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Statistical mechanics of networks
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We study the family of network models derived by requiring the expected properties of a graph ensemble to
match a given set of measurements of a real-world network, while maximizing the entropy of the ensemble.
Models of this type play the same role in the study of networks as is played by the Boltzmann distribution in
classical statistical mechanics; they offer the best prediction of network properties subject to the constraints
imposed by a given set of observations. We give exact solutions of models within this class that incorporate
arbitrary degree distributions and arbitrary but independent edge probabilities. We also discuss some more
complex examples with correlated edges that can be solved approximately or exactly by adapting various
familiar methods, including mean-field theory, perturbation theory, and saddle-point expansions.
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I. INTRODUCTION theory rapidly becomes complex and difficult to use if we

The last few years have seen the publication of a |arg@ttempt to make it realistic by the inclusion of accurate in-

volume of work in the physics literature on networks of vari- termolecular potentials and similar features. In practice, ki-

ous kinds, particularly computer and information networksn€tic theory models either make only rather rough and un-

like the internet and world wide web, biological networks controlled - predictions, or rely on large-scale computer

such as food webs and metabolic networks, and social nefimulation to achieve accuracy. .

works [1-4]. This work has been divided between empirical f oné wants a good calculational tool for studying the

studies of the structure of particular networks and theoretic ropertllestof dgases, ther(ifc:.ret,_ olne dﬁes. no;l?ﬁe krl]netlc
studies focused largely on the creation of mathematical an eory. Instéad, one uses statistical mechanics. ough cer-

. : ainly less intuitive, statistical mechanics is based on rigor-
_computau_onal m_odels. The construction of network mOdels’ous; probabilistic arguments and gives accurate and reliable
is the topic of this paper.

. answers for an enormous range of problems, including many,
M?dels of ntfatworks Iian help us todurr:dgrstancli thef|mpor§uch as problems concerning solids, for which kinetic theory
tant features of network structure and the interplay of strucis jnappjicable. Equilibrium statistical mechanics provides a

ture with processes that take place on networks, such as thgneral framework for reasoning and a powerful calcula-
flow of traffic on the internet or the spread of a disease ovefjgna| tool for very many problems in statistical physics.
a social network. Most network models studied in the phyS' We argue that the current Commomy used models of net-
ics community are of a practical sort. Typically one wishes toworks are akin to kinetic theory. They posit plausible mecha-
create a network that displays some feature or features olyisms or dynamics, and produce results in qualitative agree-
served in empirical studies. The principal approach is to lisinent with reality, at least in some respects. They are easy to
possible mechanisms that might be responsible for creatingnderstand and give us good physical insight. However, like
those features and then make a model incorporating some &metic theory, they do not make quantitatively accurate pre-
all of those mechanisms. One then either examines the netlictions and provide no overall framework for modeling,
works produced by the model for rewarding similarity to the each model instead concentrating on explaining one or a few
real-world systems they are supposed to mimic, or uses thefeatures of the system of interest.
as a substrate for further modeling, for example of traffic In this paper we discuss exponential random graphs,
flow or disease spread. Classic examples of models of thighich are to networks as statistical mechanics is to the study
kind are the small-world modgb] and the many different of gases—a well-founded general theory with true predictive
preferential attachment modgle—8], which model network power. These advantages come at a price: exponential ran-
transitivity and power-law degree distributions respectively.dom graphs are both mathematically and conceptually so-
However, there is another possible approach to the modshisticated, and their understanding demands some effort of
eling of networks, which has been pursued comparativelyhe reader. We believe this effort to be more than worthwhile,
little so far. An instructive analogy can be made here withhowever. Theoretical techniques based on solid statistical
theories of gases. There af@ leas} two different general foundations and capable of quantitative predictions have
theories of the properties of gases. Kinetic theory explicitlybeen of extraordinary value in the study of fluid, solid state,
models collections of individual atoms, their motions andand other physical systems, and there is no reason to think
collisions, and attempts to calculate overall properties of thehey will be any less valuable for networks.
resulting system from basic mechanical principles. Pressure, We are by no means the first authors to study exponential
for instance, is calculated from the mean momentum transrandom graphs, although our approach is different from that
ferred to the walls of a container by bombarding atoms. Ki-taken by others. Exponential random graphs were first pro-
netic theory is well motivated, easy to understand, and makgsosed in the early 1980s by Holland and Leinh&€dit build-
good sense to physicists and laymen alike. However, kinetitng on statistical foundations laid by Besgl]. Substantial

1539-3755/2004/16)/06611713)/$22.50 066117-1 ©2004 The American Physical Society



J. PARK AND M. E. J. NEWMAN PHYSICAL REVIEW E70, 066117(2004)

further developments were made by Frank and Straus® itself) Certainly there are many other possible choices and
[11-13, and continued to be made by others throughout theve consider some of the others briefly in Secs. Ill C and
1990s[14,13. In recent years a number of physicists, includ-11l D. The graphs can also be either directed or undirected
ing ourselves, have made theoretical studies of specific casesd we consider both in this paper, although most of our time
[16—217. Today, exponential random graphs are in commorwill be spent on the undirected case.

use within the statistics and social network analysis commu- Suppose we have a collection of graph observables
nities as a practical tool for modeling networks and severa{x}, i=1,...,r, that we have measured in empirical observa-
standard computer tools are available for simulating and maions of some real-world network. We will, for the sake of
nipulating them, includinREPSTAR ERGM, andsiENA [22].  generality, assume that we have an estimateof the ex-

In this paper we aim to do a number of things. First, wepectation value of each observable. In practice it is often the
place exponential random graph models on a firm physicatase that we have only one measurement of an observable.
foundation, showing that they can be derived from first prin-For instance, we have only one internet, and hence only one
ciples using maximum entropy arguments. In doing so, waneasurement of the clustering coefficient of the internet. In
argue that these models are not merelyadrmocformulation  that case, however, our best estimate of the expectation value
studied primarily for their mathematical convenience, but aof the clustering coefficient is simply equal to the one mea-
true and correct extension of the statistical mechanics ofyrement that we have.

Boltzmann and Gibbs to the network world. Let G € G be a graph in our set of graplgsand letP(G)

Second, we take an almost entirely analytic approach itbe the probability of that graph within our ensemble. We
our work, by contrast with the numerical simulations thatwould like to chooseP(G) so that the expectation value of
form the core of most previous studies. We show that theach of our graph observablésg} within the ensemble is
_analytic te_chniques of equilibrium statistical mechanics argqual to its observed value, but this is a vastly underdeter-
ideally suited to the study of these models and can sheghined problem in most cases; the number of degrees of free-
much light on their structure and behawor._Throughout thegom in the definition of the probability distributioR(G) is
paper we give numerous examples of specific models that alif,ge compared to the number of constraints imposed by our
solvable either exactly or approximately, including severalycanyvations. Problems of this type, however, are common-
that have a long history in network analysis. Nonetheless, thBIace in statistical physics and we know well how to deal
particular examples studied in this paper form only a tinyyith them. The best choice of probability distribution, in a

fraction of the possibilities offered by this class of models.ganse that we will make precise in a moment, is the one that
There are many intriguing avenues for future research op,avimizes the Gibbs entropy ’

exponential random graphs that are open for exploration, and

we highlight a number of these throughout the paper. S=- > P(G)InP(G), (1)
Geg
Il. EXPONENTIAL RANDOM GRAPHS subject to the constraints
The typical scenario addressed in the creation of a net- > P(G)x(G) =(x;), (2
work model is this: one has measurements of a nhumber of G

network properties for a real-world network or networks, o s the normalization condition
such as number of vertices or edges, vertex degrees, cluster-
ing coefficients, correlation functions, and so forth, and one > PG)=1. (3)
wishes to make a model network that has the same or similar G
values of these properties. For mstgnce, one might flnq thgt ﬁerexi(G) is the value of in graphG.
network has a degree sequence with a power-law distribution Introducing Lagrange multipliersy, {6}, we then find
and wish to create a model network that shows the samc?1 g Lagrang HHpliersr, 16, S
power law. Or one might measure a high clustering coeffil a.t th'e maximum entropy is achieved for the distribution
cient in a network and wish to build a model network with satisfying
similarly high clustering. J

Essentially all models considered in modern work, andF(G)[S*' a(l‘E P(G)> + 2 6’i<<Xi>-E P(G)Xi(G))]
indeed as far back as the 1950s and 1960s, have been en- G ' G
semble models, meaning that a model is defined to be nota =0 (4)
single network, but a probability distribution over many pos-
sible networks. We adopt this approach here as well. Ou
goal will be to choose a probability distribution such that INP(G)+1+a+ 2 6x(G) =0, (5)
networks that are a better fit to observed characteristics are ;
accorded higher probability in the model. )

Consider a seg of graphs. One can use any ggtout in ~ OF equivalently
most of the work described in this papgmwill be the set of ~H(G)
all simple graphs without self-loops anvertices.(A simple P(G) = Z
graph is a graph having at most a single edge between any
pair of vertices. A self-loop is an edge that connects a vertewhereH(G) is the graph Hamiltonian

pr all graphsG. This gives

: (6)
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H(G) = E 6.,(G) 7) . SIMPLE EXAMPLES
! Before delving into the more complicated calculations, let
andZ is the partition function us illustrate the use of exponential random graphs with some
simple examples.
7= eoz+l - e—H(G) . (8)
G

A. Random graphs

Equations (6)«8) define the exponential random graph  \yg consider first what is perhaps the simplest of exponen-
model. The exponential random graph is the distribution ovefiy| random graphs, at least for the case of fixed number of
a specified set of graphs that maximizes the entropy subje¢f ticesn considered here.

to the known constraints. Suppose we know only the expected number of edos

s "?‘ISO the exact analog for graphs .Of the BOItzm.annthat our network should have. In that case the Hamiltonian
distribution of a physical system over its microstates at f'n'tetakes the simple form
y

temperature. The Boltzmann distribution can be derived b
the same means, as the maximum entropy distribution con- H(G) = 6m(G). (10)
cordant with a given set of observations of a thermal

system—usually observations of the energy, although vari¥Ve can think of the parametéreither as a field coupling to
ants based on other observables can be derived and are usdfig number of edges, or alternatively as an inverse tempera-
in special casef23]. ture.

The Boltzmann distribution can also be derived in other Let us evaluate the partition function for this Hamiltonian
ways, for example, by considering a system in weak interacfor the case of an ensemble of simple undirected graphrs on
tion with a heat bath. No equivalent picture exists for net-vertices without self-loops. We define theljacency matrix
work models and it is not appropriate to consider the systen to be the symmetria X n matrix with elements

as a dynamic one, moving ergodically from one state to an- {1 if i is connected tg
0'” = ’

other, as one commonly does in statistical mechanics. But .
0 otherwise.

there is a prominent “Bayesian” school of thought, of whom
Edwin Jaynes was the best-known exemplar, which r(.eg""rd"?hen the number of edges B=2;_o;;, and the partition
statistical mechanics from a genuinely statistical point Offunction s <=

view, as a problem of inference from incomplete informa-

11

tion, and within which the maximum entropy derivation is 1
considered the most corref24]. Our derivation of the ex- Z=>e"=2 exp - 6> O'ij) =[] > e
ponential random graph belongs to the same school and in G {oy;} i<j i<j 0};=0
this sense is the analog of the Boltzmann distribution. (n)

Using the exponential random graph model involves per- =[Ta+e?)=[1+e'%. (12
forming averages over the probability distributi¢8). The i<
expected value of any graph properywithin the model is

simply It is convenient to define the free energy

F=-Inz, (13

(=2 P(G)X(G). 9
G

which in this case is

The exponential random graph, like all such maximum en- n
tropy ensembles, gives the best prediction of an unknown F=- 5 In(1+e7%). (14)
quantity x, given a set of known quantities, E). In this

precise sense, the exponential random graph is the best efNote that the free energy is extensive not in the number of
semble model we can construct for a network given a paryerticesn, but in the numbet}) of pairs of vertices, since
ticular set of observations. this is the number of degrees of freedom in the mgdeéien,

In many cases we may not need to perform the $8m  for instance, the expected number of edges in the model is
often we need only perform the partition function sum Eq.

(8), and the values of other sums can then be deduced by 1 - 102 oF (n) 1

taking appropriate derivatives. Just as in conventional equi- (m)= ZE me =220 g0 \2)ef+1" (15
librium statistical mechanics, however, performing even the ¢

partition function sum analytically may not be easy. |ndeettonventionally we reexpress the parameten terms of
in some cases it may not be possible at all, in which case one

may have to turn to Monte Carlo simulation, to which the _ 1 (16)
model lends itself admirably. As we show in this paper, how-

ever, there are a variety of tools one can employ to get exact

or approximate analytic solutions in cases of interest, includso that(m)=(2)p.
ing mean-field theory, algebraic transformations, and dia- The probabilityP(G) of a graph in this ensemble can be

grammatic perturbation theory. written
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e—H e—z‘)m n
P(G)=— = —nzpm(l—p)(z)‘m. (17)
z [1 +e_0](2) H:2®ij0-ijv (22)

i<j

More generally we could specify a Hamiltonian

In other words P(G) is simply the probability for a graphin _
which each of thd}) possible edges appears with indepen-With a separate paramet€r; coupling to each edggll].
dent probabilityp. en

This model is known as the Bernoulli random graph, or _ -0; _ -0;
often just the random graph, and was introduced, in a com- z=1la+e®), F=-Xn@+e). (23)
pletely different fashion, by Solomonoff and Rapop#b]
in 1951 and later famously studied by Bsdand Rényi This allows us, for example, to calculate the probability of
[26,27. Today it is one of the best studied of graph models,0ccurrencep;; of an edge between verticesnd j:
although, as many authors have pointed out, it is not a good JE 1
model of most real-world network§l,3,5. One way in pj={op)="—=% -
which its inadequacy shows, and one that has been empha- 90 e’i+l
sized heavily in networks research in the last few years, is it§he model of Eq(18) is the special case in which ;=6
degree distribution. Since each edge in the model appearsq, and the normalBernoull) random graph of Eq(12)
with independent probability, the degree of a vertex, i.e., corresponds to the case in which the parametgrsare all
the number of edges attached to that vertex, follows a binogqyg|.
mial distribution, or a Poisson distribution in the limit of gometimes it is convenient to specify not a degree se-
largen. Most real-world networks, however, have degree disqquence but a probability distribution over vertex degrees.
tributions that are far from Poissonian, typically being highly Thjs can be achieved by specifying an equivalent distribution
right-skewed, with a small proportion of vertices having very gyer the parameterg in Eq. (18). Let us definep(6)dé to be
high degree. Some of the most interesting networks, includg,e probability that the parametérfor a vertex lies in the

ing the internet and the world wide web, appear t0 havgangeq to g+de. Then, averaging over the disorder so intro-
degree distributions that follow a power 1§%,28,29. Inthe  4,ced. the free energy E(1) becomes

next section we discuss what happens when we incorporate
observations like these into our models.

i<j i<j

(24)

i _J p(61)d6; -+~ p(8)d6, >, In(1 +e %)

i<j

B. Generalized random graphs

:'@f f In@ +e ™ )p(O)p(6")dode’. (25

Suppose then that, rather than just measuring the total
number of edges in a network, we measure the degrees of
the vertices. Let us denote tkythe degree of vertek The
complete setk;} is called thedegree sequencef the net-
work. Note that we do not need to specify independently the 1 6F .
number of edgesn in the network, sincen=33k; for an ;m— -(n-1) f In(1+e )p(6')de",  (26)
undirected graph.

The exponential random graph model appropriate to thigind the expected degree of veriewith field 6, is the de-

aI“he part of this free energy due to a single vertex with field
parametem is

set of observations is the model having Hamiltonian rivative of this with respect t@, evaluated a:
— (9 U
H=2 6k, (18 <|q>:—(n—1){—f|n(1+e-<ﬂ+9 Np(8)de’
[ a6 o=6,
where we now have one parametkfor each vertex. Not- p(6))de’
ing thatk;=2a0y;, this can also be written =(n- 1)f SV 27
e’ +1
H :% bhorj = z (6 + 6))o;. (19) By a judicious choice op(#) we can then produce the de-
- o sired degree distributionSee also Sec. Ill E.We studied
Then the partition function is this model in a previous papé¢t7], as a model for degree
correlations in the internet and other networks.
Z= {2} ex _2 (6 + ai)aij) We could alternatively specify a probability distribution
(rij 1<J

p(®) for the parameter®;; in Eqg. (22) that couple to indi-

! vidual edges. Or, taking the developments a step further, one
=[1 X e@ho=T] (1 +e ), (200 could define joint distributions for th®;; on different edges,
i<j 0;=0 i< thereby introducing correlations of quite general kinds be-
and the free energy is tween the edges in the model. There are enormous possibili-
ties to be explored in this regard, but we pass over them for
F=-> In(1+eb %), (21 now, our interests in the present paper lying in other direc-
i<j tions.
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One can calculate many other properties of our models. 1 if there is an edge fromto i,
For example, for the model of E¢L8), one can calculate the ij= 0 otherwise (33
expectation value of any product of vertex degrees from an ’
appropriate derivative of the partition function: Thus, for instance, the Hamiltoniad=6m gives rise to a
. 1 o : o8 partition function
bz a6a0, ! ()

. . . z=11 2 e™i=[1+e P2 (34

These are the disconnected correlation functions of the ver- i#] 0y=0

tex degrees. Similarly, derivatives of the free energy give the _
connected correlation functions. For the model of Bg),  and a corresponding free energy.

for instance, the two-vertex connected correlation is The directed equivalent of the more general model of Eq.
(18) in which we can control the degree of each vertex is a

9i+l‘}'
e for i # | model that now has two separate parameters for each vertex
(k= PE ) ("4 1)? ’ 29 6" and ¢°" that couples to the in and out degrees:
e 6.6, e o
N=1)5p—3 fori=j. H=2, (6" + 6%, (35
(€% +1)2 ~ i K

For the case of the Bernoulli random graph, which hagall
equal, this simplifies tdkkj).=p(1-p) for i #j, where we
have made use of Eql6). Thus the degrees of vertices in z=1la +e—(a}"+o}’“‘)) (36)
the random graph are in general positively correlated. One i '
can understand this as an effect of the one edge that poten-

tially connects the two vertices and j. The presence or

Then the partition function and free energy are

_ (4N, Lout
absence of this edge introduces a correlation between the two F=- E In(L +e @+4"), (37)
degrees[For a sparse graph, in whigh=O(n™?), the corre- 1#]
lation disappears in the limit of large graph size. From these we can calculate the expected in- and out-

In order to measure some quantities within exponentialjegrees of a vertex:
random graph models, it may be necessary to introduce ad-
ditional terms into the Hamiltonian. For instance, to find the im_ OF 1
expectation value of the clustering coefficie@t [5], one (k") = 96" = E (AP, (39
would like to evaluate P en T el

> C(Get o OF 1
G <k| l>: ut = 2 in, jout .
(C)= — (30) a" () e 41

(39

iny — ou
which we can do by introducing an extra term linear in theWWe note that¥i(k")=2i(k’), as must be the case for all
clustering coefficient in the Hamiltonian. To measure clusterdirected graphs, since every edge on such a graph must both

ing in the network of Eq(18), for example, we could define Start and end at exactly one vertex.
We can also define a probability distributigrie™, 8°49)

H=2, 6k +1C. (31)  for the fields on the vertices, and the developments general-
[ ize EQs.(25—27) in a natural fashion.
We give a more complex example of a directed graph

Then model in Sec. IV A, where we derive a solution to the reci-
JF procity model of Holland and Leinhardi®].
Cy= —| . (32 Another possible choice of graph $gts the set of graphs
97 1 4=0 with both a fixed number of verticasand a fixed number of

Thus it is important, even in the simplest of cases, to be ablédgesm. Models of this kind have been examined occasion-
to solve more general models, and much of the rest of thally in the literaturg16] and, if we once more adopt the view

paper is devoted to the development of techniques to do thi®f the edges in a graph as particles, they can be considered to
be the canonical ensemble of network models, where the

variable edge-count models of previous sections are the
grand canonical ensemble. As in conventional statistical me-

Before we look at more complicated Hamiltonians, let uschanics, the grand ensemble is often simpler to work with
look briefly at what happens if we change the graph&et than the canonical one, but progress can sometimes be made
over which our sums are performed. The first case we examin the canonical case by performing the sum over all graphs
ine is that of directed graphs. We defiié¢o be the set of all regardless of edge count and introducings dunction to
simple loopless directed graphs, which is parameterized bimpose the edge constraint. We will not pursue this line of
the asymmetric adjacency matrix reasoning further in this paper.

C. Directed graphs
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D. Fermionic and bosonic graphs 1

-1

F= (2>In(1 -, n;=

]respectively. The connected correlation between the degrees
Pf any two vertices in the latter case is

: (44)
e

It will by now have occurred to many readers that results
like EQs.(21) and (27) bear a similarity to corresponding
results from traditional statistical mechanics for systems o
noninteracting fermions. We can look upon the edges in ou
networks as being like particles in a quantum gas and pairs PE ef
of vertices as being like single-particle states. Simple graphs kk)e=—5="% "3 (45)

. : . ) 9% (e'-1)
then correspond to the case in which each single-particle
state can be occupied by at most one particle, so it shoulfbr i # j. Thus the degrees are again positively correlated and
come as no surprise that the results look similar to a systertne correlation diverges a&— 0.
obeying the Pauli exclusion principle.

Not all networks need have only a single edge between
any pair of vertices. Some can have multiple edgemal-
tiedges.The world wide web is an example—there can be In most real-world networks the number of edges is quite
and frequently is more than one link from one page to ansmall. Typically the degrees of vertices are of order a con-
other. The internet, airline networks, metabolic networksstant as the graph becomes large, so that the total number of
neural networks, citation networks, and collaboration netedges scales as rather tham?. Such graphs are said to be
works are other examples of networks that can exhibit mulsparse (One possible exception is food webs, which appear
tiedges. There is no problem generalizing our exponentiaio be dense, the number of edges scaling’a$30].) The
random graphs to this case and, as we might expect, it givegrobability p; of an edge appearing between any particular
rise to a formalism that resembles the theory of boseftse  vertex pair(i, j) is of order 1h in such networks. Thus, for
resemblance is a mathematical one only; the practical resgxample, in the fermionic case of the network described by
sons why a given network might have multiedges or onlythe Hamiltonian(22), Eq. (24) tells us thate®i must be of
single edges are quite different from the physical principlesorder n in a sparse graph. The same is also true for the
underlying quantum statistigs. bosonic networks of the previous section. This allows us to

Let us define our set of graph$ to be the set of all approximate many of our expressions by ignoring terms of
undirected graphs with any number of edges between angrder 1 by comparison with terms of ordei. We refer to
pair of vertices(but still no self-edges, although there is no such approximations as the “sparse limit” or the “classical
reason in principle why these cannot be included as)well limit,” the latter by analogy with the corresponding phenom-
Taking for example the Hamiltonian E(22), and generaliz- €non in quantum gases at low density.

E. The sparse or classical limit

ing the adjacency matrix E@11), so thato;; is now equal to In particular, the equivalent of E@24) for either fermi-
the numberof edges betweenandj, we have onic or bosonic graphs in the classical limitdg=e®i. For
the case of Eq(18), it is
. 1 P
Z= E exp — E ®IJ0-I]) = H E e_G)ijoij = H —0. plj =e 0Ie 011 (46)
o} i< i<j 00 i<j 1-€70

so that each edge appears with a probability that is a simple
(40) product of “fugacities’e” % defined on each vertex. The clas-
sical limit of this model has been studied previously by a
number of author§l7,31-34, although again developed and
, justified in a different way from our presentation here; gen-
F= 2 In(1 - € ). (41)  erally the edge probabilityd6) has been taken as an assump-
<) tion, rather than a derived result.
For a given distributiorp(6) of 6, the expected degree of
a vertex, Eq(27), is

and

The equivalent of the probability;; of an edge appearing in
the fermionic case is now the expected number of edges

between vertices and j, which is given by /
(ky=(n-1)e" f e % p(6')de, (47
g = (o) = o= 42)
i\ 00; €%i-1’ which is simply proportional te %. So we can produce any

desired degree distribution by choosing the corresponding
Note that this quantity diverges if we allo®;; — 0, a phe-  distribution for 6.
nomenon related to Bose-Einstein condensation in ordinary
Bose gases.

For the special cases of Eq40) and(18), we have IV. MORE COMPLEX HAMILTONIANS

The models of previous sections are all models of net-
(43) works with noninteracting edges: there are no terms appear-
ing in their Hamiltonians of quadratic or higher order in the
elements of the adjacency matrix, and it is this property that
and makes these models simple to solve. In the second half of the

F:i2<j |n(1—e_(9i+6'j)), Njj :—e0i+9j— 1
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paper we look at interacting models, and discuss in particular L L BN B L
two examples, both of them previously studied in the litera- i ——
ture and both of them, as we show, exactly solvable. The first g osf |3 Py .
is the “reciprocity model” of Holland and Leinhar{f] and § I 1
the second is the so-called “two-star model.” E o6 L
S C
A. The reciprocity model g o _ ]
In the real world, many directed graphs display the phe- g i
nomenon of reciprocity: a directed edge running from vertex 3 o2k b
A to vertex B predisposes the network to have an edge run- “t 1
ning from B to A as well. Put another way, the network has a -
higher fraction of vertex pairs that are joined in both direc- s 0 2 4 6 8 10
tions (“mutual dyads” in the parlance of social network o

analysi$ than one would expect on the basis of chance. Be-
havior of this kind is seen, for example, in the world wide FIG. 1. The reciprocity and connectance of the model of Hol-
web, email networks, and neural and metabolic networkdand and Leinhard{9] for p=0.01. The solid lines represent the
[35-317. exact solution Eq(51), and the points are Monte Carlo simulation
Holland and Leinhardf9] proposed an exponential ran- "esults for systems ai=1000 vertices.
dom graph model of reciprocity, which we study here in a
simplified form. The Hamiltonian is =0.01. Notice that there is a substantial range of values of
over which the connectance is low and the graph realistically
H=Ho+H;=6m-ar, (48) sparse, but the reciprocity is still high, with values similar to
where m==;_;(g;j+0}) is the total number ofdirecteg ~ those seen in real networks.
edges in the graph, and-X; 0y, 0y is the number of vertex
pairs with edges running between them in both directions.
(The minus sign in front ot is introduced purely for con-
venience) In this paper we discuss primarily exactly solvable expo-
The edges between each pair of vertices form independefiential random graphs. However, it would be a mistake to
identical systems that do not interact and hence the partitioassume that all or most exponential random graph models are

B. The two-star model

function for the complete system factorizes thus: exactly solvable. Most are not, and to make progress one
must turn to approximate methods. There @tleas} three
7= Z(;) (49) types of techniques that can yield approximate analytic solu-
o tions for exponential random graph models. The first and
where the partition functioZ, for a single pair is simplest is mean-field theory, which works well in many

cases because of the intrinsically high dimensionality of net-

Zy=1+ 2" +e e, (50 work models; usually these models have an effective dimen-
Making use of the expressiqm=1/(e’+1) for the probabil- ~ sionality that increases with the number of vertioeso that
ity of an edge, we then find the thermodynamic limit oh— o also corresponds to the
high-dimension limit in which mean-field theory becomes
1+(e*-1)p? (2) exact. The second approach is to use nonperturbative meth-
= (1——p)2 (51 ods based on the Hubbard-Stratonovich transform or similar

integral transforms, which are very effective and accurate but
From this expression we can obtain the mean number da$uitable only for models with Hamiltonians of specific forms
edges(m) and the mean number) of pairs of vertices con- polynomial in the adjacency matrix. More generally, one can

nected by edges running both ways from use perturbation theory, which may involve larger approxi-
mations (although they are usually well controllgdbut is
(my= IF _ o(p- 1)£ ry=- Ik (52  @pplicable to Hamiltonians of essentially any form.
a6 ap’ da’ In the following sections we demonstrate each of these

techniques using another model of historical interest in the

iV 1361, which is the fracti fed h 4 dfield, the two-star model As we will show, this model is
ity [36], which Is the fraction of edges that are reciprocate exactly solvable using mean-field theory, and fluctuations

This quantity is found to be on the order of ten; of Perce”“ round mean-field theory can be derived using Hubbard-
networks such as the world wide web. The reciprocity for thegya14novich-type methods. We also develop a perturbation
model of Holland and Leinhardt is theory for the model using diagrammatic methods. At finite
2(r) pe” order, perturbation theory is of course only approximate. Ap-
s T (53)  plying it to the two-star model, for which we also have an
(my 1-p+pe” . . ) )
exact solution, gives us the opportunity to assess its effec-
In Fig. 1 we show the reciprocity, along with the con- tiveness and accuracy in the context of a system already well
nectance of the network, as a function ®ffor the casep ~ understood.

A quantity of interest in directed networks is trexiproc-

066117-7



J. PARK AND M. E. J. NEWMAN

The two-star model is a model of an undirected network,
with Hamiltonian

H=6m- as, (54)

where 6 and « are independent parametensjs the number
of edges in the network, arglis the number of “two-stars.”
A two-star is two edges connected to a common vertex.

The quantitiesm and s can be rewritten in terms of the
degree sequence:

m=32k, s=;2k(k-1). (55)

Substituting these expressions into Es¢@), we can rewrite
the Hamiltonian as

J

H=
n-1

(56)

SK-8Sk,

WhereJ:%(n—l)a and B:—%(0+a). [The factor(n—-1) in
the definition ofd is introduced for convenience later dn.
Noticing once again thd¢=x;0;;, where the variables;;

are the elements of the adjacency matrix, we can also write

> oo - B 0y,

ijk ij

J
H=-—— 57
1 (57)

PHYSICAL REVIEW E70, 066117(2004)

connectance p

external field B

FIG. 2. The mean-field solution for the connectamsgk)/(n
-1) in the two-star model from Eq61), for values of the coupling
J below, at, and above the phase transition. For the dade5 we
are in the symmetry-broken phase and the hysteresis loop corre-
sponding to the high- and low-density phases of the system is
clearly visible.

J
—> (o + 0y

+0—jk+0-kj)+28_)4‘]p+ 2B, (59)
n_l k

wherep=(o) is the mean probability of an edge between any
pair of vertices, which is also called tlwnnectancef the
graph. TherH(aj;) =—(4Jp+2B)agj;, and we can write a self-

We study this model in the fermionic case in which eachconsistency condition fop of the form

vertex pair can be connected by at most a single edge, and
within the grand canonical ensemble where the total number
of edges is not fixed. Generalizations to the other cases de-

scribed above are of course possible, if not always easy.

1. Mean-field theory
The variablesr;; can be thought of as Ising spins residing

~H(oji=1)
p e ij
—1 p = —e_H(‘TijZO) = 4JD+ZB_ (60)
Rearranging, this gives
eMp+2B .
p= 1 +eMp2B = ;[tanh2Jp+B) + 1]. (61)

on the edges of a fully connected graph, and hence the two- _ . .
star model can be thought of as an Ising model on the edge- For J<1 this equation has only one solution, but fbr

dual graph of the fully connected grap?l]. (The edge-dual
G* of a graphG is the graph in which each edge @ is

replaced by a vertex iG* and two vertices inG* are con-
nected by an edge if the corresponding edge& ishare a

>1 there may be either one solution orBfis sufficiently
close to J, three, of which the outer two are stable. Thus
when B is close to J we have a bifurcation af.=1, a
continuous phase transition to a symmetry-broken state with

vertex) Using this equivalence, the mean-field theory of thetwo phases, one of high density and one of low. We show in
two-star model can be developed in exactly the same way dsi9- 2 a plot of the solution of Eq(61) which displays

for the more familiar lattice-based Ising model.
We begin by writing out all terms in E¢57) that involve
a particular spin;;:

J
H(ayj) = - 0y —n_12 (O + oy + o+ o) + 2B |
k
(58)

where we have explicitly taken account of all the ways in
which o; can enter the first term in the Hamiltoniajwe
have also dropped the ternd@;/(n—1) required to correctly
count the terms diagonal i;, since it vanishes in the large-
n limit. ]

clearly the characteristic hysteresis loop of the symmetry-
broken state.

Along the “symmetric line’B=-J there is always a solu-
tion pzé, although it may be unstable, and along this line we
can think ofp—% as an order parameter for the model which
is zero in the high-symmetry phase and nonzero in the
symmetry-broken phase. We can define a critical expogent
in the usual fashion by

-3~ -1~ (62)
asJ—1 from above, givingB:%, which is the usual Ising
mean-field value. One can define other critical exponents as
well, which are also found to take Ising mean-field values.

Then, in classic mean-field fashion, we approximate thd-or instance, as we showed [ib8], the variance of the con-

local field by its average
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|[J=1]77 in the vicinity of the phase transition with=1. H(P) = (n-1)ID, ¢2- 1D In(1 + e 4+e))+28)
As n becomes large, each edge in our network interacts e 2#1-

with an arbitrarily large number of others, making the mean- 1

field theory more and more accurate. In the limit, the = 3nIn[(n=1)J] (67)
theory becomes exact and we believe the valuepfgiven
above to be correct in this limit. Mean-field theory cannot
tell us everything about our model: for instance it provides
no estimate of the partition function or the free energy, anc}

can give information about fluctuations around the mean be@umhary f'elds{d".} which ”.‘“St be integrated out to com-
lete the calculation. The integral cannot, as far as we are

havior only indirectly via linear-response-type calculations.P b luated tv in closed f H
These shortcomings, however, can be remedied by perforn?—ware’ € evaluated exactly in closed Torm. HOWEVEr, as we

ing expansions around the mean-field solution, as we no\ﬁhovv_ed '”[15]’ it can be evalgate_d using a sagldle-po_lnt_ ex-
describe. pansion, which becomes arbitrarily accurate in the limit of

large system size, so that we can derive an exact expression
for the free energy in this limit. We find

is called the effective Hamiltonian.
Thus we have completed the partition function sum for
he two-star model, but at the expense of introducing the

2. Expansions around mean-field theory

We can go beyond mean-field theory by making use of F=n(n-1)J¢3 - 2n(n - 1)In(1 + g™ %0*28)
techniques borrowed from many-body theory. The develop- 1
ments of this section follow closely the lines of our previous +2(n=DIn[1 - 2)¢(1 - ¢o)], (68)

paper on this topi¢18], and, rather than duplicate material here

needlessly, the reader is referred to that paper for details i

the calculations. Here we merely summarize the important _1 23+ B) + 1

results. ¢o = 5[tanh(23¢y + B) + 1] (69

The evaluation of the partition function for the two-star is the position of the saddle point, i.e., the maximum of the
model involves a sum of terms of the forgh. The study of  Hamiltonian on the rea line.
interacting quantum systems has taught us that such sums Note that Eq(69) is identical to the mean-field equation
can be performed using the Hubbard-Stratonovich transforngq. (61) for the connectancp of the two-star model. Thus,
We start by noting the well-known result for the Gaussiang, is the connectance of the model within mean-field theory
integral: and the saddle-point expansion, as is typically the case in
such calculations, is an expansion about the mean-field solu-

—ag’y g _ | T tion.
J_m e dp= \/;' (63 From the free energy we can derive a number of quanti-
ties of interest. We showed iflL8], for instance, that the
Making the substitutiona— (n—1)J and ¢ — ¢, —k;/(n—-1),  variance of vertex degree in the model is given by
and rearranging, this becomes
$o(1 — o)

[(n- > (K3 —(k?=(n-1)— ————, (70
eJlﬂ-z/(n—l) = M J e—(n—l)J¢i2+2J¢ikid b. (64 1-2J¢g(1 — ¢bp)
™ —00
which has a gradient discontinuity but no divergence at the
Then the partition function is phase transition.
J . Perturbation th
ZZEexp<— Ekiz—BE ki) 3. Perturbation theory

G n-175 [ Exponential random graphs also lend themselves naturally

(n-1)J3]"2 to treatment using perturbation theory. We here describe the
:[ } fpd’ exp<—(n—1)J2 ¢|2) simplest such theory, which is roughly equivalent to the
™ i high-temperature expansions of conventional thermal statis-
tical mechanics. Expansions of this type have been examined
X EG: exp(E (23 + B)k‘)’ (65) previously by Burdeet al. [19,2Q for Strauss’s model of a
' transitive networkf12,13. Here we develop the theory fur-
where we have interchanged the order of sum and integralther for general exponential random graphs and illustrate its
The sum over graphs now has precisely the form of thdise with the two-star model as an example.

partition function sum for the model of E¢18), and from The fundamental idea of perturbation theory for random
Eq. (20) we can thus immediately write down the partition graphs is the same as for other perturbative methods: we
function expand about a solvable model in powers of the coupling

parameters); in the Hamiltonian. We write the Hamiltonian
_ () for the full model in the formH=Hy+H,, whereH, is the
Z= | Dge , (66) Hamiltonian for the solvable model ardl; takes whatever
form is necessary to give the correct expressionHoirhen
where the quantity the partition function i§19,2Q
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_H .
eHo and the number of such graphs is counted by terms that ap-
— —(HotHp) — —Hq, — —H s e L . . .
z=2 eto=73 7 € 1=Ze™0, (71 pear at infinite order in the perturbation expansion in the
G ¢ 0 limit n—c. So without expanding the partition function to
where Z,=3ge ™0 is the partition function for the unper- infinite order we are never going to get meaningful results
turbed Hamiltonian, and - -), indicates an ensemble average from our expansion.
in the solvable, unperturbed model. Similar problems appear in ordinary statistical mechanics
The only case that has been investigated in any detail i8nd the solution is well known. Instead of expanding the
the one where we expand around a random gréjgls,ém,  Partition function, we form an expansion for the free energy.
so that the averages in E@.1) are averages in the ensemble We can write the free energy as
of the random graph(t is possible forf to be zero, so this 7
choice forH, does not place any restriction on the form of F=-InZ=-InZy-In-=Fy+Fy, (76)
the overall Hamiltonian. 1f§=0 then the expansion is pre- Zo
cisely equivalent to an ordinary high-temperature series.whereF,=-InZ, is the free energy of the unperturbed net-

However, for Hamiltoniansi that give significant probabil- \york and F;=-In(z/Z,). Now we expandF; as a power
ity to networks substantially different from random graphs,series ina of the form

the perturbation theory cannot be expected to give accurate
answers at low order. In theory there is no reason why one Er=— af. - a_zf B a_3
could not expand about some other solvable case, although 1mmah T 5Ty,
no such calculations have been done as far as we are aware.
One obvious possibility, which we do not pursue here, is toVhere we have made use of the fact that0 whena=0.
expand around one of the generalized random graph form$ubstituting intoZ/Z,=e™1, we get
Eqgs.(18) and(22). 7 o2 o3

Typically, to make progress with E¢71), we will expand = =1+af + —(f,+ 19 + —(f3+ 3f,f, + ) + O(a?),
the exponential in a power series of the form Zo 2! 3!

R 77

(78)
—(Ho- (720 and comparing terms with E¢73), we find

: : : f1=(S, (793
In practice,H; normally contains a coupling constant, such
as the constant in the two-star model of Eq54), and thus f,= (), — f2 (790)
our expression for the perturbed partition function is an ex- 2 o v
pansion in powers of the coupling.

As an illustration of this method, we now apply it to the f3= ()0~ 3ff1 - 11, (799
two-star model and compare the results of finite-order expangnd so forth. These are tlmimulantsof s within the en-
sions to the exact results derived earlier. The Hamiltoniarsemple defined by the unperturbed network. If we expand
H=¢m-as can be divided into an unperturbed pBig=6m, in the form of Eq.(74) then they are connected correlations
which is the normal Bernoulli random graph, and a pertur-of elements of the adjacency matrix—“connected” because
bation HamiltonianH,=-as. Then, following Eq.(72), the  individual elements of the adjacency matrix are uncorrelated,

partition function for the full model is given by so that all terms in the cumulants vanish unless they involve
2 sets of two-stars that share one or more ed@dste that
—_ Z<Sl>0. (73)  sharing a vertex, as in the more familiar spin models of tra-
Zy ool ditional statistical mechanics, is not a sufficient condition for

being connected. The fundamental degrees of freedom in a

The number of two-stars is network are the edges.

s=>3 5 Ok (74) We will proceed then as follows. We calculate the free
T <k energy Fq in terms of connepted correlations up to some
finite order in @ and from this we calculate the partition
and therefore function Z=Z,e F1. Even thoughF; is known only to finite

order, our expression fat will include terms with all powers
of the connected correlations in it, via the expansion of the
exponential, and hence will include graphs with not only a
Our strategy is to evaluate the seri@8) up to some finite  finite number but a finite density of two-stars. This idea,
order ina to get an approximate solution f&; but there is  which will be routine for those familiar with conventional
a problem. Each term in the series corresponds to states g@fagrammatic perturbation theory, is entirely general and can
the graph that have the corresponding number of two-stargie applied to any model, not just the two-star model. In
the term in(s),, for instance, counts the number of graphsessence, the series given &y is a partial resummation to
that have a two-star in any position in the graph. This is notll orders of the partition function, including some but not all
enough for our purposes, however. Realistic graphs will havef the contributions taZ from disconnected correlations of
not a finite number but a finitdensityof two-stars in them, arbitrarily high order.

(o= 2+ 2 (01,01 01 Tikdo-  (75)

inj1<kg i<k

066117-10



STATISTICAL MECHANICS OF NETWORKS PHYSICAL REVIEW E70, 066117(2004)

VAR B RV, 05 e
0.4 L \\\:\
© C N\
MWLV RN
§ o3f
NS
FIG. 3. The diagrams contributing to the first three orders in the E A
perturbation expansion of the free energy of the two-star model in 8 o2f
powers ofa. [ [~ saddle-point expansion
0.1 I 1* order perturbation
i : r|=- 2ndordzrpemnbaﬁon
Let us see how the calculation proceeds for the case of the |- 5 order perucbation
two-star model, to ordex® as above. The leadin®(«) term 0, ‘0'5' —
in Fy is simple: '
J
f1=(s)p= > (G0N0 = n(” - 1>p2. (80) FIG. 4. The connectance of the two-star model calculated from
i j<k 2 the mean-field theory of Sec. IV B(solid line), and from the first-

(dotted ling, second-(dashed ling and third-order(dot-dashed
Since we are primarily interested in large networks, we canine) perturbation expansions. The calculations were performed
approximate this expression by its value to leading order iralong the symmetric lind8=-J, where the half-filled graph with
n, which is %n3p2, connectanc«% is always a solution of the mean-field equat{@i).

The second term, at ordef?, is more complicated be- For J>1 there exist two symmetry-equivalent stable solutions in
cause there are several different ways in which two two-stargddition to the half-filled graph. We show only the sparser of the
may combine to share one or more edges. In order to keefyo. Inset: the density of two-stars in the same model.
track of these different contributions, we make use of a dia-
grammatic representation similar to that employed by Burda(b) contributen(p3-p?) and3n%(p?-p?), respectively. The
et al. for Strauss’s transitivity modglL9]. Figure 3a) shows  diagrams for the(«3) term are shown in Fig.(8), and are
the single diagram contributing tQ, which gives the result more complicated, but routine to evaluate using the rules

in Eq. (80). Figure 3b) shows the three diagrams that con- ghove. The final expressions for this are
tribute to f,. It is an assumption of our notation that each

edge that appears in a diagram is distinct. Thus the third fy=3n°p?, (819
diagram in Fig. 8), which represents the case in which the

two two-stars fall on top of one another, must be depicted fo= %n3(1 -p)p?(1 +4np), (81b)
separately, rather than being considered a special case of the

diagram in Fig. 8a). This turns out to be a good idea, since fa= %n3(1 —p)pA(L + 14np+ 32n2p2 - 40n%p%). (810)

this term has a different functional form fronga3, and nei- _ _ _
ther diagram is necessarily negligible by comparison withNote that we have retained the leading order termssepa-

the other. rately at each order ip, since we have no knowledge
The basic “Feynman rules” for interpreting the diagramspriori about the relative magnitude ofand p. In a sparse
are as follows. graph, we expect thag will be of order 1h, in which case it
(1) Each edge contributes a factor f may be possible to neglect some terms.
(2) Each vertex contributes a factor of Once we have the expansionkef, it is straightforward to

(3) The numerical multiplier is the number of distinct calculate statistical averages from derivatives of the free en-
ways in which the diagram can be decomposed into overlapergy in the normal fashion. For example, the expected num-
ping two-stars such that each edge occurs at least once, dier of two-stars in the network is given by
vided by the symmetry factor for the diagra@he symme- JE JE
try factor is the number of distinct permutations of the (9=-——=-—2=f +af,+1a*f3+0(ca%, (82
vertices that leave the diagram unchanged. da  da
Then for the connected correlation functions one must subynqg the expected number of edges is
tract all other ways of composing lower order diagrams to
make the given diagram, as in E@9). (m=2"=p

To see how these rules work in practice, let us apply them 90
to the first diagram in Fig. ®). This diagram has four ver-
tices and three edges, which gives a factontg®, by the

dFy JF;
_1 _
(P )( ap  Ip

+2(1+6np-8np)a + (1 + 2Inp+ 64n’p?

) = %nzp +n3(1 - p)pza[l

first two rules. The diagram can be decomposed into two - 180%p% + 12002p?) az]_ (83)
two-stars in six different ways, but the symmetry factor is
also 6, so we end up with'p® X 6/6 =n*p®. The contribution In Fig. 4, we show the connectancé1®/n? and the den-

to the diagram from the termf%in Eq.(79b) is —-n*p* sothe  sity of two-stars 2s)/n® calculated from thgexacy mean-
final value of the diagram is*(p®*-p*) to leading order im.  field method of Sec. IV B 1 and from the expressions above,
Proceeding in a similar fashion, the other diagrams of Figat first, second, and third order. As the figure shows, the
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perturbation expansion agrees with the exact solution at higbalculations using exponential random graphs, starting with
and low values oﬂ:%(n—]_)a, and markedly better for the Simple models that have Iir)ear Hamiltonians, many of V\_/hic_h
third-order approximation than for the first- and second-ordehave been presented previously by other authors, albeit with
ones. However, in the region of the phase transitiod.at rather different motivation. In most cases these linear models
=1 the agreement is poor, as we would expect. In this regio§a" be sqlved exactl_y, meaning that we can derive the parti-
there will be large critical fluctuations and hence contriby-ion function or equivalently the free energy of the graph

tions to the free energy from large connected diagrams thdt
are entirely missing from our series expansion. Presumablgg

nsemble exactly in the limit of large system size.
For nonlinear Hamiltonians we expect that exact solutions
vill often not be possible, but there are a number of methods
at can shed light on their behavior nonetheless. Taking the
articular example of the two-star model, we have shown

by extending the perturbation series we can derive succe
sively more accurate answers in the critical region. We als
note that the pgrturbation expansion gives _results only for th ow its properties can be understood using mean-field
sparse phase in the symmetry-broken region. theory, perturbation theory, and nonperturbative methods
We have here analyzed in detail the example of the tWop55ed on the Hubbard-Stratonovich transform.
star model using perturbation theofgnd another example  The results presented in this paper are only a tiny fraction
can be found in Ref{19]). The techniques employed, how- of what can be done with exponential random graphs. There
ever, are entirely general, and diagrammatic theories similagre many interesting challenges, both practical and math-
to these, with similarly simple Feynman rules, can be derive@matical, posed by this class of models. Exploration of the
for other examples as well. behavior and predictions of specific models as functions of
their free parameters, development of other solution methods
or expansion of those presented here, and the development of
models to study network phenomena of particular interest,
In this paper we have discussed exponential randonsuch as vertex-vertex correlations, hidden variables, degree
graphs, which in both a figurative and a quantitative sensdistributions, or transitivity, are all excellent directions for
play the role of a Boltzmann ensemble for the study of net{further research. We hope to see some of these topics pur-
works. Exponential random graphs are a formally well-sued in the near future.
founded framework for making predictions about the ex-
pected properties of networks given specific but incomplete ACKNOWLEDGMENTS
measurements of those networks. The authors would like to thank Julian Besag, Mark
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