1 0 0 … …
0 − 1 2 − 1 0 … …

�

�

… … 0 0 − 1 2 − 1

… … 0 0 0 − 1 1

2 , s13d

and

A2 =1
1 − 1 0 0 0 … …

− 1 2 − 1 0 0 … …
0 − 1 2 − 1 0 … …

�

�

… … 0 0 − 1 2 − 1

… … 0 0 0 − 1 2

2 . s14d

We diagonalized matrixAx to solve Eq.(11), eigenvalues are

lq = 2t1s1 − cosQqd, Qq =
s2q + 1dp

2N + 1
s15d

and

lq = 2t2s1 − cosQqd, Qq =
s2q + 1dp

2N + 1
s16d

with q=0,1,… ,N−1. The first set of eigenvalues have as-
sociated normalized eigenvectors with components

Sj
sqd = C sins jQqd, s17d

where C=2/Î2N+1, when 1ø j øN and C=0, for N+1
ø j ø2N. Similarly for the second set of eigenvalues,

Sj
sqd = D cosfs j − N − 1/2dQqg, s18d

where D=2/Î2N+1, whenN+1ø j ø2N and D=0, for 1
ø j øN. After the orthogonal transformation Eq.(11) reads

] ĥqstd
] t

= − st1 + t2dlqstd +
1

2
bt0sSN+1

sqd + SN
sqdd + ĥq s19d

in the component form, wherehjstd=oqĥqstdSj
sqd and h jstd

=oqĥqstdSj
sqd. Our definition ofh makes the initial condition

hs0d=0 for the perfect zigzag.
We can now solve the differential equation(19) resulting

in

ĥqstd =
bt0

2

1 − e−st1+t2dlqt

st1 + t2dlq
sSN+1

sqd + SN
sqdd

+E
0

t

e−st1+t2dlqst−sdĥssdds s20d

and transformĥqstd back to the original basis,
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hjstd = o
q
Sbt0

2

1 − e−st1+t2dlqt

st1 + t2dlq
sSN+1

sqd + SN
sqddSj

sqd

+E
0

t

e−st1+t2dlqst−sdhq
ˆ ssdSj

sqddsD . s21d

We consideredkhjstdl and the variancekhjstd2l−khjstdl2 re-
sulting in

khjstdl = o
q

bt0

2

1 − e−st1+t2dlqt

st1 + t2dlq
sSN+1

sqd + SN
sqddSj

sqd s22d

and

khjstd2l − khjstdl2 = o
q

1 − e−2st1−t2dlqt

2st1 + t2dlq
sSj

sqdd2. s23d

Langevin equations for a precursor film near a wall which
favors spreading were derived and solved in Ref.[17]. Equa-
tions (22) and(23) are analogous to the spreading equations.
After carefully replacing the summations by integrals, the
main results state that the relaxation time scale is,t1/2 and
the amplitude of the fluctuations is of the order,t1/4. In Fig.
9 the initial and equilibrium configurations of the system are
depicted with intermediate steps of the relaxation.

B. Matter conserving dynamics

In order to derive the appropriate Langevin equation for
conserved order parameter, we first consider a general
Langevin equation with cross coupling of the noise and an
arbitrary forceFshhjd term,

] histd
] t

= Fi„hhstdj… + S 2

b
D1/2

o
j=1

2N

si jhistd, s24d

wherehistd are Gaussian noise terms defined through their
first and second moments as in Eq.(10).

From such an equation we may derive a Fokker-Planck
equation. From this form we will be able to infer the condi-

tions onFshhjd andsi j that are required in order to achieve
the Gibbs distribution with matter conservation in equilib-
rium. In their paper Colletet al. [19] use Ito calculus to
perform this conversion. Here we use a less rigorous
approach, and follow the derivation presented in Zinn-
Justin[30].

First we define a probability as

Pshqj,td = kd„hstd − q…l, s25d

where here and subsequently the angle brackets denote an
average over the noise and thed function is a product over
all the individual variableshi andqi. We take a time deriva-
tive and make use of the chain rule to derive

] Pshqj,td
] t

=Ko
j

] hjstd
] t

d

dhjstd
d(hstd − q)L . s26d

We may now use the symmetry of the delta function to write
the functional derivative(denotedd) as a negative coordinate
derivative (denoted]). We also use the Langevin equation
(24) to derive

] Pshqj,td
] t

= − o
j

]

] qj
FjshqjdPshqj,td

− o
j
S 2

b
D1/2 ]

] qj
Ko

k

s jkhkstdd(hstd − q)L .

s27d

We now follow Zinn-Justin closely to compute the second
term. First, that given an arbitrary function of the Gaussian
noise,G(hstd), then

kG(hstd)histdl = VK dG(hstd)
dhistd

L s28d

and second that the equal time functional derivative of the
height function with respect to the noise is given by

dhistd
dh jstd

=
1

2
S 2

b
D1/2

si j. s29d

By choosingG(hstd)=s jkd(hstd−q) and setting the book-
keeping variableV to unity we may derive the Fokker-
Planck equation derived in Colletet al., namely

] Pshqj,td
] t

= − o
j

]

] qj
FjshqjdPshqj,td

−
1

b
o
i,j ,k

]2

] qi ] qj
siks jkPshqj,td. s30d

To impose the condition on the Gibbs distribution with mat-
ter conservation to be the equilibrium for Eq.(30), we
choose

Fishhjd = − o
j ,k=1

2N

siks jk

] Fshd
] hj

. s31d

The conservation of matter in Eq.(24) is then a consequence
of a conservative noise,

FIG. 9. The relaxationwithout matter conservationfrom a per-
fect zigzag configuration to a zigzag using HSOS model with
Gaussian dynamics defined by Eq.(11). A set of interfaces at inter-
mediate times have been depicted with thinner lines; only half the
system is shown. In the inset the full system is depicted showing
only the initial and equilibrium configurations.
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o
j=1

2N

s jk = 0, ∀ k [ h1,…,2Nj. s32d

Remembering the Kawasaki dynamics with local spin ex-
changes used earlier in this paper, a natural choice fors is a
local one[19],

s =1
1

− 1 �

� 1 0

− 1 02 . s33d

Putting it all together, the Langevin equation for the matter
conserving dynamics reads

dh = ss†S− Axh +
bt0

2
seN+1 + eNdDdt + sdh. s34d

We have not been able to diagonalize thess†Ax matrix
exactly, however, computing eigenvectors and eigenvalues
numerically for the matrix is trivial and here we state only
the results of Eq.(34). Imposing the matter conservation
changes the relaxation process and even the equilibrium, as
will be shown later. In Ref.[19] Collet et al.solved a system
with free boundary conditions exactly and showed that the
relaxation time scale is,t1/4, and furthermore the average
interface configuration shows oscillations with mean ampli-
tude of oscillations scaling as,t1/8. Our numerical solution
for a system with fixed boundaries and a grain in the middle
shows similar behavior. In Fig. 10 we depict a relaxation of
a homogeneous system with conservation.

The next thing to do is to compare the HSOS results with
matter conserving Langevin dynamics presented above to the
Ising simulations with Kawasaki dynamics studied in Sec.

III. The comparison cannot be done directly as there is an
obvious problem of fixing the time units and more impor-
tantly the noisiness of the Ising simulations prevented us
from getting information about the exact interface coordi-
nates as a function of time. However, the situation is not
hopeless as we can use the total matter transfer(see Fig. 6)
as a measure of the relaxation for the Ising system. The
measure of relaxation from the HSOS system is simply the
coordinate of the middle rowkhNstdl. In Fig. 11 the respec-
tive relaxation processes have been depicted, also,t1/4

curves are shown for comparison. Both models show similar
behavior with a fast start for the relaxation process then
reaching,t1/4 region followed by a final saturation as the
system reaches the equilibrium.

C. Inhomogeneous problem

Before concluding, we briefly show some interesting ob-
servations and results for the inhomogeneous problem; con-
sider t1.t2.bt0. Whereas in the symmetrical caset1=t2
both systems with and without matter conservation relax to
the same equilibrium configuration, when the system is in-
homogeneous the equilibrium shapes are different. As we
have not done the exact statics of the HSOS with conserva-
tion we show here a simple variational calculation verifying
our numerical findings for Eq.(34) in the context of an in-
homogeneous system.

First define the interfacial energy for curvesf andg with
a matter conservation constraint and free end points; see Fig.
12. We use here a square gradient approximation for simplic-
ity,

Eff,gg =E
0

N

ht1f82 + t2g8
2 + lsf − gdjdx

+ bt0f2n − fsNd − gsNdg. s35d

The variational argument thus reads

Eff + df,g + dgg − Eff,gg

= dfsNdHt1U ] f

] x
U

N

− bt0J + dgsNdHt2U ] g

] x
U

N

− bt0J
−E

0

N

dfhf9 − lj +E
0

N

dghg9 − lj, s36d

and leads to

FIG. 10. The relaxationwith matter conservationfrom a perfect
zigzag configuration to a zigzag using the HSOS model with Gauss-
ian dynamics defined by Eq.(34). A set of interfaces at intermediate
times has been depicted with thinner lines; only half the system is
shown. It can be seen that the imposed matter conservation intro-
duces oscillations to move matter in the relaxation process in clear
contrast to a system without conservation. In the inset the full sys-
tem is depicted showing only the initial and equilibrium configura-
tions; they coincide with the corresponding configurations without
matter conservation.

FIG. 11. The relaxation time scales for the HSOS model, from
Eq. (34) (on the left) and for the Ising model studied in Sec. III(on
the right). Both figures show also,t1/4 curves on top of the nu-
merical ones for comparison. The size of the HSOS system was
chosen to beN=16, n=66 corresponding to our Ising simulations;
see Fig. 8.

ABRAHAM, MUSTONEN, AND WOOD PHYSICAL REVIEW E70, 066138(2004)

066138-8



fsxd = lx2 + Ax+ B,

gsxd = − lx2 + Cx+ D. s37d

The variational parameters can be solved from the boundary
conditions and the matter conservationefdx=egdx resulting
in

l =
3bt0st1 − t2d

8Nt1t2
,

A=bt0/t1−2lN, B=0, C=bt0/t2+2lN, andD=0. Hence in
the caset1=t2 the equilibrium is constructed from straight
line segments as expected. The key point in this simplistic
approach is the emergence of opposite curvatures in the two
interface sections(37). This is very natural occurrence, with
a clear physical mechanism. Once the straight line sections
are forced to a position beyond their grand canonical equi-
librium, the new energy balance is between the bending
terms and the weakening effect of the grain boundary. The
interfaces will thus bend in such a way as to maximize the
length of the section which is pinned to the grain boundary.

In Fig. 13 inhomogeneous systems are depicted and the
bending of the equilibrium interfaces in the case of matter
conservation is clearly observed.

VI. CONCLUSIONS

We recently reported a different phase transition scenario
in the context of a planar Ising system with a grain boundary
[1]. In this GZZ transition, when the system is below the
transition point and in a zigzag phase, an interesting relax-
ation process which confines matter transport into the grain
boundary was revealed.

In this paper we have studied this relaxation dynamics
with the dynamical confinementin detail. First, by perform-
ing continuous time MC simulations with local Kawasaki
dynamics, and second by deriving Langevin equations for
the relevant HSOS model. The Ising simulations establish
two observations, the system with a grain boundary relaxes
transporting matter mostly through the boundary, via the

minimum energy paths, whereas the system without a grain
boundary uses capillary fluctuations to equilibrate. The ab-
sence of the capillary fluctuation in the middle interface sec-
tion sitting at the grain boundary combined with theK2 bond
strength independence of the phase boundary led us to for-
mulate the problem in terms of the HSOS model in Sec. IV.
This formulation made it possible to derive Langevin dy-
namics for the model system. We derived and solved the
corresponding Langevin equations with and without matter
conservation in Sec. V. While the HSOS model and the de-
rived dynamics give a good description of the relaxation pro-
cess for a system with a grain boundary, it is important to
notice that once the grain boundary is removed, the system
relaxes using capillary fluctuations and hence the HSOS pic-
ture is not valid anymore. Finally, in the end of Sec. V we
demonstrated how the introduction of inhomogeneity in the
system, i.e., the half systems have different couplingsti,
leads to different equilibrium configurations depending
whether or not matter conservation is imposed.
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APPENDIX: GAUSSIAN HSOS

We present here, for completeness, the calculation to de-
rive the static configuration for a SOS model under the

FIG. 12. Variational formulation for the inhomogeneous prob-
lem. Curvesf andg have fixed points at the respective origins and
free end points at the grain. The shape of curves and the end points
at the grain come out from the calculation.

FIG. 13. The relaxation of the inhomogeneous systemst1.t2

.bt0. The one above is the solution to Eq.(11), i.e., without matter
conservation and the one below to Eq.(34), i.e., with conservation.
The thin lines show the interface at intermediate times. The system
with matter conservation cannot reach the grand canonical equilib-
rium and the interface sections bend in accordance with the varia-
tional calculations carried out in the text.
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Gaussian approximation(8). This approximation will only be
valid in the static case for systems withu small. Neverthe-
less, the calculation is simple and follows precisely the meth-
odology for the system defined by Eq.(7).

The partition function is defined as

Z =E
−`

`

dh0¯dhNp
i=1

N

e−sK/2dshi − hi−1d2e−Kbuhn−nudsh0d.

sA1d

We can form the intermediate integrations as an elemen-
tary transfer problem in an analogous way to that found in
Ref. [20]. The only difference here is the change of transfer
kernel; here we use

kxuTuyl = e−K/2sx − yd2 sA2d

and thus the transfer problem is defined by

E
−`

`

kxuTuylcqsyddy= lsqdcqsxd. sA3d

The cqsxd form a complete set of eigenfunctions with the
usual orthogonality relations. In this problem we are only
interested in the scattering stateseikx, and these have eigen-
values

lsqd =Î2p

K
esk2/2Kd. sA4d

As in Ref. [20] we select only the even eigenfunctions,
which also contain some unimportant normalization con-
stants. As might be expected from the simple Gaussian form
of Eq. (A4) the subsequent integrals can be performed ex-
actly. Inserting the transfer problem into the form for the
partition function and performing the trivialh0 integration
yields

Z =E
−`

`

dhNe−Kbuhn−nuS2p

K
DN/22pK

N
e−hN

2K/2N. sA5d

This expression can be split and then recast in the form of
complementary error functions. We find

Z = S2p

K
DN/2

eKb2N/2Fe−KbN tan f erfcSÎKN

2
sb − tanfdD

+ eKbN tan f erfcSÎKN

2
sb + tanfdDG . sA6d

It should be immediately clear that in theN large limit the
second of these error functions will not contribute(which, as
it emerges from excursions of the interface beyond the angu-
lar minima, should not be surprising). The dominant behav-
ior of the former error function is controlled by the sign of
b−tanf. We find

f = lim
N→`

1

N
ln Z =

1

2
ln

2p

K
+5

Kb2

2
− Kb tanf b , tanf

K tan2 f

2
b . tanf

sA7d

for the energy and this implies that the order parameter for
this model,uhN−nu, can be computed as

kuhN − nul ; −
1

K

]

] b
ln Z = HKsb − tanfd b , tanf

0 b . tanf
,

sA8d

where we can clearly see its continuous divergence.
We remark here also that we should not be surprised by

the seemingly anomalous result for the phase boundary. As
we have explicitly treated the center tier differently the
model will not respect the limitb→1.
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