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The effect of a stochastic displacement field on a statistically independent point process is analyzed. Sto-
chastic displacement fields can be divided into two large classes: spatially correlated and uncorrelated. For both
cases exact transformation equations for the two-point correlation function and the power spectrum of the point
process are found, and a detailed study of them with important paradigmatic examples is done. The results are
general and in any dimension. Particular attention is devoted to the kind of large-scale correlations that can be
introduced by the displacement field and to the realizability of arbitrary “superhomogeneous” point processes.
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I. INTRODUCTION

Point processes(i.e., stochastic spatial distributions of
point particles with identical mass) are very useful math-
ematical models of manyN-body and complex systems.
Crystals(regular, perturbed, and/or defected) [1–3], quasic-
rystals [4], structural glasses, fluids[5], cosmological self-
gravitating systems[6,7], and also computer image process-
ing problems[8] and biometrical studies[9] are only some
examples of systems which are usually represented as spe-
cific point processes with appropriate spatial correlation
properties.

The study of this branch of stochastic processes and the
discovery of new statistical properties can be of fundamental
importance in many scientific topics. Many mathematical
studies have been already done about this class of processes
and many useful results have been derived(e.g., see
[10–12]).

One important question about a point process is what hap-
pens to its statistical properties when it is perturbed by a
stochastic spatial deformation that can have in turn an inter-
nal degree of spatial organization—that is, spatial correla-
tions. Depending on the physical application and context, the
perturbation can be seen either as a fluctuation due to a
physical process or as noise. The fundamental question con-
sists in finding how the spatial correlation properties of the
point process change under the effect of the perturbation and
how effective this can be in changing the spatial correlations
of the point process.

In this paper we focus our attention on the changes in-
duced on the two-point spatial correlations of a point process
by a stochastic displacement field both with and without
displacement-displacement correlations. We work in the hy-
pothesis of statistical independence between the point pro-
cess and the displacement field. The exact results presented
in this paper can find application in many scientific topics.
For instance, in the context of the so-calledN-body cosmo-
logical simulations[7], performed to study the problem of
“structure formation”(e.g., galaxy formation) from the pri-
mordial matter density field under the effect of the internal
gravitational interaction, point processes are used to repre-
sent the evolving matter density field. The initial conditions
of these simulations, representing the primordial density field

whose spectrum of fluctuations is predicted by theoretical
models [13], are usually built by applying an appropriate
stochastic displacement field to extremely orderedpreinitial
configurations of the point-particle distribution[14,15] (i.e.,
either a lattice or a particular “glassy” configuration). How-
ever, in the literature the effect of the displacement field is
described only in approximate ways, neglecting the contribu-
tion of the internal correlations of the particle system before
the application of the displacement field[16] and/or assum-
ing sufficiently small displacements[17] using the so-called
Zeldovich approximation. In the present paper we give an
exact description of these effects at every spatial scale and
for any spatially stationary stochastic displacement field. In
the cosmological context these results can be useful, for ex-
ample, to understand better the role of the small spatial
scales on the dynamics of the structure formation[18–20].

Another important application deals with the problem of
realizability of point processes with an arbitrarya priori
given two-point correlation function satisfying the hypoth-
esis of the Wiener-Khinchin theorem[21,22]. This problem
is of great importance for instance, to study the permitted
disordered configurations of hard spheres systems[23].
While for continuousstationary stochastic processes(e.g.,
Gaussian processes) the hypotheses of the Wiener-Khinchin
theorem give the necessary and sufficient conditions for the
realizability of the process, this is not true for point pro-
cesses. In this case the same hypotheses, adapted to point
processes, provide only necessary conditions for the realiz-
ability of the process. Therefore finding some limitations on
the realizability of point processes can be extremely useful
for this problem. In this context we will show that perturbing
a regular lattice(which can be considered to be the most
regular and uniform point process) with any stochastic dis-
placement field with a continuous spectrum, it is not possible
to generate a point-particle distribution with an arbitrarily
small degree of disorder with respect to the initial lattice. In
fact, we will see that a kind of lower limit appears for the
degree of disorder injected into an initial regular lattice by
any displacement field. This lower limit is measured by a
maximal finite value of the exponent of the power spectrum
of the lattice perturbed by the displacement field at small
wave numbers.
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Other possible applications come from the study of the
void distribution and Voronoi tessellation in the superhomo-
geneous class of point processes[24].

The paper and the presentation of the results are organized
as follows. In Sec. II the basic statistical properties of point
processes are briefly presented. This includes a classification
of all spatially stationary point processes in three classes
(i.e., essentially Poisson, superhomogeneous, andcritical) in
terms the asymptotic scaling behavior of the number fluctua-
tions.

In Sec. III we introduce an approximate argument, often
used in many physical applications, about the effect of the
displacement field on the two-point correlation properties of
a point process. In this presentation we make clear that this
approximation is valid in the limits of small displacements
and large spatial scales.

The rigorous treatment of the problem is introduced in
Sec. IV.

II. BASIC DEFINITIONS

First of all let us recall some useful definitions about sto-
chastic mass density fields. Given a generic(discrete or con-
tinuous) stochastic mass density fieldrsxd with spatially sta-
tionary statistical properties in ad-dimensional Euclidean
space its average value is defined by

krsxdl = r0,

where the symbolk¯l indicates the ensemble average.1 We
will limit our analysis to the case of stochasti homogenec
mass fields which can be considered spatially uniform(else-
whereous) at sufficiently large scale. This implies thatr0
.0, excluding in this way the case of fractal mass distribu-
tions for whichr0=0 asymptotically but with large fluctua-
tions in the conditional density at all scales[25].

The main correlation properties of the density field are
given by the covariance function(CF), also calledconnected
or reducedtwo-point correlation function:

Csx − yd = krsxdrsydl − r0
2.

Another important quantity to characterize the internal two-
point correlation properties of a stochastic field is the so-
called power spectrum(PS) Sskd (also calledstructure fac-
tor). It is defined by

Sskd = lim
L→+`

kudrsk ;Ldu2l
Ld , s1d

where

drsk ;Ld =E E
−L/2

L/2

ddxfrsxd − r0ge−ik·x. s2d

Clearly, in the limit L→ +`, Eq. (2) becomes the Fourier
transform of thedensity contrastrsxd−r0. The quantitySskd
measures the net weight of eachk mode to the determination

of the stochastic process without taking into account the
phase contribution.

Due to the spatial stationarity of the stochastic field, it is
simple to show thatSskd is equal to the Fourier transform
(FT) of Csxd [27]:

Sskd =E ddxCsxde−ik·x ; FfCsxdg, s3d

implying in turn

Csxd =
1

s2pdd E ddkSskdeik·x ; F−1fSskdg.

Note that the condition thatCsxd vanish foruxu→ +` implies
that kdSskd→0 for uk u→0. If the particle distribution is also
statistically isotropic,Csxd depends only onx= uxu andSskd
on k= uk u.

We devote the rest of the paper to the so-called spatially
stationary point processes(SPP’s)—i.e., stochastic mass
fields consisting of point particles of unitary mass. For this
class of systems the microscopicmassdensityrsxd coincides
with the microscopicnumberdensitynsxd which can be writ-
ten as

nsxd = o
i

dsx − xid, s4d

wherexi is the spatial position of theith particle of the sys-
tem, dsxd is the usuald-dimensional Dirac delta function,
and the sum is extended to all the particles of the system. As
aforementioned, we limit the discussion to SPP’s character-
ized by a well-defined average number densityn0.0 (i.e.,
excluding fractal-like particle distributions). Due to Eq.(4)
and to the fact thatn0.0, it is simple to find that, for a SPP,
the covarianceCsxd=knsx0+xdnsx0dl−n0

2 has adiagonalsin-
gular Dirac d-like contribution atx=0. That is, it can be
written as

Csxd = n0dsxd + n0
2hsxd, s5d

wheren0
2hsxd is the off-diagonal part measuring the spatial

correlation between number fluctuations in different spatial
points—i.e., forx.0. In general, for truly stochastic point
processes, this is a rathersmoothfunction of x and goes to
zero forx→ +`, but in some cases(see below the examples
of the “shuffled” lattices) it can present also singularities and
Dirac d-like spikes. Note that the spatially stationarity and
the exclusion of a fractal-like behavior imply that there is a
finite length scalel0.0 beyond which fluctuations of the
mass contained in volume of such size become “small” with
respect to the average value of the mass itself. Well beyond
this distance the mass(i.e., number) distribution can be con-
sidered with good approximation spatially uniform or homo-
geneous and for this reason it is calleduniformity or homo-
geneityscale[25]. It is simple to show that in the case in
which hsxd is sufficiently regular, this scale can be defined as
the distancel0 such thatuhsxdu,1 for x.l0. From Eqs.(3)
and (5) we can write the PS of a SPP as

1In the case of ergodicity it can be taken also to be a volume
average in the infinite-volume limit.
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Sskd = n0 + n0
2ĥskd,

where ĥskd=Ffhsxdg which in general is a regular function
decreasing to zero at largek. For point processesSskd in
statistics is also calledBartlett’s spectrum[28].

Since it will be useful to develop the arguments of the
following sections, we now introduce a brief classification
[18] of all the spatially stationary stochastic mass fieldsrsxd
(point process or continuous stochastic field) with well-
definedr0.0 in terms of their large-scale correlations and
fluctuations:

(1) If Ssk =0d=c.0, thenCsxd decreases to zero at large
x faster thanx−d and has a positive integral over all space
(equal toc); i.e., two-point correlations are short range and
mainly positive. Moreover, callingMsRd=eSsRdd

dx rsxd the
mass in a given sphereSsRd of radiusR, the average qua-
dratic fluctuation of this quantity behaves askDM2sRdl,Rd.
For this reason this class of systems can be calledsubstan-
tially Poissonian, as on sufficiently large scales the system
shows basically Poissonian fluctuations. A characteristic
physical example is given by a homogeneous gas at high
temperature.

(2) If Sskd,kb at small k with −d,b,0, then Csxd
,x−b−d at sufficiently largex. That is, the system has long-
range and mainly positive correlations[i.e., eddxCsxd= +`].
This implieskDM2sRdl,Rd−b and for this reason such sys-
tems are calledsuper-Poissonianor critical. A physical ex-
ample in this class is given by the density field of a fluid at
the critical point of the gas-liquid second order phase transi-
tion.

(3) If Sskd,kb with b.0 at smallk, then we can say that
at large x the CF Csxd decays faster thanx−d and that
eddxCsxd=0. This means that two-point spatial correlations
are essentially short range. However, they are not mainly
positive: The conditionSs0d=0 indeed implies a precise bal-
ance between positive and negative two-point correlations.
More precisely the relationSs0d=0 can be seen as a condi-
tion of geometricalorder in the spatial organization of the
stochastic mass fluctuations. The higher isb, the higher the
large scale degree of order. As a matter of fact, as shown
below, in the case of a regular and periodic lattice of par-
ticles, which is the most ordered particle distribution, one
can say thatSskd,kb with b→ +` for k→0. For all these
reasons for this last class of mass fields the namesuperho-
mogeneoushas been proposed[18,19,25] (elsewherehyper-
uniform [23]).

III. APPROXIMATE ARGUMENT

Before entering the detailed and rigorous discussion, we
give an argument usually implemented to roughly describe
the effect of a displacement field on a “sufficiently uniform”
mass distribution(for another approximate result to this
problem which is some way more accurate than the one ex-
posed in this section see[16]). This argument is based on the
fact that, if the applied displacements are sufficiently small,
the mass is conserved “locally.” Hence a form ofcontinuity
equationhas to be satisfied. Let us callrinsxd the initial mi-

croscopic density field andrsxd the same quantity after ap-
plication of the displacement fieldusxd. By considering the
displacements “small” enough, we can write the one-step
continuity equation

rsxd − rinsxd + = · frinsxdusxdg . 0, s6d

whereusxd is the displacement performed at pointx in the
given temporal step. The equality is rigorously satisfied only
in the case of infinitesimal displacements. Letr0.0 be

r0 = krinsxdl.

It is simple to verify that this average value is not modified
by the action of the displacement field. Ifrinsxd is “suffi-
ciently uniform” with respect torsxd, we can approximate it
in Eq. (6) with a continuous and uniform density field
rinsxd=r0, so that Eq.(6) can be rewritten as

rsxd − r0 + r0 = ·usxd . 0. s7d

By taking the Fourier integral in a cubic volume of sizeL of
Eq. (7) and using Eq.(2) we have

udrsk ;Ldu2 . r0
2uk ·vsk ;Ldu2, s8d

where

vsk ;Ld =E E
−L/2

L/2

ddxe−ik·xusxd.

From Eqs.(8) and (1), we can say that the PS of the final
mass distribution is roughly proportional tok2 times the PS
of the displacement field(actually the PS of the vector field
usxd, as its CF, is ad3d matrix and the form of such relation
can be more complicated). In particular this sentence be-
comes exact in the case of statistically isotropic displacement
field with uncorrelated perpendicular displacements in differ-
ent points, which is a widely used hypothesis in many appli-
cations(e.g., cosmologicalN-body simulations). In this hy-
pothesis, Eq.(8), through an average process over the chosen
ensemble of displacement fields[indicated with(¯)], leads
to the relation

Sskd . r0
2k2Ĝskd, s9d

between the PSSskd of the final mass density field and the

PS Ĝskd= uvsidsk ;Ldu2/Ld of the genericith components0
ø i ødd of the displacement field which is independent ofi
and the direction ofk in the given hypothesis of statistical
isotropy.

It is interesting to note that, for what concerns the afore-
mentioned problem of the implementation of the initial con-
dition of the cosmologicalN-body simulations, the result
given by Eqs.(8) and (9) coincides with that one usually
reported and used in literature(e.g.,[7,14]) and obtained via
the so-called Zeldovich approximation[17] in a continuous
fluidlike picture of the matter density field(i.e., neglecting
the “granularity” of the system and the correlations in the
“preinitial” configuration). The Zeldovich approximation, in
fact, consists in a perturbative solution, with the displace-
ment fieldusxd as the perturbative term, obtained in the La-
grangian formulation of the dynamics of a self-gravitating
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fluid (for a complete account see[26]). This perturbative
solution, at the linear order inusxd and in the continuous
fluidlike description of the mass density, leads to a relation
identical to Eq.(9) between the PS of the matter density field
obtained by applying the displacement fieldusxd to a uni-

form initial density and the PSĜskd of the displacement field
itself.

This simple result, obtained both via the approximated
continuity equation in general and via the Zeldovich approxi-
mation in the cosmological context, is based on two funda-
mental assumptions: the former consists in approximating
the initial microscopic density with a completely uniform
continuous mass field. As a consequence we expect that in
the exact equations describing the effect of the displacement
field on a spatial distribution of identical particles, there will
be terms related to the inhomogeneities(e.g., “granularity”
or discreteness of the mass density) and spatial correlations
of the initial particle density. The latter is the fact that, be-
hind Eq. (6) and the Zeldovich approximation, there is the
assumption of “sufficiently small” displacements. Then we
expect also that when this assumption is not valid in a sta-
tistical sense Eqs.(8) and(9) will change drastically. All this
will be shown in the following sections where the exact so-
lution to this problem is provided.

IV. DEFINITION OF THE PROBLEM

We start by considering a SPP, as defined above, with
microscopic densityninsxd given by Eq.(4) and withn0.0.

Let us now suppose of introducing a stochastic displace-
ment fieldusxd displacing each particle from its initial posi-
tion. In general this displacement process changes the PS of
the initial point distribution fromSinskd to a newSskd [or
equivalently the initial CFCinsxd to a newCsxd]. If ui is the
displacement applied to the particlei, the position of this
particle passes fromxi to xi +ui (see Fig. 1). Therefore the
final particle density field can be written as

nsxd = o
i

dsx − xi − uid. s10d

A stochastic displacement fieldusxd can be seen as acon-
tinuousstochastic vector field. We assume that this field is

spatially stationary in the statistical sense; i.e., it is charac-
terized by the invariance of the statistical properties for any
spatial translation. We can think to “attach” a displacement
vectorusxd to each spatial pointx, even though it acts on the
mass density only ifx is occupied by a particle. In what
follows, we assume that the displacement field is statistically
independent of the realizationninsxd of the initial particle
density; i.e., the probability of having a given realization
usxd of the displacement field is independent of the realiza-
tion of the initial particle distribution.

Let us consider a functionA only of the displacements
hu1, . . . ,uNj applied, respectively, to a set of spatial points
hx1, . . . ,xNj. The average of this quantity over all the realiza-
tions of the displacement fieldusxd is defined by

Ā =E . . .E Fp
j=1

N

ddujG fNsu1, . . . ,uNdAsu1, . . . ,uNd,

s11d

where fN is the joint probability density function(PDF) of
the displacementshu1, . . . ,uNj applied, respectively, to the
set of pointshx1, . . . ,xNj. In general,fN depends parametri-
cally on the points positionsxi. In the case of a statistically
stationary displacement fields,fN depends parametrically
only on the separation vectors between all the couples of the
points of the sethx1, . . . ,xNj. A particular and very important
case is when the set of points coincides with the positions
occupied by all the particles[in which case we call the joint
displacement PDF simplyPshuijd] of the initial SPP or by
the particles of one of its subsets. Note, however, that in our
hypothesis the form of this PDF does not depend on the fact
that these points are actually occupied by particles.

Finally, if we have a function of the final(i.e., after the
introduction of the displacements) microscopic densitynsxd,
the ensemble average over all the possible final configura-
tions of the particle distribution is given by averaging over
all the possible displacements as in Eq.(11), fixing the initial
particle densityninsxd, and then over all the possible initial
particle configurationsk¯l. This is due to the fact that the
ensembleof the all possible final particle configurations is
found by considering all the possible initial configurations
and for each of these all the final configurations obtained by
applying theensembleof the displacement fields. However,
if, as we suppose here, the displacement field is statistically
independent of the initial particle distribution, the order of
these two averages is arbitrary. For instance, in this case, the
CF of the “displaced” particle distribution is expressed by

Csxd = knsx0 + xdnsx0dl − knsx0dl2, s12d

with an arbitrary order of the two averagesk¯l and k¯l.

V. EXACT RESULTS FOR ONE- AND TWO-POINT
STATISTICAL PROPERTIES OF THE PARTICLE

DISTRIBUTION

The aim of this section is to relate the one- and two-point
correlation properties of the “displaced” particle distribution
to its initial ones and to those of the applied displacement

FIG. 1. Pictorial view of the effect of a stochastic displacement
field to a spatial particle distribution in two dimensions(2D). The
particles pass, through the displacements(dashed arrows), from the
old positions(open circles) to the new ones(solid circles).
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field by finding exact relations going beyond the approxima-
tion given by Eq.(12). As aforementioned, the discussion
will be limited to the case of spatially stationary stochastic
displacement fields and initial particle distributions. In this
way also the final particle distribution will be spatially sta-
tionary.

We will start by evaluating, through Eq.(10), the average
mass densityknsxdl. The next step will consist in finding the
transformation equation for the PSSskd [or equivalently the
CF Csxd].

Since the displacement process does not create or destroy
any particle and is statistically stationary, the average mass
density stays equal to the initial onen0:

knsxdl = n0.

This can be also proved by direct calculation usingkninsxdl
=n0. First of all we note that Eq.(10) is a sum of single-
displacement terms. Therefore, in order to evaluate the dis-
placement averagensxd, we need only to know the one dis-
placement PDFf1sud and not the complete joint PDFPshuijd
for all the system particles. In our hypothesis of spatial sta-
tionarity f1sud does not depend on the point of application of
the displacement, and we recall itpsud for simplicity [psud is
obtained fromPshuijd by integrating out all the displace-
ments with the exception of one]. We can then write

nsxd = o
i
E dduipsuiddsx − xi − uid = o

i

psx − xid.

By taking the averagek¯l over the initial particle configu-
rations, we finally have

knsxdl =KE ddypsydo
i

dsy − x + xidL = n0E ddypsyd = n0,

where we have used the statistical spatial stationarity of
ninsxd [i.e., kninsxdl=kninsy−xdl=n0] and the normalization
condition of the one-displacement PDFpsud.

We can now face the problem of calculating the new CF
Csxd and the new PSSskd. The key point is to evaluate the
averageknsxdnsydl. Since the product

nsxdnsyd = o
i,j

dsx − xi − uiddsy − x j − u jd

is a sum of terms containing either one(for i = j) or two (for
i Þ j) different displacements, we do not need to know the
complete joint PDF Pshuijd, but only the joint two-
displacement PDFf2su ,vd which is obtained fromPshuijd by
integrating out all the displacements but two. In general
f2su ,vd will depend parametrically on the coordinates of the
two points of application of the displacements. Assuming the
hypothesis of a spatially stationary displacement field,
f2su ,vd depends parametrically only on the separation vector
x between these two points. For this reason we recall it as
f2su ,vd; fsu ,v ;xd, putting in explicit evidence this depen-
dence. Note that the functionfsu ,v ;xd carries much more
information than simple knowledge of the average displace-
ment ū=U and the two-displacement correlation matrix of
elements

Gmnsx − yd = fusmdsxd − Usmdgfusndsyd − Usndg, s13d

with m, n=1, . . . ,d, whereusmd is themth component of the
displacement vectoru. In fact Gmnsx−yd is only the average
value of fusmdsxd−Usmdg fusndsyd−Usndg calculated with the
PDF fsu ,v ;xd itself, while knowledge offsu ,v ;xd includes
all information about all the higher moments of the two dis-
placements.

The joint two-displacement PDFfsu ,v ;xd satisfies the
following limit conditions onx:

fsu,v;0d = dsu − vdpsud, s14d

lim
x→`

fsu,v;xd = psudpsvd. s15d

The former equation is trivial, while the latter establishes
simply that the correlation between two different displace-
ments must go to zero if the distance between the two points
of application goes to infinity.

First of all let us evaluate the average ofnsxdnsyd over the
displacements. By direct integration one obtains

nsxdnsyd = o
i,j
E E dduid

dujffsui,u j ;xi jddsx − xi − uid

3dsy − x j − u jdg

= o
i,j

fsx − xi,y − x j ;xi jd, s16d

where xi j =xi −x j. Note that the first limit condition in Eq.
(14) permits us to perform the average without separating the
diagonal contributioni = j from the off-diagonal parti Þ j of
the double sum in Eq.(16) by averaging separately the
former using the one-displacement PDFpsuid and the latter
through the two-displacement PDFfsui ,u j ;xi jd with i Þ j .

The next step is to evaluate the averagek¯l on the en-
semble of initial particle configurations. For this purpose
note that the ensemble average of a function of the initial
configuration of the formoi,jcsxi ,x jd, wherecsx ,yd is a ge-
neric two-point function, can be written as

Ko
i,j

csxi,x jdL ; KE E ddxddycsx,yd

3o
i,j

dsx − xiddsy − x jdL
=E E ddxddycsx,yd

3Ko
i,j

dsx − xiddsy − x jdL
=E E ddxddykninsxdninsydlcsx,yd, s17d

where, by definition, we have
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kninsxdninsydl = n0
2 + Cinsx − yd. s18d

Note that the diagonal partn0dsxd of the connected two-point
correlation functionCinsxd takes correctly into account the
diagonal termi = j of the sum of Eq.(17).

By applying Eqs.(17) and (18) to Eq. (16), it is possible
to write

knsxdnsydl =E E ddx8ddy8fn0
2 + Cinsx8 − y8dg

3 fsx − x8,y − y8;x8 − y8d. s19d

It can be convenient to rewrite Eq.(19) by separating the two
terms coming, respectively, from the diagonal and off-
diagonal parts ofCinsxd—that is, by writing, as in Eq.(5),
Cinsxd=n0dsxd+n0

2hinsxd:

knsxdnsydl = n0dsx − yd + n0
2E E ddx8ddy8f1 + hinsx8 − y8dg

3 fsx − x8,y − y8;x8 − y8d. s20d

We are now able to write the new CFCsxd of the final par-
ticle distribution which is defined, as usual, by

Csxd = knsx0 + xdnsx0dl − n0
2. s21d

Note that from Eq.(20) the diagonal part ofCsxd remains
equal to that ofCinsxd [i.e., n0dsxd] as expected.

In order to write the transformation equation for the PS,
which is the most useful in many applications[14], we start
from the simplest case of uncorrelated displacements; then,
we will come back to the general case for general consider-
ations and some paradigmatic examples.

VI. INDEPENDENT DISPLACEMENTS

We now consider the case in which the displacement ap-
plied to a given spatial point is statistically independent of
the displacement applied to any other point. Therefore the
statistics of the stochastic displacement field is completely
determined by knowledge of the reduced one-displacement
PDFpsud and the joint PDF ofn displacementsu1,u2, . . . ,un

in n differentpoints of the space factorizes as follows:

fnsu1,u2, . . . ,und = p
i=1

n

psuid.

In particular for the two-displacement PDF, we can write

fsu,v;xd = Hdsu − vdpsud for x = 0,

psudpsvd for x Þ 0.
J s22d

Note that the lack of displacement-displacement correlations
implies a discontinuity offsu ,v ;xd at x=0. As shown below
this does not happen for truly continuous correlated stochas-
tic displacement fields(i.e., belonging to the class of con-
tinuous stationary stochastic processes[21]). We can now
apply Eq. (22) to Eq. (20) in order to find the two-point
correlation function of the final system:

knsxdnsydl = n0
2 + n0dsx − yd + n0

2E E ddx8ddy8

3psx − x8dhinsx8 − y8dpsy − y8d. s23d

Since in this casefsu ,v ;xd is discontinuous atx=0, it has
been important to separate the contributions of the diagonal
and off-diagonal parts ofCinsxd in Eq. (20). In fact, in the
hypothesis of uncorrelated displacements, any element of the
connected two-displacement correlation matrixGmnsxd,
given in Eq. (13), vanishes for anyxÞ0 while Gmns0d
=dmngm

2 where gm
2 .0 is the single-displacement variance.

That is,Gmnsxd is discontinuous atx=0. As aforementioned,
this is a very particular case, as in truly correlated continuous
stationary stochastic processes it is continuous everywhere
[21].

At this point, by remembering that the PSSskd
=FfCsxdg, with Csxd given by Eq. (21), we can Fourier
transform Eq.(23) to obtain the following local relation ink
space:

Sskd = n0f1 − up̂skdu2g + up̂skdu2Sinskd, s24d

where p̂skd is the characteristic function of the one-
displacement PDF,

p̂skd = Ffpsudg,

and where we have usedn0
2Ffhinsxdg=Sinskd−n0. Note that

by definition p̂s0d=1.
Equation(24) gives the relation between the PS’s of the

point-particle configurations before and after the application
of the uncorrelated displacements field. First of all let us
analyze the notable case in which the initial point-particle
distribution is the statistically stationary and isotropic Pois-
son one—i.e., that case in which there is no correlation be-
tween the initial positions of different particles. It is simple
to show[18,25] that the initial density CF is simplyCinsxd
=n0dsxd (i.e., it has only the diagonal part). This means that
Sinskd=n0 which, in view of Eq.(24), implies Sskd=n0 too,
regardless to the form ofpsud. That is, the particle distribu-
tion remains Poissonian after the application of any random
and uncorrelated displacement field. This can be considered
as a formulation of the so-calledtheorem of Bartlett[32] (for
the behavior of a Poisson point process under adeterministic
displacement field see[33]). This property is quite easy to
understand: the displacement field has no spatial correlation,
and hence it tends to randomize the particle distribution, but
the Poisson particle distribution is already the “most random
possible” SPP. This is further clarified by observing that un-
correlated displacements cannot increase the spatial correla-
tions in the particle distribution. We have just shown that the
stationary Poisson point process of average densityn0.0 is
the “fixed point” of the transformation given by Eq.(24). We
show now that this fixed point(i.e., the stationary Poisson
point process) is alsoattractive. That is, we show that, start-
ing from an arbitrary stationary point process with densityn0
and initial PSSinskd, by applying successive stochastic un-
correlated displacements to all the particles taken from the
same PDFpsud with no correlation at each step, the PS flows
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towardS̀ skd=n0—i.e., the Poisson one. It is simple to show
that afterm consecutive applications of such displacement
field the PSSmskd satisfies the relation

Smskd = n0f1 − up̂skdu2mg + up̂skdu2mSinskd.

The previous equation is simply obtained by the fact that the
characteristic function of the sum ofm independent random
vectors extracted from the same PDFpsud is simply fp̂skdgm.
Sincepsud is a PDF, a part from particular cases,2 in general
up̂skdu,1 for any k.0. This implies thatSmskd converges
exponentially fast ton0 for eachk—i.e., to the PS of the
Poisson point process.3

One has also to notice that the right-hand side of Eq.(24)
is the sum of two terms: the former is proportional to the
average density of particlesn0, which we can callgranularity
term, and independent of the initial PS of the particle distri-
bution, while the latter depends onn0, only throughSinskd
which satisfies the conditionSinsk →`d=n0 because of the
diagonal term ofCinsxd and of the fact that the off-diagonal
part must be integrable at smallx.

If the initial point process is statistically isotropic as well
as stationary, thenCinsxd is a function only ofx= uxu and
Sinskd only of k= uk u. Furthermore, if also the displacement

field is statistically isotropic, thenum̄=0 for each m
=1, . . . ,d, andpsud depends only onu= uuu. This implies that
alsoSskd depends only onk (andCsxd on x).

A. Small-k expansion and large-scale behavior—I

In many applications, such as cosmological studies[7], it
is particularly important to analyze the behavior ofSskd at
small k—that is, at large spatial scales. For this reason we
now study the asymptotic behavior of Eq.(24) for k→0. We
limit the discussion to the case in which both the point pro-
cess generating the initial particle distribution and the sto-
chastic displacement field are statistically isotropic. As seen
above, this hypothesis impliesSinskd=Sinskd, psud=psud, and
Sskd=Sskd.

The first step consists in studying the small-k behavior of
the characteristic functionp̂skd. By definition we have

p̂skd =E ddue−ik·upsud,

and thenp̂s0d=1. As psud=psud, then p̂skd= p̂skd. Let us
suppose that at sufficiently largeu we have psud=Au−a

+osu−ad, where a.d as psud must be by definition inte-
grable over all space(a→ +` includes exponential-like or
faster decay at largeu). Using this property and the definition

of p̂skd, it is simple to show that to the lowest order ink
larger than zero, one has

p̂skd = 1 −Bkb with Hb = a − d if 0 , a − d ø 2,

b = 2 if a . d + 2,
J

s25d

whereB.0. Moreover, ifa.d+2, thenB=u2̄/2d. Instead,

if d,aød+2, thenu2̄ diverges and

B = AE ddxx−as1 − e−ix cosud, s26d

whereu is the angle betweenx and any one of the coordinate
axes. Note that in any case 0,bø2. This implies that, for
k!B1/b,

1 − up̂skdu2 . 2Bkb.

On the other hand, as seen in Sec. II in order to have the
initial SPP well defined, it is necessary thatkdSinskd→0 for
k→0—that is, practicallySinskd,kg at smallk with g.−d.

We can draw the following conclusions for the small-k
behavior ofSskd in Eq. (24)

(i) If −d,g,b (with as seen above 0,bø2), Sskd
,kg similarly to Sinskd, and its small-k amplitude is indepen-
dent of the displacement field. This means that, in this case,
finite uncorrelateddisplacements cannot destroy the persis-
tence of correlations already present in the system. In par-
ticular it is important to note that ifg,0 (i.e., long-range
density-density correlations in the initial particle configura-
tions) no uncorrelated displacement field is able to affect the
large-scale correlation properties of the initial system.

(ii ) On the contrary, if 0,b,g, then the small-k behav-
ior is completely determined by the displacement field, re-
sulting in Sskd.2Bkb. As shown in Sec. II, a point-particle
distribution havingg.0 is calledsuperhomogeneous, show-
ing a sort of long-range order, characterized bysub-
Poissonianmass fluctuations at large scales, which in the
present case is partially destroyed by the Poissonian noise
introduced by the displacement field. In this respect, note

that if u2̄= +`, thenb,2. Consequently, it is much simpler
to obtain the conditiong.b; i.e., the randomization of the
system introduced by the uncorrelated displacement field is
more effective.

(iii ) If b=g, both long-wavelength modes of the initial
particle configuration and of the displacement field deter-
mine of the small-k power spectrum of the final system. In
particular the exponent is equal to the initial one while its
amplitude increases. This indicates that the initial and final
systems have the same kind of long-range order of density
fluctuations and the same mass-length scaling relation for the
large-scale mass fluctuations, but with an increase of their
amplitude in the second case.

B. Shuffled lattice with uncorrelated displacements

In this subsection we present a simple, but important ex-
ample of application of uncorrelated stochastic displacement
fields: the random shuffling of a regular lattice of particles.

2E.g., the case in whichpsud=dsu−u0d /2+dsu+u0d /2 for which
p̂skd=cossk ·u0d and thenup̂skdu=1 for all k such thatk ·u0=np
with n any integer.

3As up̂s0du=1, for k=0 instead we find the singularlySms0d
=Sins0d at any m. This creates in general an asymptotic isolated
discontinuity atk=0. However, this does not matter for the real-
space correlation properties as the Fourier transform of the PS is
insensible to that.
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Its importance relies on the fact that aperturbed lattice is
often used as the initial condition for many dynamical appli-
cations as, for instance, the already mentioned cosmological
N-body simulations[14] and biometrical studies[9]. In this
section we present the simplest example of a lattice with
stochastic displacement perturbations. In Fig. 2 the projec-
tion on thexy plane of a three-dimensional shuffled lattice is
given.

It is simple to show that for a distribution of point par-
ticles of unitary mass occupying the sites of a regular cubic
lattice, the PS is[1]

Sinskd = s2pddn0
2 o

HÞ0
dsk − Hd, s27d

where the sum runs over all the sitesH of the reciprocal
lattice[1,2] with the exception of the origin0. We recall that,
if the particles occupy the sites of a cubic lattice with lattice
spacingl, then each component ofH is a positive or negative
integer multiple of 2p / l and the average density of points is
n0= l−d.

We can now apply Eq.(24) in order to find the final PS
Sskd after the random shuffling(i.e., the application of the
random displacement field):

Sskd = n0f1 − up̂skdu2g + s2pddn0
2 o

HÞ0
up̂sHdu2dsk − Hd.

s28d

We now stress two important aspects of Eq.(28).
(i) The random shuffling in general does not erase com-

pletely the presence of the so-calledBragg peaks(i.e., the
sum ofd functions), but only modulates their amplitude and
adds a continuous contribution typical of fully stochastic
point distributions. The complete cancellation of the Bragg
peaks contribution toSskd is possible only in the very par-
ticular case in whichp̂sHd=0 for every reciprocal lattice
vector with the exception of0.

(ii ) Aroundk=0 (more precisely in the so-calledfirst Bril-

louin zone[2] of the reciprocal lattice) Sinskd=0 at any order
of the Taylor expansion[we can loosely say thatSinskd
,k+` aroundk=0]. Consequently, as clear from Eq.(28), in
this regionSskd is determined by only the behavior of the
displacement characteristic functionp̂skd. As shown above,
if the displacement field is statistically isotropic,p̂skd
; p̂skd. Therefore, even though the lattice is strictly aniso-
tropic, the shuffled one has isotropic mass fluctuations at
large scales. This implies that on sufficiently large scales the
scaling exponent of the fluctuations of the number of par-
ticles contained in a given volume of linear sizeR does not
depend strongly on the shape of the volume itself. This is not
true, instead, for a deterministic cubic lattice for which the
scaling behavior of these fluctuations changes in passing
from a spherical to a cubic volume with the same symmetry
of the lattice.

Since in the first Brillouin zoneSskd is completely deter-
mined by p̂skd, the asymptotic behavior at smallk of Sskd
can be derived by Eq.(25). In particular, if the varianceu2̄ of
the displacement field is finite, we findSskd,k2 for k→0,
independently of the particular form ofpsud (see Fig. 3).
This is a case ofuniversal behaviorfor all the PDFpsud with
sufficiently fast decay at largeu.

Instead, in the case in whichu2̄ diverges—i.e.,d,aød
+2—this universality is lost, havingSskd,kb with b=a−d,
with a one-to-one correspondence between the exponentsa
andb as shown in the previous section(see Fig. 4). A similar
case of universality is found in random walks with indepen-
dent steps[29]. In fact, if the variance of the steps is finite
(ordinary random walks), the average quadratic distance
kDx2stdl reached by the walker after a large numbert of steps

FIG. 2. The projection on thexy plane of a 3Dshuffledlattice of
163 particles in the unitary volume is represented. In the present
case each particle is randomly displaced from its initial lattice po-
sition inside a finite cubic box centered around the lattice point and
of side equal to one fifth of the lattice spacing. The displacement
applied to each particle is statistically independent of the displace-
ments applied to the other particles.

FIG. 3. Power spectrum of a 1D shuffled lattice with uncorre-
lated displacements with finite variance obtained both from numeri-
cal simulations and from the theoretical prediction given by Eq.
(28) and showing perfect agreement. In particular the two PS’s refer
to a regular chain of particles and unitary lattice spacing perturbed
by the displacement field, through which each particle is randomly
displaced in a point of the segment centered around its initial lattice
position and of lengtha=1/50 [i.e., psud=usa/2−udusu+a/2d /a].
Note that at smallk the PSSskd scales ask2 as the displacement
variance is finite. Moreover, the Bragg peaks(whose amplitude here
has been normalized for pictorial reasons) are perfectly modulated
by weights proportional toup̂skdu2 [which in this case is given by
p̂skd=2 sin2ska/2d /ka]. Finally the PS at largek converges cor-
rectly to the average number densityn0=1.
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satisfies the scaling relationkDx2stdl, t independently of the
precise functional form of the PDF of the single step. On the
other hand, if the single-step variance goes to infinity(Levy
flights), this is no longer true,kDx2stdl being infinite and the
PDF of Dxstd at sufficiently larget having a power law tail
with an exponent in a one-to-one correspondence with that
characterizing the tail of the PDF of a single step. A similar
transition from a universal scaling behavior of the fluctua-
tions to a nonuniversal one has been found also in more
complex fragmentation problems[30].

VII. CORRELATED DISPLACEMENTS

Let us now go back to Eq.(20), and consider the general
case of a stationary stochastic displacement field with spatial
correlations. In this casefsu ,v ;xd cannot be factorized as in
Eq. (22) for x.0.

In order to write the equation of transformation of the PS
let us recall the basic relation between the CF and PS of a
spatially stationary stochastic process:

E E ddxddye−isk·x+q·ydCsx − yd = s2pdddsk + qdSskd.

s29d

We also recall that, by definition,

knsxdnsydl = n0
2 + Csx − yd.

Furthermore, we define the functionsf̂sk1,k2;xd and
Fsk1,k2;qd, respectively, by the following FT’s:

f̂sk1,k2;xd =E E dduddve−isk1·u+k2·vdfsu,v;xd, s30d

Fsk1,k2;qd =E ddxe−iq·x f̂sk1,k2;xd. s31d

The functionf̂sk1,k2;xd is simply the characteristic function

of the joint two-displacement PDF. By definitionf̂sk1,k2;xd
satisfies the following limit conditions:

f̂s0,0;xd = 1 for anyx

and

f̂s0,k ;xd = f̂sk,0;xd = p̂skd for any x . 0.

By using Eq.(20) and Eqs.(29)–(31), we can write

Sskd = n0S1 −
1

s2pdd E ddqFsk,− k ;qdD
+E ddxe−ik·x f̂sk,− k ;xdfn0

2 + Cinsxdg − s2pddn0
2dskd.

s32d

Note that f1/s2pddgeddqFsk ,−k ;qd must be carefully
handled. In fact, due to the properties of the inversion of the

Fourier transform, it cannot be substituted directly byf̂sk ,
−k ;0d if fsu ,v ;xd is discontinuous atx=0 and continuous
anywhere else as in the case of uncorrelated displacements
presented above. Thus it must be understood as

1

s2pdd E ddqFsk,− k ;qd = lim
x→0

f̂sk,− k ;xd. s33d

More specifically, if fsu ,v ;xd is continuous atx=0, i.e.,

lim
x→0

fsu,v;xd = fsu,v;0d ; dsu − vdpsud,

then we have

1

s2pdd E ddqFsk,− k ;qd = 1.

This condition is valid in all the cases in which the stochastic
displacement field is a real continuous correlated stochastic
process(see below the Gaussian example). In fact, in this
case it is possible to prove a theorem[21] stating that the
two-displacement correlation function is continuous every-

where, being equal to the one-displacement varianceu2−u2̄

at x=0. Instead, in the case of an uncorrelated stochastic
displacement field this is no longer true(it is not a continu-
ous stochastic process) and fsu ,v ;xd is discontinuous atx
=0 as shown by Eq.(22). This together with Eq.(33) gives,
for this case,

1

s2pdd E ddqFsk,− k ;qd = up̃skdu2.

With this prescription it is simple to recover Eq.(24) from
Eq. (32) in the case of uncorrelated displacements.

Instead, in the present case of a stationary correlated con-
tinuous stochastic displacement field, Eq.(32) can be rewrit-
ten as

FIG. 4. Shuffled lattice of the same kind of that in Fig. 3, but
now with psud=sa/pd / su2+a2d where a=1/50—i.e., with unlim-
ited displacements and logarithmically divergingū. Again the
agreement between the numerical simulation results and the theo-
retical prediction, Eq.(28), is excellent. Note in particular that
Sskd,k at smallk and that the remaining Bragg peaks, superim-
posed onto the continuous contribution to the PS, are well modu-
lated by weights proportional toup̂skdu2 with p̂skd=exps−aukud. Fi-
nally the PS at largek converges to average number densityn0=1.
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Sskd =E ddxe−ik·x f̂sk,− k ;xdfn0
2 + Cinsxdg − s2pddn0

2dskd

s34d

or, equivalently,

Sskd = n0
2Fsk,− k ;kd +

1

s2pdd E ddqFsk,− k ;qdSinsk − qd

− s2pddn0
2dskd. s35d

Equations(34) can be further simplified by noticing that in
the case of the spatial statistical stationarity of both the initial
point-particle distribution and of the displacement field, the
PS of the final particle distribution will not depend separately
on the couple of displacementsu andv applied at two points
separated by the separation vectorx, but on the relative dis-
placementw=u−v. In fact let us callfsw ;xd the PDF that
two points, separated by the separation vectorx, perform a
relative displacementw. By definition,

fsw;xd =E E dduddvfsu,v;xddsw − u + vd. s36d

If we take theF of Eq. (36) with respect tow, we have

f̂sk ;xd = f̂sk,− k ;xd,

where f̂sk ;xd=Fffsw ;xdg. Therefore Eq.(34) can be re-
written again:

Sskd =E ddxe−ik·xf̂sk ;xdfn0
2 + Cinsxdg − s2pddn0

2dskd.

s37d

By using the PDFfsw ;xd, Eq. (19) can be rewritten in a
very intuitive form. This is done by noticing that for a ge-
neric stationary point processnsxd the quantityknsxdnsydl /n0

[wherek¯l is as usual the average over the considered en-
semble of configurationsnsxd] represents the averagecondi-
tional density[25] of particles seen by a generic particle of
the system at a separationx−y from it. By calling Ginsx
−yd=kninsxdninsydl /n0 and G fsx−yd=knsxdnsydl /n0 the con-
ditional densities, respectively, before and after the applica-
tion of the displacement field, Eq.(19) transforms into

G fsxd =E ddx8Ginsx8dfsx − x8;x8d.

Very often the CF is defined in a dimensionless way di-
viding Csxd by n0

2; i.e., it is redefined as

jsxd =
Csxd
n0

2 =
dsxd
n0

+ hsxd,

which we call the normalized covariance function(NCF).
Consequently, also the PS is redefined as theF of jsxd:

Pskd = Ffjsxdg =
Sskd
n0

2 =
1

n0
+ ĥskd.

It is simple to verify that if all the particles of the distribution

have the samenonunitarymassm.0, i.e., if the microscopic
mass density isrsxd=mnsxd=moidsx−xid with r0=mn0, the
NCF jsxd of the microscopicmassdensityrsxd is equal to
that of the microscopicnumberdensitynsxd and then is in-
dependent ofm. For these rescaled quantities Eq.(37) can be
rewritten as

Pskd =E ddxe−ik·xf̂sk ;xdf1 + jinsxdg − s2pdddskd.

s38d

It is important to note that, whilejinsxd depends onn0 at least
through its diagonal partdsxd /n0, the two displacements

fsu ,v ;xd and thereforef̂sk ;xd in our hypothesis are in gen-
eral supposed not to be(unless for particular choices of its
momenta). Therefore, differently from the case of uncorre-
lated displacements, both Eqs.(34) and (36) can be divided
into two parts: one dependent onn0 and the other indepen-
dent of it. This is a very important point because spatial
distributions of particles with equal massesm are often used
in numerical simulations as a discrete representation of con-
tinuous stochastic mass density fields. Consequently, in Eqs.
(34) and (36) there is a part depending on the discretization
process and another part independent of it. This aspect is
particularly important in the context of the gravitational
N-body simulations in which, as above mentioned, the matter
density field is usually represented, for numerical reasons,
through a more or less dense distribution of particles with the
same massm [14] so thatmn0=r0 with r0 put equal to the
average mass density of the continuous model.

Small-k expansion and large-scale behavior—II

Starting from Eq.(38), one can write a simple formula for
the small-k (i.e., large-scale) behavior of the final PS of the
particle distribution after the application of the displacement
field. First of all let us study the small-k behavior of

f̂sk ;xd= f̂sk ,−k ;xd. Since it is the FT of fsw ;xd, if
Gmns0d, +` (implying that the average value ofw2 is finite
at anyx), we can write

f̂sk ;xd = 1 − ik ·wsxd −
fk ·wsxdg2

2
+ osk2d, s39d

where wsxd is the relative displacement between two par-
ticles initially separated by a vector distancex. Let us sup-
posewsxd=0 which is automatic in the case of statistical
invariance for space inversion or any rotation(isotropy).
Moreover, using the definition ofGmnsxd we can write

fk ·wsxdg2 = 2o
m,n

1,d

ksmdksndfGmns0d − Gmnsxdg,

where we have supposed alsoGmnsxd=Gmns−xd. Using this
expression and Eq.(39) in Eq. (38), we obtain, at small
enoughk,
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Pskd . PinskdF1 − o
m,n

1,d

ksmdksndGmns0dG
+ o

m,n

1,d

ksmdksndFĜmnskd +E ddq

s2pddĜmnsqdPinsk − qdG ,

s40d

whereĜmnskd=FfGmnsxdg is the power spectrum matrix of
the displacement field. Note that, sinceGmns0d
=efddq/ s2pddgĜmnsqd, Eq. (40) can be also rewritten as

Pskd . Pinskd + o
m,n

1,d

ksmdksndHĜmnskd

+E ddq

s2pddĜmnsqdfPinsk − qd − PinskdgJ ,

which is useful in particular in the case in which the initial
particle configuration is the stationary Poisson one for which
Pinskd;1/n0 and the last term vanishes.

Depending on the small-k properties of Pinskd and

Ĝmnskd, the small-k behavior ofPskd will change. Note that
Eq. (40) is valid only if Gmns0d, +`. In the case in which
Gmns0d= +`, then the singular part of the small-k expansion

of f̂sk ;xd has to be considered in a similar way to the case
of uncorrelated displacements given by Eqs.(25) and(26). A
very particular and important case of Eq.(40) is given when
perpendicular displacements are not correlated at anyx. This

means thatGmnsxd=dmnGsxd andĜmnskd=dmnĜskd (with dmn

the Kronecher delta). If the displacement field is also isotro-

pic, Ĝskd depends only onk [and consequentlyGsxd on x],

so that the PS matrix with elementsĜmnskd is invariant under
any spatial rotation.

In this case Eq.(40) can be rewritten as

Pskd . Pinskdf1 − Gs0dk2g + k2FĜskd

+E ddq

s2pddĜsqdPinsk − qdG . s41d

Similarly to Eq. (40), also Eq.(41) can be reexpressed as
follows:

Pskd . Pinskd + k2HĜskd +E ddq

s2pddĜsqdfPinsk − qd

− PinskdgJ . s42d

Equations(41) and (42) are very useful to show very
clearly how effective a displacement field can be in “inject-
ing” large-scale correlations into a given particle distribution.
As better clarified below, a central role is played by the spa-
tial dimensiond. Let us suppose that at smallk we have

Pinskd,ka and thatĜskd,kb (as already showna ,b.−d).
Note that

E ddq

s2pddĜsqdPinsk − qd =E ddxe−ik·xGsxdjinsxd,

and jinsxd goes to zero at largex. Hence, whenb,0, in

Eq. (41), the term k2Ĝskd is more effective than

k2efddq/ s2pddgĜsqdPinsk −qd (i.e., the latter has an expo-
nent larger thanb+2). For b=0, apart from the very particu-

lar case in whichefddq/ s2pddgĜsqdPinsqd=0, both terms are
of the same order at smallk—i.e., proportional tok2. Instead,

for b.0, apart again the previous particular choices ofĜskd
in relation toPinskd, k2efddq/ s2pddgĜsqdPinsk −qd,k2 pre-

vails onk2Ĝskd,kb+2 at sufficiently smallk.
We can therefore conclude the following.
(i) b,0: if a,b+2, the displacement field is ineffective

in changing large scale two-point correlations between par-
ticles. In fact the small-k leading term of the final PSPskd is
the initial onePinskd. For what concerns perturbations to this
leading term, it is simple to show that, ifa,b, the main
perturbation to the leading term due to the displacements is

−Gs0dk2Pinskd,ka+2, while if b,a,b+2, it is k2Ĝskd
,kb+2 (if a=b, the two terms are of the same order).

If insteada.b+2, the displacement field completely de-
termines the new large-scale correlation properties of the

particle distribution,k2Ĝskd,kb+2 being now the leading
term ofPskd. Sinceb.−d, the limit “most critical” behavior
of Pskd which can be reached isk2−d. Note that fordù3
long-range nonintegrable and mainly positive(i.e., critical)
two-point correlations can be introduced in the system by the
action only of displacements having finite varianceGs0d. Ac-
cordingly the(unreachable) limit decaying behavior for the
NCF at largex is given byjsxd,x−2 which is not integrable
and long range. For example, ind=3 one can start from a
completely uncorrelated Poisson particle distribution and,
applying finite displacements(i.e., with a finite average
squared value) but with long-range correlations, to obtain a
particle distribution with a covariance function similar to
those found at the critical point of a second-order phase tran-
sition. For dø2 the exponent 2−dù0; hence,jsxd decays
faster thanx−d and correlations are not “critical,” but inte-
grable(i.e., for our purpose, short range).

Finally, for −2,b,0 and a.b+2 and anyd, even
though the leading term ofPskd is due to the displacement
field which is characterized by long-range correlations, the
final particle distribution remains superhomogeneous(see
Sec. II).

(ii ) b=0. If a,2, the leading term of the final PSPskd is
againPinskd. The displacement field introduces only higher-
order perturbations: (1) −Gs0dPinskdk2,ka+2 and (2)

k2hĜskd+efddq/ s2pddgĜsqdPinsk −qdj,k2. The former is
the most important perturbative term fora,0 (“critical” ini-
tial condition), while the latter is when 0,a,2. For a=0,
Eqs. (1) and (2) are in general of the same order and both
contribute to the main perturbation toPinskd. However, if the
initial particle configuration is a stationary Poisson one,
Pinskd;1/n0 for any k. Consequently, as shown explicitly
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by Eq. (42), the main perturbation toPinskd is only k2Ĝskd,
as the other terms in Eq.(42) cancel one each other. We
show this better in the following through the example of the
Gaussian displacement field.

Instead, ifa.2, again the small-k behavior of the final
PS is completely different from the initial one and is deter-
mined by the displacement field. In fact now the leading term

becomesk2hĜskd+efddq/ s2pddgĜsqdPinsk −qdj,k2. How-
ever, the system after the action of the displacements is still
in the superhomogeneous class of point processes in anyd.

(iii ) b.0. If efddq/ s2pddgĜsqdPinsqd.0, this case is
similar to the caseb=0 with the difference that whena
.2 the main term introduced by the displacement field is

only k2efddq/ s2pddgĜsqdPinsk −qd,k2. However, if

efddq/ s2pddgĜsqdPinsqd=0, which corresponds to a peculiar

choice of the dependence ofĜsqd on Pinsqd, the termk2Ĝskd
can again be important. This case will be analyzed in more
detail in the next section when the case of a shuffled lattice
with correlated Gaussian displacements is analyzed. For the
moment we notice only that this case is quite difficult to be
realized because of the condition given by the Wiener-
Khinchin theorem[22] which states that bothPinskd and

Ĝskd must be non-negative at anyk. This means that it can

be realized only ifPinskd is zero whereĜskd is not and vice
versa—i.e., nonoverlapping supports.

Finally, note that when the initial particle configuration is
a regular lattice, the termPinskdf1−Gs0dk2g in Eq. (41) is
identically zero aroundk=0. Consequently, the small-k PS of
the final configuration is determined by the next perturbation
terms(see the next section about Gaussian displacements).

It is important to notice that Eqs.(40) and (41) are quite
more complex than the result obtained in anaiveway in Sec.
III of the paper by simply using the continuity equation for
the local conservation of mass which led basically to

Pskd = k2Ĝskd.

We see that respect to this simple approximation, even in the
small-k limit (i.e., large spatial scales) and finite displace-
ments[i.e., finite Gs0d], there can be important corrections
coming both from(i) the granularity of the system,(ii ) the
internal correlations of the initial mass distribution, and(iii )
the interplay between these correlations and those of the dis-
placement field.

VIII. CORRELATED GAUSSIAN DISPLACEMENT FIELD

In this section the effect of a correlated displacement field
on the correlation properties of a given particle distribution is
further clarified through the discussion of a very important
example: the Gaussian displacement field. Its importance is
twofold: (1) its statistical properties are completely deter-
mined by the knowledge of one and two-point correlation
functions[i.e., mean valueū and correlation matrixGmnsxd];
(2) in many applications(e.g., initial conditions of cosmo-
logical N-body simulations) the Gaussian of perturbations
(i.e., particle displacements) arises as a natural hypothesis

basically due to arguments based on thecentral limit theorem
[21]. Moreover, in order to clarify better all the concepts
introduced in the previous section, two explicit examples of
application of a Gaussian displacement field will be given:
stationary Poissonian and regular lattice initial conditions.

We treat in detail the particular case of aone-dimensional
spatially stationary point processninsxd perturbed by a statis-
tically stationary Gaussian displacement fieldusxd. Theprob-
ability density functional Qfusxdg giving the statistical
weight of any realizationusxd of the field will have the form
[25]

Qfusxdg , expF−
1

2
E E

−`

+`

dxdyusxdKsx − ydusydG ,

s43d

whereKsxd=Ks−xd is the positive-definite correlation kernel
of the Gaussian displacement field. Without loss of general-
ity we have putū=0. Clearly Eq.(43) is only formal as,
rigorously speaking, the normalization constant is infinite in
the continuum space and also in the infinite-volume limit.
However, we write it to make evident the meaning of Gaus-
sianity for a stochastic field. For a more general account of
Gaussian stochastic fields see[27,31].

It is simple to show that the PS of the displacement field
is given by

Ĝskd =
1

FfKsxdg
.

As we wantusxd to be a well defined continuous stochastic
process,Ksxd is to be taken so that the Wiener-Khinchin

theorem is satisfied21; i.e., Ksxd is such thatĜskdù0 at allk
and integrable. The displacement-displacement correlation
function will be thus given by

Gsxd ; usx0 + xdusx0d = F−1F 1

FfKsxdgG ,

which is a continuous function ifusxd is a continuous sto-
chastic process[21]. It is possible to show that the joint
two-displacement PDF can be written as

fsu,v;xd =
1

2pÎG2s0d − G2sxd

3expF−
Gs0dsu2 + v2d − 2Gsxduv

2fG2s0d − G2sxdg G , s44d

whereGs0d=u2;v2, +`. It is also simple to verify that, in
order to have this joint PDF well defined at allx, the corre-
lation functionGsxd must satisfy the following constraint:

uGsxdu , Gs0d ∀ x Þ 0.

Note that if, as supposed, the Gaussian displacement field is
a real continuous correlated stationary stochastic process
and, consequentlyGsxd is a continuous function, then

limx→0Gsxd=Gs0d. This implies then f̂sk,−k;0d=1. If in-
stead the displacement field is uncorrelated[i.e., Gsxd=0 for

xÞ0 but Gs0d.0], then, as shown in Sec. VI,f̂sk,−k;0d
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=expf−k2Gs0dg;up̂skdu2 with p̂skd=expf−k2Gs0d /2g being
the characteristic function of the one-displacement PDF.

In the case of truly continuous process, by taking the FT
of Eq. (44) both in u andv, we find

f̂sk,− k;xd ; f̂sk;xd = e−k2fGs0d−Gsxdg. s45d

Therefore, by using Eq.(45), the relation(34) between the
PS of the particle distribution after the application of the
displacement field and its initial correlation functionjinsxd
will be

Pskd = e−k2Gs0dE
−`

+`

dxe−ikx+k2Gsxdf1 + jinsxdg − 2pdskd.

s46d

Since at largex bothGsxd andjinsxd converge to zero, the FT
in x in Eq. (46) is not well defined and contains a Diracd
function contribution exactly compensating the last Diracd
function term in the same equation. This can be made more
clear in the following way. The Diracd function of Eq.(46)
can be transformed as

2pdskd = 2pe−k2Gs0ddskd = e−k2Gs0dE
−`

+`

dxe−ikx.

Using this relation, Eq.(46) can be rewritten in the following
form containing only well-defined FT’s:

Pskd = e−k2Gs0dFE
−`

+`

dxe−ikxsek2Gsxd − 1d

+E
−`

+`

dxe−ikx+k2GsxdjinsxdG . s47d

The small-k expansion of this formula can be obtained by
simply applying to this case Eq.(41).

As already shown above, ind.1 dimensions the more
general form offsu ,v ;xd, even in the limited case of a spa-
tially stationary Gaussian displacement field, is more com-
plex. In fact in general not only parallel components ofu and
v can be correlated, but also perpendicular components can
be. This leads to have a symmetric displacement-
displacement correlation matrixGmnsxd. Once the correlation
matrix is given, it is simple to show that, for ad-dimensional
spatially stationary Gaussian displacement field with zero av-
erage value, we can write

f̂sk ;xd ; f̂sk,− k ;xd

= expF− o
m,n

1,d

ksmdksndfGmns0d − GmnsxdgG .

However, in the caseGmnsxd=dmnGsxd, the general features
of the effect of a Gaussian displacement field can be well
summarized by the above one-dimensional example.

A. Gaussian displacement field applied to a Poisson particle
distribution

In this section we analyze in detail the effect of a Gauss-
ian displacement field as presented above on a one-

dimensional Poisson particle distribution. The extension to
higher dimensions is straightforward.

Let us suppose to have a spatially stationary Poisson par-
ticle distribution with constant average number densityn0
.0. As aforementioned in this case the NCF is

jinsxd =
dsxd
n0

,

i.e., hinsxd=0 and Pinskd=1/n0. By substituting this initial
NCF into Eq.(47), one finds

Pskd =
1

n0
+ e−k2Gs0dE

−`

`

dxe−ikxsek2Gsxd − 1d,

which, in the long-wavelength limit, behaves as

Pskd .
1

n0
+ e−k2Gs0dFk2Ĝskd +

k4

2
Ĝs2dskdG , s48d

where Ĝs2dskd=FfG2sxdg. Since in d=1, Ĝskd,kb with b
.−1, we see that at smallk the leading term is 1/n0
; Pinskd and the perturbations introduced by the displace-
ments are at most of orderk. However, as aforementioned, in
d.2 “critical” and dominating perturbations at smallk can
be introduced by the displacements. On the other hand, as is
clear from Eq.(48), we have a perturbation of order lower or

equal tok4 at smallk due to the term inĜs2dskd which pre-
vails on the perturbation coming from displacement-
displacement correlations[i.e., from the term containing

Ĝskd in Eq. (48)] if b.2. We ultimately observe that for any
d it is not possible to transform a Poisson particle distribu-
tion into a “superhomogeneous” one by the only action of
the displacements. In fact, even though correlated, the dis-
placements are stochastic perturbations and, consequently,
cannot increase the level of large scale order of the system.

B. Shuffled lattice with correlated Gaussian displacements

In this subsection we analyze the effect of the same
Gaussian displacement field as above on a one dimensional
lattice(i.e., a regular chain of unit mass particles) with lattice
spacingl (i.e., n0=1/l). Again we focus our attention on the
large scales(k→0 limit). By taking the inverseF of Eq.
(27), the initial NCF in this case is

jinsxd = l o
n=−`

+`

dsx − nld − 1.

Therefore Eq.(46) can be rewritten as

Pskd = le−k2Gs0d o
n=−`

+`

e−iknl+k2Gsnld − 2pdskd. s49d

The series in Eq.(49) is not well defined because its argu-
ment does not converge to zero forunu→`. By using for
2pdskd the chain of identities
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2pdskd ; 2pe−k2Gs0dF o
m=−`

+`

dSk − 2p
m

l
D

− o
mÞ0

−`,+`

dSk − 2p
m

l
DG

; le−k2Gs0d o
n=−`

+`

e−iknl − 2pe−k2Gs0d

3 o
mÞ0

−`,+`

dSk − 2p
m

l
D ,

we can rewrite Eq.(49) as

Pskd = le−k2Gs0d o
n=−`

+`

e−iknlfek2Gsnld − 1g

+ 2pe−k2Gs0d o
mÞ0

−`,+`

dSk − 2p
m

l
D . s50d

The first sum is a well-defined series and gives in general the
smooth part ofPskd converging to 1/n0 at largek. Instead the
second one gives the singulard-like Bragg peak contribution
to Pskd due to the initial perfect lattice distribution, each

peak being modulated by an amplitudee−k2Gs0d, rapidly de-
creasing to zero with increasing the positionk of the peak. In
d.1 it is simple to obtain a very similar formula.

Since this second contribution, due to the initial NCF, is
exactly zero at all orders in the region −2p / l ,k,2p / l, the
small-k behavior of Pskd is completely determined by the
first sum. This situation is very different from the case of an
initial Poisson particle configuration. In fact, as shown
above, in this second case the small-k properties of the PS
are determined mainly by the displacement field only if it
produces “critical” large-scale correlations(which is possible
only in d.2). Instead, in the present case, due to the par-
ticular properties of the lattice PS, it is always the displace-
ment field to determine the large scale correlation
properties—i.e., the small-k PS. We now analyze in detail the
small-k behavior ofPskd in Eq. (50) with particular attention
to what kind of superhomogeneous distributions we can ob-
tain after the application of the displacements. By keeping
only the most important terms of Eq.(50) at smallk, we can
write

Pskd . e−k2Gs0dk2ĜDskd +
k4

2
fĜD

s2dskd − 2Gs0dĜDskdg,

s51d

plus higher-order terms. In Eq.(51), ĜDskd is the discretized
Fourier integral ofGsxd with finite integration element given
by the lattice cell sizel—i.e.,

ĜDskd = o
n=−`

+`

le−iknlGsnld s52d

and, analogously,

ĜD
s2dskd = o

n=−`

+`

le−iknlfGsnldg2.

Note that, due to the discretization of the Fourier integral

in a sum in Eq.(52), ĜDskd is not exactly equal toĜskd. This
difference depends on how smooth and constant isGsxd on
the length scalel and vanishes whenl goes to zero. However,

in general if, Ĝskd,ka at small k with aø0, then also

ĜDskd,ka. Instead, ifa.0 and thenĜs0d=0, we can have

ĜDs0d.0 (but vanishing aska when l →0) as the effect of
the discretization of the Fourier transform. Another impor-
tant observation about Eq.(51) is that, asfGsxdg2ù0 at allx,

then ĜD
s2ds0d.0. Moreover, asfGsxdg2 decays faster than

Gsxd at largex, then, if ĜDs0d is finite, ĜD
s2ds0d also is.

These observations are very important in order to deter-
mine which kind of point processes can be realized by per-
turbing a lattice through a correlated stochastic displacement
field. By the previous considerations, it is straightforward to
see that the realization from a lattice of a stochastic particle
distribution withPskd,kb at smallk with bø2 (1,bø2 in
d=1 and 2−d,bø2 in generald dimensions) is a very
simple task: it is enough to take a Gaussian displacement

field such thatĜskd,ka with a=b−2ø0 (see Figs. 5 and
6). Instead, obtaining aPskd with b.2 is a more difficult

task. First of all one has to take aGsxd such thatĜDs0d=0. It
is possible to see that this requirement is a sort of stochastic
expression of the total momentum conservation law in the
system—that is, a conservation “in average”[30]. Moreover,

in order to have 2,b,4 one has to haveĜDskd,kb−2 at

small k. If insteadĜDskd,ka with aù2, thenb=4 is ob-
tained in all cases. The caseb.4 is not permitted. This
means that, by perturbing a lattice with a(Gaussian) stochas-

FIG. 5. The figure presents the contribution to Eq.(50) coming
from the first sum(i.e., excluding thed-like Bragg peaks) to the PS
Pskd of a 1D “shuffled lattice” obtained by applying a correlated

Gaussian displacement field withĜskd=exps−uku /k0d with k0=1/4
[henceGs0d=u2.0.08] to a regular chain of particles with unitary
lattice spacingsl =1d. Both the theoretical prediction given by Eq.
(50) and the numerical result obtained by a direct simulation with
104 particles are given. The agreement is excellent. Note that since

in this caseĜDs0d.0 and finite we have thatPskd,k2 at suffi-
ciently smallk.
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tic displacement field, the most “superhomogeneous” realiz-
able point process has a PSPskd,k4 at smallk; e.g.,k6 is
forbidden. This is a strong limitation. In fact, as aforemen-
tioned, from one side the PS of the lattice can be considered
as behaving,k` aroundk=0 (it is completely flat). From the
other side we have just shown that an exponentb.4 of Pskd
is never realizable when one applies to any initial particle
distribution a stochastic displacement field. This means that
independently of the kind of the displacement field, as long

as a smoothĜskd aroundk=0 is considered, there is a “mini-
mal level of disorder” injected in the system measured by the
exponent 4 in the smallk behavior ofPskd. This shows how
difficult is for example to build a spatially stationary stochas-
tic point process such thatPskd,k6 at smallk.

It is possible to extend all these results to higher dimen-
sions and to a non-Gaussian displacement field, but we think
that the example of the one-dimensional Gaussian displace-
ment field is enough to enlighten the effects and the limita-
tions of a general stochastic and correlated displacement
field on a given point process statistically independent of it.

IX. CONCLUSIONS

In this paper we have discussed the effect of a stochastic
displacement field on a spatial distribution of point particles
with identical mass(i.e., point process) in the hypothesis of
statistical independence between the two(see Fig. 7). In par-
ticular we have studied rigorously the changes induced in the
two-point correlation properties of the particle distribution
by the displacements. In this way we have seen that usual
naive approaches to this problem leads to approximations
(which may not be appropriate in some important cases) ne-
glecting the contributions coming from either the initial cor-
relation properties of the particle distribution or the failure of
the small displacements approximation.

We have distinguished the two cases of displacement
fields with and without spatial correlations, giving for both

cases the rigorous equations of transformation of the PS of
the particle distribution.

Our main interest concerns a detailed study of the kind of
large-scale correlations that the displacement field can “in-
ject” into the system. In particular we are interested to know
if long-range positive spatial correlations in the system can
be obtained by the application of a suitable displacement
field to an initially short-range correlated particle distribu-
tion. In this respect we have found that indù3 it is possible
to obtain particle distributions with long-range correlations
(i.e., with a covariance function with a positively diverging
integral) by applying, for instance, either to a completely
uncorrelated homogeneous Poisson point process or to a
regular lattice of particles a Gaussian displacement field with
sufficiently long-range displacement-displacement correla-
tions independently on the variance of the single displace-
ment. This is a very important point; in fact, we can think to
perturb a lattice with such a displacement field with a mean-
squared displacement much smaller than the lattice spacing
and, independently of this, to obtain strong large-scale typi-
cal fluctuationsDNsRd of the number of points,NsRd, con-
tained in a randomly placed sphere of radiusR, growing as
DNsRd,Ra with a.d/2, whereasa=d/2 for the Poisson
distribution anda=sd−1d /2 for the regular lattice. Such par-
ticle distributions would look very similar, respectively, to
the original Poisson or lattice particle distribution at the
small scales(i.e., locally), but would show much larger(and
more rapidly growing with the distance) fluctuations beyond
a sufficiently large scale.

Another related problem is to study how the long-range
order of a regular lattice array of particles is perturbed by the
action of the applied displacement field. In particular we
have studied between which limits the perturbed lattice stays
in the so-calledsuperhomogeneousclass of point processes.

FIG. 6. Power spectrumPskd (including also the Bragg peaks
contribution) of a shuffled lattice similar to the previous figure but

now with Ĝskd=A exps−k/kcd / sk+ad with kc=5, a=10−4, and

A=1/20 [henceGs0d=u2=0.13]. The agreement between the theo-
retical prediction and the numerical result is again excellent. Note

that now, asĜskd,k−1 at smallk (but larger thana), the PSPskd
,k in the same range.

FIG. 7. Comparison between the PS’s of(i) a Poisson point
process,(ii ) a shuffled lattice with uncorrelated displacements with
a finite variance, and(iii ) a shuffled lattice obtained by applying a
correlated displacement field and showing a “critical” behavior at
sufficiently smallk. In particular all the particle distributions are in
d=1 and have the same mean densityn0 (i.e., the same specific
volume 1/n0). In the case(ii ) the finite varianceu2, +` implies
Pskd,k2 at smallk [see Eq.(24)]. Instead in(iii ) the applied cor-

related displacement field fora!k!2p /n0 has Ĝskd,k−4, and
then, from Eq.(51), Pskd,k2. For k,a (which is below the mini-

mal k of the figure) Ĝskd is cutoff to a constant value; in fact, in any
d the PS of any proper stochastic process has to satisfy
limk→0k

dPskd=0.
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That is, we have found the limits in which the sub-
Poissonian character of the mass(i.e., the particles number)
fluctuations on sufficiently large scales is conserved. Anyway
we have also seen that any truly stochastic displacement field
always injects into the particle system at least a minimal
degree of disorder measured by thea=4 of the exponent of
the final PS of the systemPskd,ka at smallk.

We think that all these results can be of very practical
importance in many physical and more largely scientific ap-
plications. For instance, this is the case of the so called
N-body cosmological simulations. In this case the superpo-
sition of a suitable stochastic displacement field to apreini-
tial particle distribution(e.g., a lattice of identical particles)
is the usual way to prepare theinitial conditions for numeri-
cal simulations to study the problem of the dynamic gravita-

tional clustering of the matter leading to the formation of
large scale structures(e.g., galaxies). These so built initial
conditions should represent the spectrum of small primordial
mass fluctuations predicted by theoretical models(e.g., cold
dark matter models).
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