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Recently an interesting phase transition scenario in the context of a planar Ising system with a grain
boundary was revealgdbrahamet al, Phys. Rev. Lett93, 076101(2004)]. In this paper we study in more
detail the relaxation dynamics of this system and show how the grain boundary acts as a guide spatially
confining matter transport. This is done by performing simulations using the continuous time Monte Carlo
algorithm with Kawasaki dynamics. We also set up the problem as a solid-on-solid model and formulate
corresponding Langevin equations for the dynamics in two cases, with and without matter conservation.
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I. INTRODUCTION tal solid-on-solid(HSOS model [18] (i.e., ignhoring over-
Analytic approaches to equilibrium interfacial phase tran-12n9s so that the interface ]‘ur}cuon 'r? S'n%lﬁ. valued in the
sition are now well developed within the context of statisticalC0rdinate direction perpendicular to the wallhis situation

mechanics. Detailed and precise theories of the equilibriunf/aS adopted to model the immediate vicinity of the three
properties of the delocalization or wetting transition havePNase contact point and thus to model the dynamics of the

been developed in all dimensiofi,3]. In two dimensions, contact angle. The similar approach has also been used by
where an exact transfer matrix solution is possible via the>Cllet and co-workerg19], who consider a situation where
Ising model[4], the transition is very well understood and the matter in the system is conserved. . .

we have a precise way of understanding the unbinding In this paper we present a detailed analytic and numerical
mechanism. The solid-on-soli&O9 limit [5], where over- tudy on the Fe'axa“on dynamlcs of a system exh|b|t|ng the
hangs in the interfacial configuration are ignored, may als@€0desic-to-zigzag>22) transition. This continuous interfa-

be considered. This approximation allows the interface locaCid! transition has been recently reported and an exact solu-
tion to be defined easily as a single valued function in thdion presentedl]. We will show how certain features of this
coordinate direction parallel to the wall. The problem can€Xact solution combined with our Ising simulations strongly

then also be formulated as a, albeit simpler, transfer problerf!99€sts that studying the problem withihaizontalsolid-
which can then be critically compared to the exact Ising re-2"-solid approximation will give comparable results. Recent
sults[4,6—8. In common with most areas of statistical me- WOTk confirmed this hypothesis in the equilibrium c426).
chanics, however, the understanding of nonequilibrium propttere we demonstrate how this HSOS formulation enables us
erties or dynamics within these systems, even in lowl© @PPly previous work17,19 to study the dynamics of the
dimensions, is less complete. system with a grain boundary. We can then compare these
Simulation studies have made increasingly Signiﬁcanﬁsos results with the data garnered from MC simulations of

contributions to understanding the dynamics of systems exh€ corresponding Ising system. .
hibiting phase transitions. Especially in more recent years |N€ Paper is arranged as follows. In Sec. Il we define the
Monte Carlo and molecular dynamics simulations, combined"de! to be studied. In Sec. il we present the details of our
with modern computing power, have enabled more realistidSiNg Simulations by examining both the static, equilibrium
situations to be tacklefp—14. properties, and the dynamical, nonequilibrium ones. We are

An approach should be possible through the use of dhus able to carefully cross check all our simulations with
Langevin equatiorf15], but this formalism cannot be well analytical results where available. In Sec. IV we introduce
defined for a simple SOS model of an interface running nexthe appropriate solid-on-solid model for the static problem
to a wall in two dimensions. The strict restrictigh>0,  with two alternative approximations. In Sec. V we derive
where ¢ is the distance of the interface from the wall, is Langevin equations for the HSOS. We present a full analytic
difficult, if not impossible, to implement without losing the result for the matter nonconserving case and a similar result
Gaussian properties of the noise term. If the white noise terrfor the matter conserving case up to the level of computer
is left unaltered in the problem, as a “small” parameter inalgebra. Finally we study numerically, with simplistic ana-
some sense, then the model cannot hope to sample frohttical justification, the matter conserving case when the
trajectories that move close to the wall. It is well establishedHSOS system is inhomogeneous. In this case we show that
in the equilibrium theory, that including excursions of the the conflicting energy balances induce a form of frustration.
interface that closely approach the wall is crucial to correctlyWe then summarize our paper and findings in Sec. VI.
define physical parameters, i.e., contact angles and point ten- P
sions, see for example RéfL6]. II. MODEL AND THE “GZZ” TRANSITION

Despite this, some analytic progress has been made with Consider a planar Ising ferromagnet with nearest-
this approactil7], but with a model defined using a horizon- neighbor interactions and zero bulk magnetic field with a
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strip geometry and at a temperatdréelow the bulk critical
valueT.. By fixing the spin values to be alt1 on one edge

and —1 on the other and taking the system size to be ther-
modynamically large we will have two oppositely magne-

tized bulk phases separated by a single interface with aver-
age orientation1,0). The positivity of the surface tension N

ensures that we have only a single such domain boundary in I‘j)K‘l‘ :

the system. Suppose additionally that the bonds in@h® K : .

direction between a single pair of adjacent rows of spins are 7Y ol © (0,1)

weakenedo form simple model of a grain boundary. /& wj2—6 L (1,0)
The investigation of models of this type has been the sub- O == -

ject of much study in the wetting community for the last M

twenty years. It is now well understood that for a system L . ,
described above with a central grain boundary the interface F'C- 1 A schematic picture of the simulatét X 2N) Ising

will be bound to the defect line for all temperatures T,, ~ SYStem described in the text. The spins at the solid horizontal
If, in the thermodynamic limit, the boundary isfiite dis- boundaries are fixed to be positive and the ones at the broken hori-
ta{nce from one of the walls 6r lies next to one of the wallszo.ntal boundaries are fixed to be n.eg.ative' VerFical bdtye the

then a phase transition will occur at some temperafyye middle are Weal-(enecj by factdx, this is Fh? grain bounda_ry. The
with T.>T,,> 0. This transition is identified as the wel ’un- dashed line depicts a mean macroscopic interface crossing the sys-

i . - tem at an anglep, the heavy solid line shows a typical zigzag
derstood delocalization or wetting transition. An elegant alnterface configuration, where the middle section is pinned to the

gument, due to Fisher, described this by understanding thgain houndary. The transition studied, the GZZ, is the crossover
typical wandering of the interface from the defect line in pepween these two configurations. A perfect zigzag is formed when
terms of the first return times of a suitably chosen randony=0, this corresponds to the zero temperature configuration for a
walk. By utilizing the Boltzmann weights of the differing system with a grain boundafp< 1) and is also one of the degen-
interfacial steps as the probability parameters in the stochagrate ground states for a system without a grain bounzryl).
tic process the mapping can be made explidigy]. This configuration is the initial configuration for the relaxation pro-
Here we consider an interface crossing such a graimess studied in this paper. The bond strengths of the model are
boundary, which is centrally positioned, at an angle imple4ncluded for reference, wherk;=J;/kgT, in all our simulations
mented as in Fig. 1 by fixing spins at the edges with a giverk,;=K,. The circled plus(minug sign depicts that the bulk is on
offset. As the width of the system diverges, the limit must beaverage at plugminug magnetization on the lefright) hand side
carefully taken to ensure that the angular boundary conditiof the interface separating the phases.
is preserved. Whei=1 (no grain boundarythe optimal,
most likely, path is the shortesgeodesicone. But suppose Here we study the relaxation dynamics in more detail. In
0<b<1 (ferromagnetic grain boundayrya zigzag path as in  all cases the interface will relax from a perfect ziggage
Fig. 1 allows the interface to profit energetically from inter- Fig. 1 with =0) to zigzag configuratio®> 0. We show that
secting the weakened bonds. when the zigzag configuration equilibrates in this manner,
An analytic study of this phenomenon was presented rethe dynamics of approach to equilibrium favors, in the main,
cently as well as simulations of the relaxation dynamics ofmotion of matter(in the lattice gas interpretatipmlong the
this system implemented using Kawasaki dynanjidgsThe  line of defect bonds. This, as a generalization of what hap-

exact solution for the phase boundary is pens at equilibrium, may be termelynamical confinement
b 1 | (tan¢> cosh K, + V1 +tarfe sinhZZKl) . geodesic phase
=—1In
2K, tang+1 08 ¢ =175.97°
(1) g .f"/,.“
o 06 e

which is explicitly independent of thk, bond strength; an 04 ¢ L
unexpected result. We shall utilize this observation later to 0.2 ¢ =10.31° e " tig-zag phase
motivate an approximation. As the phase boundary forms a o T
plane in the three dimensional parameter space, T) we 0 0.25 0.5 0.75 1
may express it in several differing forms. The fo¢i) phase t = L=T

turns out to be algebraically convenient and thus determines
t,he critical ,Value ofb=b"at which we may expect a traQS|— FIG. 2. Lines depict the phase diagram of the GZZ transition for
tion fF’T a Q'Ve” value ofp andK,(=1/T). Also ”‘?Fe that this three different angles calculated from the exact regllt Phase
transition Is not a necessary precursor transition as We aransition points defined by MC for these angles are plottedofor
proach bulk criticality; the system may be éither configu-  =0.95, 0.9, 0.85. The error bars are the standard deviations over ten
ration asT— T.. The reader is referred to Fig. 2 for an ex- realizations. Starting from poirib=1, t=0) when the phase bound-
ample of three curves at a given, fixed angle in thet)  ary for a given angle is being crossgedodesidnterface configura-
plane(t is a reduced temperatyre tion changes to a@igzag
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It is the primary purpose of this paper to investigate this OOoaoOof

phenomenon and the relaxation dynamics further. EEEEN

IIl. ISING SIMULATIONS

A. Statics OOR0O0
Before considering the dynamics of the model we studied  suppressed (] [m] | |
the statics of the GZZ transition to gain understanding on the
finite size effects, and to get information about the equilib- SE=2-2b 6E=—-4b
rium state. This is necessary to ensure that our simulations / \

with Kawasaki dynamics are performed at the right point of

the phase diagram and that they indeed reach the correct n
equilibrium state. oo _ooOomol
Defining phase boundaries for the GZZ transition using HECOERNR EERCEN

conventional Monte Carlo methods would be a daunting task o . o .
because one would be forced to do a number of simulations FIG. 3. A schematic picture showing the basic microscopic pro-
with different bond weakening factots anglesg, and tem- ~ cesses starting the relaxation process. The dashed horizontal lines
peraturesT. We could of course use the exact solution as lepict the interface at the grain boundary. From the top, initially the
guide to limit our parameter space, and do the simulationdtérface is at the grain boundary, first possible move co&ts
only in the vicinity of the predicted transition line but this =12. Th_en the created spin pair either recombines, dissociates alopg
would not be an independent and unbiased test for the prébe grain, or evaporates o the spectator phase. Importaptly this
dictions. Instead we uge-fold implementation of the Wang- ;Vatpr?erar::‘;?t:r tsrzzzre;feis tt;])gthreaiennigguyng?%% >0 confin-
Landau sampling22] introduced by Schulzt al. [23]. In 9 P 9 Y-

Wang-Landau sampling, a random walk in energy space is _ ] )

statesg(E). The main advantage of the method is tgeE) ~ Significant only when the system approaches the bulk critical

allows us to calculate information about thermodynamicPOint[25]. , _ _ o
quantities forall temperatures Wwith a single simulation. One conclusion of the simulations for the statics is that

Our simulated system is depicted in Fig. 1 To create thdhe phase_ d_iagram is virtually untouched by the finite s_ize
interface we fix spins on the upper and lower boundaries‘?ﬁe‘:tsi this is tru_e for low 'Femperatures. In th_e next section
furthermore, an antiperiodic boundary condition is used inWe operate only in this region of the phase diagram.
the (1,0) direction. While performing the last few iterations
of the energy random walks we also compute averages of ) o }
magnetization and its moments in the microcanonical en- N Studying out-of-equilibrium properties of systems one
semble. After the random walks in energy space have coriSually focuses on one of two things; one can either study
verged and appropriate normalization has been done for thyStéms with driving forces which prevent them to reach
energy density of states, we can calculate canonical averagg§uilibrium[26], or the relaxation of systems from an initial

B. Kawasaki dynamics

of magnetization, state to an equilibrium configuration at a given temperature.
In the context of an Ising system with a grain boundary,

(myr= > (|meg(E)e T eT/z (2)  keeping in mind the lattice gas interpretation, a very interest-

E ing question is how the matter is transported in thermalizing

from the T=0 configuration as an initial configuratigmter-
face in a zigzag configuration with=0 in Fig. 1) to equi-
(M7= D (M)eg(E)e TeT/z, 3) librium at T>0. The standard chemical physical idea is that
= the most important paths are those involving the least exci-
] o ) tation energy. This picture is complicated here because there
where.Z_ is the partition function. N20W we can evaluate_ SUS-are many such paths in principle, furthermore diffusion
ceptibility x(T)=NM/T((n?);=(|m|)7) for all T and define  through the bulk phase as a relaxation mechanism cannot be
the GZZ transition points from the susceptibility peaks forruled out without a careful analysis. What we show here is
different weakening® and anglesp. We performed simula-  that matter flows along the grain boundary, by creating spin
tions described above for three different bond weakeningsip pairs alignedon (0,1), which dissociate and then diffuse
b=0.95, 0.9, 0.85 and for three anglgs=75.97°, 41.64°, freely along either side of the boundary, except for occa-
10.31°[corresponding lattice§63x 14), (47X 46), and(23  sjonal trapping or collision; see Fig. 3. They are then ab-
X 78), respectively. Results are shown in Fig. 2. Finite size sorbed in the corners formed by the junctions of the vertical
effects change the phase diagram obtained from MC simuldnterface sections and the interface section pinned at the
tions; we find that the transition temperature is lowef®ek, grain boundary, promoting relaxation to the equilibrium
for example Ref[24]), but this correction is small and in- wedge angle.
deed with low temperatures becomes of the order of statisti- The fundamental difficulty of performing simulations of
cal error. Our exact analysis allow us to treat the finite sizaelaxation processes is that the choice of dynamics changes

and its second moment
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FIG. 4. The qualitative picture. Typical snapshots of the simu- 10000 / (S16), (Sio)
lated Ising systems showing the middle section of the interface 5000 H P ;
early on the relaxation process. The system above does not have ¢
grain boundary(b=1) and system below has or{€=0.89. The 00 100 200 300 400 500 600 700

snapshots give qualitative confirmation of the capillary fluctuations
[the middle line is explicitly depicted for cagb=1)] as the relax-
ation mechanism for the system without a grain boundary and also FIG. 5. The quantitative picture for a system without a grain
show the confined matter transport happening at the grain boundagyoundary(b=1). The time development of total matter transfer for
when there is one. each row of spins as a function of timg.. The matter transfer is
divided between the rows close to center, the relative importance
the rates and the way the systems equilibrate. We want tr@rac_ﬂually lowering as the distance _from th(_a middle incr_eases,_con-
dynamics to capture two features of a realistic physical Sysf_lrmmg that the system relaxes_ using caplllary fluctuatlon'_s. Lines
tem, first, matter must be conserved and second, the dynarﬁ[e averages over 450 MC realizations, time units are arbitrary.
ics must be local. Using Kawasaki dynamics with local up- ) ) )
dates fulfills these requirements. In order to make simulation Consider now the system with a grain boundaty
efficient at low temperatures, we implemented the Kawasak 0-89. The two middle rows, i.e., the grain boundary, con-
dynamics with the continuous time algorith@7]. The Ising  tribute more than two-thirds of the total{>+Z7$°=0.68,
system is set up as in the static case. We considered twad the rest of the rows each contribut®.02. Comparing
systems, one without a grain bound#byz1.0) and one with  these fractions leads to the following conclusions. While the
(b=0.89. The lattice size was1=139, N=34, $=75.97  System without a grain boundary equilibrates using capillary
and temperature in scaled units(fz—T)/T,=0.65. The sys- fluctuatlons, thg case with f[he grain bou_ndary will r_elax us-
tem with the grain boundary will relax to a zigzag configu- N9 an alternatN(_-:- mechamsm;_ the sectlon of .the mterface
ration since the fieldb< b, for the given parameters; see the Pinned to the grain boundary will act as a diffusive guide for
phase diagram in Fig. 2. the particles. It is also important to notice that in the case
In Fig. 4 typical snapshots of the simulated interfaces aré=1 the amount of total matter needed to trar11sfer befsore the
shown and in the following we make the obsencahfined ~System reaches equilibrium is greate®;(S})/ (5]
matter transporjpphenomenon quantitative. The main interest

of the matter transfer mechanism is the movement in the 30000
(1,0) direction. Accordingly, we define the total matter trans- 25000 3 (5058
fer for each row of spins as A
20000 |
Sjb(tMc) = Sjb(tMC -1+ Ei f(0i ), 01415 tmc) 01y, (4) R
Q\O/ 15000 | 0.85 0.85

wheretyc is the number of MC stepd$,=1 if the spin pair (S177°),(S18™)
gij, 0i1; is flipped betweeryc—1 andtyc time steps, oth- 10000 | 3___./
erwisef=0 andb the bond weakening in the middle.

In Figs. 5 and 6 the time evolutions of total matter transfer 5000
for each row of spins are plotted ftr=1 andb=0.85, re- ;” the rest
spectively. It can be clearly seen that whereas the sum of 0 :
total matter transfers for the case=1 gets contributions 0 100 200 300 400 500 600 700
from several rows near the central line, in the casebof tvo

=0.85 the main contribution comes only from the middle _ . , .
. . . . . FIG. 6. The quantitative picture for a system with a grain
pair touching the grain. To make this observation clear we

lculate th lized total tter trangfe undary(b=0.85. The time development of total matter transfer
caiculate the normalized average total matter ranier .. oqcn row of spins as a function of tinigc. The middle two

:<S?>/Ei<‘9?>' Looklng at these fractlops for the=1 case, rows touching the grain dominate the matter transfer process, con-
we find that the middle two rows contribute less than quartefriputing together 68% of the total, whereas all the rest contribute
of the total, i.e.,Zj,+73=0.23, the next one<ig+T;s less than 2% each. This confirms the picture of spatially confined
=0.14,775+75,=0.09,77,+73,=0.06, and all the rest0.02  matter transport. Lines are averages over 450 MC realizations, time
each, this is diffusion through the bulk phase. units are arbitrary.
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(8)

FIG. 8. HSOS setup for studying the GZZ transition and the
relaxation dynamics of the model. The system hasraws and
fixed boundary conditions. In the upper half system the couplings

j*R-row between HSOS variables arg and in the lower halfr;. The grain
boundary is modeled by modified couplibg, between théy and

FIG. 7. The non-normalized average total matter transfer as an+1- The angle¢ is defined similarly to the Ising system. The
function of row numbej after the systems have equilibrated. Black boundary conditions force the interface witho=7;=7, to cross
squares are for the the system with a grain boundary and emptiie system on average at an anglevhereas a symmetric zigzag
squares for the system without one. The error bars are standagpnfiguration is formed b7y <7, =1,.
deviations defined over 450 MC realizations. Inset: the same data

but with connected points_ and error bars left out. The solid _”neinterface section connecting neighboring columns. Equation
corresponds to a system with a grain boundary and the dotted line t&;) should be interpreted mesoscopically; the units do not
one without. These transport “spectra” demonstrate that also thﬁecessarily correspond to atomic lengths. Instead we may
absolute number of particles going through the middle two rows i : ; : : '

SCOI’]SIdeI‘h]- S as continuous variables.

m_creased th_an the grain is introduced even though the system We have studied two approximations of E@) in the
without a grain boundary needs to move more matter to reach fth L
equilibrium. context of the GZZ transition:

N 2N
=1.47, but still((S1) +(Si)/ (S39+(S989)=0.51, mean- F= 2 71|h; = hj_a| + b7o|2n = hyyy = [ + . > 75lh; = hj—4]
ing that the absolute number of particles using the middle =% J=N+2
two rows is doubled when the grain boundary is introduced,; (7)
see Fig. 7. This means that by introducing a defect line in the .
system oneonfines spatiallghe bulk of the matter transport and the Gaussian case,

to the minimum energy pathways. N
The conclusions made above, combined with th_e_ striking F= ry(hj = hj—1)2+ b7o/2n — hy.q — hy|
fact that the phase boundary for the GZZ transition was =1
found to be independent of th&, bond strengths, suggest 2N
str(_)ngly that_ we should study the system with a solid-on- + > mo(hy — hj_l)z_ (8)
solid approximation. j=N+2
IV. SOLID-ON-SOLID MODEL FOR GZZ SYSTEM Equationg(7) and(8) represent the two possible approxima-

tions of the interfacial free energy function defined in Eq.
We set up a horizontal solid-on-soiiSOS model[18]  (6). Essentially, forhj—h;_; large, u(x)~7|x| but for h;
to study the relaxation dynamics of the system with a grain-h,_, small it is more appropriate to perform the usual bino-
boundary and an interface crossing it at an angjleee Fig.  mial expansion on Eq6) to find the familiar square gradient
8. Following the logic where one needs to understand staticrm (and a constant which is removed by normalization
before trying to understand dynamics, we first soleg s clear that in both cases the former, modulus approximation
quote the resulysof the static case and then derive Langevinwill be the most appropriate for the term considering the

dynamics for the model in the next section. _ defect line. However, the choice is not so clear for the re-
The Hamiltonian for an HSOS model can be written as maining terms. For |arge ang|es7 we may expect(Egto be
2N the most appropriate. For small angles, or at small tiires
Fhy, o hon) = Su(hi —h_y), 5 Fhe relaxation from the perfect zigzig se]nstdagn t_he Gauss-
(hy N J% (hy = hy-) ® ian terms, Eq(8), should be a better approximation. In other

words, keeping in mind the physical picture established by
studying both dynamics and statics of the full Ising descrip-
el Ve A —h 2 tion of the problem, we need to resort to the Gaussian form

uhy = hjy) = 702+ (hy = hy )" ) of the interaction between columns other than the middle two

This generic description for an HSOS model is derived byas they show long wavelength, i.e., capillary fluctuations.
applying the Pythagoras theorem to the exposed length of adowever, as mentioned already, the modulus approximation

where the functioru is chosen to be
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needs to be chosen for the columns touching the grain nA, 0

boundary. The & term in the energy connecting the two o A (12)
middle columns in Eqs(7) and(8) is a result of a mapping 22

hj—2n-h; for the columnsj>N+1. This mapping will > 1.0 0 0

make the initial condition for our Langevin study equal to

zero and in what follows the derived equations will appear in -12 -1.0 O

more concise form. O -1 2 -1 0 .. ..

In Ref. [20] we studied the equilibrium properties of Eq. A = . (13)
(7) and the exact Ising result for the phase boundary was 1 ' '
recovered in an appropriate scaling limit. We have also done :
similar calculation for Eq(8) and for completeness the main e .. 0 0 -1 2 -1
results of this calculation are presented in the Appendix. .0 0 0 -1 1
Note that Eq.(8) explicitly treats the central column sepa-
rately and thus fails to recover the expected behavior in th@nd
limit b— 1. Our results reflect this. 1 -1.0 0 0

The incentive for doing the HSOS calculations in the first
place is the relative ease of generalizing the system to be -1 2 -10 0
inhomogeneous, i.e., the couplingsare different below and o -1 2 -1 0 .. ..
above the grain boundary. Furthermore, the HSOS formula- A,= . (19

tion, with the Gaussian approximati@8), allows us to study
the early time relaxation dynamics of the system analytically. -

e ... 0 0 -1 2 -1
V. LANGEVIN DYNAMICS OF THE HSOS MODEL .0 0 0 -1 2

In this section we formulate Langevin dynamics for the e diagonalized matri, to solve Eq(11), eigenvalues are
studied systenisee Fig. 8 and solve the following equations

within the Gaussian approximatio8). The dynamics are Ng = 27y(1 - coB)y), @q:( q+ 1) (15)
presented both for a matter nonconserving system and for a 2N+1
matter conserving system.

The dynamics of a time-dependent interface can be Writf’lnd
ten in terms of the Langevin equati¢h5,28,29, 2q+1
g quatie 9 Ng=275(1 - coBy), O,= 29+ hm (16)
(?_hj_ NIF (t) (9) 2N+1
=47
at 29h e with q=0,1,...,N-1. The first set of eigenvalues have as-

L o iated lized ei t ith t
where the white nmse;(t) is defined by SocClated normalized elgenvectors with components
S?=Csin(j0,), (17)

(i) =0, (V)7 () =Q6 ;. 8t-t). (10 J— _
where C=2/y2N+1, when 1<j<N and C=0, for N+1
In the following the arbitrary time scale™ and noise am- <j=<2N. Similarly for the second set of eigenvalues,
plitude () are set to 1. o _ .
As we observed in the preceding section, the Gaussian S¥=D cog(j ~N - 1/20y], (18

approximation used subsequently is valid for either smallyhere p=2/2N+1 whenN+1<j<2N and D=0, for 1
times or small angles. The reader should be aware of this j <N, After the orthogonal transformation E(L1) reads
limitation when examining our results. Certainly E8) is a

very poor approximation as the system approaches the geo- dhy(t) 1 .
des%cpconfigzrr)ation. Ideally we Woﬁld like tgpmodel the corgr]1— _;t_ == (mt )Ng(D) + §b70( Ui+ SO + g (19)
plete relaxation process, from perfect zigZa@F0) to this A

point (6= ¢), by understanding the crossover from Eg).to  in the component form, wherbj(t):thq(t)§]‘“) and 7;(t)
Eq. (7), but this scheme is beyond the scope of the present3 7.(1)S?. Our definition ofh makes the initial condition

paper. h(0)=0 for the perfect zigzag.
_ ) We can now solve the differential equati@®) resulting
A. Matter nonconserving dynamics in
Using Eq.(9) directly with Eq.(8) leads to the following R b1 — e (2t
set of coupled differential equations: hy(t) = ﬂ—(g\‘,ﬂl +99)
2 (m+ 7'2))\q
dh=— A+ 206, + e |dt+d 11 ‘
- X! 2 (eN+1 eN) 7, ( ) + f e—(rl+72))\q(t—s) ?;(s)ds (20)
0
wheree; is a unit vector in a R space withjth element being ~
1, and transformh,(t) back to the original basis,
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tions onF({h}) and g;; that are required in order to achieve

o the Gibbs distribution with matter conservation in equilib-
rium. In their paper Colleket al. [19] use Ito calculus to
perform this conversion. Here we use a less rigorous

approach, and follow the derivation presented in Zinn-
30 F .
'~ Justin[30].
First we define a probability as

20 F
ol V——A P{a},t) =(8(h(t) - g)), (25)

where here and subsequently the angle brackets denote an

40 |

oL . , . . ; , average over the noise and thdunction is a product over
0 5 10 15 20 25 30 all the individual variable$, andq;. We take a time deriva-
<hj> tive and make use of the chain rule to derive
FIG. 9. The relaxationithout matter conservatiofrom a per- 57’({(1} t) dh; (t o
fect zigzag configuration to a zigzag using HSOS model with It E gt ohi(t) S ah®-a)). (26)
Gaussian dynamics defined by Edl). A set of interfaces at inter- ! )

mediate times have been depicted with thinner lines; only half thaye may now use the symmetry of the delta function to write
system is shown. In the inset the full system is depicted showinghe functional derivativédenoteds) as a negative coordinate

only the initial and equilibrium configurations. derivative (denotedd). We also use the Langevin equation
(24) to derive
brol —e (Nt
hi(t) = 9+ 8959 JP({ant) J
=2 ( 2 (e ring St S0 D -3 L ahPany
t
~(rpTp)Ag(t=s) ) 2\12 ¢
+ fo e (¥72)Ag(1=S Uq(S)q dS) . (21) - E (E) (? <E U]kﬂk(t)5(h(t) q)>
j
We consideredh;(t)) and the variancéh;(t)?) —(h;(t))? re- 27
sulting in
g y We now follow Zinn-Justin closely to compute the second
_ 5 brl-emN o () term. First, that given an arbitrary function of the Gaussian
hi(®) _§ 2 (m+ 7N S(’N +Ss? (22 noise,G(7(t)), then
8G(7(t)
and <G(n(t))ni(t)>=Q<M> (28)
—-e —2(1y— 7'2))\ t 577i (t)

<hi(t)2>_<hj(t)>2:2 2(7y+ \q (S(1q))2 (23) and second that the equal time functional derivative of the

a height function with respect to the noise is given by
Langevin equations for a precursor film near a wall which 172

favors spreading were derived and solved in RET]. Equa- hi® = }<3> y (29)

tions(22) and(23) are analogous to the spreading equations. on() 2\p !

After carefully replacing the summations by integrals, the By choosingG((1)) =0 &(h(t)-q) and setting the book-

- S A
e o P o T Sl B keeping variablf) o unly we may derve the -
P ' 9- Planck equation derived in Collet al., namely

9 the initial and equilibrium configurations of the system are

depicted with intermediate steps of the relaxation. aP t
i i IPAahD —2 Sq @@
B. Matter conserving dynamics at
In order to derive the appropriate Langevin equation for
conserved order parameter, we first consider a general - /_32 aq; ‘le‘TJkP({q} t). (30
Langevin equation with cross coupling of the noise and an Lk
arbitrary forceF({h}) term, To impose the condition on the Gibbs distribution with mat-

ah(t) 1/22N ter conservation to be the equilibrium for E¢30), we
=F ({h(t)}) + (B) 2 Jijj ’ﬂl(t), (24) choose
- d F(h)
where 7(t) are Gaussian noise terms defined through their Fi({h}) = 2 B . (31)

first and second moments as in Eg0). bt

From such an equation we may derive a Fokker-Planck'he conservation of matter in ER4) is then a consequence
equation. From this form we will be able to infer the condi- of a conservative noise,

066138-7



ABRAHAM, MUSTONEN, AND WOOD PHYSICAL REVIEW E70, 066138(2004)

~ 10° f 10°
1 S 2 (\0: 5
z 10° | S 100}
40 F S / N /
o 10t /
) 30 F 100 " . 103 L "
= 100 100 10t 100 102 10> 10t 107
20 b t tMC
0l 7 FIG. 11. The relaxation time scales for the HSOS model, from
Eq. (34) (on the lefy and for the Ising model studied in Sec. (dn
ol the right. Both figures show alse-t** curves on top of the nu-

o s 0 15 2 » " merical ones for comparison. The size of the HSOS system was
(h‘> chosen to béN=16,n=66 corresponding to our Ising simulations;
I see Fig. 8.

_FIG. 10'.The r.elaxat'omth matter conservatiofrom a p.erfeCt Ill. The comparison cannot be done directly as there is an
zigzag configuration to a zigzag using the HSOS model with Gauss-

ian dynamics defined by E@34). A set of interfaces at intermediate obvtlloutsh prob!em of flelnt% thle.tlme.unlltstland more 'T%Of'
times has been depicted with thinner lines; only half the system ijan y (N€ noisiness of the 1Sing simulations preventead us

shown. It can be seen that the imposed matter conservation intr rom getting Informatlon'about the exact mte_rfaqe qurd"
duces oscillations to move matter in the relaxation process in cledf@t€S as a function of time. However, the situation is not
contrast to a system without conservation. In the inset the full sysNOP€less as we can use the total matter traristez Fig. 6
tem is depicted showing only the initial and equilibrium configura- @S & measure of the relaxation for the Ising system. The
tions; they coincide with the corresponding configurations withoutmeasure of relaxation from the HSOS system is simply the
matter conservation. coordinate of the middle rohy(t)). In Fig. 11 the respec-
tive relaxation processes have been depicted, alst*
2N curves are shown for comparison. Both models show similar
> o =0, O ke{l,.., 2N} (32)  behavior WSQ a fast start for the relaxation process then
=1 reaching~t~"* region followed by a final saturation as the

. . . , ) system reaches the equilibrium.
Remembering the Kawasaki dynamics with local spin ex-

changes used earlier in this paper, a natural choice fsra C. Inhomogeneous problem

local one[19], Before concluding, we briefly show some interesting ob-
1 servations and results for the inhomogeneous problem; con-
sider 7, > 7,>b71,. Whereas in the symmetrical casge=1,
both systems with and without matter conservation relax to
T= .1 0 (33 the same equilibrium configuration, when the system is in-
-1 0 homogeneous the equilibrium shapes are different. As we
have not done the exact statics of the HSOS with conserva-
Putting it all together, the Langevin equation for the ma’[tertion we shpw hgre_ a simple variat_ional calculation veri_fying
conserving dynamics reads our numerical findings for Eq.34) in the context of an in-
homogeneous system.
First define the interfacial energy for curvesndg with
a matter conservation constraint and free end points; see Fig.

) ) ) 12. We use here a square gradient approximation for simplic-
We have not been able to diagonalize the'A, matrix ity,

exactly, however, computing eigenvectors and eigenvalues N
numerically for the matrix is trivial and here we state only E[f,g] =J {2+ 72+ \(f - g)}kdx

the results of Eq(34). Imposing the matter conservation ' 0 g

changes the relaxation process and even the equilibrium, as

will be shown later. In Ref[19] Colletet al. solved a system +bro[2n - f(N) = g(N)]. (35
with free boundary conditions eXaCtIy and showed that therhe Variationa' argument thus reads

relaxation time scale is-t4, and furthermore the average
interface configuration shows oscillations with mean ampli-

b
dh = aa*(— Ah + %(e,\,ﬂ + eN))dt+ ody.  (34)

E[f + of,g + 59] - E[f,0]

tude of oscillations scaling ast'8. Our numerical solution af ag
for a system with fixed boundaries and a grain in the middle ~ =6f(N)) 7, x| Tbro(* 5g(N)\ 7 x| D7
shows similar behavior. In Fig. 10 we depict a relaxation of N N
a homogeneous system with conservation. N N
The next thing to do is to compare the HSOS results with B JO SHI" =N} + Jo Sgg" — N}, (36)

matter conserving Langevin dynamics presented above to the
Ising simulations with Kawasaki dynamics studied in Sec.and leads to
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2n
FIG. 13. The relaxation of the inhomogeneous systems 7,
FIG. 12. Variational formulation for the inhomogeneous prob- >br,. The one above is the solution to Eg1), i.e., without matter
lem. Curvesf andg have fixed points at the respective origins and conservation and the one below to E84), i.e., with conservation.
free end points at the grain. The shape of curves and the end poinfe thin lines show the interface at intermediate times. The system

at the grain come out from the calculation. with matter conservation cannot reach the grand canonical equilib-
rium and the interface sections bend in accordance with the varia-

f(x) = A2+ Ax+ B tional calculations carried out in the text.
g(x) = =A%+ Cx+D. (37)  minimum energy paths, whereas the system without a grain

o boundary uses capillary fluctuations to equilibrate. The ab-
The variational parameters can be solved from the boundaryence of the capillary fluctuation in the middle interface sec-
conditions and the matter conservatifftix=/gdxresulting  tion sitting at the grain boundary combined with tgbond
In strength independence of the phase boundary led us to for-
mulate the problem in terms of the HSOS model in Sec. IV.
, This formulation made it possible to derive Langevin dy-

8N7; 7 namics for the model system. We derived and solved the
A=bry/ 11~ 2\N, B=0, C=b7y/ 7.+ 2\N, andD=0. Hence in ~ corresponding Langevin equations with and without matter
the caser,=r, the equilibrium is constructed from straight Conservation in Sec. V. While the HSOS model and the de-
line segments as expected. The key point in this simplisti¢ived dynamics give a good description of the relaxation pro-
approach is the emergence of opposite curvatures in the twgeSS for a system with a grain boundary, it is important to
interface sectiong37). This is very natural occurrence, with hotice that once the grain boundary is removed, the system
a clear physical mechanism. Once the straight line section&laxes using capillary fluctuations and hence the HSOS pic-
are forced to a position beyond their grand canonical equiture is not valid anymore. Finally, in the end of Sec. V we
librium, the new energy balance is between the bendinglémonstrated how the introduction of inhomogeneity in the
terms and the weakening effect of the grain boundary. Théystem, i.e., the half systems have different couplings
interfaces will thus bend in such a way as to maximize thdéads to different equilibrium configurations depending
length of the section which is pinned to the grain boundaryWhether or not matter conservation is imposed.
In Fig. 13 inhomogeneous systems are depicted and the

bending of the equilibrium interfaces in the case of matter ACKNOWLEDGMENTS
conservation is clearly observed.
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APPENDIX: GAUSSIAN HSOS
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Gaussian approximatiai®). This approximation will only be * 2m\N22k 5
valid in the static case for systems withsmall. Neverthe- Z= J the_Kblh”_n(—> Te_hNK/ZN- (A5)
less, the calculation is simple and follows precisely the meth- "
odology for the system defined by E@). This expression can be split and then recast in the form of
The partition function is defined as complementary error functions. We find
0 N N/2
Z= f dhy - .thH e~ (KI2(h; - hi_)>gKblhyn| 8(hy). Z= (2?77) eKbZN/Z{e—KbNtanqS erfc< A ’K—ZN(b —tan ¢))
o i=1

(A1) + KbNtan ¢ erfc( A /K_ZN(b+ tan ¢)>}, (AB)

We can form the intermediate integrations as an elemen-

tary transfer problem in an analogous way to that found in |t should be immediately clear that in thelarge limit the
Ref. [20]. The only difference here is the change of transfersecond of these error functions will not contribgtenich, as

kernel; here we use it emerges from excursions of the interface beyond the angu-
Ki2x - )2 lar minima, should not be surprisingrhe dominant behav-
(X|Tly) =e (A2) ior of the former error function is controlled by the sign of

and thus the transfer problem is defined by b-tan¢. We find

2

Kb
* — -Kbtan¢ b<tang¢
f TIY) (Y dy = NP (%), (A3) 1 1 27 ]2
o f=Ilim —InZ=—-In—+
N—= N 2 K K tarf ¢ 5
The ¢4(x) form a complete set of eigenfunctions with the 2 > tang
usual orthogonality relations. In this problem we are only (A7)
interested in the scattering sta€, and these have eigen-
values for the energy and this implies that the order parameter for
this model,|hy—n|, can be computed as
@ = |27 iz
ANV =/ —¢ . (A4) 19 K(b-tang) b<tan¢
K (hy—-n)=--—InZ= :
Kadb 0 b>tang¢
As in Ref. [20] we select only the even eigenfunctions, (A8)

which also contain some unimportant normalization con-
stants. As might be expected from the simple Gaussian forrwhere we can clearly see its continuous divergence.

of Eqg. (A4) the subsequent integrals can be performed ex- We remark here also that we should not be surprised by
actly. Inserting the transfer problem into the form for thethe seemingly anomalous result for the phase boundary. As
partition function and performing the trividl, integration we have explicitly treated the center tier differently the
yields model will not respect the limib— 1.
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