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The effect of a stochastic displacement field on a statistically independent point process is analyzed. Sto-
chastic displacement fields can be divided into two large classes: spatially correlated and uncorrelated. For both
cases exact transformation equations for the two-point correlation function and the power spectrum of the point
process are found, and a detailed study of them with important paradigmatic examples is done. The results are
general and in any dimension. Particular attention is devoted to the kind of large-scale correlations that can be
introduced by the displacement field and to the realizability of arbitrary “superhomogeneous” point processes.
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I. INTRODUCTION whose spectrum of fluctuations is predicted by theoretical

Point processesi.e., stochastic spatial distributions of models[13], are usually built by applying an appropriate
point particles with identical massre very useful math- stochastic displacement field to extremely ordepesinitial
ematical models of man\N-body and complex systems. configurations of the point-particle distributigh4,19 (i.e.,
Crystals(regular, perturbed, and/or defectdd—3], quasic-  either a lattice or a particular “glassy” configuratjioriow-
rystals [4], structural glasses, fluid®], cosmological self- ever, in the literature the effect of the displacement field is
gravitating system§6,7], and also computer image process-described only in approximate ways, neglecting the contribu-
ing problems[8] and biometrical studiefd] are only some tion of the internal correlations of the particle system before
examples of systems which are usually represented as spise application of the displacement figltié] and/or assum-
cific point processes with appropriate spatial correlationing sufficiently small displacemenfd7] using the so-called
properties. Zeldovich approximationin the present paper we give an

The study of this branch of stochastic processes and thexact description of these effects at every spatial scale and
discovery of new statistical properties can be of fundamentalor any spatially stationary stochastic displacement field. In
importance in many scientific topics. Many mathematicalthe cosmological context these results can be useful, for ex-
studies have been already done about this class of processasple, to understand better the role of the small spatial
and many useful results have been derivedg., see scales on the dynamics of the structure formafib8-2Q.
[10-12). Another important application deals with the problem of

One important question about a point process is what hagrealizability of point processes with an arbitragy priori
pens to its statistical properties when it is perturbed by aiven two-point correlation function satisfying the hypoth-
stochastic spatial deformation that can have in turn an interesis of the Wiener-Khinchin theoref21,22. This problem
nal degree of spatial organization—that is, spatial correlais of great importance for instance, to study the permitted
tions. Depending on the physical application and context, thelisordered configurations of hard spheres systd@s.
perturbation can be seen either as a fluctuation due to While for continuousstationary stochastic processgsg.,
physical process or as noise. The fundamental question coGaussian processethe hypotheses of the Wiener-Khinchin
sists in finding how the spatial correlation properties of thetheorem give the necessary and sufficient conditions for the
point process change under the effect of the perturbation angalizability of the process, this is not true for point pro-
how effective this can be in changing the spatial correlationgesses. In this case the same hypotheses, adapted to point
of the point process. processes, provide only necessary conditions for the realiz-

In this paper we focus our attention on the changes inability of the process. Therefore finding some limitations on
duced on the two-point spatial correlations of a point procesghe realizability of point processes can be extremely useful
by a stochastic displacement field both with and withoutfor this problem. In this context we will show that perturbing
displacement-displacement correlations. We work in the hya regular lattice(which can be considered to be the most
pothesis of statistical independence between the point praegular and uniform point proceswith any stochastic dis-
cess and the displacement field. The exact results presentpthcement field with a continuous spectrum, it is not possible
in this paper can find application in many scientific topics.to generate a point-particle distribution with an arbitrarily
For instance, in the context of the so-calldebody cosmo- small degree of disorder with respect to the initial lattice. In
logical simulations[7], performed to study the problem of fact, we will see that a kind of lower limit appears for the
“structure formation”(e.g., galaxy formationfrom the pri-  degree of disorder injected into an initial regular lattice by
mordial matter density field under the effect of the internalany displacement field. This lower limit is measured by a
gravitational interaction, point processes are used to reprenaximal finite value of the exponent of the power spectrum
sent the evolving matter density field. The initial conditionsof the lattice perturbed by the displacement field at small
of these simulations, representing the primordial density fieldvave numbers.
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Other possible applications come from the study of theof the stochastic process without taking into account the
void distribution and Voronoi tessellation in the superhomo-phase contribution.
geneous class of point proces$24]. Due to the spatial stationarity of the stochastic field, it is
The paper and the presentation of the results are organizesimple to show thaSk) is equal to the Fourier transform
as follows. In Sec. Il the basic statistical properties of point(FT) of C(x) [27]:
processes are briefly presented. This includes a classification

of all spatially stationary point processes in three classes i
(i.e., essentially Poisson, superhomogeneausicritical) in Sk) :J d*Cx)e™* = FCx)], 3)
terms the asymptotic scaling behavior of the number fluctua-
tions. implying in turn
In Sec. Il we introduce an approximate argument, often
used in many physical applications, about the effect of the 1 d KX 1
displacement field on the two-point correlation properties of Cx) = (2m)d dkSk)e™ = F{Sk)].

a point process. In this presentation we make clear that this
approximation is valid in the limits of small displacements Note that the condition thak(x) vanish for|x| — + implies

and large spatial scales. thatkdS(k) — O for |k| — 0. If the particle distribution is also
The rigorous treatment of the problem is introduced instatistically isotropicC(x) depends only ox=|x| and S(k)
Sec. IV on k:|k|.
We devote the rest of the paper to the so-called spatially
Il. BASIC DEFINITIONS stationary point processes(SPP’'9—i.e., stochastic mass

fields consisting of point particles of unitary mass. For this
class of systems the microscopimassdensityp(x) coincides
with the microscopimumberdensityn(x) which can be writ-
ten as

First of all let us recall some useful definitions about sto-
chastic mass density fields. Given a genédiscrete or con-
tinuous stochastic mass density fietdx) with spatially sta-
tionary statistical properties in d-dimensional Euclidean
space its average value is defined by N =S 8(x - x), 4)
(p(x)) = po, '

where the symbo{--) indicates the ensemble averdgale  wherex; is the spatial position of thith particle of the sys-
will limit our analysis to the case of stochasti homogenectem, 8(x) is the usuald-dimensional Dirac delta function,
mass fields which can be considered spatially uniféeise-  and the sum is extended to all the particles of the system. As
whereous$ at sufficiently large scale. This implies thay  aforementioned, we limit the discussion to SPP’s character-
>0, excluding in this way the case of fractal mass distribu-ized by a well-defined average number densigy-0 (i.e.,
tions for whichpy=0 asymptotically but with large fluctua- excluding fractal-like particle distributiopsDue to Eq.(4)
tions in the conditional density at all scalgX5]. and to the fact thany,> 0, it is simple to find that, for a SPP,
The main correlation properties of the density field arethe covariancé:(x)=<n(x0+X)n(Xo)>—n§ has adiagonalsin-
given by the covariance functiqiCF), also callecconnected gular Dirac &-like contribution atx=0. That is, it can be
or reducedtwo-point correlation function: written as

Cx~y) = (p(x)p(y)) = p5. C(x) = npd(x) + n2h(x), (5)

Another important quantity to characterize the internal two- h 2h(x) is the off-di | . h ial
point correlation properties of a stochastic field is the soWherengh(x) is the off-diagonal part measuring the spatia

called power spectrurtPS S(k) (also calledstructure fac- correlation between number fluctuations in different spatial
tor). It is defined by points—i.e., forx>0. In general, for truly stochastic point

processes, this is a rathemoothfunction of x and goes to
<|5p(k;L)|2> zero forx— +o, but in some casesee below the examples

Sk) = L'LTOO Ld ' 1) of the “shuffled” latticeyit can present also singularities and
Dirac &-like spikes. Note that the spatially stationarity and
where the exclusion of a fractal-like behavior imply that there is a
L2 finite length scalex,>0 beyond which fluctuations of the
8,(k;L) :f J dix{ p(x) — pole K (2)  mass contained in volume of such size become “small” with
p\Ny (0] . .
-L2 respect to the average value of the mass itself. Well beyond

this distance the magse., numbey distribution can be con-
sidered with good approximation spatially uniform or homo-
geneous and for this reason it is callediformity or homo-
geneityscale[25]. It is simple to show that in the case in
which h(x) is sufficiently regular, this scale can be defined as

lin the case of ergodicity it can be taken also to be a volumethe distance\, such thath(x)| <1 for x> \,. From Eqs(3)
average in the infinite-volume limit. and(5) we can write the PS of a SPP as

Clearly, in the limitL— +o0, Eq. (2) becomes the Fourier
transform of thedensity contrasp(x) — p,. The quantityS(k)
measures the net weight of eacimode to the determination
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S(k) =g + ngﬁ(k), crpscppic density field and(x) Fhe same quantjty a}fter ap-

A plication of the displacement field(x). By considering the
whereh(k)=FTh(x)] which in general is a regular function displacements “small” enough, we can write the one-step
decreasing to zero at large For point processeS(k) in  continuity equation
statistics is also calleBartlett's spectruni28]. _

Since it will be useful to de\I/DeIop tr;lie Egrguments of the P = pnX) + V- Lpin(x)u()] = 0, ©
following sections, we now introduce a brief classificationwhereu(x) is the displacement performed at poiin the
[18] of all the spatially stationary stochastic mass figiths) given temporal step. The equality is rigorously satisfied only
(point process or continuous stochastic fieldith well- in the case of infinitesimal displacements. lpgt>0 be
definedpy>0 in terms of their large-scale correlations and _
fluctuations: Po={pin(X))-

(D) If Sk=0)=c>0, thenC(x) decreases to zero at large It is simple to verify that this average value is not modified
x faster thanx and has a positive integral over all spaceby the action of the displacement field. gf,(x) is “suffi-
(equal toc); i.e., two-point correlations are short range andciently uniform” with respect t@(x), we can approximate it
mainly positive. Moreover, callingl(R)=[srd? p(x) the in Eq. (6) with a continuous and uniform density field
mass in a given sphei8(R) of radiusR, the average qua- pin(X)=po, SO that Eq(6) can be rewritten as
dratic fluctuation of this quantity behaves @M?(R)) ~ RC. _ _

For this reason this class of systems can be calldustan- ) =pot poV - UC) =0. ™
tially Poissonian as on sufficiently large scales the systemBy taking the Fourier integral in a cubic volume of sizef
shows basically Poissonian fluctuations. A characteristi&q. (7) and using Eq(2) we have

hysical example is given by a homogeneous gas at high
Itoe%perature. PeRe ’ ’ ’ ’ |8,(k; )2 = pglkc - v(k;L)

(2) If S(k)~k# at smallk with -d<g<0, thenC(x)  where
~x#4 at sufficiently largex. That is, the system has long- L2
range and mainly positive correlatiofise., fd9xC(x) = +]. v(k:L) :J f dek*u(x).
This implies(AM?(R)) ~R%* and for this reason such sys- ’ L2
tems are callegduper-Poissoniaror critical. A physical ex-
ample in this class is given by the density field of a fluid at
the critical point of the gas-liquid second order phase transi
tion.

(3) If S(k) ~ kP with >0 at smallk, then we can say that
at large x the CF C(x) decays faster thax™® and that
Jd9C(x)=0. This means that two-point spatial correlations
are essentially short range. However, they are not mainl
positive: The conditior§(0) =0 indeed implies a precise bal-
ance between positive and negative two-point correlationspothesis, Eq(8), through an average process over the chosen

More precisely _the reIaUpS(O):O can be seen as a condi- ensemble of displacement fielfisdicated with(---)], leads
tion of geometricalorder in the spatial organization of the (J ihe relation

stochastic mass fluctuations. The highepjshe higher the
large scale degree of order. As a matter of fact, as shown Sk) = pgKZé(k), (9)
below, in the case of a regular and periodic lattice of par- . o
ticles, which is the most ordered particle distribution, onePetween the PS(k) of the final mass density field and the
can say thaS(k) ~k? with B— += for k—0. For all these PS G(k)=[oP(k;L)[?/L? of the genericith component(O
reasons for this last class of mass fields the naoerho- <i<d) of the displacement field which is independenti of
mogeneousas been proposgds,19,25 (elsewherehyper-  and the direction ok in the given hypothesis of statistical
uniform [23]). isotropy.
It is interesting to note that, for what concerns the afore-
Il APPROXIMATE ARGUMENT mentioned problem of the implementation of the initial con-
dition of the cosmologicaN-body simulations, the result
Before entering the detailed and rigorous discussion, wgiven by Eqgs.(8) and (9) coincides with that one usually
give an argument usually implemented to roughly describeeported and used in literatu¢e.g.,[7,14]) and obtained via
the effect of a displacement field on a “sufficiently uniform” the so-called Zeldovich approximatig7] in a continuous
mass distribution(for another approximate result to this fluidlike picture of the matter density field.e., neglecting
problem which is some way more accurate than the one exhe “granularity” of the system and the correlations in the
posed in this section s¢&6]). This argument is based on the “preinitial” configuration. The Zeldovich approximation, in
fact that, if the applied displacements are sufficiently smallfact, consists in a perturbative solution, with the displace-
the mass is conserved “locally.” Hence a formaointinuity ~ ment fieldu(x) as the perturbative term, obtained in the La-
equationhas to be satisfied. Let us call,(x) the initial mi-  grangian formulation of the dynamics of a self-gravitating

2, (8

From Egs.(8) and (1), we can say that the PS of the final
mass distribution is roughly proportional k8 times the PS

of the displacement fielgactually the PS of the vector field
u(x), as its CF, is @l X d matrix and the form of such relation
can be more complicate¢dIn particular this sentence be-
comes exact in the case of statistically isotropic displacement
field with uncorrelated perpendicular displacements in differ-
¥nt points, which is a widely used hypothesis in many appli-
cations(e.g., cosmologicaN-body simulations In this hy-
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spatially stationary in the statistical sense; i.e., it is charac-

o Py ‘. terized by the invariance of the statistical properties for any
o T spatial translation. We can think to “attach” a displacement

vectoru(x) to each spatial point, even though it acts on the

#+--0 mass density only i is occupied by a particle. In what

5 follows, we assume that the displacement field is statistically

e 1 independent of the realization,,(x) of the initial particle

Q, i ° density; i.e., the probability of having a given realization

g * Xio. M, gKitui u(x) of the displacement field is independent of the realiza-

tion of the initial particle distribution.

o o Let us consider a functiod only of the displacements

FIG. 1. Pictorial view of the effect of a stochastic dlsplacement{ull ...,uy} applied, respectively, to a set of spatial points

field to a spatial particle distribution in two dimensio{#D). The { . . .
) : X1, ...,.Xn}- The average of this quantity over all the realiza-
ticl , th h the displ disshed from th Sl PNE T ! : i

particles pass, through the displaceme ed arrows from the tions of the displacement field(x) is defined by

old positions(open circley to the new onessolid circles.

—y

N
fluid (for a complete account se@6]). This perturbative A=f f [H dde]fN(Ul, —OUNAU, LUy,
solution, at the linear order im(x) and in the continuous i=1
fluidlike description of the mass density, leads to a relation (11)

identical to Eq(9) between the PS of the matter density field . . . . .
: . : - . wherefy is the joint probability density functioPDF) of
obtained by applying the displacement fieltk) to a uni the displacement$u,, ... ,uy\} applied, respectively, to the

form initial density and the Pé(k) of the displacement field g4 of points{xy, ... X} In general,fy depends parametri-

itself._ ) ) i . cally on the points positiong;. In the case of a statistically
This simple result, obtained both via the approximatedsiationary displacement fieldd, depends parametrically
continuity equation in general and via the Zeldovich approxi-op|y on the separation vectors between all the couples of the
mation in the cosmological context, is based on two funda'points of the sefx,, ... Xy} A particular and very important
mental assumptions: the former consists in approximating,qe is when the set of points coincides with the positions

the initial microscopic density with a completely uniform .. nied by all the particlein which case we call the joint
continuous mass field. As a consequence we expect that tisplacement PDF simpl@({u})] of the initial SPP or by

the exact equations describing the effect of the displacemery, particles of one of its subsets. Note, however, that in our
field on a spatial distribution of identical particles, there will hypothesis the form of this PDF does né)t depend’ on the fact
be t?rms related to the mhomoge_nelt(wg.,_ granularl_ty that these points are actually occupied by particles.

or discreteness of the mass densiynd spatial correlations Finally, if we have a function of the final.e., after the

OT the initial particle density: The Iatter is t_he fact th"’}t’ be'introductibn of the displacementmicroscopic dénsityl(x),

hind Eq. (6) and the Zeldovich approximation, there is thethe ensemble average over all the possible final configura-

assumption of suﬁ|C|entI_y small dl_spla_cements._ T_hen W€4ions of the particle distribution is given by averaging over
expect also that when this assumption is not valid in a sta

o . : ! all the possible displacements as in Etfl), fixing the initial
tistical sense Eqg8) and(9) will change drastically. All this . . . S
will be shown igifh)e follc()vx)/ing sectio%s where th)é exact So_parncle densityni(x), and then over all the possible initial

lution to this problem is provided. particle configuration:é---}. Th[s is dug to the f{:\ct th_at the
ensembleof the all possible final particle configurations is
found by considering all the possible initial configurations
IV. DEFINITION OF THE PROBLEM and for each of these all the final configurations obtained by
applying theensembleof the displacement fields. However,
We start by considering a SPP, as defined above, witfif, as we suppose here, the displacement field is statistically
microscopic densityy,(x) given by Eq.(4) and withny>0.  independent of the initial particle distribution, the order of
Let us now suppose of introducing a stochastic displacethese two averages is arbitrary. For instance, in this case, the
ment fieldu(x) displacing each particle from its initial posi- CF of the “displaced” patrticle distribution is expressed by
tion. In general this displacement process changes the PS of
the initial point distribution fromS,(k) to a newS(k) [or C(x) ={n(xo *+ X)N(Xg)) ~ (N(X))?, (12
equivalently the initial CFC;y(x) to a newC(x)]. If u; is the  with an arbitrary order of the two averages-y and(: --).
displacement applied to the particlethe position of this
particle passes from; to x;+u; (see Fig. 1. Therefore the
final particle density field can be written as

V. EXACT RESULTS FOR ONE- AND TWO-POINT
STATISTICAL PROPERTIES OF THE PARTICLE

n(x) =2 8x =X~ uy). (10) DISTRIBUTION

The aim of this section is to relate the one- and two-point
A stochastic displacement fieldx) can be seen as@n-  correlation properties of the “displaced” particle distribution
tinuous stochastic vector field. We assume that this field isto its initial ones and to those of the applied displacement
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field by finding exact relations going beyond the approxima- G, (x—y) =[u¥(x) -U¥u(y) -u™], (13
tion given by Eq.(12). As aforementioned, the discussion

will be limited to the case of spatially stationary stochasticwith u, »=1, ... d, whereu® is the uth component of the
displacement fields and initial particle distributions. In this displacement vectau. In factG,,,(x~y) is only the average
way also the final particle distribution will be spatially sta- value of [u®(x)-U®] [u(”)(y)—U(”>] calculated with the
tionary. PDF f(u,v;x) itself, while knowledge off(u,v;x) includes

We will start by evaluating, through EL0), the average || information about all the higher moments of the two dis-
mass densityn(x)). The next step will consist in finding the pjacements.

transformation equation for the R%k) [or equivalently the The joint two-displacement PDF(u,v;x) satisfies the
CF C(x)]. following limit conditions onx:

Since the displacement process does not create or destroy
any particle and is statistically stationary, the average mass f(u,v;0) = 8(u - v)p(u), (14

density stays equal to the initial omg:

(nG9) ="o. lim (u,v;x) = pu)p(v). (15)
This can be also proved by direct calculation us{ng(x)) w

=no. First of all we note that Eq(10) is a sum of single- tne former equation is trivial, while the latter establishes
displacement terms. Therefore, in order to evaluate the dissimply that the correlation between two different displace-
placement average(x), we need only to know the one dis- ments must go to zero if the distance between the two points
placement PDF;(u) and not the complete joint PDP({ui})  of application goes to infinity.

for all the system particles. In our hypothesis of spatial sta- First of all let us evaluate the averagentk)n(y) over the
tionarity f;(u) does not depend on the point of application Ofdisplacements. By direct integration one obtains

the displacement, and we recalpitu) for simplicity [p(u) is

obtained fromP({u;}) by integrating out all the displace-
ments with the exception of oheWe can then write n(n(y) = >, f f du o[ f(ui, i) S(X = X = uy)
ij
n(x) = 2 J d%uip(uy) 8(x = x; = ;) = E P(X = Xj). Xy = x; = uj)]
| I
:Ef(x_xi:y_xl‘;xij)y (16)

By taking the averagg --) over the initial particle configu- i
rations, we finally have
o where x; =X;—X;. Note that the first limit condition in Eq.
(n(x)) = J ddyp(y)z Sy—-x+X%;) ) =ng f d%p(y) = ng, (14) permits us to perform the average without separating the
i diagonal contribution=j from the off-diagonal part+# | of

where we have used the statistical spatial stationarity of’€ double sum in Eq(16) by averaging separately the
(%) [i.e., (ni(X))=(n,(y=x))=n,] and the normalization fOrMer using the one-displacement PPfu;) and the latter
condition of the one-displacement PIFu). through the two-displacement POFu;, uj; x;;) with i #j.

We can now face the problem of calculating the new CF__11€ Next step is to evaluate the averdge) on the en-

C(x) and the new PS(k). The key point is to evaluate the semble of initial particle configurations. For this purpose
averagen(x)n(y)). Since .the product note that the ensemble average of a function of the initial

configuration of the fornX; y(x;,x;), wherey(x,y) is a ge-

n(x)n(y) = >, 8(x — x; = u;) &y — X; = ;) neric two-point function, can be written as
i
i # ) different displacements, we do not need to know the

<ffddxddy¢(x,y)
complete joint PDF P({u;}), but only the joint two-
displacement PDF,(u,Vv) which is obtained fronP({u;}) by X 8% = X;) Sy —xj)>
integrating out all the displacements but two. In general ij
fo(u,v) will depend parametrically on the coordinates of the
= f f d%d%y(x,y)

is a sum of terms containing either o(fer i=j) or two (for <2 gb(xi,xj)>
i

two points of application of the displacements. Assuming the

hypothesis of a spatially stationary displacement field,

f5(u,v) depends paramet_rlcally only on the separation ve_ctor ><<E S(x = x,) 8y — xj)>

x between these two points. For this reason we recall it as ¥

fo(u,v)=1(u,v;x), putting in explicit evidence this depen-

dence. Note that the functiof{u,v;x) carries much more :f f doxay(n, ()N (Y)Y ex,y), (17)
information than simple knowledge of the average displace-

mentu=U and the two-displacement correlation matrix of

elements where, by definition, we have
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2
Nin(X)N; =ng+C(x-vy). 18 —_—
< |n( ) |n(Y)> 0 |n( y) ( ) (n(x)n(y)} - ng_,_ n05(X _y) + ngf f ddxrddy/
Note that the diagonal pany(x) of the connected two-point
correlation functionC;,(x) takes correctly into account the Xp(x =x"Hh,(xX"=y)ply-y’). (23

diagonal termi =j of the sum of Eq(17).

By applying Eqs(17) and (18) to Eq. (16), it is possible Since in this casd(u,v;x) is discontinuous ak=0, it has

been important to separate the contributions of the diagonal

o write and off-diagonal parts o€,(x) in Eqg. (20). In fact, in the
— dr 1 T2 ., hypothesis of uncorrelated displacements, any element of the
(n(x)n(y))-f f d'd%’[ng + Cin(x" = y")] connected two-displacement correlation matri,,(x),

given in Eg. (13), vanishes for anyx+0 while G,,(0)
Xf(x=x"y -y x" =y’). 19 = .9, Where g>>0 is the single-displacement variance.

It can be convenient to rewrite ECL9) by separating the two 11t i8,G,,(x) is discontinuous ax=0. As aforementioned,
terms coming, respectively, from the diagonal and oﬁ_thIS'IS avery partlcglar case, asin truly cor_related continuous
diagonal parts of; (x)—that is, by writing, as in Eq(5), [s;';lonary stochastic processes it is continuous everywhere
— 2 . .
Cin(X) =Modx) + Ngfin(X): At this point, by remembering that the PS(k)
) e o =FC(x)], with C(x) given by Eq.(21), we can Fourier
(N(X)N(y)) = nod(x —y) + ”of f dx'd%'[1 +hip(x" —y")] transform Eq(23) to obtain the following local relation ik
space:
X f(x=x",y=-y";x'=y’). (20

_ _ S(k) = ng[1 = [p(k)[*] + [p(K)|*Sin(K), (24)
We are now able to write the new GE{(x) of the final par- R ) o )
ticle distribution which is defined, as usual, by where p(k) is the characteristic function of the one-
displacement PDF,

C(x) = (n(xg + X)N(Xg)) — N3. 21
() = (n(Xo *+X)N(X0)) = Ny (21) 500 = FLp(w],
Note that from Eq.(20) the diagonal part ofC(x) remains
equal to that ofCi,(x) [i.e., ngd(X)] as expected. and where we have use@F hiy(x)1=Sh(k) —no. Note that
In order to write the transformation equation for the S,y definitionp(0)=1.
which is the most useful in many applicatiofist], we start Equation(24) gives the relation between the PS’s of the

from the simplest case of uncorrelated displacements; theoint-particle configurations before and after the application

we will come back to the general case for general considerof the uncorrelated displacements field. First of all let us
ations and some paradigmatic examp|es_ analyze the notable case in which the initial pomt-partlcle

distribution is the statistically stationary and isotropic Pois-
son one—i.e., that case in which there is no correlation be-
tween the initial positions of different particles. It is simple

We now consider the case in which the displacement apto show[18,29 that the initial density CF is simplf;,(x)
plied to a given spatial point is statistically independent of=Nod(x) (i.e., it has only the diagonal parfThis means that
the displacement applied to any other point. Therefore th&n(k)=ng which, in view of Eq.(24), implies S(k)=n, too,
statistics of the stochastic displacement field is completelyegardless to the form gi(u). That is, the particle distribu-
determined by knowledge of the reduced one-displacemeriton remains Poissonian after the application of any random
PDFp(u) and the joint PDF of displacements;,u,, ... ,u, and uncorrelated displacement field. This can be considered
in n differentpoints of the space factorizes as follows: as a formulation of the so-calledeorem of Bartletf32] (for
the behavior of a Poisson point process undeet@rministic
! displacement field sef83]). This property is quite easy to
fr(Ug, Uz, ... Up) = H p(u)). understand: the displacement field has no spatial correlation,
=t and hence it tends to randomize the particle distribution, but
possible” SPP. This is further clarified by observing that un-
Su-v)p(u) forx=0, correlated displacements cannot increase the spatial correla-
f(u,vix) _{ p(W)p(v)  forx#0 (22) " tions in the particle distribution. We have just shown that the
' stationary Poisson point process of average demgityO is
Note that the lack of displacement-displacement correlationthe “fixed point” of the transformation given by E@4). We
implies a discontinuity of(u,v;x) atx=0. As shown below show now that this fixed poinfi.e., the stationary Poisson
this does not happen for truly continuous correlated stochagoint procesgis alsoattractive That is, we show that, start-
tic displacement fieldsi.e., belonging to the class of con- ing from an arbitrary stationary point process with denajy
tinuous stationary stochastic proces$2s]). We can now and initial PSS, (k), by applying successive stochastic un-
apply Eqg.(22) to Eqg. (20) in order to find the two-point correlated displacements to all the particles taken from the
correlation function of the final system: same PDPp(u) with no correlation at each step, the PS flows

VI. INDEPENDENT DISPLACEMENTS
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towardS, (k) =ng—i.e., the Poisson one. It is simple to show of p(k), it is simple to show that to the lowest order n
that afterm consecutive applications of such displacementarger than zero, one has
field the PSS, (k) satisfies the relation .

B=a-d f0<a-d=2,

S(k) = gl = [P(k) [ + [p(k) ["Sp(K). =2  ifa>d+2,

The previous equation is simply obtained by the fact that the (25)
characteristic function of the sum af independent random —

vectors extracted from the same PPf) is simply[p(k)]™.  WhereB>0. Moreover, ifa>d+2, thenB=u?/2d. Instead,
Sincep(u) is a PDF, a part from particular cases) general  if d<a<d+2, thenu? diverges and

|p(k)| <1 for anyk>0. This implies thatS,(k) converges

exponentially fast tany for eachk—i.e., to the PS of the B:Af ddxx (1 — e costy (26)
Poisson point process.

One has also to notice that the right-hand side of®d)  hereqis the angle betweexand any one of the coordinate

is the sum of_ two terms: the fqrmer is proportional to the v es. Note that in any case<Q8=<2. This implies that, for
average density of particles, which we can calgranularity | - g1s

term, and independent of the initial PS of the particle distri-
bution, while the latter depends am, only throughS, (k) 1-|p(k)|> = 2BKE.
which satisfies the conditio§,(k — «)=n, because of the
diagonal term ofC;,(x) and of the fact that the off-diagonal
part must be integrable at small

If the initial point process is statistically isotropic as well
as stationary, ther€;,(x) is a function only ofx=[x| and
Sn(k) only of k=|k|. Furthermore, if also the displacement

p(k) = 1 - BK® with {

On the other hand, as seen in Sec. Il in order to have the
initial SPP well defined, it is necessary thds, (k) — 0 for
k— 0—that is, practically§,(k) ~k” at smallk with y>—d.

We can draw the following conclusions for the smiall-
behavior ofS(k) in Eq. (24)

(i) If —d<y<pB (with as seen above 08=<2), Sk)

f_ield is statistically isotropic, the_nu“zo for each u v similarly to S,,(k), and its smalk amplitude is indepen-
=1, ... d, andp(u) depends only on=|u[. This implies that ot of the displacement field. This means that, in this case,
alsoS(k) depends only ofk (and C(x) on x). finite uncorrelateddisplacements cannot destroy the persis-

tence of correlations already present in the system. In par-
ticular it is important to note that ify<<O (i.e., long-range
o ) ) density-density correlations in the initial particle configura-
~Inmany applications, such as cosmological stufi@sit  tjons) no uncorrelated displacement field is able to affect the
is particularly important to analyze the behavior&k) at  |arge-scale correlation properties of the initial system.
small k—that is, at large spatial scales. For this reason we (ji) On the contrary, if <8<y, then the smalk behav-
now study the asymptotic behavior of H@4) for k—0. We  jor is completely determined by the displacement field, re-
limit the discussion to the case in which both the point pro-sylting in S(k) = 2BkA. As shown in Sec. II, a point-particle
cess generating the initial particle distribution and the stogjstribution havingy> 0 is calledsuperhomogeneopshow-
chastic di.splacement. fi_eld are statistically isotropic. As Seeihg a sort of long-range order, characterized byb-
above, this hypothesis implie&,(k) =Sy (k), p(u)=p(u), and  pgjssonianmass fluctuations at large scales, which in the
S(k)=S(k). present case is partially destroyed by the Poissonian noise
The first step consists in studying the smalsehavior of  introduced by the displacement field. In this respect, note
the characteristic functiop(k). By definition we have that if W= +o0, then 8< 2. Consequently, it is much simpler
to obtain the conditiony> 3; i.e., the randomization of the
p(k) :f due™{p(u), system introduced by the uncorrelated displacement field is
more effective.
and thenp(0)=1. As p(u)=p(u), then p(k)=p(k). Let us (iiit) If B=1y, both long-wavelength modes of the initial
suppose that at sufficiently large we have p(u)=Au«  Particle configuration and of the displacement field deter-
+o(u™¥), where a>d as p(u) must be by definition inte- Mine of the smalk power spectrum of the_ flnal system. Ip
grable over all spacea— +o includes exponential-like or particular the exponent is equal to the initial one while its

faster decav at lara@). Using this property and the definition aMmPplitude increases. This indicates that the initial and final
Y 9%) g properly systems have the same kind of long-range order of density

- fluctuations and the same mass-length scaling relation for the
’E.g., the case in which(u)=&(u—ug)/2+8(u+ug)/2 for which  |arge-scale mass fluctuations, but with an increase of their
p(k)=cogk-ug) and then|p(k)|=1 for all k such thatk-up=n7  amplitude in the second case.
with n any integer.
3As |p(0)|=1, for k=0 instead we find the singularl(0)
=S,(0) at anym. This creates in general an asymptotic isolated
discontinuity atk=0. However, this does not matter for the real-  In this subsection we present a simple, but important ex-
space correlation properties as the Fourier transform of the PS @mple of application of uncorrelated stochastic displacement
insensible to that. fields: the random shuffling of a regular lattice of particles.

A. Small-k expansion and large-scale behavior—I

B. Shuffled lattice with uncorrelated displacements
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FIG. 2. The projection on they plane of a 3Dshuffledattice of FIG. 3. Power spectrum of a 1D shuffled lattice with uncorre-

16° particles in the unitary volume is represented. In the presenlated displacements with finite variance obtained both from numeri-
case each particle is randomly displaced from its initial lattice po-cal simulations and from the theoretical prediction given by Eg.
sition inside a finite cubic box centered around the lattice point and28) and showing perfect agreement. In particular the two PS's refer
of side equal to one fifth of the lattice spacing. The displacemento a regular chain of particles and unitary lattice spacing perturbed
applied to each particle is statistically independent of the displaceby the displacement field, through which each particle is randomly
ments applied to the other particles. displaced in a point of the segment centered around its initial lattice
position and of lengtla=1/50{i.e., p(u)y=6(a/2-u)6(u+al2)/a].

Its importance relies on the fact thatperturbedlattice is ~ Note that at smalk the PSS(k) scales as as the displacement
often used as the initial condition for many dynamical app"_varlance is finite. _Moreover_, the_Bragg pedkdose amplitude here
cations as, for instance, the already mentioned cosmologic%fﬁjlS been normalized for pictorial reaspase perfectly modulated
N-body simulationg14] and biometrical studief9]. In this oy We'ghS proportlonal_t¢p(k)| [which ml this case is given by
section we present the simplest example of a lattice Wiﬂf(kL_%SIthék:{,?rg k"’g‘nz'rgilyr ;2?1 '.DS it argk converges cor-
stochastic displacement perturbations. In Fig. 2 the projec-ec yto ¢ Sty=1.

tion on thexy plane of a three-dimensional shuffled lattice is louin zone

given. :
It is simple to show that for a distribution of point par- (jkEEear-lt-)i)ggrk:e(;(]ng]:rllzg\é]vjerftell; ;Zocjggr fsr?r/n tg(;%;(lz
ticles of unitary mass occupying the sites of a regular CUbi(ihiS regionS(k) is.determined by' only the behavior ’of the

latti he PS i1 . s o
attice, the PS ig1] displacement characteristic functiqtk). As shown above,
if the displacement field is statistically isotropi@(k)
k)=(2mE Y sk-H 2 "2 SO .
Sn(k) = (2m) ”ozao ( ), @7 =p(k). Therefore, even though the lattice is strictly aniso-
. ) tropic, the shuffled one has isotropic mass fluctuations at
where the sum runs over all the siteks of the reciprocal  |3rge scales. This implies that on sufficiently large scales the
lattice[1,2] with the exception of the origif. We recall that,  scaling exponent of the fluctuations of the number of par-
if the particles occupy the sites of a cubic lattice with latticetjcles contained in a given volume of linear siRedoes not
spacing, then each component bf is a positive or negative  gepend strongly on the shape of the volume itself. This is not
integer multiple of 2/l and the average density of points is trye, instead, for a deterministic cubic lattice for which the
no=1"". scaling behavior of these fluctuations changes in passing

We can now apply Eq(24) in order to find the final PS  from a spherical to a cubic volume with the same symmetry
Sk) after the random shufflingi.e., the application of the f the Iattice.

[2] of the reciprocal latticeS,(k)=0 at any order

random displacement fieid Since in the first Brillouin zon&(k) is completely deter-
R w2 A mined by p(k), the asymptotic behavior at smalof Sk)
S(k) = no[1 ~[p(k)[] + (2) nOEO [p(H)[*8(k —H). can be derived by Eq25). In particular, if the variance? of

the displacement field is finite, we fir8(k) ~k? for k— 0,
(28 independently of the particular form qf(u) (see Fig. 3.

We now stress two important aspects of E2p). This is a case ofiniversal behaviofor all the PDFp(u) with
(i) The random shuffling in general does not erase comsufficiently fast decay at large.
pletely the presence of the so-callBdagg peakgi.e., the Instead, in the case in whidlf diverges—i.e.d<a=d

sum of  functions, but only modulates their amplitude and +2—this universality is lost, havin§(k) ~ k? with =a—d,
adds a continuous contribution typical of fully stochasticwith a one-to-one correspondence between the exporents
point distributions. The complete cancellation of the Braggand as shown in the previous sectisee Fig. 4 A similar
peaks contribution t&(k) is possible only in the very par- case of universality is found in random walks with indepen-
ticular case in whichp(H)=0 for every reciprocal lattice dent stepg29]. In fact, if the variance of the steps is finite
vector with the exception dd. (ordinary random walks the average quadratic distance
(ii) Aroundk=0 (more precisely in the so-callduist Bril- (AX?(t)) reached by the walker after a large numbef steps
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[~ Simulati | ; F(ky,kp: =fddxe"iq'xf K1, Kz;X). 31
o°f [ Simulation, | (k1,k2:q) (k1,k2;%) (31
0 i The functionf(kl,kz;x) is simply the characteristic function
) 0°r ! of the joint two-displacement PDF. By definitidik ,,k,;x)
2k o satisfies the following limit conditions:
102F ] 20 Q) —
f(0,0;x) = 1 for anyx
p and
10-4. 9 I_2. I0| PRI I2. FRRTI . .
10 1]2 10 f(0,k;x) =f(k,0;x) = p(k) for anyx > 0.
FIG. 4. Shuffled lattice of the same kind of that in Fig. 3, but ~ BY USing Eq.(20) and Eqgs(29)—«31), we can write
now with p(u)=(a/m)/(u?+a? wherea=1/50—i.e., with unlim- 1
ited displacements and logarithmically diverging Again the S(k)=n0<1— dfdqu(k,—k;q))
agreement between the numerical simulation results and the theo- (2m)

retical prediction, Eq.(28), is excellent. Note in particular that ~

S(k)~k at smallk and that the remaining Bragg peaks, superim- +J dixe™®XF(k,— k;x)[n + Cin(x)] = (277) "2 8(K) .
posed onto the continuous contribution to the PS, are well modu-

lated by weights proportional tp(k)|> with p(k)=exp(-alk]). Fi- (32

nally the PS at larg& converges to average number densiy 1. & rod
Note that [1/(2m7)%]fd%gF(k,-k;q) must be carefully

satisfies the scaling relatiqax2(t)) ~ t independently of the handled. In fact, due to the properties of the inversion of the

precise functional form of the PDF of the single step. On the Ourier transform, it cannot be substituted directly fitl,

other hand, if the single-step variance goes to infititgyy ~ —K:0) if f(u,v;x) is discontinuous ax=0 and continuous
flights), this is no longer true{Ax(t)) being infinite and the ~anywhere else as in the case of uncorrelated displacements
PDF of Ax(t) at sufficiently larget having a power law tail Presented above. Thus it must be understood as

with an exponent in a one-to-one correspondence with that
characterizing the tail of the PDF of a single step. A similar PRy
transition from a universal scaling behavior of the fluctua- (2m)
tions to a nonuniversal one has been found also in mor&lore specifically, iff(u,v;x) is continuous ak=0, i.e.,
complex fragmentation probleni30].

fdqu(k,—k;q): lim f(k,—k;x). (33
x—0

lim f(u,v;x) =f(u,v;0) = s(u-v)p(u),

x—0

VIl. CORRELATED DISPLACEMENTS then we have

Let us now go back to Eq20), and consider the general
case of a stationary stochastic displacement field with spatial (2m)°
correlations. In this casHu,v;x) cannot be factorized as in 77
Eq. (22) for x>0. This condition is valid in all the cases in which the stochastic

In order to write the equation of transformation of the PSdisplacement field is a real continuous correlated stochastic
let us recall the basic relation between the CF and PS of process(see below the Gaussian examplin fact, in this
spatially stationary stochastic process: case it is possible to prove a theorg@i] stating that the

two-displacement correlation function is continuous every-

_ here, being equal to the one-displacement variarfea?
d KXHIY) (y — v = d w
de xdye (Y C(x —y) = (2m) 8k + q)S(k). at x=0. Instead, in the case of an uncorrelated stochastic
displacement field this is no longer trgi¢ is not a continu-
(29) ous stochastic procesand f(u,v;x) is discontinuous ak

L =0 as shown by Eq22). This together with Eq(33) gives,
We also recall that, by definition, for this case

fdqu(k,—k;q)zl.

(N()N(y)) =g+ C(x -y).

(2 f digF(k,-k;q) = [p(k)|2.

Furthermore, we define the functionf(ky,kz;x) and  with this prescription it is simple to recover E@4) from
F(k1,k2;q), respectively, by the following FT’s: Eq. (32) in the case of uncorrelated displacements.
Instead, in the present case of a stationary correlated con-

- _ tinuous stochastic displacement field, E8R) can be rewrit-
f(ky,Kp;X) = f f ddud®pe®vtkaVi(u,v;x), (30)  ten as
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A have the samronunitarymassm>0, i.e., if the microscopic
S(k) =J de ™ *f (K, = k;x)[N5 + Cin(x)] = (2 (k) mass density ig(x) =mn(x)=m3;8(x—x;) with pp=mn,, the
NCF &(x) of the microscopianassdensity p(x) is equal to
(34) that of the microscopioumberdensityn(x) and then is in-
or, equivalently, dependent oim. For these rescaled quantities Eg7) can be
rewritten as

S(k):nglz(k,—k;k)+(zw)dfd“qF(k,—k;q)Sn(k—q)

- (2m)n3s(k). (39

Equations(34) can be further simplified by noticing that in

the case of the spatial statistical stationarity of both the initialIt is important to note that, whilé, (x) depends om, at least
’ n 0

point-particle distribution and of the displacement field, the : . .
PS of the final particle distribution will not depend separatelythrough its diagonal parB(x)/n,, the wo displacements

on the couple of displacemenisandv applied at two points ~ f(U,V;x) and thereforej(k ; x) in our hypothesis are in gen-
separated by the separation vectpbut on the relative dis- eral supposed not to b@nless for particular choices of its
placemenw=u-v. In fact let us callp(w;x) the PDF that momenta Therefore, differently from the case of uncorre-

two points, separated by the separation vegtoperform a  lated displacements, both Eq84) and(36) can be divided
relative displacement. By definition, into two parts: one dependent og and the other indepen-

dent of it. This is a very important point because spatial
distributions of particles with equal massesare often used

in numerical simulations as a discrete representation of con-
_ tinuous stochastic mass density fields. Consequently, in Egs.

If we take the of Eq. (36) with respect tow, we have (34) and (36) there is a part depending on the discretization
é’)(k'x) :f(k —K:x) process and another part independent of it. This aspect is

’ oD particularly important in the context of the gravitational
where ¢(k:x)=F[H(w:x)]. Therefore Eq(34) can be re- N-body simulations in which, as above mentioned, the matter
written again: density field is usually represented, for numerical reasons,
through a more or less dense distribution of particles with the

_ e ik 5 ~ 42 same massn [14] so thatmny=pg with py put equal to the
Sk) = f d™xe™ bk x)[ng + Cin(X)] -~ (2) g lk). average mass density of the continuous model.

(37)

By using the PDF®(w;x), Eq. (19) can be rewritten in a
very intuitive form. This is done by noticing that for a ge-  Starting from Eq(38), one can write a simple formula for
neric stationary point procesgx) the quantitn(x)n(y))/n,  the smallk (i.e., large-scalebehavior of the final PS of the
[where(---) is as usual the average over the considered erarticle distribution after the application of the displacement
semble of configurations(x)] represents the averagendi- ~ field. First of all let us study the smadl-behavior of
tional density[25] of particles seen by a generic particle of ¢(k;x)=f(k,—k;x). Since it is the FT of ¢(w;x), if

the system at a separatior+y from it. By calling I'j5(x G,.,(0) <+ (implying that the average value of is finite
=y)=(niy(X)Nir(y))/ng and ['{(x—y)=(n(x)n(y))/ny the con-  at anyx), we can write

ditional densities, respectively, before and after the applica-
tion of the displacement field, E¢19) transforms into

P(k)=fddxe'ik'x<§5(k:x)[l +&n()] - (2m)8(K).
(38)

qb(w;x):ffdduddvf(u,v;x)a(w—u+v). (36)

Small-k expansion and large-scale behavior—II

. k-wix) P2

lkix) =1-ik -w(x)—%ma@), (39)

I'¢(x) =J d% Tin(x") p(x = X";x").
where w(x) is the relative displacement between two par-

Very often the CF is defined in a dimensionless way di-ticles initially separated by a vector distancelLet us sup-

viding C(x) by n3; i.e., it is redefined as posew(x)=0 which is automatic in the case of statistical
invariance for space inversion or any rotatigisotropy).
&(x) = i;() - Ax) +h(x), Moreover, using the definition dg,,,(x) we can write
0
14
which we call the normalized covariance functigNCF). IRV (W) _
Consequently, also the PS is redefined asZhaf £(x): [k -wix)J"= ZMELk K160 = Gux)],
Sk)y 1 - . .
P(k) = F[&(x)] = 2ot h(k). where we have supposed al€p,,(x)=G,,(-x). Using this
0 0

expression and Eq39) in Eq. (38), we obtain, at small
It is simple to verify that if all the particles of the distribution enoughk,
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1d dd . _
P(k) = Pm(k)ll -S> k(“)k<”)G,w(0)] f (zquG(q)Pm(k -q)= f d?%e™ *G(x) &n(x),
7%

1d
+> k(y)k(v){éw(k) +f (sidéw(q)Pm(k —q)] and &,(x) goes to zero EAlt large. Hence, whenB<0, in

i ) Eq. (41), the term kG(k) is more effective than

(40 k2 [/ (2m)9G(q)P,L(k—q) (€., the latter has an expo-

nent larger thaB+2). For 3=0, apart from the very particu-

lar case in whichf[d%/ (2m)9]G(q)P;,(q) =0, both terms are
of the same order at smad—i.e., proportional t&?. Instead,

for B> 0, apart again the previous particular choiceS6#)

where CA;W(k):]-'[GW(x)] is the power spectrum matrix of
the displacement field. Note that, sinceG,,(0)

= [[d%/ (2m)4G,,(a), Eq. (40) can be also rewritten as

1d . . -
: R in relation toP;,(k), k?f[d%/ (2m)9G(q)P;,(k —q) ~ k? pre-
~ P (1))(v) L m in
P(k) = Pin(k) + % Kk {G‘”(k) vails onk?G(k) ~ k#*? at sufficiently smalk.

o We can therefore conclude the following.
Y4 A (ke — ) — P (i) B<O0: if a<B+2, the displacement field is ineffective
+f (Zw)dG’”(q)[P'“(k @ P'”(k)]}’ in changing large scale two-point correlations between par-
ticles. In fact the smalkleading term of the final P8(k) is

the initial oneP;,(k). For what concerns perturbations to this
r]eading term, it is simple to show that, i< 3, the main
perturbation to the leading term due to the displacements is

~G(0)k?P,,(K) ~k™*2, while if B<a<pB+2, it is KG(K)

which is useful in particular in the case in which the initial
particle configuration is the stationary Poisson one for whic
P.n(k)=1/ny and the last term vanishes.

Depending on the smak- properties of P,,(k) and

G,.(k), t_he smallk be_havior ofP(k) will change. Note that ~KP*2 (if o=, the two terms are of the same oryler

Eq. (40) is valid only if G,,,(0) <+<. In the case in which If insteada > B+2, the displacement field completely de-
G,.,(0)=+, then the singular part of the sméllexpansion  termines the new large-scale correlation properties of the
of ¢(k;x) has to be considered in a similar way to the caséyarticle distribution,kzé(k)~kﬁ+2 being now the leading

of uncorrelated displacements given by E@%) and(26). A term of P(k). Since> —d, the limit “most critical” behavior
very particular and important case of £g0) is given when P(k) which can be reached €. Note that ford=3

perpendicular displacements are not correlated aaiyis long-range nonintegrable and mainly positiée., critica)
the Kronecher deljalf the displacement field is also isotro- action only of displacements having finite varia@). Ac-
pic, G(k) depends only ok [and consequentl(x) on x], cordingly the(unreachablelimit decaying behavior for the
any spatial rotation. and long range. For exampl_e-, ar3 one can.stgrt from a
In this case Eq(40) can be rewritten as completely uncorrelated Poisson particle distribution and,
ool squared valuebut with long-range correlations, to obtain a
P(k) = Pin(k)[1 - G(0)k] + k| G(k) particle distribution with a covariance function similar to
dig - sition. Ford<2 the exponent 2e&=0; hence,&(x) decays
2 dC(@Pin(k =q) |. (41) faster thanx @ and correlations are not “critical,” but inte-
(2m)
Similarly to Eg. (40), also Eq.(41) can be reexpressed as Finally, for —=2<8<0 and a>p+2 and anyd, even
follows: though the leading term d?(k) is due to the displacement
P(k) = Pm(k)+k2{é(k)+f 7 d(;(q)[pm(k_q) final particle distribution remains superhomogenedgsse
™ Sec. ).
- Pm(k)]}. (42)  againP;,(k). The displacement field introduces only higher-
order perturbations: (1) -G(0)P;,(k)k?>~k**2 and (2)
clearly how effective a displacement field can be in “inject-the most important perturbative term far 0 (“critical” ini-
ing” large-scale correlations into a given particle distribution.jg) condition), while the latter is when & a< 2. For a=0,
tial dimensiond. Let us suppose that at sma&llwe have  contribute to the main perturbation Ry,(k). However, if the
Pin(k) ~k* and thatG(k) ~ k? (as already showr,3>~d).  initial particle configuration is a stationary Poisson one,

means thaG,,,(x) = J,,G(x) andéw(k):5ﬂvé(k) (with 6,,  two-point correlations can be introduced in the system by the
so that the PS matrix with elemer@s,, (k) is invariant under NCF at largex is given by¢(x) ~x"? which is not integrable
applying finite displacementsi.e., with a finite average
those found at the critical point of a second-order phase tran-
g
grable(i.e., for our purpose, short range
d% field which is characterized by long-range correlations, the
(i) B=0. If @< 2, the leading term of the final PKk) is
Equations(41) and (42) are very useful to show very kZ{é(k)+f[ddq/(277)d]é(q)pm(k—q)}~k2_ The former is
As better clarified below, a central role is played by the spaggs, (1) and (2) are in general of the same order and both
Note that Pin(k)=1/n, for any k. Consequently, as shown explicitly
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by Eq.(42), the main perturbation t&,,(k) is only kzé(k), basically due to arguments based ondhatral limit theorem
as the other terms in Eq42) cancel one each other. We [21]. Moreover, in order to clarify better all the concepts
show this better in the following through the example of theintroduced in the previous section, two explicit examples of
Gaussian displacement field. application of a Gaussian displacement field will be given:
Instead, ifa>2, again the smak-behavior of the final stationary Poissonian and regular lattice initial conditions.
PS is completely different from the initial one and is deter- e treat in detail the particular case obae-dimensional
mined by the displacement field. In fact now the leading ternPatially stationary point proces,(x) perturbed by a statis-
becomesk2{G(k) + [[d%q/ (2m) 4 3(q)P, (k-q)} ~ k2. How- tcally stationary Gaussian displacement fialel). The prob-

ever, the system after the action of the displacements is stif’fbi.Iity density fu_ncti.onal Qlu(x)] .giving. the statistical
in the superhomogeneous class of point processes inlany weight of any realizatiom(x) of the field will have the form

(i) B>0. If f[ddq/(ZTr)d]é(q)Pm(q)>O, this case is [25]

similar to the case3=0 with the difference that whew 1 -
>2 the main term introduced by the displacement field is Qu(]~ exp[—EJ f_w dxdyux)K(x=yjuly) |

only K2f[d%/(2mYG(q)Py(k—-q)~k2 However, if
d’g/ (2m)9G(q)P;,(q) =0, which corresponds to a peculiar
Jldait JG(@)Pin(a g y whereK(x)=K(-x) is the positive-definite correlation kernel

. 2 ) 2’\
choice of the dependence Gq) on Pir(q), the termk“G(k) of the Gaussian displacement field. Without loss of general-

can again be important. This case will be analyzed in more — :
detail in the next section when the case of a shuffled Iatticé:[y we have putu=0. Clearly Eq.(43) is only formal as,
with correlated Gaussian displacements is analvzed. Eor t riﬁgorously speaking, the normalization constant is infinite in
moment we notice only that tphis case is quite d?/fficul't to bé} e continuum space and also in the infinite-volume fimit.
. y o 54 . However, we write it to make evident the meaning of Gaus-
realized because of the condition given by the Wiener-

o . . sianity for a stochastic field. For a more general account of
Khinchin theorem[22] which states that bothP;,(k) and Gaussian stochastic fields s&@¥,31.

G(k) must be non-negative at aty This means that it can |t is simple to show that the PS of the displacement field

be realized only ifP;,(k) is zero whereG(k) is not and vice is given by

versa—i.e., nonoverlapping supports. .
Finally, note that when the initial particle configuration is G(k) = .

a regular lattice, the tern®,(k)[1-G(0)k?] in Eq. (41) is FIK(X)]

identically zero arouné=0. Consequently, the sma&IPS of ~ As we wantu(x) to be a well defined continuous stochastic

the final configuration is determined by the next perturbatiorprocess,K(x) is to be taken so that the Wiener-Khinchin

terms(see the next section about Gaussian displacements theorem is satisfied: i.e.. K(x) is such thaG(k) =0 at allk

It is important to notice that Eq$40) and(41) are quite . . . .
more comF:)Iex than the result obtgﬁeé inaa'\gevaay inqSec and integrable. The displacement-displacement correlation
. function will be thus given by

[l of the paper by simply using the continuity equation for
the local conservation of mass which led basically to

(43

— (v () = 1 1
G(X) = U(Xp +X)u(xp) = F~ [HK(X)J ,

P(k) = k2G(K).
We see that respect to this simple approximation, even in th\évhICh is a continuous function #(x) is a continuous sto-

smallk limit (i.e., large spatial scalg®nd finite displace- Chastic proces§21). It is possible to show that the joint

ments([i.e., finite G(0)], there can be important corrections two-displacement PDF can be written as
coming both from(i) the granularity of the systenii) the 1

internal correlations of the initial mass distribution, afid) fluv;x) = 2m/G2(0) - GA(x)
the interplay between these correlations and those of the dis- s o
placement field. G(0)(u” +v9) — 2G(X)uv
XeX - 2 2 1 (44)
2[G(0) - G(x)]
VIIl. CORRELATED GAUSSIAN DISPLACEMENT FIELD whereG(0)=u?=12< +. Itis also simple to verify that, in

rder to have this joint PDF well defined at allthe corre-

In this section the effect of a correlated displacement fiel ation functionG(x) must satisfy the following constraint:

on the correlation properties of a given particle distribution is
further clarified through the discussion of a very important |G(x)| <G(0) Ox#0.
example: the Gaussian displacement field. Its importance i
twofold: (1) its statistical properties are completely deter-
mined by the knowledge of one and two-point correlation
functions]i.e., mean valu@ and correlation matrixG,,,(x)]; i T - )
(2) in many applicationge.g., initial conditions of cosmo- IMx-0G(X)=G(0). This implies thenf(k,—k;0)=1. If in-
logical N-body simulations the Gaussian of perturbations Stead the displacement field is uncorrelafieel, G(x) =0 for
(i.e., particle displacementsrises as a natural hypothesis x#0 but G(0)> 0], then, as shown in Sec. Vf(k,—k;0)

Note that if, as supposed, the Gaussian displacement field is
a real continuous correlated stationary stochastic process
and, consequentlyG(x) is a continuous function, then
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=exg-k*G(0)]=|p(k)|*> with p(k)=exd-k?G(0)/2] being dimensional Poisson particle distribution. The extension to
the characteristic function of the one-displacement PDF.  higher dimensions is straightforward.
In the case of truly continuous process, by taking the FT Let us suppose to have a spatially stationary Poisson par-
of Eg. (44) both inu andv, we find ticle distribution with constant average number density
>0. As aforementioned in this case the NCF is

f(k,—kix) = lk;x) = e¥ICO-60], (45)
Therefore, by using Eq45), the relation(34) between the En(X) = @
PS of the particle distribution after the application of the No
displacement field and its initial correlation functidp(x)

i.e., hy,(x)=0 and P;,(k)=1/ny. By substituting this initial

ill b
Wil be NCF into Eq.(47), one finds

+oo
Pk =0 [ axe L+, 0] - 200 1 -
o P(k) = — + e K°G(0) J dxer k(e — 1),
(46) No —o

Since at largex both G(x) and &,(x) converge to zero, the FT which, in the long-wavelength limit, behaves as
in x in Eq. (46) is not well defined and contains a Diradc
function contribution exactly compensating the last Difac
function term in the same equation. This can be made more
clear in the following way. The Diraé function of Eq.(46)

P(k) = nio + e-kZG<°>[kZé(k) + kgé@(k)} . (48

can be transformed as where G@(k)=F[G(x)]. Since ind=1, G(k)~k? with
5 5 +o0 ) >-1, we see that at smak the leading term is 1In,
2md(k) = 2me™ GO §(k) = O j dxe ™, =P,,(k) and the perturbations introduced by the displace-

ments are at most of ord&r However, as aforementioned, in
Using this relation, Eq(46) can be rewritten in the following d>2 “critical” and dominating perturbations at smalican

form containing only well-defined FT’s: be introduced by the displacements. On the other hand, as is
- clear from Eq(48), we have a perturbation of order lower or
P(k) = e—sz<0>{f dxex(ge — 1) equal tok* at smallk due to the term iG@(k) which pre-
o0 vails on the perturbation coming from displacement-

+o0 , displacement correlation§i.e., from the term containing
+ f dxe kK G<X)§in(X)] : (47 G(k) in Eq.(48)] if B> 2. We ultimately observe that for any
— d it is not possible to transform a Poisson particle distribu-
The smallk expansion of this formula can be obtained by tion into a “superhomogeneous” one by the only action of
simply applying to this case Eg41). the displacements. In fact, even though correlated, the dis-
As already shown above, id>1 dimensions the more placements are stochastic perturbations and, consequently,
general form off(u,v;x), even in the limited case of a spa- cannot increase the level of large scale order of the system.
tially stationary Gaussian displacement field, is more com-
plex. In fact in general not only parallel componentaiaind B. Shuffled lattice with correlated Gaussian displacements

v can be correlated, but also perpendicular components can In this subsection we analvze the effect of the same
be. This leads to have a symmetric displacement- IS su lon w yz

displacement correlation matr®,,,(x). Once the correlation Gags&_an displacement _f|eld as above on aone d|m§n5|onal
o L ® . . lattice(i.e., a regular chain of unit mass partiolesth lattice
matrix is given, it is simple to show that, fordadimensional

. . . . . : spacingl (i.e.,ng=1/1). Again we focus our attention on the
spatially stationary Gau§S|an displacement field with zero a large scalesk— 0 limit). By taking the inverseF of Eq.
erage value, we can write

(27), the initial NCF in this case is
d(k;x) = f(k,~k;x)

+00

Ld (0 =1 sx-nl)-1.
:eXP[‘Ek(mk(y)[GW(O)—Gw(X)] ] () nzz_oc Oc=nb

However, in the cas&,,,(x)=45,,G(x), the general features Therefore Eq(46) can be rewritten as

of the effect of a Gaussian displacement field can be well +o0
summarized by the above one-dimensional example. P(k) = | K°G(0) > eriknl+G(nl) _ 278(K). (49)
n=-—oc

A. Gaussian displacement field applied to a Poisson particle

distribution The series in Eq(49) is not well defined because its argu-
In this section we analyze in detail the effect of a Gaussiment does not converge to zero fimf— . By using for
ian displacement field as presented above on a one&wd(k) the chain of identities
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+oo §' Ty T rorrTTTh T T
— 2,76 KG(0) _o. M of [= Simulation |
2molk) = 2e [z o k2" 0
—00,+00 2 ? Ao,
m 10
- 2 5(k— 27T—>i| )
m=0 l & F
+o0 107
— |e—k26(0) E eiknl _ 27Te—k26(0)
A 10°F ]
oo m AT A T S AT NS T N
X > 6<k— 277—), 10” 10" 10° 10"
m+#0 l k
we can rewrite Eq(49) as FIG. 5. The figure presents the contribution to EsD) coming

from the first sum(i.e., excluding the5-like Bragg peakyto the PS
) ) 5 P(k) of a 1D “shuffled lattice” obtained by applying a correlated
P(k) =1e7CO 3 griknlgcnl 1] Gaussian displacement field with(k) = exp(~|k|/k) with ky=1/4
n=== [henceG(0)=u?=0.08 to a regular chain of particles with unitary
, m lattice spacingl=1). Both the theoretical prediction given by Eg.
+ 27re KGO 5<k— 277—), (500  (50) and the numerical result obtained by a direct simulation with
m#0 | 10* particles are given. The agreement is excellent. Note that since

. . ol . . - 2 -_
The first sum is a well-defined series and gives in general the this caseGp(0)>0 and finite we have thae(k)~ k" at suffi

smooth part oP(k) converging to 1i, at largek. Instead the Ciently smallk.
second one gives the singuléiike Bragg peak contribution
to P(k) due to the initial perfect lattice distribution, each

+o0

—00,+00

GZ(K= X le™[G(nN].

peak being modulated by an amplitugd”®©, rapidly de- =
creasing to zero with increasing the positioof the peak. In . o _
d>1 it is simple to obtain a very similar formula. Note that, due to the discretization of the Fourier integral

Since this second contribution, due to the initial NCF, isin @ sum in Eq(52), Gp(K) is not exactly equal t&(k). This
exactly zero at all orders in the region 78 <k<2=/l, the  difference depends on how smooth and consta@(i9 on
smallk behavior of P(k) is completely determined by the the length scaléand vanishes whelngoes to zero. However,
first sum. This situation is very different from the case of anin general if, é(k)Nka at smallk with <0, then also

initial Poisson particle configuration. In fact, as shown x a : Ay —

above, in this second case the smafroperties of the PS CjD(k) e Instead., If_a>0 and then(0)=0, we can have
are determined mainly by the displacement field only if it o(0)>0 (but vanishing ak” whenl—0) as the effect of
produces “critical” large-scale correlatiopghich is possible the dlscret|za}t|0n of the FOU.I’IEI’ transform. Another impor-
only in d>2). Instead, in the present case, due to the pariant observation about E¢1) is that, agG(x)]*=0 at allx,
ticular properties of the lattice PS, it is always the displacethen G(Dz)(0)>0. Moreover, ag G(x)]?> decays faster than
ment field to determine the large scale_ corre_:lationG(X) at largex, then, iféD(O) is finite, é(DZ)(O) also is.
properties—i.e., the smakPS. We now analyze in detail the  neqe ghservations are very important in order to deter-
smallk bghawor ofP(k) in Eq.(50) W|th_pa_rt|c1_JIar attention i \which kind of point processes can be realized by per-
to what kind of superhomogeneous distributions we can obgring 4 lattice through a correlated stochastic displacement

tain after the application of the displacements. By keepingie|y. By the previous considerations, it is straightforward to
only the most important terms of E(G0) at smallk, we can  geq that the realization from a lattice of a stochastic particle

write distribution withP(k) ~ k? at smallk with B<2 (1< 8<2 in
, R 1A . R d=1 and 2-d<pB=<2 in generald dimension} is a very
P(k) = e ¥COKG (k) + E[Gg)(k) - 2G(0)Gp(K)], simple task: it is enough to take a Gaussian displacement

field such thaté(k)~k“ with a=B-2<0 (see Figs. 5 and
(51) 6). Instead, obtaining &(k) with 8>2 is a more difficult

plus higher-order terms. In E¢51), Gp(K) is the discretized t@Sk. First of all one has to take@x) such thaGp(0)=0. It
Fourier integral ofG(x) with finite integration element given S POSSible to see that this requirement is a sort of stochastic
by the lattice cell sizé—i.e expression of the total momentum conservation law in the

system—that is, a conservation “in averag80]. Moreover,
in order to have 2 8<4 one has to hav&p(k) ~kf? at

+0o0

~ — —iknl A
Colk) = E_x leG(nh 52 smallk. if instead Gp(k) ~k* with a=2, thenB=4 is ob-
tained in all cases. The cag>4 is not permitted. This
and, analogously, means that, by perturbing a lattice witlf@aussiapstochas-
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FIG. 6. Power spectrurR(k) (including also the Bragg peaks FIG. 7 Comparison k_)etwe_en the PS's @f a Poisson pomt_
contribution of a shuffled lattice similar to the previous figure but process(ii) a shuffied lattice with uncorrelated displacements wiih

oA . B s a finite variance, andiii) a shuffled lattice obtained by applying a
now. with G(k)—AexE—k/kC)/(k+a) with k=5, a=10", and correlated displacement field and showing a “critical” behavior at
A=1/20[henceG(0)=u=0.13. The agreement between the theo- syficiently smallk. In particular all the particle distributions are in
retical predigtion and the numerical result is again excellent. Notej=1 and have the same mean density(i.e., the same specific
that now, asG(k) ~k™* at smallk (but larger thare), the PSP(k) volume 1hgp). In the casgii) the finite variancar < +w implies
~k in the same range. P(k) ~ k? at smallk [see Eq(24)]. Instead in(iii ) the applied cor-

related displacement field faa<k<2w/ny has é(k)~k‘4, and
tic displacement field, the most “superhomogeneous” realizthen, from Eq(51), P(k)~k?. Fork<a (which is below the mini-
able point process has a F%k) ~k* at smallk; e.g.,k® is  malk of the figurg G(k) is cutoff to a constant value; in fact, in any
forbidden. This is a strong limitation. In fact, as aforemen-d the PS of any proper stochastic process has to satisfy
tioned, from one side the PS of the lattice can be considerelfmi.ok?P(k)=0.
as behaving-k” aroundk=0 (it is completely flat. From the
other side we have just shown that an expon@ntd of P(k) the particle distribution.

is never realizable when one applies to any initial particle o main interest concerns a detailed study of the kind of
distribution a stochastic displacement field. This means thqgge-scale correlations that the displacement field can “in-
independently of the kind of the displacement field, as longect” into the system. In particular we are interested to know
as a smootl(k) aroundk=0 is considered, there is a “mini- if long-range positive spatial correlations in the system can
mal level of disorder” injected in the system measured by thé>e obtained by the application of a suitable displacement
exponent 4 in the smak behavior ofP(k). This shows how field to an initially short-range correlated particle distribu-
difficult is for example to build a spatially stationary stochas-tion. In this respect we have found thatde=3 it is possible
tic point process such th&(k) ~k® at smallk. to obtain particle distributions with long-range correlations
It is possible to extend all these results to higher dimen{i-., with a covariance function with a positively diverging
sions and to a non-Gaussian displacement field, but we thinlktégra) by applying, for instance, either to a completely
that the example of the one-dimensional Gaussian displacéncorrelated homogeneous Poisson point process or to a
ment field is enough to enlighten the effects and the limitaJegular lattice of particles a Gaussian displacement field with
tions of a general stochastic and correlated displacemetfficiently long-range displacement-displacement correla-

field on a given point process statistically independent of ittions independently on the variance of the single displace-
ment. This is a very important point; in fact, we can think to

perturb a lattice with such a displacement field with a mean-
IX. CONCLUSIONS squared displacement much smaller than the lattice spacing
and, independently of this, to obtain strong large-scale typi-
In this paper we have discussed the effect of a stochastieal fluctuationsAN(R) of the number of pointsN(R), con-
displacement field on a spatial distribution of point particlestained in a randomly placed sphere of radRjsgrowing as
with identical masgi.e., point procesgsin the hypothesis of AN(R)~R* with a>d/2, whereasa=d/2 for the Poisson
statistical independence between the taee Fig. 7. In par-  distribution ande=(d-1)/2 for the regular lattice. Such par-
ticular we have studied rigorously the changes induced in thécle distributions would look very similar, respectively, to
two-point correlation properties of the particle distribution the original Poisson or lattice particle distribution at the
by the displacements. In this way we have seen that usuamall scalegi.e., locally), but would show much larggand
naive approaches to this problem leads to approximationsnore rapidly growing with the distangéluctuations beyond
(which may not be appropriate in some important cases  a sufficiently large scale.
glecting the contributions coming from either the initial cor-  Another related problem is to study how the long-range
relation properties of the particle distribution or the failure of order of a regular lattice array of particles is perturbed by the
the small displacements approximation. action of the applied displacement field. In particular we
We have distinguished the two cases of displacementave studied between which limits the perturbed lattice stays
fields with and without spatial correlations, giving for both in the so-calledsuperhomogeneoudass of point processes.

cases the rigorous equations of transformation of the PS of

066131-15



ANDREA GABRIELLI PHYSICAL REVIEW E 70, 066131(2004)

That is, we have found the limits in which the sub- tional clustering of the matter leading to the formation of
Poissonian character of the mass., the particles number  large scale structure@.g., galaxies These so built initial
fluctuations on sufficiently large scales is conserved. Anywayonditions should represent the spectrum of small primordial

we have also seen that any truly stochastic displacement fielhass fluctuations predicted by theoretical models., cold
always injects into the particle system at least a minimalark matter mode)s

degree of disorder measured by the4 of the exponent of
the final PS of the syster(k) ~k* at smallk.
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