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Generalized boundary conditions for periodic lattice systems:
Application to the two-dimensional Ising model on a square lattice
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We show that the thermal properties of periodic lattice systems can be approximated to that of a finite cluster
with appropriate boundary conditions which include a modified Hamiltonian for the boundary variables.
Imposing lattice invariance on the correlation of the local site variables is sufficient to obtain the free param-
eters of the boundary Hamiltonian. The degree of accuracy of the calculation depends on the interaction range
allowed in the boundary Hamiltonian and the range up to which the correlation of the site variables are made
lattice invariant. The Bethe approximation can be considered a trivial case of this general method for clusters
of one lattice site. The reliability of the method is demonstrated with the results obtained for the two-
dimensional Ising model, where a cluster of four spins and invariance conditions up to second neighbors is
sufficient to reproduce some nonuniversal thermal properties of the model with an accuracy comparable or
better than other more complex numerical methods.

DOI: 10.1103/PhysRevE.70.066133 PACS nun)er05.50+q, 05.10-a

I. INTRODUCTION boundary variables and correlations between the cluster and

A h Hamiltoni dels of ph ... _boundary are neglected. The first step towards the use of
mong the many Hamiltonian models of phase transitionsy, ;.o 4qequate boundary conditions—the boundary variables

very fe.W hf?“’e been sol\{ed exgctly, and the use of efﬁmen&re allowed to fluctuate—correspond to the well-known Be-
approximation methods is crucial, they have to be accuratg,q |g1 approximation, where correlation effects are implic-

enough and maintain the computational effort under Some,, yayen into account. On the other hand, periodic boundary
practical limits. A considerable effort has been devoted 10,5 itions overestimate the correlations among all the vari-

this task: from the easy to implement mean-field theory 0,05 “especially when the correlation length and the size of

sophisticated series expansions and renormalization tec ie system are of the same order of magnitude. Hence the
niques, going through Monte Carlo or molecular dynarT"Cdiscussion may be rephrased in the following way: Which
simulations|1,2]. Those approaches differ on the complexity 5. the hest boundary conditions that lead the variables in a

of calculations and accuracy of the results, but from a venfjire cjuster to behave as if they were in the infinite ideal
basic point of view some of them share common features

. ) ) . . Jsystem?
Monte Carlo simulations qnd mean-field calculations, for in- Significant efforts have been made in the development of
stance, look completely different, but the most relevant dis-

cluster-based methods. Starting from the mean-field or Bethe

tinction is the way in which the pertinent statistical sums arey proximation, the most straightforward approach consists in

performed. In both cases the infinite system is approached a creasing the size of the cluster, maintaining the character-

a finite cluster, appropria?e boundary conditions are US€(stics of the boundary conditions. Unfortunately, the transla-
and therquynamm magnitudes are calculated. Often, W'th"ﬂonal invariance of the lattice is violatgd], and the con-
the mean-field approach, the number of relevant thermody\—/ergence to the thermodynamic limit is slow. The

namic variables in the cluster is so small that sums may b‘éonvergence problem may be highly improviédl analyzing
calculated within almost any desired accuracy, and the bes{he results by the coherent-anomaly metli@e15, that al-
suited boundary conditions correspond to a fixed selfy, o s to extract nonclassical critical exponents and transi-

c_ons:stgnt vakllue of tl?e o;dgr param(?ttfar. Ig Mc_)nte ?arlc{ion temperatures from convergent series of mean-field ap-
simulations, the number of degrees of freedom Is SO argg,,yimations. The lack of periodicity has been studied in

that the sums must be calculated by means of a statisticglet (7] and a different self-consistent mean-field equation
sampling in the phase space of the system, and usually, Pfzaq peen proposed. This approach predicts with great accu-
.r'Od'C boundary conditions are |mplemente_d, althgugh ther‘?acy the transition temperatures in low dimensional spin sys-
is no conceptual problem to use self-consistent fields at th?ems. Other approximations such as the effective-field model
boundary of a Monte Carlo simulatidi3,4]. In the simplest [16] and its extensionkl7—19, the double-chain approxima-
version of mean-field theory5], correlations among the o [20], or the cluster-vari,ation methof21-29 are de-
signed to treat correlations more accurately, and constitute a
significant improvement over the simple Weiss theory. One
*Electronic address: wmpetali@lg.ehu.es of the drawbacks of the usual methods is that they are de-
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signed to study discrete models, and their extension to con-
tinuous variables is often difficult or unfeasible. The different
kind of boundary conditions proposed in this work exhibit
two interesting features: first, as correlations are more accu-
rate, the statistical behavior of the finite system resembles
more closely that of the infinite one; second, its applicability
is, in principle, not restricted to discrete models.

The application of more complex effective couplings to
the boundary spins of a given cluster has also been studied
by Minami et al. in the multi-effective-field theory26] from
the viewpoint of the coherent anomaly method. Although the
present work is not focused as this one on universal quanti-
ties at the transition point but on the whole behavior of the
model within large temperature intervals, both methods are
somehow similar: the effective interactions go beyond
nearest-neighbor couplings, and the consistency equations
containn-body correlation functions. In this work, however,
the couplings are added in a systematic manner, and mo
crucial, the whole cluster is periodic within a given level of
accuracy. In Ref.[26] not all the symmetry equivalent
n-body correlation functions are forced to be equal, and the L
cluster, from this viewpoint, does not satisfy the periodicity c b oy~ _ c
Conditions. P({U 0,0 }) - Z eXF{ BH({O- !Ob!Ur})]v (1)

Although the basis of the method is completely general, ) . _
its foundations(Sec. 1) and application(Sec. Ill) are ex- wher% Z=trex-pH] is the partition function, and
plained in the context of the two-dimensional Ising model inio®,0", 0"} represents a given statistical configuration of the
a square lattice. This system has been chosen for practic@Pins. The reduced density matrix for the cluster and bound-
reasons. On the one hand, the model is simple compared &Y SPins may be obtained taking the trace over the spins of
other models of cooperative phenomena, and the calculatidi€ rest of the systerR):
of the statistical averages is not very time consuming. On the

()
)
()
O
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FIG. 1. Schematic view of a two-dimensional Ising system in a
pguare lattice. Filled circles correspond to the spins in the cluster
(6f). The boundary Spiné(rib) are in the shadowed region, and the

open circles correspond to the rest of the infinite systefh

1
other hand, the model is rich enough to exhibit a phase tran- p({oic,oib}) = Z trrexd — BH]. (2
sition at finite temperature, and the behavior of several sta-
tistical magnitudes has been calculated exa¢fy—29. Let us create a defect by removing all the interactions

These exact solutions give us an appropriate basis to estima@tween the cluster and boundary spins; the cluster becomes
the accuracy of the method in calculations of nonuniversajsolated from the boundary spins and the rest of the system,
quantities such as critical temperatures and maximum valuegnd periodicity is lost. The reduced density matrix for @e

of connected correlation functions. andB spins may be decomposed as

p'({0%,0") = pe{oDpa({o™)), 3

where the primes refer to the defective system, gndndpg

In the absence of external field, the Hamiltonian of thedenote the reduced density matrix of t@eand B spins,

Ising model in a two-dimensional square lattice may be exfespectively:
pressed as

II. PERIODICITY AND BOUNDARY CONDITIONS

il =5 ex= BHclfoD)] @
C

H=- JE O'iO'J',
() 1

pal{0™) = - trrexil= BHa (0" 0"D)]. (5)

where the sum extends to all the nearest-neighbor pairs and B

the available values of the spin variables are+1. We can  Hc({o}) is the part of the Hamiltonian that contains only the

divide the whole system in three sets of spifég. 1): a  interactions among th€ spins(nearest neighbor pairs of the

small cluster of spingC spins,o°€ C), the spins that interact form ¢°¢®), andHgr({o”,¢"}) corresponds to the remaining

with the cluster, located at the bounda® spins,o?€B), interactions after isolating the two subsysterizearest
and the spins that are neither in the cluster, nor in its boundaeighbor pairs of type®s®, 0°0*, andd’d*).
ary, i.e., the rest of the spinR spins,s] €R). The number of If the cluster is smallpc({c°}) may be easily calculated.

spins at the boundary depends on the range of the intera©n the other hand, ips({c®}) the effect of theR spins is
tions, and in this case only the first neighbors of the clusteimplicitly included, and, due to the lack of periodicity, its
spins have to be taken into account. The density matrix of thealculation is more complex than the calculation of the den-
whole system is given by sity matrix of the periodic infinite latticEEq. (1)]. The prob-
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ability densities of the cluster and boundary spins in the pe- Ho = -3 PeP =S ho? - S K, oPoP (9)
riodic [Eq. (2)] and defective[Eq. (3)] systems may be ! S

related according to ] )
where the first summation corresponds to the part of the total

p({c%,6®) = A%’ ({6%,6™}) exd - BHe-c({c%c®})], (6)  Hamiltonian that involves interactions between nearest
) , neighbors at the boundary, and in the third term there is no
where Hg_c corresponds to the interactions between theegriction on the distance between the spin pairs. The Hamil-
B and C spins—those that are absent in the defectivegnian parameters may be chosen systematically, first of all
system—and\ is a normalization factor: the effective fieldgh;), and afterwards, interactions covering
A= tregp' ({0°, ™) exf— BHa_c({o a™)]. in_creasing distar)ceéKi,j_) may be taken int_o account: cou-
plings between first neighbors, second neighbors, and so on.
Using Egs.(3) and (4) in Eq. (6), we obtain the following The number of independent parameters depends on the clus-
exact expression for the infinite ideal lattice: ter size and symmetry, and the degree of periodicity that is
intended to be fulfilled. As explained below, the achievement
p{o°,0") = pp({™) of a better degree of periodicity corresponds to an increase in
1 the number of parameters in the trial Hamiltonian; for a low
X — exp(~ B[Hc({o%}) + Ha_c({c®, a1}, degree of periodicity most of th€; ; may be absent and only
Alc short distance couplings are needed.
(7) Equations(6) and(9) may be written in a more practical

L _ ) ) and intuitive way. The trial density for spins in the boundary
establishing a relationship between the reduced density may,q cjuster is

trix of the boundary spins in the defective lattice and the
exact reduced density matrix of boundary and cluster spins in 1
the ideal lattice. Thus the knowledge of the exact density pl{o®0%) = Z exf - B(Ho+ AH)], (10
matrix ps({c°}) of the defective system is enough to obtain o
the exact probability density of the infinite periodic lattice; Where Ho corresponds to the part of the Hamiltonian that
but, as mentioned above, due to the lack of periodicity, anylo€s not contain spins of the rest of the system:
calculation in the defective system should at least be as dif- _
ficult as its counterpart in the infinite periodic lattice. Ho = _JZ ooj HoeR, (11)
The main difficulty to apply Eq(6) in statistical calcula- <"J>
tions relies on having a good approximation for the statisticahH contains the parametrized interactions that should repro-
distribution of the boundary spins in the iifective systemduce the effect of the rest of the system:
One can generate a trial density matyig,({c°}) and esti-
mate the goodness of the choice. We propose a simple crite- AH=- 2 hiali’ - E Ki,iffibUJba (12
rion based on the periodicity. According to H6) the exact ! .
pa({d®}) density of the defective system gives the exact denandz, is a normalization factor to have gf=1.
sity matrix of both cluster and boundary spins in the infinite  According to Eq.(10), the average of any observalg@)
periodic system—a periodic density matrix. Therefore theshould be calculated by
more reliable the trial distribution is, the “more periodic” is

the density matrix of the cluster and boundary spins calcu- (O) =tr Op,. 13
lated by Eq.(6). The generation of the trial density matrix
and the estimation of the periodicity are explained below. B. Periodicity constraints

The degree of periodicity of a small part of an infinite
A. Probability density of the boundary spins system may be classified hierarchically. The zeroth order ap-
An appropriate probability density distribution for the proximation corresponds to the consistency of the average

boundary spins must be parametrized in a simple form tyalues of all the boundary and cluster spins. This may be
allow a practical use of Eq6), and must contain the neces- €XPressed by means of the following system of nonlinear

sary ingredients to mimic the effect of the part of the systenffauations:

that is not explicitly taken into account—the spins. A N/ e\ _/C
straightforward approach consists of using a trial Hamil- 2 =0 = (o) ==(c%)
tonian for the boundary spins, and generating the probability = (a’i} = <gg> = ...:(cr?n),

density distribution by
wheren andm are the number of spins in the cluster and in

, 1 the boundary, respectively.
pe{o’) = Z exi{ - BH{({o™))]. (®) Fluctuatio);]s ofF;II the sypins must be also equal, but in the
case of the Ising model we haye?)=1 and this requirement
In its simplest formH{’ may be composed of interactions is automatically satisfied.
with effective fields, and quadratic couplings between pairs The first order approximation should be related to the cor-
of spins[30]: relations between nearest neighbors:
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FIG. 2. Schematic representation of the trial model for a single
spin cluster. It is equivalent to the Bethe approximation.

GV = (ofof) = (oPo?) = (ofoT)

for all nearest-neighbor pairs.

This procedure can be generalized to any distance within
the boundary-cluster syster(rG(z),G(3),...) [31] until the FIG. 3. Approximations for the two spin cluster. Top: couplings
achievement of the desired level of accuracy. The number gnd external fields for the zeroth order approximation. Two inde-
independent equations above depends on the specific strugndent effective fieldéh, andhy) are needed. Bottom: first order
ture and symmetry of the cluster, and on the parametrizatiogPProximation; three coupling&;, Ky, andKs) are included to
of the trial Hamiltonian. We have adopted the following make the cqrrelatlons between flrst_ nelghbors c_on5|stent. The same
practical procedure: once the degree of approximation is def'°de! is valid to extend the periodicity up to third order.
cided, new interaction parameters have been added one by
one to the trial H.amilt(.)nian. uptil the system of nonlinear 23 = (oD = (D).
consistency equations is satisfied.

The periodicity condition in zeroth order leads to

_ _ _ 2, =2,=2,. (14)
Three different clusters have been studied: one single
spin, two neighbor spins, and a square cluster of four spinsthe simplest trial Hamiltonian to express the probability
density of the boundary spins is

IIl. APPLICATION TO THE SQUARE LATTICE

A. Single spin cluster H.=H.+ AH
t= Mo 0

For the single spin cag&ig. 2), the four boundary spins
are symmetry equivalent. All the correlation functions be-With
tween spins at the same distances are equal by symmetry,
and the periodicity condition can only be applied to the mean
values of the central and surrounding spite®)=(c®)). As +05(05+ oh+ of)]
there are no first neighbors among the boundary spins, the
trial Hamiltonian may be expressed in terms of a single exand

ternal field:
AHg=- hl(cr? + 0'2 + 0'2 + Ug) - hz(O'g + 0'2).

Ho = - J[oSa5 + 0505 + ahol + oS(08 + o2 + ob)

4
H,=Hg+ AHg = — (Jo$ +h) >, 0P, The two effective fieldsh, and h? must be obtaingd to
i=1 solve the system of Eq14) (two independent nonlinear
. ) . o . equations in terms of two effective unknown fields
Thus there is a single nonlinear equation in terms of a s_mgle One can improve the periodicity of the system by taking
parameteth), and the method leads to the Bethe approximasntg account the correlations between nearest neighbors. Ac-
tion [6]. cording to Fig. 3 these correlations may be grouped into four
symmetry independent sets:
B. Two spin cluster
| P . G = (0509,
For the two spin clustefFig. 3) both spins in the cluster
are symmetry equivaleri®;=(c%)=(0%)) and among the six D, b by b b
boundary spins two classes may be distinguished: G;" =(0103) =(040%),
22 = (o) = (%) = (o) = (D), Gy = (0SaD) = (050D,
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G{' = (ofol) = (oo 1y
= (0509 = (a5ay. 2 o e \
Thus the three new (;ons.istency equations needed to obtai" J ’6:1 10,3] v
the first order approximation are = TITITS h
=6 =6P=cP. (15) i

These three new equations are not independent of the rela-

tions in Eq.(14); the solutions for the zeroth order approxi-  FIG. 4. The square cluster. Left: couplings and external fields
mation also giveG(Zl):Gzl). However, the simultaneous ac- for the zeroth order approximation. Middle: first order approxima-

complishment of Egs.(14) and (15) (five nonlinear tion; correl_ations between first qeighpors are equal._Right: neces-
equationgrequires the inclusion of three quadratic couplingsSary couplings to extend the periodicity to second neighbors.

(Fig. 3), and the following terms have to be added to the trial

Hamiltonian: The first order approximation includes correlations be-

tween first neighbors that may be grouped into three symme-
AH;=- Kl(atfog + 0'20'2) - Kz[og(og + 0'2) + 0'2(0'? + Ug)]

try independent sets
= Ke[ o302 + 03) + o503 + 0)].

K, adds an extra contribution t andK, and K increase
the correlation between second and third neighbors in theGyY = (a%02) = (050D = (a50%) = (050D = (o505 = (o502
boundary.

The next approximation order may be achieved by taking
into account the correlations between second neighbors, that

G = (0508 = (0509 = (050 = (o5,

_ S by ¢ b
= (0308 =(0407),

. W/ bbb/ bb_/ bb_/bb
can be grouped according to symmetry as Gy" =(0102) =(0304) = (050¢) = (0705)
and the consistency equations for the correlations are
G(12) = (oﬁa%) = (oﬁo'g) = <0'(2:0':tl)> = (0’50’2), Yy €q
Gl=Gl=GY.

2 — b\ — b\ — b\ — b
Gy = (0go) = (0303) = (0302 = (9307 The trial Hamiltonian for the boundary spins K,=H,

But the new relation(G”=GY”) necessary to extend the +AHo+AH;, where the new contribution i&ig. 4)

periodicity to this level is not independent and it is already AH; = = Ky(0208 + 0502 + o202 + 0Bod)
fulfilled by the solutions of the first order approximation

[Egs.(14) and (15)]. The same remark applies to the corre- - Kz(Ugalf + 0202 + 020t5)+ 0203).

lattions petween third neighbors. The consistency eq_uationﬁp to this degree of approximation, a system of three non-
are not independent, and for the same trial Hamiltonian th‘ﬁnear equations must be solved in ierm hol. andK
1 2+

following relation is satisfied: Correlations between second neighbors may be grouped

c® =GP, into three classes:
where the two symmetry independent correlations are G(lz) = (0103 =(0509),
G = (003 =(0509), GP = (0508 = (0505 = (050%) = (050%) = (0502 = (050D
G2 = (o20D) = (o). = (0502 = (050D,
Therefore the trial Hamiltoniai,=Hy+AH+AH, also GP = (aB0?) = (050D = (dB0D) = (020?

corresponds to the third order approximation, that is, the pe-. . .
riodicity extends up to the correlations between third neigh9'VINg two more equations:
bors. The rest of pair anatbody correlation functions do not GP =GP =GY.

satisfy their corresponding consistency equations. ) ) o
Nevertheless, all the equations are not independent and it is

enough to add a single coupling to extend the periodicity of
C. Four spin cluster correlations to second neighbaiEig. 4):
‘The eight boundary spins are equivalent by symmetry AH,=-Ky(0205 + 0502 + 0502 + 0508 + 6205 + 0208
(Fig. 4), and the only condition about the average values of b b b
all the spins i =(c%)=(0®). The simplest trial Hamiltonian + 050% + ogo).
contains a single external field:
8 IV. RESULTS AND DISCUSSION

H,=Ho+AHy=Hy— h> gib_ Once the order of the approximation and model couplings
i=1 have been chosen, the nonlinear equations can be solved by

066133-5



ETXEBARRIA, ELCORO, AND PEREZ-MATO PHYSICAL REVIEW E/0, 066133(2004

TABLE |. Results for different models and approximatiomsis the number of spins involved in the
calculation of the traceM is the number of nonlinear equations involvégT./J is the transition tempera-
ture. G(Cl)(TC) and G(CZ)(TC) are the values of the connected correlation functions between first and second
neighbors, respectively, at the transition point.

Model N Approx. M keTe/J (T G2(Ty
Mean field 1 1 4.000
Single spift 5 0 1 2.885 0.333 0.111
Two spin 8 0 2 2.770 0.380 0.197
1-3 5 2.418 0.563 0.445
Four spin 12 0 1 2.831 0.274 0.13¢
1 3 2.428 0.559 0.439
2 4 2.351 0.607 0.501
Exacf 2.269 0.707 0.637

4t is equivalent to the Bethe approximation.

PAs the periodicity requirements do not force the consistency of these correlation functions, the average
values are shown.

‘From Refs[27,29.

any standard numerical technique. A summary of the resultposed in the literature. The effective-field method with cor-
appears in Table I: transition temperatures and values of theelations of Taggarf17], double-chain approximatiof0],
connected correlation functions\'?=(c?—(s)?) between Modified effective-field approadis], and expanded Bethe-
first and second neighbors at the critical temperature. AlP€i€rls approximatiofil9] give kgTc/J=2.680, 2.500, 2.576,
though the present method does not contain the mean-fieRf)d 2-486, respectively. The result of Galfimis exception-
approximation as a particular case, its transition '[emperaturﬁIy accuratekgT,/ ‘]=2'273' Unfortunately, the appllcatlon
is cited for comparison. The computational effort for eachOf the method proposed in RefT] seems to be restricted to

case is related with two magnitudes. On the one hand th%pln systems, and there is no obvious way to establish a

calculation of the statistical averaggg. (13)] depends on ierarchical approximation scheme. The cluster-variation

; . > .. method in the Tanojj24,25 approximation, where 44 varia-
the total number of spin@N) needed to describe a statistical tional parameters are needed, giteJ./J=2.346, compa-

configuration, that is, the size of the cluster. On the othefapie with our result. The transition temperature in mean-
solved (M) increases as the degree of periodicity is im-gspins of a cluster of 181 spinskgT,./J=2.360[8]. Also, the
proved, or the symmetry of the cluster is lowered. The numbpest transition temperature of the multi-effective-field theory
ber of iterations needed to sol# nonlinear equations de- (16 spins and 5 effective fielgss kgT./J=2.357[26]. Our
pends on the behavior of the functions, the requiredslightly better result using a smaller cluster might be related
accuracy, and the starting point. In the present calculationsgp a more accurate treatment of the periodicity.
about 10-20 iterations were enough, and in each iteration the Figure 5 shows the dependence on temperature of the
equations are evaluatéd+1 times. For each evaluatidv order-parameter and connected correlation functions between
+2 statistical sums over all the spins must be done: one fdiirst neighbors for the Onsager’s exact solution, Bethe ap-
the partition function, an®l +1 for the traces of Eq13). As  proximation, and the three studied cases of the four spin
the number of terms added up in the tracesNsfd@ Ising  cluster. The difference between the Bethe approximation and
spins, the time needed to perform a calculation at a givemzeroth order approximation of the four spin cluster is just the
temperature is proportional to @@+1)(M+2)2V. Thus the number of spins involved in the calculation. The effect of
system size is the magnitude that mainly limits the complexincreasing the size of the cluster is much less important than
ity of the calculations. For instance, the typical computerthe improvement obtained by taking the periodicity of the
time needed to perform a single temperature calculation focorrelations into accouritompare the curves corresponding
the caseM =4 andN=12 in a 466-MHz Compaq Alpha EV6 to the Bethe, zeroth, and first order approximafiofhe
workstation is about several seconds. comparison between the results of the two and four spin
The influence of the consistency of the correlations is re<€lusters is not so direct. If we consider the zeroth approxi-
markable. For instance, in the case of the four spin clustemation for the two and four spin clusters the transition tem-
the error in the transition temperature goes down from 25%eratures and correlation functions for the smaller cluster are
in the zeroth-order case to 7% in the first order approximabetter. The reason for this apparent inconsistency is related to
tion, and the heights of the peaks in the connected correlatiothe symmetry of the cluster. As the two spin cluster is less
functions show a similar behavior. The obtained transitionsymmetric, two effective fields are necessary to make all the
temperatures in Table |, particularly the best result ofmean values of the spins equal, while in one and four spin
kgT./J=2.351 for the four spin cluster, can be comparedclusters one model parameter is enough. Thus it can be in-
with the results of some of the approximation methods proferred that, within a given symmetry, as the consistency of
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kgT/J T/T,

FIG. 5. Results of the four spin cluster in zeroth, first, and second order approximations together with the Bethe approximation and
Onsager’s exact solution. Evolution with temperature of ¢aeorder-parameter an¢b) connected correlation functions between first
neighbors.

periodicity is improved, the evolution of the magnetization encouraging to test its application in more sophisticated
tends to the exact values. In all the cases the magnetizatidiamiltonian models.

shows mean-field critical exponents; an analysis of the co-
herent anomaly, as in R€B], could give a proper estimation ACKNOWLEDGMENTS
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