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Stabilization effect of traffic flow in an extended car-following model based on an intelligent
transportation system application
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An extended car following model is proposed by incorporating an intelligent transportation system in traffic.
The stability condition of this model is obtained by using the linear stability theory. The results show that
anticipating the behavior of more vehicles ahead leads to the stabilization of traffic systems. The modified
Korteweg-de Vries equatiofthe mKdV equation, for shornear the critical point is derived by applying the
reductive perturbation method. The traffic jam could be thus described by the kink-antikink soliton solution for
the mKdV equation. From the simulation of space-time evolution of the vehicle headway, it is shown that the
traffic jam is suppressed efficiently with taking into account the information about the motion of more vehicles
in front, and the analytical result is consonant with the simulation one.
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[. INTRODUCTION kayama, and Sugiyam@d7,1§ presented an extended opti-
mal velocity model applied to a cooperative driving control
A traffic jam is an important issue from the viewpoint of system. In their models, a driver can adjust the velocity by
transportation efficiency and reduction in pollution, which ysing the information of an arbitrary number of vehicles that
has thus attracted much attention recently. Lots of studiegrecede or follow. They found that there exist a certain set of
have been conducted with different traffic models, such aparameters that make traffic flow “most stable” in their “for-
the cellular automaton models, car-following models, gas kiward looking” optimal velocity model. But the dynamic be-
netic models and hydrodynamic modétee Refs[1-8]). In havior near the critical point has not been investigated. In
recent years, some researchers have investigated the traffifls paper, an extended car following model with the consid-
jam by use of nonlinear analysis. Kurtze and Hg@ghave  eration of an arbitrary number of vehicles ahead on a single-
derived the Korteweg-de Vrig&dV) equation from the hy- |ane highway is presented; and then a linear stability theory
drodynamic model and showed that the traffic soliton apis given to show the stabilization effect of the new consider-
pears near the neutral stability line. Komatsu and $48h  ation. Moreover, we apply the nonlinear analysis to derive
have deduced the modified KdvhKdV) equation from the the mKdV equation near the critical point equation and ob-
optimal velocity model proposed by Banaa al. [11,1.  tain its kink-antikink soliton solution to describe the traffic
Nagatani[13,14 have derived the mKdV equation based onjam. Finally numerical simulation is carried out to validate
a hydrodynamic model. For public demand, it is necessary téhe analytic results.
raise the transportation efficiency and prevent traffic jams.
Traffic control systems have been utilized as a part of intel-
ligent transport systerdfor short, ITS. Drivers can receive Il. MODEL
information of other vehicles on roads, and then determine
the velocity of their own vehicles. In light of this informa- ~ An extended car following model is proposed taking into
tion, it is possible to improve the stability of traffic flow and account an arbitrary number of vehicles ahead on a single-
suppress the appearance of a traffic jam. Several traffic modane highway. The vehicle motion is described by the follow-
els involving the use of ITS information have been proposeding differential equation:
Helbing [5] presented an improved gas-kinetic traffic model,
which differs from others mainly by introducing a nonlocal dx(t+7)
interaction term that takes into account the space require- at = V(AX(1),AXj41(1), ... AXjna(t), (D)
ments of vehicles and the correlations of successive vehicle
velocities. The model reflects the anticipation behavior of
drivers, which is responsible for a smoothing effect that actgvhere xj(t+7) is the position of caj at time t+7; Ax;(t)
only in the neighboring backward direction. Nagatfhs]  =Xj+1()—x(t) is the headway of caf at timet; n denotes
put forward an extended optimal velocity model including the number of vehicles ahead considereds introduced to
the venhicle interaction with the next car ahdad., the next- denote the delay time with which the car velocity reaches the
nearest-neighbor interactipnXue [3] proposed a lattice optimal velocity as the traffic flow is varying. We have as-
model of optimized traffic flow with the consideration of the sumed that a driver can obtain the informatiomofehicles
optimal current with the next-nearest-neighbor interactionin front. The car velocitydx;(t+7)/dt is adjusted according
Lenz, Wanger, and Sollachgt6] constructed a model that a to the vehicle headway@x;(t), AXj.1(t), ... ,AXjn-1(1))
driver looks at many vehicles ahead of him/her. Hasebe, Na- We rewrite Eq.(1) to obtain the difference equation
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Xj(t+27) = X(t+ 7) = V(A% (1), AXj41(1), .. AXjen-a(D)). 325
2) ab stable
We assume the optimal velocity depending on the vehicle 2.751
headways(Ax;(t), AXj;1(1), ... ,AXj,-1(1)) in the following
collective way: z 29
£ 2.5
n 3 %, Mmetastable
v:V(E Blej+|(t>), 3 2|
I=1
1.75f
in which g, is the weighted function oAx;,(t), which cor-
responds to sensitivity; in a multianticipative car-following 1.5¢ unstable :
model[16]. The difference between them lies in the fact that £ . . B
the optimal velocity in Ref[16] is related to a certain posi- 15 2 25 3 35 45 5 55 6 65

4
tion, while in this paper the vehicles ahead are regarded as a headway

whole and the nonlocal effect is considered. It is necessary g 1 phase diagram in the headway-sensitivity space. The

to point out that g, (1=1,2,...n) have the following  gjig jines represent the neutral stability curvesrfer, 2,3,5. The
properties. dotted lines indicate the coexisting curves for1,2,3,5. The
(1) B (1=1,2,... n) decrease monotonically with in- solid circles show the simulation results for=1,2,5. (vmax
creasingl, which meansB,/B,-;<1, for we know that the =2.0,h.=4.0.
influence of the vehicles ahead on the vehicle motion reduces
gradually as the distance between the considered vehicle and . LINEAR STABILITY ANALYSIS
the vehicle ahead increases.
(2) 3,8 =1, andB =1 for n=1. In this paper, we take The method of linear stability analysis is applied to the
tentatively forn>1 extended car following model. It is obvious that the vehicle
moves with the constant headwhynd the optimal velocity

6 | V(h,h, ... h) is the steady-state solution for §&), given as
o n
7
= L
A=\ @) X(t) = hj +V(h,h, ... )t with h= =, (7)
1 [=n. N

whereN is the total number of vehicles, andis the road
It is convenient to rewrite Eq2) in terms of the headway, length.

which reads Supposgj(t) to be a small deviation from the steady-state
solution x7(t): ;(t)=x7(t)+y;(t). Substituting it into Eq(5)
Ax(t+27) - Axj(t+ 7) and linearizing the resulting equation yield
n n
Ayi(t+27) — Ayi(t +
= T[V(E ﬁ.ij+|<t>) —v(E B|ij+|-1(t)>] - ® b+ 27) = Ayj(t+ )
=1 1=1

= Tv’(h)LE Bi(Ay;j4(t) - ij+|—1(t)):| , (8)
=1

The optimal velocity is selected similar to that used by

Bandoet al. [12
andoet al. [12] whereAy;(t) = y;.41(t) —y;(t), andV’(h) = dV(ij)/dij\Ax:h.

V(A (8),AX;41(D), .. AXjeno1(1) Expandingy; in the Fourier-modesAy;(t)=A exp(iK]

. +2zt), we obtain

= “2 tant 3 BidXy-a(t) - hc> +tantth) r, (6) n

2 I=1 Q22T _ T _ \J! [E ,3|(eikl _ ik(l—l))j| =0. (9)
1=1

whereh, is the safety distance, and E&) has the inflection

point at={L, BiAx . -1(t) =h.. We nameZ[L, BiAx;,4(t) as the  For simplicity, V' (h) is indicated a3/’ in the above equation

weighted headway. When the weighted headway is less thaand hereafter. Expandingrz(ik) +z,(ik)?+- - - and inserting

the safety distance, the vehicle velocity is reduced to preverit into Eq. (9) lead to the first- and second-order terms of

crashing into the preceding vehicle. On the other hand, if it icoefficients in the expression af respectively,

larger than the safety distance, the vehicle velocity increases

to the maximum velocity. The reason we choose the form of

Bandoet al, other than that of Whitharfi.9], lies in the fact

that the former has a turning point, which is important for us

to derive the mKdV equation from Eg5). Thus the neutral stability condition is given by

3 V'
z=V andzzz—i V’2+?E B(21-1). (10
=1
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2 A=) 20 2 2
,= ”T 1y £ b-V)4R+e? b = ?% Bi(21-1) [#R
0PV
For small disturbances with long wavelengths, the uniform  +&*) R+ [ - —E Bi(312-31 + 1)}& R
traffic flow is unstable in the condition that 6 6ia
VI//
R 3 5 C 3
Elr':l BI(Zl _ 1) ” 6 &XR } + e {3b7&XaTR+ |: b ’7'3 24% ﬁ|(4l
> —
i 3V' 12 ” 0

- 612+ 4l - 1)] HR- VIE B2l - D[R?%R

The neutral stability line in the parameter spdd«,a) is
shown in Fig. 1 by the solid line, whea=1/7. There exist

the critical points(h.,a.) for the neutral stability lines as + 2R(0xR)?] [ =0, (15)
=1,2,3,5 respectively, such that the uniform state irrespec-
tive of vehicle headway is always linearly stable tor a, where = dV(Ax;)/dAx; |AX h, and V"

while uniform states mEI nelghborhoodhgaro uosta_ble for _ d3V(AxJ)/dAx |Ax e V and V'
a<a.. For the case ofi=1, the neutral stability line is con-
sistent with those of the original car-following model in
single-lane highway traffic flof20]. The apex of each curve
indicates the critical point. The traffic flow is stable above
the neutral stability line and a traffic jam will not appear.
While below the line, traffic flow is unstable and the density , 7b3‘72 ! ) AV
waves emerge. From Fig. 1 it can be seen that with taking® + 6 Elzl AEIT-31+1) ‘73R_ ?@Rg
into account more vehicles ahead, the critical points and the

neutral stability curves are lowered, which means the stabil- 3 "

ity of the uniform traffic flow has been strengthened. The — +&° EszcﬁiR‘ 7[2 B2 -1) - Gch][RzﬁiR
traffic jam is thus suppressed efficiently. =1

" correspond toV’(hy),
V"”(hy) in the above equatlon and hereafter. Near the critical
point (h,,a,), 7=(1+&?) 7, takingb=V’ and eliminating the
second- and third-order terms ofrom Eq.(15) result in the
simplified equation:

23 bT !
+ 2R(0xR)?] + | - b7 3+ — 32-31+1
IV. NONLINEAR ANALYSIS (9xR)°] [ 8 Tc 2 B )
We apply the reductive perturbation method to &j.and \VA 5 5 ~
focus on the system behavior near the critical pomtay). 24;1 B4*-617+41-1) |&R [ =0. (16)

With such treatment, the nature of kink-antikink soliton so-
lutions can be described by the mKdV equation. We intro- In order to obtain the standard mKdV equation with
duce slow scales for space variajleand time variablet higher order correction, we make the following transforma-

[21,22, and define the slow variablééand T as tions for Eq.(16):
7b3 2 V4
=g(j+bt)andT=¢%, O<e<1, (13) T’=—[—6 _€|E Bi(31%- 3|+1)] (17)
1
whereb is a constant to be determined. Let 3 , 1/2
Y )
N WZ B(32-3+1) | R (18)
Ax;(t) = he + eR(X,T). (14 I=1
Thus we obtain the regularized equation
Substituting Egs(13) and (14) into Eg. (5) and making 4R = BR - R 3 - eMIR' 19
the Taylor expansions to the fifth order eflead to the T x X eMIR'], (19)
expression where
|
9b27'c 2 5 5
M[R'] = R + E Bi(21 - 1) - 9br, |[R'?ZR’ + 2R (3xR')?]
-V B(312-3 +1)

6o+ V' 2 B4R - 612+ 41— 1) - 12r V' 2 B(312-31 + 1)
+ KR’ (20

n

280°72 - 4V' Y, Bi(312- 31+ 1)
1=1
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TABLE |. The critical sensitivitya;, and the propagation velocity.

n 1 2 3 4 5 6 7 8
ac 3 2.3333 2.26154 2.25164 2.25023 2.25003 2.25 2.25
c 27 29.4 29.8329 29.897 29.9062 29.9075 29.9077 29.9077

Equation(19) is the modified KdV equation with a@(«) soliton solutiofi’, it is necessary to consider the solvability
correction term on the right-hand side. First, we ignore thecondition[22—-24
O(e) term in Eq.(19) and get the mKdV equation with the

kink-antikink soliton solution (RO, M[R}]) = JM dXR) M[Ry]), (22
Ry(X,T') = vc tanhy / g(x— cT). (21)  where
Next, supposingR’ (X, T')=R)(X,T")+eRy(X,T’), we take M[Ro] = M[R'].

into account theD(e) correction. To determine the selected By performing the integration, we obtain the selected
value of the propagation velocity for the kink-antikink velocity c,

|

-270>, B(21 - 1)
c= ,
> B(10-18+133%+36% - 150X g1)° - 3743 p13?)° + 359X gl )°

(23

Space-time diagram

10300

headway
© pvro

car number

car number

FIG. 2. Space-time evolution of the headway afted 0 000. The pattern&), (b) for the coexisting phase, arid), (d) for the freely
moving phase. The patteriia), (b), (c), (d) corresponde tm=1, 2, 3, and 5, respectivelp=2.26 andv5=2.0).
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FIG. 3. Headways profile of the density wavestatl0 300. The pattern&), (b), (c), and (d) corresponde t=1, 2, 3, and 5,

respectively(a=2.26 andvmq,=2.0).

where X denotesXZL,. Hence we obtain the kink-antikink the stability regions are enlarged for the new model.rAs

=1
soliton solution(V'=1,V"=-2),

7h3r2c  Cco 5 vz c
RXT)=|-——=+-> B@B1?-3+1)| tanhy/=
2 2 =1 2

7b8 7'02
6

- }2 B(312-3l + 1)]T ,
6I:1

(24)

X X+C[

whereb, 7., andc are given before.

V. RESULT ANALYSIS AND NUMERICAL SIMULATION

raises up to a certain value, the critical sensitidgyand the
propagation velocities will not change further. In fact, only
the former three terms play an important role in the stability.
We may consider this state as the optimal state and the sys-
tem is steady. The information of this state is enough for a
driver to control the velocity of his/her car. As=1, which
corresponds to the case of the first value of weighted func-
tion being 1 and the others being 0, the stability region is the
smallest, and the result is exactly consistent with tht &j.
So considering the cooperative driving behavior will stabi-
lize the traffic flow.

Computer simulation has been carried out for the ex-
tended car following model described by Ef). The bound-
ary conditions selected are periodic ones. The initial condi-

On the basis of the linear and nonlinear analysis, we obtions are chosen as followgx;(0)=Ax;=4.0, Ax(1)=AXx,

tain the critical poini(h;,a;) and the propagation velocities

=4.0 for j#50,51, Ax;(1)=4.0-0.5 forj=50, andAx;(1)

of the kink-antikink soliton solution. We calculate the values=4.0+0.5 for j=51, where the total number of cars is
of the critical sensitivitya, and the propagation velocitiess N=100 and the safety distance lis=4.0. Figure 1 shows
by use of Eq(4), which are listed in Table I. Table | shows the phase diagram in the spagkx,a) for n=1,2,3,5. In

that the propagation velocity increases with increasing

The critical sensitivitya, decreases with increasing and

the phase diagram, the solid lines represent the neutral
stability lines; the dotted lines indicate the coexisting curves
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obtained from the solution of the modified KdV equation; density waves propagate backwards in pattéansand (b).

and the solid circles show the simulation results. The trafficcigure 3 shows the headway profile obtained at sufficiently
flow is divided into three regions by the solid line and large timet=10 300. With the same sensitivity, as the con-
the dotted line: the first is the stable region above the cosidered number of cars in front increases, the amplitude of
existing curve, the second is the metastable region betweafe density wave decreases. In patteir)sand (d) the den-
the stability line and the coexisting line, and the third issjty waves disappear and traffic flow is uniform over the

the unstable region below the stability line. We can see thajhole space. Therefore the simulation outcomes are in
the theoretical results agree with the simulation outcomeg

- e ! tgreement with analytical results.
and the coexisting curves decrease with increasing values o
n. As n=3 and 5, the curves related to the neutral stability
lines and the coexisting lines are almost coincided, which VI. SUMMARY

further demonstrates that considering three cars in fiict We h d th tended followi del of
n=3) is enough for a driver. In fact, this number of cars is__''¢ Naveé Proposed the extended car following model o

closely related to the selection of the weighting function.traffic flow for the purpose of constructing a cooperative
With a weighting function other than that given in Ed), a driving system for highway traffic and given a form of opti-
slightly different result will be obtained. But we know the mal velocity function taking into account the nonlocal effect.

behavior of vehicles farther from a considered vehicle will The traffic nature has been analytically analyzed by using the
have less influence on it, so the selection in B.seems linear and nonlinear analysis. It has been shown that there

reasonable. exists critical point in the model and the neutral stability line
Figure 2 shows the space-time evolution of the headways obtained. Obviously, multivehicle consideration could fur-
for various cars in front and the different values of sensitiv-ther stabilize traffic flow. The mKdV equation has been de-
ity. The patternsa), (b), (c), and(d) in Fig. 2 exhibit the time  rived to describe the traffic behavior near the critical point.
evolution of the headway profile far=1, 2, 3, and 5, where Moreover, we gave an example to show the results clearly.
Umax=2, @=2.26. In patternga) and (b), the traffic flow is As n=1, the result is consistent with that in previous work.
unstable because the instability conditid®) is satisfied for ~ The results of numerical simulation are presented to illustrate
n=1,2 in the condition thata=2.26. When small distur- the theoretical conclusion. The simulation results confirm the
bances are added to the uniform traffic flow, they are amplistability analysis for the extended car-following model and
fied with time and the uniform flow changes finally to inho- give the optimal state as=3, that is to say, only the infor-
mogeneous traffic flow. In patterns) and (d), the traffic ~ mation of three cars ahead is enough for cooperative driving.
flow is stable forn=3,5 with the same sensitivity, which The theoretical results of the coexisting curves are in good
shows that only considering the next-nearest-neighbor inte@greement with the simulation results.
action is not enough for suppressing the traffic jam in this
situation. Thg mf_luence.of cars in front is almostll_nva.rlant ACKNOWLEDGMENT
aftern=3, which is consistent with the neutral stability lines
and coexisting curves in Fig. 1. From Fig. 2 we can see This work was supported by the National Natural Science
that,in the instability regiorjsee patterrn@) in Fig. 2], the  Foundation of ChingGrant Nos. 10202012, 10362001, and
kink-antikink soliton solution appears as traffic jams and thel9932020.
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