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An extended car following model is proposed by incorporating an intelligent transportation system in traffic.
The stability condition of this model is obtained by using the linear stability theory. The results show that
anticipating the behavior of more vehicles ahead leads to the stabilization of traffic systems. The modified
Korteweg-de Vries equation(the mKdV equation, for short) near the critical point is derived by applying the
reductive perturbation method. The traffic jam could be thus described by the kink-antikink soliton solution for
the mKdV equation. From the simulation of space-time evolution of the vehicle headway, it is shown that the
traffic jam is suppressed efficiently with taking into account the information about the motion of more vehicles
in front, and the analytical result is consonant with the simulation one.
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I. INTRODUCTION

A traffic jam is an important issue from the viewpoint of
transportation efficiency and reduction in pollution, which
has thus attracted much attention recently. Lots of studies
have been conducted with different traffic models, such as
the cellular automaton models, car-following models, gas ki-
netic models and hydrodynamic models(see Refs.[1–8]). In
recent years, some researchers have investigated the traffic
jam by use of nonlinear analysis. Kurtze and Hong[9] have
derived the Korteweg-de Vries(KdV) equation from the hy-
drodynamic model and showed that the traffic soliton ap-
pears near the neutral stability line. Komatsu and Sasa[10]
have deduced the modified KdV(mKdV) equation from the
optimal velocity model proposed by Bandoet al. [11,12].
Nagatani[13,14] have derived the mKdV equation based on
a hydrodynamic model. For public demand, it is necessary to
raise the transportation efficiency and prevent traffic jams.
Traffic control systems have been utilized as a part of intel-
ligent transport system(for short, ITS). Drivers can receive
information of other vehicles on roads, and then determine
the velocity of their own vehicles. In light of this informa-
tion, it is possible to improve the stability of traffic flow and
suppress the appearance of a traffic jam. Several traffic mod-
els involving the use of ITS information have been proposed.
Helbing [5] presented an improved gas-kinetic traffic model,
which differs from others mainly by introducing a nonlocal
interaction term that takes into account the space require-
ments of vehicles and the correlations of successive vehicle
velocities. The model reflects the anticipation behavior of
drivers, which is responsible for a smoothing effect that acts
only in the neighboring backward direction. Nagatani[15]
put forward an extended optimal velocity model including
the vehicle interaction with the next car ahead(i.e., the next-
nearest-neighbor interaction). Xue [3] proposed a lattice
model of optimized traffic flow with the consideration of the
optimal current with the next-nearest-neighbor interaction.
Lenz, Wanger, and Sollacher[16] constructed a model that a
driver looks at many vehicles ahead of him/her. Hasebe, Na-

kayama, and Sugiyama[17,18] presented an extended opti-
mal velocity model applied to a cooperative driving control
system. In their models, a driver can adjust the velocity by
using the information of an arbitrary number of vehicles that
precede or follow. They found that there exist a certain set of
parameters that make traffic flow “most stable” in their “for-
ward looking” optimal velocity model. But the dynamic be-
havior near the critical point has not been investigated. In
this paper, an extended car following model with the consid-
eration of an arbitrary number of vehicles ahead on a single-
lane highway is presented; and then a linear stability theory
is given to show the stabilization effect of the new consider-
ation. Moreover, we apply the nonlinear analysis to derive
the mKdV equation near the critical point equation and ob-
tain its kink-antikink soliton solution to describe the traffic
jam. Finally numerical simulation is carried out to validate
the analytic results.

II. MODEL

An extended car following model is proposed taking into
account an arbitrary number of vehicles ahead on a single-
lane highway. The vehicle motion is described by the follow-
ing differential equation:

dxjst + td
dt

= V„Dxjstd,Dxj+1std, . . . ,Dxj+n−1std…, s1d

where xjst+td is the position of carj at time t+t; Dxjstd
;xj+1std−xjstd is the headway of carj at time t; n denotes
the number of vehicles ahead considered;t is introduced to
denote the delay time with which the car velocity reaches the
optimal velocity as the traffic flow is varying. We have as-
sumed that a driver can obtain the information ofn vehicles
in front. The car velocitydxj(t+td /dt is adjusted according
to the vehicle headways(Dxjstd ,Dxj+1std , . . . ,Dxj+n−1std)

We rewrite Eq.(1) to obtain the difference equation
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xjst + 2td − xjst + td = tV„Dxjstd,Dxj+1std, . . . ,Dxj+n−1std….
s2d

We assume the optimal velocityV depending on the vehicle
headways(Dxjstd ,Dxj+1std , . . . ,Dxj+n−1std) in the following
collective way:

V = VXo
l=1

n

blDxj+lstdC , s3d

in which bl is the weighted function ofDxj+lstd, which cor-
responds to sensitivityai in a multianticipative car-following
model[16]. The difference between them lies in the fact that
the optimal velocity in Ref.[16] is related to a certain posi-
tion, while in this paper the vehicles ahead are regarded as a
whole and the nonlocal effect is considered. It is necessary
to point out that bl sl =1,2, . . . ,nd have the following
properties.

(1) bl sl =1,2, . . . ,nd decrease monotonically with in-
creasingl, which meansbl /bl−1,1, for we know that the
influence of the vehicles ahead on the vehicle motion reduces
gradually as the distance between the considered vehicle and
the vehicle ahead increases.

(2) ol=1
n bl =1, andbl =1 for n=1. In this paper, we take

tentatively forn.1

bl =5
6

7l , l Þ n

1

7n−1 , l = n.6 s4d

It is convenient to rewrite Eq.(2) in terms of the headway,
which reads

Dxjst + 2td − Dxjst + td

= tFVSo
l=1

n

blDxj+lstdD − VSo
l=1

n

blDxj+l−1stdDG . s5d

The optimal velocity is selected similar to that used by
Bandoet al. [12]

V„Dxjstd,Dxj+1std, . . . ,Dxj+n−1std…

=
vmax

2 HtanhSo
l=1

n

blDxj+l−1std − hcD + tanhshcdJ , s6d

wherehc is the safety distance, and Eq.(6) has the inflection
point atol=1

n blDxj+l−1std=hc. We nameol=1
n blDxj+l−1std as the

weighted headway. When the weighted headway is less than
the safety distance, the vehicle velocity is reduced to prevent
crashing into the preceding vehicle. On the other hand, if it is
larger than the safety distance, the vehicle velocity increases
to the maximum velocity. The reason we choose the form of
Bandoet al., other than that of Whitham[19], lies in the fact
that the former has a turning point, which is important for us
to derive the mKdV equation from Eq.(5).

III. LINEAR STABILITY ANALYSIS

The method of linear stability analysis is applied to the
extended car following model. It is obvious that the vehicle
moves with the constant headwayh and the optimal velocity
Vsh,h, . . . ,hd is the steady-state solution for Eq.(5), given as

xj
0std = hj + Vsh,h, . . . ,hdt with h =

L

N
, s7d

whereN is the total number of vehicles, andL is the road
length.

Supposeyjstd to be a small deviation from the steady-state
solution xj

0std: xjstd=xj
0std+yjstd. Substituting it into Eq.(5)

and linearizing the resulting equation yield

Dyjst + 2td − Dyjst + td

= tV8shdFo
l=1

n

bl„Dyj+lstd − Dyj+l−1std…G , s8d

whereDyjstd;yj+1std−yjstd, andV8shd= udVsDxjd /dDxjuDxj=h.
Expanding yj in the Fourier-modes:Dyjstd=A expsikj

+ztd, we obtain

e2zt − ezt − tV8Fo
l=1

n

blseikl − eiksl−1ddG = 0. s9d

For simplicity,V8shd is indicated asV8 in the above equation
and hereafter. Expandingz=z1sikd+z2sikd2+¯ and inserting
it into Eq. (9) lead to the first- and second-order terms of
coefficients in the expression ofz, respectively,

z1 = V8 andz2 = −
3

2
tV82 +

V8

2 o
l=1

n

bls2l − 1d. s10d

Thus the neutral stability condition is given by

FIG. 1. Phase diagram in the headway-sensitivity space. The
solid lines represent the neutral stability curves forn=1,2,3,5. The
dotted lines indicate the coexisting curves forn=1,2,3,5. The
solid circles show the simulation results forn=1,2,5. svmax

=2.0, hc=4.0d.

GE et al. PHYSICAL REVIEW E 70, 066134(2004)

066134-2



t =
ol=1

n
bls2l − 1d

3V8
. s11d

For small disturbances with long wavelengths, the uniform
traffic flow is unstable in the condition that

t .
ol=1

n
bls2l − 1d

3V8
. s12d

The neutral stability line in the parameter spacesDx,ad is
shown in Fig. 1 by the solid line, wherea=1/t. There exist
the critical pointsshc,acd for the neutral stability lines asn
=1,2,3,5,respectively, such that the uniform state irrespec-
tive of vehicle headway is always linearly stable fora.ac,
while uniform states in a neighborhood ofhc are unstable for
a,ac. For the case ofn=1, the neutral stability line is con-
sistent with those of the original car-following model in
single-lane highway traffic flow[20]. The apex of each curve
indicates the critical point. The traffic flow is stable above
the neutral stability line and a traffic jam will not appear.
While below the line, traffic flow is unstable and the density
waves emerge. From Fig. 1 it can be seen that with taking
into account more vehicles ahead, the critical points and the
neutral stability curves are lowered, which means the stabil-
ity of the uniform traffic flow has been strengthened. The
traffic jam is thus suppressed efficiently.

IV. NONLINEAR ANALYSIS

We apply the reductive perturbation method to Eq.(5) and
focus on the system behavior near the critical pointshc,acd.
With such treatment, the nature of kink-antikink soliton so-
lutions can be described by the mKdV equation. We intro-
duce slow scales for space variablej and time variablet
[21,22], and define the slow variablesX andT as

X = «s j + btd andT = «3t, 0 , « ! 1, s13d

whereb is a constant to be determined. Let

Dxjstd = hc + «RsX,Td. s14d

Substituting Eqs.(13) and (14) into Eq. (5) and making
the Taylor expansions to the fifth order of« lead to the
expression

«2sb − V8d]xR+ «3F3

2
b2t −

V8

2 o
l=1

n

bls2l − 1dG]x
2R

+ «4H]TR+ F7b3t2

6
−

V8

6 o
l=1

n

bls3l2 − 3l + 1dG]x
3R

−
V-
6

]xR
3J + «5H3bt]X]TR+ F5

8
b4t3 −

V8

24ol=1

n

bls4l3

− 6l2 + 4l − 1dG]X
4R−

V-
4 o

l=1

n

bls2l − 1dfR2]X
2R

+ 2Rs]XRd2gJ = 0, s15d

where V8= udVsDxjd /dDxjuDxj=hc
and V-

= ud3VsDxjd /dDxj
3uDxj=hc

. V8 and V- correspond toV8shcd,
V-shcd in the above equation and hereafter. Near the critical
point shc,acd, t=s1+«2dtc, takingb=V8 and eliminating the
second- and third-order terms of« from Eq.(15) result in the
simplified equation:

«4H]TR+ F7b3tc
2

6
−

V8

6 o
l=1

n

bls3l2 − 3l + 1dG]x
3R−

V-
6

]xR
3J

+ «5H3

2
b2tc]X

2R−
V-
4 Fo

l=1

n

bls2l − 1d − 6btcGfR2]X
2R

+ 2Rs]XRd2g + F−
23

8
b4tc

3 +
btcV8

2 o
l=1

n

bls3l2 − 3l + 1d

−
V8

24ol=1

n

bls4l3 − 6l2 + 4l − 1dG]X
4RJ = 0. s16d

In order to obtain the standard mKdV equation with
higher order correction, we make the following transforma-
tions for Eq.(16):

T8 = −F7b3tc
2

6
−

V8

6 o
l=1

n

bls3l2 − 3l + 1dGT, s17d

R= F7b3tc
2

V-
−

V8

V-
o
l=1

n

bls3l2 − 3l + 1dG1/2

R8. s18d

Thus we obtain the regularized equation

]T8R8 = ]X
3R8 − ]XR83 − «MfR8g, s19d

where

MfR8g =
9b2tc

7b3tc
2 − V8ol=1

n
bls3l2 − 3l + 1d

]X
2R8 + F3

2o
l=1

n

bls2l − 1d − 9btcGfR82]X
2R8 + 2R8s]XR8d2g

+
69b4tc

3 + V8ol=1

n
bls4l3 − 6l2 + 4l − 1d − 12btcV8ol=1

n
bls3l2 − 3l + 1d

28b3tc
2 − 4V8o

l=1

n

bls3l2 − 3l + 1d

]X
4R8. s20d
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Equation(19) is the modified KdV equation with anOs«d
correction term on the right-hand side. First, we ignore the
Os«d term in Eq.(19) and get the mKdV equation with the
kink-antikink soliton solution

R08sX,T8d = Îc tanhÎc

2
sX − cT8d. s21d

Next, supposingR8sX,T8d=R08sX,T8d+«R18sX,T8d, we take
into account theOs«d correction. To determine the selected
value of the propagation velocity for the kink-antikink

soliton solution21, it is necessary to consider the solvability
condition [22–24]

sR08,MfR08gd ; E
−`

+`

dXR08sMfR08gd, s22d

where

MfR08g = MfR8g.

By performing the integration, we obtain the selected
velocity c,

c =
− 270o bls2l − 1d

o bls10 − 15l + 135l2 + 36l3d − 150so blld2
− 378so bll

3/2d2
+ 352so blld3 , s23d

TABLE I. The critical sensitivityac and the propagation velocityc.

n 1 2 3 4 5 6 7 8

ac 3 2.3333 2.26154 2.25164 2.25023 2.25003 2.25 2.25

c 27 29.4 29.8329 29.897 29.9062 29.9075 29.9077 29.9077

FIG. 2. Space-time evolution of the headway aftert=10 000. The patterns(a), (b) for the coexisting phase, and(c), (d) for the freely
moving phase. The patterns(a), (b), (c), (d) corresponde ton=1, 2, 3, and 5, respectively(a=2.26 andvmax=2.0).
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where o denotesol=1
n . Hence we obtain the kink-antikink

soliton solutionsV8=1,V-=−2d,

RsX,Td = F−
7b3tc

2c

2
+

c

2o
l=1

n

bls3l2 − 3l + 1dG1/2

tanhÎc

2

3HX + cF7b3tc
2

6
−

1

6o
l=1

n

bls3l2 − 3l + 1dGTJ ,

s24d

whereb, tc, andc are given before.

V. RESULT ANALYSIS AND NUMERICAL SIMULATION

On the basis of the linear and nonlinear analysis, we ob-
tain the critical pointshc,acd and the propagation velocitiesc
of the kink-antikink soliton solution. We calculate the values
of the critical sensitivityac and the propagation velocitiesc
by use of Eq.(4), which are listed in Table I. Table I shows
that the propagation velocityc increases with increasingn.
The critical sensitivityac decreases with increasingn, and

the stability regions are enlarged for the new model. Asn
raises up to a certain value, the critical sensitivityac and the
propagation velocitiesc will not change further. In fact, only
the former three terms play an important role in the stability.
We may consider this state as the optimal state and the sys-
tem is steady. The information of this state is enough for a
driver to control the velocity of his/her car. Asn=1, which
corresponds to the case of the first value of weighted func-
tion being 1 and the others being 0, the stability region is the
smallest, and the result is exactly consistent with that in[15].
So considering the cooperative driving behavior will stabi-
lize the traffic flow.

Computer simulation has been carried out for the ex-
tended car following model described by Eq.(5). The bound-
ary conditions selected are periodic ones. The initial condi-
tions are chosen as follows:Dxjs0d=Dx0=4.0, Dxjs1d=Dx0

=4.0 for j Þ50,51, Dxjs1d=4.0−0.5 for j =50, andDxjs1d
=4.0+0.5 for j =51, where the total number of cars is
N=100 and the safety distance ishc=4.0. Figure 1 shows
the phase diagram in the spacesDx,ad for n=1,2,3,5. In
the phase diagram, the solid lines represent the neutral
stability lines; the dotted lines indicate the coexisting curves

FIG. 3. Headways profile of the density waves att=10 300. The patterns(a), (b), (c), and (d) corresponde ton=1, 2, 3, and 5,
respectively(a=2.26 andvmax=2.0).
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obtained from the solution of the modified KdV equation;
and the solid circles show the simulation results. The traffic
flow is divided into three regions by the solid line and
the dotted line: the first is the stable region above the co-
existing curve, the second is the metastable region between
the stability line and the coexisting line, and the third is
the unstable region below the stability line. We can see that
the theoretical results agree with the simulation outcomes
and the coexisting curves decrease with increasing values of
n. As n=3 and 5, the curves related to the neutral stability
lines and the coexisting lines are almost coincided, which
further demonstrates that considering three cars in front(i.e.,
n=3) is enough for a driver. In fact, this number of cars is
closely related to the selection of the weighting function.
With a weighting function other than that given in Eq.(4), a
slightly different result will be obtained. But we know the
behavior of vehicles farther from a considered vehicle will
have less influence on it, so the selection in Eq.(4) seems
reasonable.

Figure 2 shows the space-time evolution of the headway
for various cars in front and the different values of sensitiv-
ity. The patterns(a), (b), (c), and(d) in Fig. 2 exhibit the time
evolution of the headway profile forn=1, 2, 3, and 5, where
vmax=2, a=2.26. In patterns(a) and (b), the traffic flow is
unstable because the instability condition(12) is satisfied for
n=1,2 in the condition thata=2.26. When small distur-
bances are added to the uniform traffic flow, they are ampli-
fied with time and the uniform flow changes finally to inho-
mogeneous traffic flow. In patterns(c) and (d), the traffic
flow is stable forn=3,5 with the same sensitivity, which
shows that only considering the next-nearest-neighbor inter-
action is not enough for suppressing the traffic jam in this
situation. The influence of cars in front is almost invariant
aftern=3, which is consistent with the neutral stability lines
and coexisting curves in Fig. 1. From Fig. 2 we can see
that,in the instability region[see pattern(a) in Fig. 2], the
kink-antikink soliton solution appears as traffic jams and the

density waves propagate backwards in patterns(a) and (b).
Figure 3 shows the headway profile obtained at sufficiently
large timet=10 300. With the same sensitivity, as the con-
sidered number of cars in front increases, the amplitude of
the density wave decreases. In patterns(c) and (d) the den-
sity waves disappear and traffic flow is uniform over the
whole space. Therefore the simulation outcomes are in
agreement with analytical results.

VI. SUMMARY

We have proposed the extended car following model of
traffic flow for the purpose of constructing a cooperative
driving system for highway traffic and given a form of opti-
mal velocity function taking into account the nonlocal effect.
The traffic nature has been analytically analyzed by using the
linear and nonlinear analysis. It has been shown that there
exists critical point in the model and the neutral stability line
is obtained. Obviously, multivehicle consideration could fur-
ther stabilize traffic flow. The mKdV equation has been de-
rived to describe the traffic behavior near the critical point.
Moreover, we gave an example to show the results clearly.
As n=1, the result is consistent with that in previous work.
The results of numerical simulation are presented to illustrate
the theoretical conclusion. The simulation results confirm the
stability analysis for the extended car-following model and
give the optimal state asn=3, that is to say, only the infor-
mation of three cars ahead is enough for cooperative driving.
The theoretical results of the coexisting curves are in good
agreement with the simulation results.
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