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We study the family of network models derived by requiring the expected properties of a graph ensemble to
match a given set of measurements of a real-world network, while maximizing the entropy of the ensemble.
Models of this type play the same role in the study of networks as is played by the Boltzmann distribution in
classical statistical mechanics; they offer the best prediction of network properties subject to the constraints
imposed by a given set of observations. We give exact solutions of models within this class that incorporate
arbitrary degree distributions and arbitrary but independent edge probabilities. We also discuss some more
complex examples with correlated edges that can be solved approximately or exactly by adapting various
familiar methods, including mean-field theory, perturbation theory, and saddle-point expansions.
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I. INTRODUCTION

The last few years have seen the publication of a large
volume of work in the physics literature on networks of vari-
ous kinds, particularly computer and information networks
like the internet and world wide web, biological networks
such as food webs and metabolic networks, and social net-
works [1–4]. This work has been divided between empirical
studies of the structure of particular networks and theoretical
studies focused largely on the creation of mathematical and
computational models. The construction of network models
is the topic of this paper.

Models of networks can help us to understand the impor-
tant features of network structure and the interplay of struc-
ture with processes that take place on networks, such as the
flow of traffic on the internet or the spread of a disease over
a social network. Most network models studied in the phys-
ics community are of a practical sort. Typically one wishes to
create a network that displays some feature or features ob-
served in empirical studies. The principal approach is to list
possible mechanisms that might be responsible for creating
those features and then make a model incorporating some or
all of those mechanisms. One then either examines the net-
works produced by the model for rewarding similarity to the
real-world systems they are supposed to mimic, or uses them
as a substrate for further modeling, for example of traffic
flow or disease spread. Classic examples of models of this
kind are the small-world model[5] and the many different
preferential attachment models[6–8], which model network
transitivity and power-law degree distributions respectively.

However, there is another possible approach to the mod-
eling of networks, which has been pursued comparatively
little so far. An instructive analogy can be made here with
theories of gases. There are(at least) two different general
theories of the properties of gases. Kinetic theory explicitly
models collections of individual atoms, their motions and
collisions, and attempts to calculate overall properties of the
resulting system from basic mechanical principles. Pressure,
for instance, is calculated from the mean momentum trans-
ferred to the walls of a container by bombarding atoms. Ki-
netic theory is well motivated, easy to understand, and makes
good sense to physicists and laymen alike. However, kinetic

theory rapidly becomes complex and difficult to use if we
attempt to make it realistic by the inclusion of accurate in-
termolecular potentials and similar features. In practice, ki-
netic theory models either make only rather rough and un-
controlled predictions, or rely on large-scale computer
simulation to achieve accuracy.

If one wants a good calculational tool for studying the
properties of gases, therefore, one does not use kinetic
theory. Instead, one uses statistical mechanics. Although cer-
tainly less intuitive, statistical mechanics is based on rigor-
ous probabilistic arguments and gives accurate and reliable
answers for an enormous range of problems, including many,
such as problems concerning solids, for which kinetic theory
is inapplicable. Equilibrium statistical mechanics provides a
general framework for reasoning and a powerful calcula-
tional tool for very many problems in statistical physics.

We argue that the current commonly used models of net-
works are akin to kinetic theory. They posit plausible mecha-
nisms or dynamics, and produce results in qualitative agree-
ment with reality, at least in some respects. They are easy to
understand and give us good physical insight. However, like
kinetic theory, they do not make quantitatively accurate pre-
dictions and provide no overall framework for modeling,
each model instead concentrating on explaining one or a few
features of the system of interest.

In this paper we discuss exponential random graphs,
which are to networks as statistical mechanics is to the study
of gases—a well-founded general theory with true predictive
power. These advantages come at a price: exponential ran-
dom graphs are both mathematically and conceptually so-
phisticated, and their understanding demands some effort of
the reader. We believe this effort to be more than worthwhile,
however. Theoretical techniques based on solid statistical
foundations and capable of quantitative predictions have
been of extraordinary value in the study of fluid, solid state,
and other physical systems, and there is no reason to think
they will be any less valuable for networks.

We are by no means the first authors to study exponential
random graphs, although our approach is different from that
taken by others. Exponential random graphs were first pro-
posed in the early 1980s by Holland and Leinhardt[9], build-
ing on statistical foundations laid by Besag[10]. Substantial
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further developments were made by Frank and Strauss
[11–13], and continued to be made by others throughout the
1990s[14,15]. In recent years a number of physicists, includ-
ing ourselves, have made theoretical studies of specific cases
[16–21]. Today, exponential random graphs are in common
use within the statistics and social network analysis commu-
nities as a practical tool for modeling networks and several
standard computer tools are available for simulating and ma-
nipulating them, includingPREPSTAR, ERGM, andSIENA [22].

In this paper we aim to do a number of things. First, we
place exponential random graph models on a firm physical
foundation, showing that they can be derived from first prin-
ciples using maximum entropy arguments. In doing so, we
argue that these models are not merely anad hocformulation
studied primarily for their mathematical convenience, but a
true and correct extension of the statistical mechanics of
Boltzmann and Gibbs to the network world.

Second, we take an almost entirely analytic approach in
our work, by contrast with the numerical simulations that
form the core of most previous studies. We show that the
analytic techniques of equilibrium statistical mechanics are
ideally suited to the study of these models and can shed
much light on their structure and behavior. Throughout the
paper we give numerous examples of specific models that are
solvable either exactly or approximately, including several
that have a long history in network analysis. Nonetheless, the
particular examples studied in this paper form only a tiny
fraction of the possibilities offered by this class of models.
There are many intriguing avenues for future research on
exponential random graphs that are open for exploration, and
we highlight a number of these throughout the paper.

II. EXPONENTIAL RANDOM GRAPHS

The typical scenario addressed in the creation of a net-
work model is this: one has measurements of a number of
network properties for a real-world network or networks,
such as number of vertices or edges, vertex degrees, cluster-
ing coefficients, correlation functions, and so forth, and one
wishes to make a model network that has the same or similar
values of these properties. For instance, one might find that a
network has a degree sequence with a power-law distribution
and wish to create a model network that shows the same
power law. Or one might measure a high clustering coeffi-
cient in a network and wish to build a model network with
similarly high clustering.

Essentially all models considered in modern work, and
indeed as far back as the 1950s and 1960s, have been en-
semble models, meaning that a model is defined to be not a
single network, but a probability distribution over many pos-
sible networks. We adopt this approach here as well. Our
goal will be to choose a probability distribution such that
networks that are a better fit to observed characteristics are
accorded higher probability in the model.

Consider a setG of graphs. One can use any setG, but in
most of the work described in this paperG will be the set of
all simple graphs without self-loops onn vertices.(A simple
graph is a graph having at most a single edge between any
pair of vertices. A self-loop is an edge that connects a vertex

to itself.) Certainly there are many other possible choices and
we consider some of the others briefly in Secs. III C and
III D. The graphs can also be either directed or undirected
and we consider both in this paper, although most of our time
will be spent on the undirected case.

Suppose we have a collection of graph observables
hxij , i =1,… ,r, that we have measured in empirical observa-
tions of some real-world network. We will, for the sake of
generality, assume that we have an estimatekxil of the ex-
pectation value of each observable. In practice it is often the
case that we have only one measurement of an observable.
For instance, we have only one internet, and hence only one
measurement of the clustering coefficient of the internet. In
that case, however, our best estimate of the expectation value
of the clustering coefficient is simply equal to the one mea-
surement that we have.

Let GPG be a graph in our set of graphsG and letPsGd
be the probability of that graph within our ensemble. We
would like to choosePsGd so that the expectation value of
each of our graph observableshxij within the ensemble is
equal to its observed value, but this is a vastly underdeter-
mined problem in most cases; the number of degrees of free-
dom in the definition of the probability distributionPsGd is
huge compared to the number of constraints imposed by our
observations. Problems of this type, however, are common-
place in statistical physics and we know well how to deal
with them. The best choice of probability distribution, in a
sense that we will make precise in a moment, is the one that
maximizes the Gibbs entropy

S= − o
GPG

PsGdln PsGd, s1d

subject to the constraints

o
G

PsGdxisGd = kxil, s2d

plus the normalization condition

o
G

PsGd = 1. s3d

HerexisGd is the value ofxi in graphG.
Introducing Lagrange multipliersa , huij, we then find

that the maximum entropy is achieved for the distribution
satisfying

]

] PsGdFS+ aS1 − o
G

PsGdD + o
i

uiSkxil − o
G

PsGdxisGdDG
= 0 s4d

for all graphsG. This gives

ln PsGd + 1 +a + o
i

uixisGd = 0, s5d

or equivalently

PsGd =
e−HsGd

Z
, s6d

whereHsGd is the graph Hamiltonian
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HsGd = o
i

uixisGd s7d

andZ is the partition function

Z = ea+1 = o
G

e−HsGd. s8d

Equations (6)–(8) define the exponential random graph
model. The exponential random graph is the distribution over
a specified set of graphs that maximizes the entropy subject
to the known constraints.

It is also the exact analog for graphs of the Boltzmann
distribution of a physical system over its microstates at finite
temperature. The Boltzmann distribution can be derived by
the same means, as the maximum entropy distribution con-
cordant with a given set of observations of a thermal
system—usually observations of the energy, although vari-
ants based on other observables can be derived and are useful
in special cases[23].

The Boltzmann distribution can also be derived in other
ways, for example, by considering a system in weak interac-
tion with a heat bath. No equivalent picture exists for net-
work models and it is not appropriate to consider the system
as a dynamic one, moving ergodically from one state to an-
other, as one commonly does in statistical mechanics. But
there is a prominent “Bayesian” school of thought, of whom
Edwin Jaynes was the best-known exemplar, which regards
statistical mechanics from a genuinely statistical point of
view, as a problem of inference from incomplete informa-
tion, and within which the maximum entropy derivation is
considered the most correct[24]. Our derivation of the ex-
ponential random graph belongs to the same school and in
this sense is the analog of the Boltzmann distribution.

Using the exponential random graph model involves per-
forming averages over the probability distribution(6). The
expected value of any graph propertyx within the model is
simply

kxl = o
G

PsGdxsGd. s9d

The exponential random graph, like all such maximum en-
tropy ensembles, gives the best prediction of an unknown
quantity x, given a set of known quantities, Eq.(2). In this
precise sense, the exponential random graph is the best en-
semble model we can construct for a network given a par-
ticular set of observations.

In many cases we may not need to perform the sum(9);
often we need only perform the partition function sum Eq.
(8), and the values of other sums can then be deduced by
taking appropriate derivatives. Just as in conventional equi-
librium statistical mechanics, however, performing even the
partition function sum analytically may not be easy. Indeed
in some cases it may not be possible at all, in which case one
may have to turn to Monte Carlo simulation, to which the
model lends itself admirably. As we show in this paper, how-
ever, there are a variety of tools one can employ to get exact
or approximate analytic solutions in cases of interest, includ-
ing mean-field theory, algebraic transformations, and dia-
grammatic perturbation theory.

III. SIMPLE EXAMPLES

Before delving into the more complicated calculations, let
us illustrate the use of exponential random graphs with some
simple examples.

A. Random graphs

We consider first what is perhaps the simplest of exponen-
tial random graphs, at least for the case of fixed number of
verticesn considered here.

Suppose we know only the expected number of edgeskml
that our network should have. In that case the Hamiltonian
takes the simple form

HsGd = umsGd. s10d

We can think of the parameteru either as a field coupling to
the number of edges, or alternatively as an inverse tempera-
ture.

Let us evaluate the partition function for this Hamiltonian
for the case of an ensemble of simple undirected graphs onn
vertices without self-loops. We define theadjacency matrix
s to be the symmetricn3n matrix with elements

si j = H1 if i is connected toj ,

0 otherwise.
J s11d

Then the number of edges ism=oi, jsi j , and the partition
function is

Z = o
G

e−H = o
hsi j j

expS− uo
i, j

si jD = p
i, j

o
si j=0

1

e−usi j

= p
i, j

s1 + e−ud = f1 + e−ug
sn

2d
. s12d

It is convenient to define the free energy

F = − ln Z, s13d

which in this case is

F = − Sn

2
Dlns1 + e−ud. s14d

[Note that the free energy is extensive not in the number of
verticesn, but in the numbers n

2
d of pairs of vertices, since

this is the number of degrees of freedom in the model.] Then,
for instance, the expected number of edges in the model is

kml =
1

Z
o
G

me−H = −
1

Z

] Z

] u
=

] F

] u
= Sn

2
D 1

eu + 1
. s15d

Conventionally we reexpress the parameteru in terms of

p =
1

eu + 1
, s16d

so thatkml= s n
2

dp.
The probabilityPsGd of a graph in this ensemble can be

written
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PsGd =
e−H

Z
=

e−um

f1 + e−ugsn
2d = pms1 − pdsn

2d−m. s17d

In other words,PsGd is simply the probability for a graph in
which each of thes n

2
d possible edges appears with indepen-

dent probabilityp.
This model is known as the Bernoulli random graph, or

often just the random graph, and was introduced, in a com-
pletely different fashion, by Solomonoff and Rapoport[25]
in 1951 and later famously studied by Erdős and Rényi
[26,27]. Today it is one of the best studied of graph models,
although, as many authors have pointed out, it is not a good
model of most real-world networks[1,3,5]. One way in
which its inadequacy shows, and one that has been empha-
sized heavily in networks research in the last few years, is its
degree distribution. Since each edge in the model appears
with independent probabilityp, the degree of a vertex, i.e.,
the number of edges attached to that vertex, follows a bino-
mial distribution, or a Poisson distribution in the limit of
largen. Most real-world networks, however, have degree dis-
tributions that are far from Poissonian, typically being highly
right-skewed, with a small proportion of vertices having very
high degree. Some of the most interesting networks, includ-
ing the internet and the world wide web, appear to have
degree distributions that follow a power law[6,28,29]. In the
next section we discuss what happens when we incorporate
observations like these into our models.

B. Generalized random graphs

Suppose then that, rather than just measuring the total
number of edges in a network, we measure the degrees of all
the vertices. Let us denote byki the degree of vertexi. The
complete sethkij is called thedegree sequenceof the net-
work. Note that we do not need to specify independently the
number of edgesm in the network, sincem= 1

2oiki for an
undirected graph.

The exponential random graph model appropriate to this
set of observations is the model having Hamiltonian

H = o
i

uiki , s18d

where we now have one parameterui for each vertexi. Not-
ing thatki =o jsi j , this can also be written

H = o
i j

uisi j = o
i, j

sui + u jdsi j . s19d

Then the partition function is

Z = o
hsi j j

expS− o
i, j

sui + u jdsi jD
= p

i, j
o

si j=0

1

e−sui+u jdsi j = p
i, j

s1 + e−sui+u jdd, s20d

and the free energy is

F = − o
i, j

lns1 + e−sui+u jdd. s21d

More generally we could specify a Hamiltonian

H = o
i, j

Qi jsi j , s22d

with a separate parameterQi j coupling to each edge[11].
Then

Z = p
i, j

s1 + e−Qi jd, F = − o
i, j

lns1 + e−Qi jd. s23d

This allows us, for example, to calculate the probability of
occurrencepij of an edge between verticesi and j :

pij = ksi jl =
] F

] Qi j
=

1

eQi j + 1
. s24d

The model of Eq.(18) is the special case in whichQi j =ui
+u j and the normal(Bernoulli) random graph of Eq.(12)
corresponds to the case in which the parametersQi j are all
equal.

Sometimes it is convenient to specify not a degree se-
quence but a probability distribution over vertex degrees.
This can be achieved by specifying an equivalent distribution
over the parametersui in Eq. (18). Let us definersuddu to be
the probability that the parameteru for a vertex lies in the
rangeu to u+du. Then, averaging over the disorder so intro-
duced, the free energy Eq.(21) becomes

F = −E rsu1ddu1 ¯ rsundduno
i, j

lns1 + e−sui+u jdd

= − Sn

2
D E E lns1 + e−su+u8ddrsudrsu8ddu du8. s25d

The part of this free energy due to a single vertex with field
parameteru is

1

n

dF

drsud
= − sn − 1d E lns1 + e−su+u8ddrsu8ddu8, s26d

and the expected degree of vertexi with field ui is the de-
rivative of this with respect tou, evaluated atui:

kkil = − sn − 1dF ]

] u
E lns1 + e−su+u8ddrsu8ddu8G

u=ui

= sn − 1d E rsu8ddu8

eui+u8 + 1
. s27d

By a judicious choice ofrsud we can then produce the de-
sired degree distribution.(See also Sec. III E.) We studied
this model in a previous paper[17], as a model for degree
correlations in the internet and other networks.

We could alternatively specify a probability distribution
rsQd for the parametersQi j in Eq. (22) that couple to indi-
vidual edges. Or, taking the developments a step further, one
could define joint distributions for theQi j on different edges,
thereby introducing correlations of quite general kinds be-
tween the edges in the model. There are enormous possibili-
ties to be explored in this regard, but we pass over them for
now, our interests in the present paper lying in other direc-
tions.
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One can calculate many other properties of our models.
For example, for the model of Eq.(18), one can calculate the
expectation value of any product of vertex degrees from an
appropriate derivative of the partition function:

kkikj ¯ l =
1

Z
F ]

] ui

]

] u j
¯GZ. s28d

These are the disconnected correlation functions of the ver-
tex degrees. Similarly, derivatives of the free energy give the
connected correlation functions. For the model of Eq.(18),
for instance, the two-vertex connected correlation is

kkikjlc =
]2F

]uiu j
=5

eui+u j

seui+u j + 1d2 for i Þ j ,

sn − 1d
e2ui

se2ui + 1d2 for i = j . 6 s29d

For the case of the Bernoulli random graph, which has allui
equal, this simplifies tokkikjlc=ps1−pd for i Þ j , where we
have made use of Eq.(16). Thus the degrees of vertices in
the random graph are in general positively correlated. One
can understand this as an effect of the one edge that poten-
tially connects the two verticesi and j . The presence or
absence of this edge introduces a correlation between the two
degrees.[For a sparse graph, in whichp=Osn−1d, the corre-
lation disappears in the limit of large graph size.]

In order to measure some quantities within exponential
random graph models, it may be necessary to introduce ad-
ditional terms into the Hamiltonian. For instance, to find the
expectation value of the clustering coefficientC [5], one
would like to evaluate

kCl =

o
G

CsGde−H

Z
, s30d

which we can do by introducing an extra term linear in the
clustering coefficient in the Hamiltonian. To measure cluster-
ing in the network of Eq.(18), for example, we could define

H = o
i

uiki + gC. s31d

Then

kCl = U ]F

]g
U

g=0
. s32d

Thus it is important, even in the simplest of cases, to be able
to solve more general models, and much of the rest of the
paper is devoted to the development of techniques to do this.

C. Directed graphs

Before we look at more complicated Hamiltonians, let us
look briefly at what happens if we change the graph setG
over which our sums are performed. The first case we exam-
ine is that of directed graphs. We defineG to be the set of all
simple loopless directed graphs, which is parameterized by
the asymmetric adjacency matrix

si j = H1 if there is an edge fromj to i ,

0 otherwise.
J s33d

Thus, for instance, the HamiltonianH=um gives rise to a
partition function

Z = p
iÞ j

o
si j=0

1

e−usi j = f1 + e−ug2sn
2d s34d

and a corresponding free energy.
The directed equivalent of the more general model of Eq.

(18) in which we can control the degree of each vertex is a
model that now has two separate parameters for each vertex
ui

in andui
out that couples to the in and out degrees:

H = o
i

sui
inki

in + ui
outki

outd. s35d

Then the partition function and free energy are

Z = p
iÞ j

s1 + e−sui
in+u j

outdd, s36d

F = − o
iÞ j

lns1 + e−sui
in+u j

outdd. s37d

From these we can calculate the expected in- and out-
degrees of a vertex:

kki
inl =

] F

] ui
in = o

jsÞid

1

esui
in+u j

outd + 1
, s38d

kki
outl =

] F

] ui
out = o

jsÞid

1

esu j
in+ui

outd + 1
. s39d

We note thatoikki
inl=oikki

outl, as must be the case for all
directed graphs, since every edge on such a graph must both
start and end at exactly one vertex.

We can also define a probability distributionrsuin ,uoutd
for the fields on the vertices, and the developments general-
ize Eqs.(25)–(27) in a natural fashion.

We give a more complex example of a directed graph
model in Sec. IV A, where we derive a solution to the reci-
procity model of Holland and Leinhardt[9].

Another possible choice of graph setG is the set of graphs
with both a fixed number of verticesn and a fixed number of
edgesm. Models of this kind have been examined occasion-
ally in the literature[16] and, if we once more adopt the view
of the edges in a graph as particles, they can be considered to
be the canonical ensemble of network models, where the
variable edge-count models of previous sections are the
grand canonical ensemble. As in conventional statistical me-
chanics, the grand ensemble is often simpler to work with
than the canonical one, but progress can sometimes be made
in the canonical case by performing the sum over all graphs
regardless of edge count and introducing ad function to
impose the edge constraint. We will not pursue this line of
reasoning further in this paper.

STATISTICAL MECHANICS OF NETWORKS PHYSICAL REVIEW E70, 066117(2004)

066117-5



D. Fermionic and bosonic graphs

It will by now have occurred to many readers that results
like Eqs. (21) and (27) bear a similarity to corresponding
results from traditional statistical mechanics for systems of
noninteracting fermions. We can look upon the edges in our
networks as being like particles in a quantum gas and pairs
of vertices as being like single-particle states. Simple graphs
then correspond to the case in which each single-particle
state can be occupied by at most one particle, so it should
come as no surprise that the results look similar to a system
obeying the Pauli exclusion principle.

Not all networks need have only a single edge between
any pair of vertices. Some can have multiple edges ormul-
tiedges.The world wide web is an example—there can be
and frequently is more than one link from one page to an-
other. The internet, airline networks, metabolic networks,
neural networks, citation networks, and collaboration net-
works are other examples of networks that can exhibit mul-
tiedges. There is no problem generalizing our exponential
random graphs to this case and, as we might expect, it gives
rise to a formalism that resembles the theory of bosons.(The
resemblance is a mathematical one only; the practical rea-
sons why a given network might have multiedges or only
single edges are quite different from the physical principles
underlying quantum statistics.)

Let us define our set of graphsG to be the set of all
undirected graphs with any number of edges between any
pair of vertices(but still no self-edges, although there is no
reason in principle why these cannot be included as well).
Taking for example the Hamiltonian Eq.(22), and generaliz-
ing the adjacency matrix Eq.(11), so thatsi j is now equal to
the numberof edges betweeni and j , we have

Z = o
hsi j j

expS− o
i, j

Qi jsi jD = p
i, j

o
si j=0

`

e−Qi jsi j = p
i, j

1

1 − e−Qi j

s40d

and

F = o
i, j

lns1 − e−Qi jd. s41d

The equivalent of the probabilitypij of an edge appearing in
the fermionic case is now the expected number of edgesnij
between verticesi and j , which is given by

nij = ksi jl =
] F

] Qi j
=

1

eQi j − 1
. s42d

Note that this quantity diverges if we allowQi j →0, a phe-
nomenon related to Bose-Einstein condensation in ordinary
Bose gases.

For the special cases of Eqs.(10) and (18), we have

F = o
i, j

lns1 − e−sui+u jdd, nij =
1

eui+u j − 1
s43d

and

F = Sn

2
Dlns1 − e−ud, nij =

1

eu − 1
, s44d

respectively. The connected correlation between the degrees
of any two vertices in the latter case is

kkikjlc =
]2F

] u2 =
eu

seu − 1d2 s45d

for i Þ j . Thus the degrees are again positively correlated and
the correlation diverges asu→0.

E. The sparse or classical limit

In most real-world networks the number of edges is quite
small. Typically the degrees of vertices are of order a con-
stant as the graph becomes large, so that the total number of
edges scales asn, rather thann2. Such graphs are said to be
sparse. (One possible exception is food webs, which appear
to be dense, the number of edges scaling asn2 [30].) The
probability pij of an edge appearing between any particular
vertex pairsi , jd is of order 1/n in such networks. Thus, for
example, in the fermionic case of the network described by
the Hamiltonian(22), Eq. (24) tells us thateQi j must be of
order n in a sparse graph. The same is also true for the
bosonic networks of the previous section. This allows us to
approximate many of our expressions by ignoring terms of
order 1 by comparison with terms of ordereQi j . We refer to
such approximations as the “sparse limit” or the “classical
limit,” the latter by analogy with the corresponding phenom-
enon in quantum gases at low density.

In particular, the equivalent of Eq.(24) for either fermi-
onic or bosonic graphs in the classical limit ispij =e−Qi j . For
the case of Eq.(18), it is

pij = e−uie−u j , s46d

so that each edge appears with a probability that is a simple
product of “fugacities”e−ui defined on each vertex. The clas-
sical limit of this model has been studied previously by a
number of authors[17,31–34], although again developed and
justified in a different way from our presentation here; gen-
erally the edge probability(46) has been taken as an assump-
tion, rather than a derived result.

For a given distributionrsud of u, the expected degree of
a vertex, Eq.(27), is

kkil = sn − 1de−ui E e−u8rsu8ddu8, s47d

which is simply proportional toe−ui. So we can produce any
desired degree distribution by choosing the corresponding
distribution foru.

IV. MORE COMPLEX HAMILTONIANS

The models of previous sections are all models of net-
works with noninteracting edges: there are no terms appear-
ing in their Hamiltonians of quadratic or higher order in the
elements of the adjacency matrix, and it is this property that
makes these models simple to solve. In the second half of the
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paper we look at interacting models, and discuss in particular
two examples, both of them previously studied in the litera-
ture and both of them, as we show, exactly solvable. The first
is the “reciprocity model” of Holland and Leinhardt[9] and
the second is the so-called “two-star model.”

A. The reciprocity model

In the real world, many directed graphs display the phe-
nomenon of reciprocity: a directed edge running from vertex
A to vertex B predisposes the network to have an edge run-
ning from B to A as well. Put another way, the network has a
higher fraction of vertex pairs that are joined in both direc-
tions (“mutual dyads” in the parlance of social network
analysis) than one would expect on the basis of chance. Be-
havior of this kind is seen, for example, in the world wide
web, email networks, and neural and metabolic networks
[35–37].

Holland and Leinhardt[9] proposed an exponential ran-
dom graph model of reciprocity, which we study here in a
simplified form. The Hamiltonian is

H = H0 + H1 = um− ar , s48d

where m=oi, jssi j +s jid is the total number of(directed)
edges in the graph, andr =oi, jsi js ji is the number of vertex
pairs with edges running between them in both directions.
(The minus sign in front ofa is introduced purely for con-
venience.)

The edges between each pair of vertices form independent
identical systems that do not interact and hence the partition
function for the complete system factorizes thus:

Z = Z1
sn

2d , s49d

where the partition functionZ1 for a single pair is

Z1 = 1 + 2e−u + e−2u+a. s50d

Making use of the expressionp=1/seu+1d for the probabil-
ity of an edge, we then find

Z = F1 + sea − 1dp2

s1 − pd2 Gsn
2d

. s51d

From this expression we can obtain the mean number of
edgeskml and the mean numberkrl of pairs of vertices con-
nected by edges running both ways from

kml =
] F

] u
= psp − 1d

] F

] p
, krl = −

] F

] a
. s52d

A quantity of interest in directed networks is thereciproc-
ity [36], which is the fraction of edges that are reciprocated.
This quantity is found to be on the order of tens of percent in
networks such as the world wide web. The reciprocity for the
model of Holland and Leinhardt is

2krl
kml

=
pea

1 − p + pea . s53d

In Fig. 1 we show the reciprocity, along with the con-
nectance of the network, as a function ofa for the casep

=0.01. Notice that there is a substantial range of values ofa
over which the connectance is low and the graph realistically
sparse, but the reciprocity is still high, with values similar to
those seen in real networks.

B. The two-star model

In this paper we discuss primarily exactly solvable expo-
nential random graphs. However, it would be a mistake to
assume that all or most exponential random graph models are
exactly solvable. Most are not, and to make progress one
must turn to approximate methods. There are(at least) three
types of techniques that can yield approximate analytic solu-
tions for exponential random graph models. The first and
simplest is mean-field theory, which works well in many
cases because of the intrinsically high dimensionality of net-
work models; usually these models have an effective dimen-
sionality that increases with the number of verticesn, so that
the thermodynamic limit ofn→` also corresponds to the
high-dimension limit in which mean-field theory becomes
exact. The second approach is to use nonperturbative meth-
ods based on the Hubbard-Stratonovich transform or similar
integral transforms, which are very effective and accurate but
suitable only for models with Hamiltonians of specific forms
polynomial in the adjacency matrix. More generally, one can
use perturbation theory, which may involve larger approxi-
mations(although they are usually well controlled), but is
applicable to Hamiltonians of essentially any form.

In the following sections we demonstrate each of these
techniques using another model of historical interest in the
field, the two-star model. As we will show, this model is
exactly solvable using mean-field theory, and fluctuations
around mean-field theory can be derived using Hubbard-
Stratonovich-type methods. We also develop a perturbation
theory for the model using diagrammatic methods. At finite
order, perturbation theory is of course only approximate. Ap-
plying it to the two-star model, for which we also have an
exact solution, gives us the opportunity to assess its effec-
tiveness and accuracy in the context of a system already well
understood.

FIG. 1. The reciprocity and connectance of the model of Hol-
land and Leinhardt[9] for p=0.01. The solid lines represent the
exact solution Eq.(51), and the points are Monte Carlo simulation
results for systems ofn=1000 vertices.
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The two-star model is a model of an undirected network,
with Hamiltonian

H = um− as, s54d

whereu anda are independent parameters,m is the number
of edges in the network, ands is the number of “two-stars.”
A two-star is two edges connected to a common vertex.

The quantitiesm and s can be rewritten in terms of the
degree sequence:

m= 1
2o

i

ki, s= 1
2o

i

kiski − 1d. s55d

Substituting these expressions into Eq.(54), we can rewrite
the Hamiltonian as

H = −
J

n − 1o
i

ki
2 − Bo

i

ki , s56d

whereJ= 1
2sn−1da and B=−1

2su+ad. [The factorsn−1d in
the definition ofJ is introduced for convenience later on.]

Noticing once again thatki =o jsi j , where the variablessi j
are the elements of the adjacency matrix, we can also write

H = −
J

n − 1o
i jk

si jsik − Bo
i j

si j . s57d

We study this model in the fermionic case in which each
vertex pair can be connected by at most a single edge, and
within the grand canonical ensemble where the total number
of edges is not fixed. Generalizations to the other cases de-
scribed above are of course possible, if not always easy.

1. Mean-field theory

The variablessi j can be thought of as Ising spins residing
on the edges of a fully connected graph, and hence the two-
star model can be thought of as an Ising model on the edge-
dual graph of the fully connected graph[21]. (The edge-dual
G* of a graphG is the graph in which each edge inG is
replaced by a vertex inG* and two vertices inG* are con-
nected by an edge if the corresponding edges inG share a
vertex.) Using this equivalence, the mean-field theory of the
two-star model can be developed in exactly the same way as
for the more familiar lattice-based Ising model.

We begin by writing out all terms in Eq.(57) that involve
a particular spinsi j :

Hssi jd = − si jF J

n − 1o
k

ssik + ski + s jk + skjd + 2BG ,

s58d

where we have explicitly taken account of all the ways in
which si j can enter the first term in the Hamiltonian.[We
have also dropped the term 2Jsi j / sn−1d required to correctly
count the terms diagonal insi j , since it vanishes in the large-
n limit.]

Then, in classic mean-field fashion, we approximate the
local field by its average

J

n − 1o
k

ssik + ski + s jk + skjd + 2B → 4Jp+ 2B, s59d

wherep=ksl is the mean probability of an edge between any
pair of vertices, which is also called theconnectanceof the
graph. ThenHssi jd=−s4Jp+2Bdsi j , and we can write a self-
consistency condition forp of the form

p

1 − p
=

e−Hssi j=1d

e−Hssi j=0d = e4Jp+2B. s60d

Rearranging, this gives

p =
e4Jp+2B

1 + e4Jp+2B = 1
2ftanhs2Jp+ Bd + 1g. s61d

For Jø1 this equation has only one solution, but forJ
.1 there may be either one solution or, ifB is sufficiently
close to −J, three, of which the outer two are stable. Thus
when B is close to −J we have a bifurcation atJc=1, a
continuous phase transition to a symmetry-broken state with
two phases, one of high density and one of low. We show in
Fig. 2 a plot of the solution of Eq.(61) which displays
clearly the characteristic hysteresis loop of the symmetry-
broken state.

Along the “symmetric line”B=−J there is always a solu-
tion p= 1

2, although it may be unstable, and along this line we
can think ofp− 1

2 as an order parameter for the model which
is zero in the high-symmetry phase and nonzero in the
symmetry-broken phase. We can define a critical exponentb
in the usual fashion by

up − 1
2u , sJ − 1db, s62d

as J→1 from above, givingb= 1
2, which is the usual Ising

mean-field value. One can define other critical exponents as
well, which are also found to take Ising mean-field values.
For instance, as we showed in[18], the variance of the con-
nectance, which plays the role of a susceptibility, varies as

FIG. 2. The mean-field solution for the connectancep=kkl / sn
−1d in the two-star model from Eq.(61), for values of the coupling
J below, at, and above the phase transition. For the caseJ=1.5 we
are in the symmetry-broken phase and the hysteresis loop corre-
sponding to the high- and low-density phases of the system is
clearly visible.
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uJ−1u−g in the vicinity of the phase transition withg=1.
As n becomes large, each edge in our network interacts

with an arbitrarily large number of others, making the mean-
field theory more and more accurate. In the limitn→`, the
theory becomes exact and we believe the value forp given
above to be correct in this limit. Mean-field theory cannot
tell us everything about our model: for instance it provides
no estimate of the partition function or the free energy, and
can give information about fluctuations around the mean be-
havior only indirectly via linear-response-type calculations.
These shortcomings, however, can be remedied by perform-
ing expansions around the mean-field solution, as we now
describe.

2. Expansions around mean-field theory

We can go beyond mean-field theory by making use of
techniques borrowed from many-body theory. The develop-
ments of this section follow closely the lines of our previous
paper on this topic[18], and, rather than duplicate material
needlessly, the reader is referred to that paper for details of
the calculations. Here we merely summarize the important
results.

The evaluation of the partition function for the two-star
model involves a sum of terms of the formek2

. The study of
interacting quantum systems has taught us that such sums
can be performed using the Hubbard-Stratonovich transform.
We start by noting the well-known result for the Gaussian
integral:

E
−`

`

e−af2
df =Îp

a
. s63d

Making the substitutionsa→ sn−1dJ andf→fi −ki / sn−1d,
and rearranging, this becomes

eJki
2/sn−1d =Îsn − 1dJ

p
E

−`

`

e−sn−1dJfi
2+2Jfikidf. s64d

Then the partition function is

Z = o
G

expS−
J

n − 1o
i

ki
2 − Bo

i

kiD
= F sn − 1dJ

p
Gn/2E Df expS− sn − 1dJo

i

fi
2D

3 o
G

expSo
i

s2Jfi + BdkiD , s65d

where we have interchanged the order of sum and integral.
The sum over graphs now has precisely the form of the

partition function sum for the model of Eq.(18), and from
Eq. (20) we can thus immediately write down the partition
function

Z =E Df e−Hsfd, s66d

where the quantity

Hsfd = sn − 1dJo
i

fi
2 − 1

2o
iÞ j

lns1 + e2Jsfi+f jd+2Bd

− 1
2n lnfsn − 1dJg s67d

is called the effective Hamiltonian.
Thus we have completed the partition function sum for

the two-star model, but at the expense of introducing the
auxiliary fields hfij which must be integrated out to com-
plete the calculation. The integral cannot, as far as we are
aware, be evaluated exactly in closed form. However, as we
showed in[18], it can be evaluated using a saddle-point ex-
pansion, which becomes arbitrarily accurate in the limit of
large system size, so that we can derive an exact expression
for the free energy in this limit. We find

F = nsn − 1dJf0
2 − 1

2nsn − 1dlns1 + e4Jf0+2Bd

+ 1
2sn − 1dlnf1 − 2Jf0s1 − f0dg, s68d

where

f0 = 1
2ftanhs2Jf0 + Bd + 1g s69d

is the position of the saddle point, i.e., the maximum of the
Hamiltonian on the real-f line.

Note that Eq.(69) is identical to the mean-field equation
Eq. (61) for the connectancep of the two-star model. Thus,
f0 is the connectance of the model within mean-field theory
and the saddle-point expansion, as is typically the case in
such calculations, is an expansion about the mean-field solu-
tion.

From the free energy we can derive a number of quanti-
ties of interest. We showed in[18], for instance, that the
variance of vertex degree in the model is given by

kk2l − kkl2 = sn − 1d
f0s1 − f0d

1 − 2Jf0s1 − f0d
, s70d

which has a gradient discontinuity but no divergence at the
phase transition.

3. Perturbation theory

Exponential random graphs also lend themselves naturally
to treatment using perturbation theory. We here describe the
simplest such theory, which is roughly equivalent to the
high-temperature expansions of conventional thermal statis-
tical mechanics. Expansions of this type have been examined
previously by Burdaet al. [19,20] for Strauss’s model of a
transitive network[12,13]. Here we develop the theory fur-
ther for general exponential random graphs and illustrate its
use with the two-star model as an example.

The fundamental idea of perturbation theory for random
graphs is the same as for other perturbative methods: we
expand about a solvable model in powers of the coupling
parametersui in the Hamiltonian. We write the Hamiltonian
for the full model in the formH=H0+H1, whereH0 is the
Hamiltonian for the solvable model andH1 takes whatever
form is necessary to give the correct expression forH. Then
the partition function is[19,20]

STATISTICAL MECHANICS OF NETWORKS PHYSICAL REVIEW E70, 066117(2004)

066117-9



Z = o
G

e−sH0+H1d = Z0o
G

e−H0

Z0
e−H1 = Z0ke−H1l0, s71d

where Z0=oGe−H0 is the partition function for the unper-
turbed Hamiltonian, andk¯l0 indicates an ensemble average
in the solvable, unperturbed model.

The only case that has been investigated in any detail is
the one where we expand around a random graph,H0=um,
so that the averages in Eq.(71) are averages in the ensemble
of the random graph.(It is possible foru to be zero, so this
choice forH0 does not place any restriction on the form of
the overall Hamiltonian. Ifu=0 then the expansion is pre-
cisely equivalent to an ordinary high-temperature series.)
However, for HamiltoniansH that give significant probabil-
ity to networks substantially different from random graphs,
the perturbation theory cannot be expected to give accurate
answers at low order. In theory there is no reason why one
could not expand about some other solvable case, although
no such calculations have been done as far as we are aware.
One obvious possibility, which we do not pursue here, is to
expand around one of the generalized random graph forms,
Eqs.(18) and (22).

Typically, to make progress with Eq.(71), we will expand
the exponential in a power series of the form

Z

Z0
= o

l=0

`
s− 1dl

l!
kH1

l l0. s72d

In practice,H1 normally contains a coupling constant, such
as the constanta in the two-star model of Eq.(54), and thus
our expression for the perturbed partition function is an ex-
pansion in powers of the coupling.

As an illustration of this method, we now apply it to the
two-star model and compare the results of finite-order expan-
sions to the exact results derived earlier. The Hamiltonian
H=um−as can be divided into an unperturbed partH0=um,
which is the normal Bernoulli random graph, and a pertur-
bation HamiltonianH1=−as. Then, following Eq.(72), the
partition function for the full model is given by

Z

Z0
= o

l=0

`
al

l!
ksll0. s73d

The number of two-stars is

s= o
i

o
j,k

si jsik, s74d

and therefore

ksll0 = o
i1,j1,k1

¯ o
i l,j l,kl

ksi1j1
si1k1

¯ si l j l
si lkl

l0. s75d

Our strategy is to evaluate the series(73) up to some finite
order ina to get an approximate solution forZ, but there is
a problem. Each term in the series corresponds to states of
the graph that have the corresponding number of two-stars:
the term inksl0, for instance, counts the number of graphs
that have a two-star in any position in the graph. This is not
enough for our purposes, however. Realistic graphs will have
not a finite number but a finitedensityof two-stars in them,

and the number of such graphs is counted by terms that ap-
pear at infinite order in the perturbation expansion in the
limit n→`. So without expanding the partition function to
infinite order we are never going to get meaningful results
from our expansion.

Similar problems appear in ordinary statistical mechanics
and the solution is well known. Instead of expanding the
partition function, we form an expansion for the free energy.
We can write the free energy as

F = − ln Z = − ln Z0 − ln
Z

Z0
= F0 + F1, s76d

whereF0=−ln Z0 is the free energy of the unperturbed net-
work and F1=−lnsZ/Z0d. Now we expandF1 as a power
series ina of the form

F1 = − af1 −
a2

2!
f2 −

a3

3!
f3 − ¯ , s77d

where we have made use of the fact thatF1=0 whena=0.
Substituting intoZ/Z0=e−F1, we get

Z

Z0
= 1 +af1 +

a2

2!
sf2 + f1

2d +
a3

3!
sf3 + 3f2f1 + f1

3d + Osa4d,

s78d

and comparing terms with Eq.(73), we find

f1 = ksl0, s79ad

f2 = ks2l0 − f1
2, s79bd

f3 = ks3l0 − 3f2f1 − f1
3, s79cd

and so forth. These are thecumulantsof s within the en-
semble defined by the unperturbed network. If we expands
in the form of Eq.(74) then they are connected correlations
of elements of the adjacency matrix—“connected” because
individual elements of the adjacency matrix are uncorrelated,
so that all terms in the cumulants vanish unless they involve
sets of two-stars that share one or more edges.(Note that
sharing a vertex, as in the more familiar spin models of tra-
ditional statistical mechanics, is not a sufficient condition for
being connected. The fundamental degrees of freedom in a
network are the edges.)

We will proceed then as follows. We calculate the free
energy F1 in terms of connected correlations up to some
finite order in a and from this we calculate the partition
function Z=Z0e

−F1. Even thoughF1 is known only to finite
order, our expression forZ will include terms with all powers
of the connected correlations in it, via the expansion of the
exponential, and hence will include graphs with not only a
finite number but a finite density of two-stars. This idea,
which will be routine for those familiar with conventional
diagrammatic perturbation theory, is entirely general and can
be applied to any model, not just the two-star model. In
essence, the series given bye−F1 is a partial resummation to
all orders of the partition function, including some but not all
of the contributions toZ from disconnected correlations of
arbitrarily high order.
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Let us see how the calculation proceeds for the case of the
two-star model, to ordera3 as above. The leadingOsad term
in F1 is simple:

f1 = ksl0 = o
i

o
j,k

ksi jsikl0 = nSn − 1

2
Dp2. s80d

Since we are primarily interested in large networks, we can
approximate this expression by its value to leading order in
n, which is 1

2n3p2.
The second term, at ordera2, is more complicated be-

cause there are several different ways in which two two-stars
may combine to share one or more edges. In order to keep
track of these different contributions, we make use of a dia-
grammatic representation similar to that employed by Burda
et al. for Strauss’s transitivity model[19]. Figure 3(a) shows
the single diagram contributing tof1, which gives the result
in Eq. (80). Figure 3(b) shows the three diagrams that con-
tribute to f2. It is an assumption of our notation that each
edge that appears in a diagram is distinct. Thus the third
diagram in Fig. 3(b), which represents the case in which the
two two-stars fall on top of one another, must be depicted
separately, rather than being considered a special case of the
diagram in Fig. 3(a). This turns out to be a good idea, since
this term has a different functional form from 3(a), and nei-
ther diagram is necessarily negligible by comparison with
the other.

The basic “Feynman rules” for interpreting the diagrams
are as follows.

(1) Each edge contributes a factor ofp.
(2) Each vertex contributes a factor ofn.
(3) The numerical multiplier is the number of distinct

ways in which the diagram can be decomposed into overlap-
ping two-stars such that each edge occurs at least once, di-
vided by the symmetry factor for the diagram.(The symme-
try factor is the number of distinct permutations of the
vertices that leave the diagram unchanged.)
Then for the connected correlation functions one must sub-
tract all other ways of composing lower order diagrams to
make the given diagram, as in Eq.(79).

To see how these rules work in practice, let us apply them
to the first diagram in Fig. 3(b). This diagram has four ver-
tices and three edges, which gives a factor ofn4p3, by the
first two rules. The diagram can be decomposed into two
two-stars in six different ways, but the symmetry factor is
also 6, so we end up withn4p336/6=n4p3. The contribution
to the diagram from the term −f1

2 in Eq. (79b) is −n4p4, so the
final value of the diagram isn4sp3−p4d to leading order inn.
Proceeding in a similar fashion, the other diagrams of Fig.

3(b) contributen4sp3−p4d and 1
2n3sp2−p4d, respectively. The

diagrams for theOsa3d term are shown in Fig. 3(c), and are
more complicated, but routine to evaluate using the rules
above. The final expressions for thef ’s are

f1 = 1
2n3p2, s81ad

f2 = 1
2n3s1 − pdp2s1 + 4npd, s81bd

f3 = 1
2n3s1 − pdp2s1 + 14np+ 32n2p2 − 40n2p3d. s81cd

Note that we have retained the leading order terms inn sepa-
rately at each order inp, since we have no knowledgea
priori about the relative magnitude ofn and p. In a sparse
graph, we expect thatp will be of order 1/n, in which case it
may be possible to neglect some terms.

Once we have the expansion ofF1, it is straightforward to
calculate statistical averages from derivatives of the free en-
ergy in the normal fashion. For example, the expected num-
ber of two-stars in the network is given by

ksl = −
] F

] a
= −

] F1

] a
= f1 + af2 + 1

2a2f3 + Osa3d, s82d

and the expected number of edges is

kml =
] F

] u
= psp − 1dS ] F0

] p
+

] F1

] p
D = 1

2n2p + n3s1 − pdp2af1

+ 1
2s1 + 6np− 8np2da + 1

6s1 + 21np+ 64n2p2

− 180n2p3 + 120n2p4da2g . s83d

In Fig. 4, we show the connectance 2kml /n2 and the den-
sity of two-stars 2ksl /n3 calculated from the(exact) mean-
field method of Sec. IV B 1 and from the expressions above,
at first, second, and third order. As the figure shows, the

FIG. 3. The diagrams contributing to the first three orders in the
perturbation expansion of the free energy of the two-star model in
powers ofa.

FIG. 4. The connectance of the two-star model calculated from
the mean-field theory of Sec. IV B 1(solid line), and from the first-
(dotted line), second-(dashed line), and third-order(dot-dashed
line) perturbation expansions. The calculations were performed
along the symmetric lineB=−J, where the half-filled graph with
connectance12 is always a solution of the mean-field equation(61).
For J.1 there exist two symmetry-equivalent stable solutions in
addition to the half-filled graph. We show only the sparser of the
two. Inset: the density of two-stars in the same model.
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perturbation expansion agrees with the exact solution at high
and low values ofJ= 1

2sn−1da, and markedly better for the
third-order approximation than for the first- and second-order
ones. However, in the region of the phase transition atJc
=1 the agreement is poor, as we would expect. In this region
there will be large critical fluctuations and hence contribu-
tions to the free energy from large connected diagrams that
are entirely missing from our series expansion. Presumably
by extending the perturbation series we can derive succes-
sively more accurate answers in the critical region. We also
note that the perturbation expansion gives results only for the
sparse phase in the symmetry-broken region.

We have here analyzed in detail the example of the two-
star model using perturbation theory(and another example
can be found in Ref.[19]). The techniques employed, how-
ever, are entirely general, and diagrammatic theories similar
to these, with similarly simple Feynman rules, can be derived
for other examples as well.

V. CONCLUSIONS

In this paper we have discussed exponential random
graphs, which in both a figurative and a quantitative sense
play the role of a Boltzmann ensemble for the study of net-
works. Exponential random graphs are a formally well-
founded framework for making predictions about the ex-
pected properties of networks given specific but incomplete
measurements of those networks.

We have shown how exponential random graphs can be
derived in moderately rigorous fashion from maximum en-
tropy assumptions about probability distributions over graph
ensembles. We have also given many examples of particular

calculations using exponential random graphs, starting with
simple models that have linear Hamiltonians, many of which
have been presented previously by other authors, albeit with
rather different motivation. In most cases these linear models
can be solved exactly, meaning that we can derive the parti-
tion function or equivalently the free energy of the graph
ensemble exactly in the limit of large system size.

For nonlinear Hamiltonians we expect that exact solutions
will often not be possible, but there are a number of methods
that can shed light on their behavior nonetheless. Taking the
particular example of the two-star model, we have shown
how its properties can be understood using mean-field
theory, perturbation theory, and nonperturbative methods
based on the Hubbard-Stratonovich transform.

The results presented in this paper are only a tiny fraction
of what can be done with exponential random graphs. There
are many interesting challenges, both practical and math-
ematical, posed by this class of models. Exploration of the
behavior and predictions of specific models as functions of
their free parameters, development of other solution methods
or expansion of those presented here, and the development of
models to study network phenomena of particular interest,
such as vertex-vertex correlations, hidden variables, degree
distributions, or transitivity, are all excellent directions for
further research. We hope to see some of these topics pur-
sued in the near future.
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