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Multiscale analysis of information correlations in an infinite-range, ferromagnetic Ising system
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The scale-specific information content of the infinite-range, ferromagnetic Ising model is examined by
means of information-theoretic measures of high-order correlations in finite-sized systems. The order-disorder
transition region can be identified through the appearance of collective order in the ferromagnetic phase. In
addition, it is found that near the transition, the ferromagnetic phase is marked by characteristic information
oscillations at scales comparable to the system size. The amplitude of these oscillations increases with the total
number of spins, so that large-scale information measures of correlations are nonanalytic in the thermodynamic
limit. In contrast, correlations at scales small relative to the system size have a monotonic behavior both above
and below the transition point, and a well-defined thermodynamic limit.
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I. INTRODUCTION k-1 IN-j-1

Cyk =2 (- 1)“-1( i 1 )Q(N—n, (L)
The emergence of order and structure in physical systems i=0 -
is conventionally quantified by means of various statisticalyhere Q(N-j) represents the information contei@hannon
mechanical measures, such as specific heat, susceptibilitiesstropy of all possible subsets ¢N-j) spins,
correlation functions, correlation lengths, and structure fac-
tors[1]. Information theon2] may provide alternative tools QIN-))=- > D P({shlog, > Pds). (2)
that can extend and strengthen the statistical measures, espe- {ipio. i s} SipSipe S
cially for application to the study of complex systems or

related models, such as neural netwof@, cellular au- We note that this measure was developed also in[R6f, in

. ) close analogy with Green’s expansion for the entropy in the
tomat?.[“]’ or chaotic dynampal systents]. In tqrn, the statistical mechanics of fluidgll], although the above ex-
suitability of these new tools is best tested against the cg5)icit expressions are not given there. This formalism is quite
nonical models_of statlsncallphysms for structure-generating,njike the conventional information measures on character
processes, particularly of critical phenomena. _strings[2], which have motivated information theory appli-
Information theory has most often been associated with @ations in physical systems confined to one dimension where
variety of entropy/information-related measur@ of the thermodynamic phase transitions do not od&r
entire_ phase space. Ho_weve_r, information theory as a char- \ye examined the complexityl) both numerically and
acterization of the relationship between components, genefaytically for an infinite-range Ising ferromagnet in ther-
alizing the study of correlations, has been less well studiedya| equilibrium, described, as usual, by a canonical distribu-
With this perspective in mind, we present in this paper &jon
study of k-fold information correlations in the well-known
ferromagnetic, infinite-range Ising model. Just as the pair 1 3
correlations of a system are related to its dynamic response, P({s}) = Eexp[BN_E SSJ] - ©)
higher-order correlations may also be relevant to the re- =)=t
sponse of a complex system under external coherent interagtere the energy functional in the exponential is scaled by the
tions[8]. Here our general intention is to examine subsystensize N of the system to ensure a well-behaved thermody-
degrees of freedom of such complex systems in relation tpamic limit N— o, and the coupling constant is positive,
the emergence of an order parameter in the thermodynamis 0. Although the permutational symmetry of the model re-
limit. To this end, we apply a measure of the phase-spacguces distributiori3) to a simple functional of the total mag-
volume ofk-fold correlations defined9] as the amount of npetization M=EiN=1$ (as P(M) ~exf (BI/2N)M?]), neither
information(complexit» C(k) that can be obtained through the information of Subsystem@(N—j) [Eg. (2)] nor the
observations ok or more spins.k measures scalg as the complexitiesCy(k) [Eq. (1)] can be given simple closed-
number of correlated spins rather than distar@) is re-  form expressions. This is in contrast to common thermody-
lated to the amount of informatioﬁ(k) obtained from sets namic quantities’ which have well-known expressions_
of exactly k spins asD(k)=C(k)-C(k+1). For a set ofN Since the mean-field approximation is known to be the
Ising spins with a statistics described by a probability distri-exact solution for this system in the thermodynamic limit, we
bution P({s}), {s}={s;,s;., ... s}, the complexityCy(k) at  will compare results for the exact model to corresponding
the (integep scale kis given by mean-field values. The standard mean-field approximation is,
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however, adecoupling approximation, which provides a N
simple working framework precisely by neglecting explicit C(1) =N->, Cy(K).
correlations between spins. Thus, in this case, the correlation k=2

measureCy(k) vanishes identically on all scales, except on

the finest onek=1, for which it equals the total entropy. To

avoid this oversimplification, we amend the usual mean-fieldVe also show in the Appendix that for the modified mean-
approximation by accounting explicitly for the two equiva- field model the entropy differs from the usual mean-field
lent, but macroscopically distinct, orientations of the averagesntropy by a small quantityless than one bjt which van-
magnetization. The corresponding probability distribution isishes in the thermodynamic limit.

written We begin by examining the coupling strength dependence
of complexities at all scales for systems of various S(E&g.

1). The disordered phase of the mean-field model, below the
transition point at(8J),,=1, samples a uniform distribution

of configurations, and therefore shows no correlations at any
where the average magnetization per spiis given by ei-  scalek>1[Cy(k=2)=0]. In the exact model, this interaction
ther solution of the mean-field self-consistency equation range corresponds to a weak-coupling regime, and a largely
uncorrelated disordered phase, with low complexitieskfor
>1.We observe that significant correlations are restricted to

The probability distribution given in Eq4) generates essen- (1€ scales(k<N), and vanish as the coupling decreases.
tially the same thermodynamics as the usual mean-field arkarge-scale correlations are virtually absent over the entire
satz, but avoids simple factorization, and the implicit loss offangeSJ=<1. In both the exact and the mean-field model,
larger-scale complexity. Thus it provides a nontrivial, albeitlarge-scale correlations develop with significant amplitude
not necessarily accurate, description of spin correlations ifor coupligsJ=1. For the mean-field model, this marks a
the ferromagnetic phase transition. sharp ferromagnetic phase transition. In the strong-coupling
Our numerical studies of information correlations in thelimit, in the ferromagnetic phase, both the exact and the
ordered and disordered phases are presented and discussethigan-field complexities approach 1 asymptotically at every
Sec. Il. In Sec. lll, we detail the analytical apparatus behindscale. This unit complexity is the single bit of information
our modified mean-field approadiitg. (4)], leading to a necessary to describe the two possible collective states, and
closed-form approximation for fine-scale, mean-field com-confirms the alignment of all spins along one of two macro-
plexities. In Sec. 1V, we present a refinement of the meanscopic directions.
field model which brings the corresponding results signifi-  Remarkably, for8J>1 we note a striking difference in
cantly closer to the exact model. Concluding remarks argnhe hehavior of fine-scale and large-scale complexities with

o 1+ms " 1-ms
Pm(sh=Z| I1 +11 :
20 2 =1 2

(4)

m= tanh BJm). (5

provided in Sec. V. increasing interaction strength. Fine-scale complexities, for
k<N, increase gradually and mostly monotonically with the
Il. NUMERICAL RESULTS strength of the interaction, until they saturate under suffi-

. , ciently strong coupling. In contrast, large-scale correlations,
The calculations were performed on systems with up (95 measured by complexities at scakesomparable to the

N=20 spins. Higher values dll are possible but do not svstem sizd1-(k/N)<1]. show a stronaly nonmonotonic
provide additional insights for the analysis described here.y d1-(k/N)=<1], gy

. . variation. In a somewhat counterintuitive fashion, some com-
For each system size, the complexitiggk) were calculated lexities are seen to becontstrongly negative. The phe-
throughout the entire scale rangesk=<N, for coupling P 9 9 ' P

strengths in the range<0BJ<4. The upper limit of the in- nomenon was found in Ref9] to be a signature of mutual

teraction range is large enough to describe the asymptotgepengeg%eshbe(tjween dmu“_'ﬂkﬂ;m) variables IThat al;e not ‘
strong-coupling regime. escribed by the dependencies between smaller subgroups o

The finite size of the systems studied results in an obsensPINS- It is, for example, found in the case of a frustrated
able difference in the physics of the exact model as COmg;mtlferro_magnet where the frustration occurs for groups of
pared to the mean-field counterpart. While the mean-fieldnrée spins but not for two. Here the collective “constraint”
model isdefinedby means of an order parameter that exhib-S€ems to have its origin in the gradual “localization™ of the
its a well-defined phase transition regardless of the systerftatistically populated spin-configurations around the fully
size, the exact model displays a true phase transition only ialigned states, and the concomitant “exclusion” of configu-
the thermodynamic limit. Nevertheless, a reasonably wellations with low total magnetization. The behavior is much
defined change of regime can be seen also for the finite-sizmore dramatic, with significantly larger positive and negative
models, through the behavior kffold correlations. This be- excursions, for the mean-field model because it imposes the
havior reflects the emergence of the order parameter in theonstraints on collective magnetization more directly. The
thermodynamic limit of the model. behavior disappears in the strong-coupling limit because

We will present results foC(k>1). C(1) is the system pairwise interactions are strong enough to force alignment,
entropy and has a well-characterized behavior in both thaot just multiple interactionglntuitively, this corresponds to
exact and the mean-field model. It can be obtainefPas the behavior of finite correlation lengths in a spatial Ising
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FIG. 1. The complexitie€y(k) of a system of
N=3,6,9,12,15, or 18spins for increasing
scalesk=2,3,... N, as a function of the cou-
pling strength BJ. Exact infinite-range Ising
model results are shown i@)—(f) (left) panels,
modified mean-field model results i6g)—1)
(right) panels. Left and right panels compare ex-
act and mean-field results in this and Figs. 2—4.

model, where in the ordered phase, disorder persists ommagnetic phase of the mean-field modiebuplings 8J

scales shorter than the correlation length.

tems of a given size are plotted against the skalevarious
values of the coupling strengflrigs. 2a)—2(d)]. In the fer-
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=(BJ),=1.0, the large-scale complexities display a charac-
The different behavior of fine- and large-scale correlationderistic oscillatory behavior, whose amplitude increases rap-
becomes more clearly visible when the complexities for sysidly with the system size. A similar oscillatory pattern is seen
in the exact model with more thar15 spins, under cou-
plings BJ=1.5. The amplitude of the oscillations also in-
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creases with the system size, but at a considerably sloweollective constraints on a scale comparable to the system

rate (by approximately two orders of magnitudian in the  size. In the mean-field model, such a coexistence of phases is

mean-field case. seen to develop abruptly above the transition point at
This feature has a twofold significance. First, oscillatory(8J).=1.0, while in the exact model long-range correlations

large-scale information correlations apparently are indicativeseem to build up gradually fg8J> 1, until a “constrained”

of an ordered phase, or a coexistence of ordered phases, witehavior appears fg8J=1.5. Second, the growth of oscil-
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lations with the system size brings into question the existhe corresponding energy and probability distributRifs})
tence of a thermodynamic limit for large-scale complexities.are functionals only of the total magnetization of that con-
To explore this issue in more detail, in FiggeR-2(h) we figuration, or equivalently, of the numb&r of | spins. The
examine complexities at a fixed scale as functions of thelensity of states at a specific energy is given(By Simi-
interaction strength, for increasing system sizes. Since in thigrly, the probabilityXs ¢ ..s P({s}) of a given configura-
case the minimum allowelN equals the selected scddethe tion of (N—j) spins Witlhlf 1 §pins, irrespective of the con-

corresponding complexities for small systems describe larg fquration of the remaining spins, is a functional of. only,

scale correlations, whereas complexities for larger systemgnd not of the exact positions of tH&l—j) spins. Let us

eventual'ly describe 'flne-scale correlations. As the magnltudg note this probability byPy,i.y(L), and letPy(K) be the
of the given scale increases, we expect the appearance 0 )

increasingly nonmonotonic complexities for the smaller sys{)hrgtbabbr'llc'jtgr?::l?n ’;‘;;ﬂtnagggf;g%arﬁgg withK T spins, such
tems, while larger systems should show the typical mono-""" P y Y
tonic behavior characteristic of fine-scale correlations. This

pattern is indeed observed for the exact model. The mean- i i

field model, on the other hand, shows nonmonotonic behav- Pn-jn(L) => ( )PN(K +L). (6)
ior with the size of the system even at the relatively small k=0\K

scalek=6.

The origin of this phenomenon can be understood fro"hecalling Eq.(1) for the complexitieCy(k), we see that the

the behavior of complexities as functions of coupling . .
) . . : sum of subsystem entropi€N-j) can be calculated as
strength at a fixed scale-to-size ratio, constlftl [Figs. ¥ PIEAN=)

2(i)-2(1)]. The exact complexities display a clear converging

trend with increasing system size f@/N<1/2. At these NN N-j

scales we may infer the existence of a thermodynamic limit Q(N-—j)= -( : )E ( L )PN_J-;N(L) log,Pn-jin(L),
scaling asCy_...(k)=C(k/N). For larger ratios, i.e., scales /=0

comparable to the system size, there is no apparent conver- (7)
gence, and the existence of a unique thermodynamic limit is

doubtful. For the systems studied here, the divergence ofh th the right-hand side ai th i
complexities appears roughly f@J=1.5. In the mean-field where _the sgm on ef rIgN and sl .e g|\{es . € average en
ferromagnetic phase, the complexities show convergenc&OPYy QuIN-1)=Q(N-))/(g%;) of (N=]) spins in the pres-
with the system size only fdt/N<1/3. At larger ratios, the ence ofj additional spins. Use of expression) in Eq. (1)
divergent behavior begins abruptly above the critical point. Yields the desired complexitieSy(k). For the exact model,

In both the exact and the mean-field model, the largewe have Py(K)=Zy'exd(BJ/2N)(N-2L-2K)?], and the
scale oscillations eventually disappear in the strong-couplingrobabilitiesPy_;.(L) are
limit, and the complexities converge to the asymptotic unit
value. This is more easily seen in Fig. 3, where complexities L P 8
are plotted as functions of the relative sckiél for increas- 0 _t J B o2
ing system sizes, at prescribed coupling strerjgthupling Pr-gin(L) = Zy K2:O<K>ex 2N(N 2L~ 2K) } ®
strength increases in the panel sequea@gédo (f), (g) to (1),

i.e., down the page, with the upper panels in the disordered

phase and the lowest panels in the ordered fhase scal- Wwhere the partition function iZy=3N o(})exp(83/2N)(N

ing behavior of fine-scale complexities is again evident. Re=2k)?].

gardless of the system size, the fine-scale complexities for a As in a standard statistical calculation, the sumZgrand
given k/N have virtually identical values, which increase P%_j(L) may be given closed expressions by using a Gauss-
smoothly from zero to one as the strength of the couplingan transformation to linearize the quadratic exponents, and
increases. Figure 3 also gives a clear representation of thgibsequently applying a steepest-descent approximation to
change of regime in the large-scale correlations of the exaghe resulting integral12]. But the steepest-descent approxi-
model, in the neighborhood @f3J),~ 1.5. The discrepancy mation is valid only for large values of andN- 2L, respec-
between this transition point and the mean-field critical pointiively. The resulting expressions fdt(k), which involve

is a finite-size effect. The behavior of the critical point with sums overL=0,1,... N, yield good results only for fine
increasing system size can be inferred from the corresponacales, and break down above some séateN/2. These

ing finite-size specific hedFig. 4), which has its maximum steepest-descent results are illustrated in Fig. 5. However,
in the vicinity of the same coupling value. our reference calculations remain based on the exact expres-
sions provided by Eqg7) and(8), and are compared to the
mean-field approximation as a working framework, as de-
scribed below and in Sec. IV.

The calculation of the numerical results presented in the We turn now to the analysis of the mean-field approxima-
previous section was considerably simplified by the permution. For the modified mean-field ansatz, the probability dis-
tation symmetry of the infinite-range Ising model, in both thetribution is given by Eq(4), and it is again a function only of
exact and the mean-field version. For any configurafign  the numbeK of spinst, P™M({s}) = Pg\‘mf)(K). Also, due to

IIl. ANALYTIC DISCUSSION
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FIG. 3. The complexityCy(k) as a function of
the relative scal&/N in systems with an increas-
ing number of spind\, 10<N=< 20, at given cou-
pling strengthpJ=1.0, 1.25, 1.5, 2.0, 3.0, and
4.0.

identical to the mean-field entropgé\‘”l? for a system of
(N-j) spins(i.e., in the absence of any additional spins

spins is seen to be
PRIA(L) = PIY(L). )

As a result, the average subsystem entr@&?ﬂ(N—j) is

It is worth noting that the entrop%mf) for the modified
distribution (4) deviates slightly from the standard mean-
field entropy. We show in the Appendix that this deviation is
always less than one bit in absolute value, hence it becomes
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M a) Exact model M b) Mean-field model
14 1.4
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1 FIG. 4. The specific heaty, as a function of

o8 08 10 the coupling strengthBJd. (a) Exact model,(b)
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negligible in the thermodynamic limit. Nonetheless, it is this N\ K2 _

small, nonextensive deviation that accounts for the occur- CM (k) ~ & NS™ + 1 —k(k )E (= k1

rence of nontrivial information correlations in the modified j=0

mean-field model. To see this, it suffices to express the com- _ 2N — i

Tl . ‘ k=1\(A-m)(N-j)/2

plexities(1) in terms of the average subsystem entropies, X j N——J (11

N\ k-1) gm0
cim(k) = k( )2 (- 1)'<—1—J'( _ )—‘L The last two terms in the expression on the right-hand side

k /9% N-j may be recognized as an incomplete beta functi@), and

we are left with the following closed-form approximation for
and observe that the sum on the right-hand side vanishes féte mean-field complexities:
an extensive entropg["’ ~ (N-j), unlessk=1.

We write now, employing the results in the Appengigq. CIM(k) =~ & NS™ + 1, (K N-k+1). (12
(Ad)], ’

mh _ ndmh) o 4 A ) The domain of validity of expressiail?2) is restricted by the
S =N+ 1oAY, (10 approximation for the termASﬂ? to (N=j)>1, which im-

) . . plies both a large total systefiN>1) and a small relative
Wh?nrf?s is the usual mean-field entropy per spin, andgcale k/N<1. Thus the characteristic large-scale oscillations
AS"~(1-m)N/2 [Egs. (A3) and (A7)]. Using this ap-  above the transition point are not captured by this approxi-
proximation in the previous expression 16("(k), together mation. In fact, from the properties of the incomplete beta
with the identityk(g)SIC3(-1) 131 (N=j)~2=1, yields function, it can be seen that

Steepest descent vs. exact complexities Enhanced vs. mean-field complexities
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a)

a(J)
for any scale&k>1. The approximation Eq12) and the ac- 200} ’
tual mean-field complexity are compared in Fig. 5. 150 f
100/, /
IV. FLUCTUATIONS BEYOND THE MEAN-FIELD 50 \“ '/"
APPROXIMATION e |
1 2 3 4
Although the mean-field results capture many fundamen- b)
tal features of the exact information correlations, it is evident "(J)l‘ 7o) P
that they do not provide good quantitative approximations to 0.8! /
the latter. A better description of scale-dependent correlations 06 /
demands a statistical description beyond the simple mean-
field ansatz. We now show that it is possible to augment the 04 //
modified mean-field model to improve the agreement for 0'2{
both fine-scale and large-scale correlations. T T Ty !

The main idea is to regard the mean-field magnetization
as a stochastic parameter with a Gaussian distribution. We FIG. 6. (a) Exact and approximate solutions of §d4) for the
assume that the system samples randomly mean-field distigaussian widtha(5J) against the couplingdJ. The approximate
butions of type(4), each distribution occurring with a pre- Solution is defined by Eq(15). (b) Square-root deviation of the
scribed probability. Further, we assume that this probabilityna@gnetization per spin against the couplggin the exact model
has a Gaussian dependence on the magnetizaiioe.g., [0(BJ)] and in the enhanced model with Gaussian width given by
A exg-a(mg—w)?], whereA is a normalization factonng ~ =9- (19 [o6(BI)].

sets the center of the Gaussian distribution, aniétermines
the width of the distribution. Here all parameters must be 1169 exp—-4.23-1.0] for < 1.0,
regarded as functionals of the coupling constaht We set a(pd) = 1.69 exp4.9J - 1.0] for J= 1.0. (15

mg to the mean-field magnetization given by H§), mg .

=m, and let the widtha be determined such that the root- Figure @b) shows that the agreement between the square-
mean-square deviation of the magnetizatioh(>;s)2)%/2 is  root deviation of the magnetization in the exact and in the
identical to the magnetization deviation in the exact modelPresent model with the approximation given by Eff) is

The corresponding probability distribution for a spin con-indeed very good. Comparative plots of complexities at se-
figuration withK1 spins becomes lected scales are presented in Fig. 7. As an immediate effect

of the Gaussian averaging, the enhanced model no longer
displays a well-defined phase transition, and all correlations
have a smooth dependence on the coupling constant, as in
the exact results. FoiBJ<1.0, there are only small-
U (1+p\(1-p\NV* (1+u N-k/1 7 K amplitude fine-scale correlations that vanish as the coupling
XE 2 2 * 2 2 * decreases, whereas 89> 1.0 the system gradually devel-
ops large-scale correlations. We note that the quantitative
(13) agreement of fine-scale correlatiofls<20) becomes re-
with A a normalization constant, and the Gaussian widin ~ markably good over the entire interaction range studied. For
a solution of large-scale correlations, the nonmonotonic behavior charac-
teristic of collective “constraints” is still seen at lower cou-
pling, lower scales, and with larger amplitudes, than in the

1

PUIM(K) = AJ du exd-a(m- w)?]
-1

1
2 2
_1d’u'u exfl-a(m-u)] exact model. This is shown in detail in Figs(ey7(n),
N+N(N-1)——7> which compare plots of complexities against relative scale at
f du exp - a(m-w)?] a given coupling. However, there is a significant decrease in
-1 the amplitude of the associated maxima and minima as com-
1NN 3 pared to the mean-field model, and the agreement with the
- DY (N = 912 exact model is also improved in the strong-coupling limit, as
- ZNKE:()(k)(N 2) exp{ 2N(N 2) } (149 the scale-dependent oscillations diminigkigs. 1h), 7(i),
] o ) _ 7(m), and {n)]. We note again that in the strong-coupling
Note that the mean-field distribution averaged in B@®) is  |imit, all complexities approach 1, and thus all information

retained in symmetric form with respect to the magnetizatiorpphout the system is in the macroscopic bit due to the two
w, in order to account for the two possible orientations of thegjternative orientations of the ordered phase.

ordered phase and the corresponding macroscopic bit of in-
formation. For illustration, we apply the above enhanced
model to a system of 20 spins. In this case, we find that a
good approximation to the solution of E(L4) is given by Our study ofk-fold correlations in the infinite-range, fer-
(see Fig. 6 romagnetic Ising model reveals a contrast in the behavior of

V. CONCLUSIONS
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FIG. 7. (8y«(d) The complexitiesCy(k) of a
system ofN=20 spins for selected scalés3
and k=9, as a function of the coupling strength
BJ. Left panels(a), (c) show the exact model;
right panels(b), (d) show the enhanced mean-
field model. (e)—(n) The complexityCy(k) as a
function of the relative scal&/N in a system
with N=20 spins, at given coupling strenggd
=1.0,1.25,2.0,3.0,and 4.0. Left panele)—(i)
show the exact model; right pangls-(n) show
the enhanced mean-field model.

fine-scale and large-scale information interdependencies wittiefined thermodynamic limit, both below and above the tran-
increasing coupling strength and system size. We found thagition point. They also display a clear scaling behavior with
in both the exact model and the mean-field version, the finethe relative scalek/N, and for a fixed ratiok/N<1/2

scale correlations have a smooth, mostly monotonic variatiotk/N<<1/3 in mean-fielgl are virtually independent of the

that converges with increasing system size towards a wellsystem size. Large-scale correlations have a qualitatively

066115-9



S. GHEORGHIU-SVIRSCHEVSKI AND Y. BAR-YAM PHYSICAL REVIEW E70, 066115(2004)

similar behavior below the transition point, in the disordered 1+m\NN NV 1 =m\K
oy . . . (mf) _
phase, whereas above the transition point they oscillate with AS\"Y = (T) > ( )( )
amplitudes that increase with the size of the system. This k=0\K/\1+m
feature indicates a nonanalytic behavior in the thermody- 1 —m\N-2¢
namic limit. It is also reminiscent of the typical non- Xlog, 1+<1+m) (A3)

monotonic behavior of the usual statistical correlation func-
tion in the vicinity of the critical point. Eventually, the large- This yields the total entropy in the form

scale oscillations diminish and disappear in the strong-

coupling limit, when the scale-specific amount of S = N + 1 - AS(™. (A4)
information becomes independent of the scale itself. This i i .

study lays the groundwork for applications of information NOte that the unit term in expressi@A4) represents a mac-

tional statistical mechanical systems. ordered phases with opposite magnetizations.

To see that the overall correctic(rl—Aqumf)) is always
ACKNOWLEDGMENT less than one bit in magnitude, it suffices to recall the well-
Fnown inequality If1+x)=In 2 log,(1+x) <X, for any x>

The authors are grateful to Professor Kardar Mehran fo
-1, and to observe that

his helpful comments and suggestions on this manuscript.

) NN —m\K/ 1 — m\N-2K

APPENDIX: THE MODIFIED MEAN-FIELD 0$AS(Nmf)Si<1+m> 2(N)(l m) (1 m)

ENTROPY In2\ 2 ) Zo\K/\1+m/ \1+m

In this appendix, we show that the total entropy for the 1
modified mean-field distributio¥), 2 (A5)
" (N
S\ = —kE_ (k ) P{™(K)log,P{" (K), (A1)  Hence

-0 1-ASM| <1, (AB)

differs from the standard mean-field entrdgg™ by a non- . o - _
extensive amount that is less than one bit in absolute value, A first-order approximation foASy Kf0||0WS if we note
and we find a suitable analytic approximation for this devia-that the  factor [(1-m)/(1+m)[*log,{1+[(1-m)/(1

tion. +m)]N"2¢} under the sum in EqA3) attains a maximum at
We start by bringing the entropgAl) to the form someKg such thaf(1-m)/(1+m)]N"?%0~3.923. In this case
N y [(A-m)/(L+m)]¥o=(1/2)[(L-m)/(1+m)]V2, and every
SM=_3 (N)1<1 +m> f<1 LU K) term of the sum is less than or equal to
N \K/2\ 2 1+m’ \
1<1+m)N (1—m ) a(K>[(1-m)/(1+m)]N’2,
X | —|— ) fl —:N,K ||, A2
0% 2\ 2 1+m (A2)

wherea~1.161. For a crude estimate, we approximate the
where f(x;N,K)=xN"K+xK. The sum over the term entire sum as

log,{(1/2)[(1+m)/2]"} reduces to 1, while the sum contain-

ing the remaining logarithmic factor can be rearranged as D <N><1 _m>KIogz[l +<1 ‘m>N_ZK} _ (1 _m>N/22N

o\K/\1+m 1+m 1+m
S i)
o\ "2 ) &k )N 1m0 T and obtain
=Ng™ - AS{™, AS =~ (1 -mA)N2, (A7)

where s(mf):l—%[(1+m)logz(l+m)+(1—m)|og2(l—m)] is It also follows, from the corresponding upper bound, that
the usual mean-field entropy per spin, and AS(Nmf) vanishes a®\ — o for m>0.
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