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The scale-specific information content of the infinite-range, ferromagnetic Ising model is examined by
means of information-theoretic measures of high-order correlations in finite-sized systems. The order-disorder
transition region can be identified through the appearance of collective order in the ferromagnetic phase. In
addition, it is found that near the transition, the ferromagnetic phase is marked by characteristic information
oscillations at scales comparable to the system size. The amplitude of these oscillations increases with the total
number of spins, so that large-scale information measures of correlations are nonanalytic in the thermodynamic
limit. In contrast, correlations at scales small relative to the system size have a monotonic behavior both above
and below the transition point, and a well-defined thermodynamic limit.
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I. INTRODUCTION

The emergence of order and structure in physical systems
is conventionally quantified by means of various statistical
mechanical measures, such as specific heat, susceptibilities,
correlation functions, correlation lengths, and structure fac-
tors [1]. Information theory[2] may provide alternative tools
that can extend and strengthen the statistical measures, espe-
cially for application to the study of complex systems or
related models, such as neural networks[3], cellular au-
tomata [4], or chaotic dynamical systems[5]. In turn, the
suitability of these new tools is best tested against the ca-
nonical models of statistical physics for structure-generating
processes, particularly of critical phenomena.

Information theory has most often been associated with a
variety of entropy/information-related measures[6] of the
entire phase space. However, information theory as a char-
acterization of the relationship between components, gener-
alizing the study of correlations, has been less well studied.
With this perspective in mind, we present in this paper a
study of k-fold information correlations in the well-known
ferromagnetic, infinite-range Ising model. Just as the pair
correlations of a system are related to its dynamic response,
higher-order correlations may also be relevant to the re-
sponse of a complex system under external coherent interac-
tions [8]. Here our general intention is to examine subsystem
degrees of freedom of such complex systems in relation to
the emergence of an order parameter in the thermodynamic
limit. To this end, we apply a measure of the phase-space
volume of k-fold correlations defined[9] as the amount of
information (complexity) Cskd that can be obtained through
observations ofk or more spins.k measures scale as the
number of correlated spins rather than distance.Cskd is re-
lated to the amount of informationDskd obtained from sets
of exactly k spins asDskd=Cskd−Csk+1d. For a set ofN
Ising spins with a statistics described by a probability distri-
bution Pshsijd, hsij;hs1,s2, . . . ,sNj, the complexityCNskd at
the (integer) scale kis given by

CNskd = o
j=0

k−1

s− 1dk−1−jSN − j − 1

k − j − 1
DQsN − jd, s1d

whereQsN− jd represents the information content(Shannon
entropy) of all possible subsets ofsN− jd spins,

QsN − jd = − o
hi1,i2,. . .,i jj

o
hsij

Pshsijd log2 o
si1

,si2
,. . .,si j

Pshsijd. s2d

We note that this measure was developed also in Ref.[10], in
close analogy with Green’s expansion for the entropy in the
statistical mechanics of fluids[11], although the above ex-
plicit expressions are not given there. This formalism is quite
unlike the conventional information measures on character
strings[2], which have motivated information theory appli-
cations in physical systems confined to one dimension where
thermodynamic phase transitions do not occur[7].

We examined the complexity(1) both numerically and
analytically for an infinite-range Ising ferromagnet in ther-
mal equilibrium, described, as usual, by a canonical distribu-
tion

Pshsijd =
1

Z
expFb

J

N o
i. j=1

N

sisjG . s3d

Here the energy functional in the exponential is scaled by the
size N of the system to ensure a well-behaved thermody-
namic limit N→`, and the coupling constant is positive,J
ù0. Although the permutational symmetry of the model re-
duces distribution(3) to a simple functional of the total mag-
netization M =oi=1

N si (as PsMd,expfsbJ/2NdM2g), neither
the information of subsystemsQsN− jd [Eq. (2)] nor the
complexitiesCNskd [Eq. (1)] can be given simple closed-
form expressions. This is in contrast to common thermody-
namic quantities, which have well-known expressions.

Since the mean-field approximation is known to be the
exact solution for this system in the thermodynamic limit, we
will compare results for the exact model to corresponding
mean-field values. The standard mean-field approximation is,
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however, adecoupling approximation, which provides a
simple working framework precisely by neglecting explicit
correlations between spins. Thus, in this case, the correlation
measureCNskd vanishes identically on all scales, except on
the finest one,k=1, for which it equals the total entropy. To
avoid this oversimplification, we amend the usual mean-field
approximation by accounting explicitly for the two equiva-
lent, but macroscopically distinct, orientations of the average
magnetization. The corresponding probability distribution is
written

Psmfdshsijd =
1

2Fp
i=1

N
1 + msi

2
+ p

i=1

N
1 − msi

2 G , s4d

where the average magnetization per spinm is given by ei-
ther solution of the mean-field self-consistency equation

m= tanhsbJmd. s5d

The probability distribution given in Eq.(4) generates essen-
tially the same thermodynamics as the usual mean-field an-
satz, but avoids simple factorization, and the implicit loss of
larger-scale complexity. Thus it provides a nontrivial, albeit
not necessarily accurate, description of spin correlations in
the ferromagnetic phase transition.

Our numerical studies of information correlations in the
ordered and disordered phases are presented and discussed in
Sec. II. In Sec. III, we detail the analytical apparatus behind
our modified mean-field approach[Eq. (4)], leading to a
closed-form approximation for fine-scale, mean-field com-
plexities. In Sec. IV, we present a refinement of the mean-
field model which brings the corresponding results signifi-
cantly closer to the exact model. Concluding remarks are
provided in Sec. V.

II. NUMERICAL RESULTS

The calculations were performed on systems with up to
N=20 spins. Higher values ofN are possible but do not
provide additional insights for the analysis described here.
For each system size, the complexitiesCNskd were calculated
throughout the entire scale range 1økøN, for coupling
strengths in the range 0øbJø4. The upper limit of the in-
teraction range is large enough to describe the asymptotic
strong-coupling regime.

The finite size of the systems studied results in an observ-
able difference in the physics of the exact model as com-
pared to the mean-field counterpart. While the mean-field
model isdefinedby means of an order parameter that exhib-
its a well-defined phase transition regardless of the system
size, the exact model displays a true phase transition only in
the thermodynamic limit. Nevertheless, a reasonably well-
defined change of regime can be seen also for the finite-size
models, through the behavior ofk-fold correlations. This be-
havior reflects the emergence of the order parameter in the
thermodynamic limit of the model.

We will present results forCsk.1d. Cs1d is the system
entropy and has a well-characterized behavior in both the
exact and the mean-field model. It can be obtained as[9]

Cs1d = N − o
k=2

N

CNskd.

We also show in the Appendix that for the modified mean-
field model the entropy differs from the usual mean-field
entropy by a small quantity(less than one bit), which van-
ishes in the thermodynamic limit.

We begin by examining the coupling strength dependence
of complexities at all scales for systems of various sizes(Fig.
1). The disordered phase of the mean-field model, below the
transition point atsbJdcr=1, samples a uniform distribution
of configurations, and therefore shows no correlations at any
scalek.1fCNskù2d=0g. In the exact model, this interaction
range corresponds to a weak-coupling regime, and a largely
uncorrelated disordered phase, with low complexities fork
.1.We observe that significant correlations are restricted to
fine scalessk!Nd, and vanish as the coupling decreases.
Large-scale correlations are virtually absent over the entire
rangebJø1. In both the exact and the mean-field model,
large-scale correlations develop with significant amplitude
for coupligsbJù1. For the mean-field model, this marks a
sharp ferromagnetic phase transition. In the strong-coupling
limit, in the ferromagnetic phase, both the exact and the
mean-field complexities approach 1 asymptotically at every
scale. This unit complexity is the single bit of information
necessary to describe the two possible collective states, and
confirms the alignment of all spins along one of two macro-
scopic directions.

Remarkably, forbJ.1 we note a striking difference in
the behavior of fine-scale and large-scale complexities with
increasing interaction strength. Fine-scale complexities, for
k!N, increase gradually and mostly monotonically with the
strength of the interaction, until they saturate under suffi-
ciently strong coupling. In contrast, large-scale correlations,
as measured by complexities at scalesk comparable to the
system sizef1−sk/Nd!1g, show a strongly nonmonotonic
variation. In a somewhat counterintuitive fashion, some com-
plexities are seen to become(strongly) negative. The phe-
nomenon was found in Ref.[9] to be a signature of mutual
dependencies between multiple(spin) variables that are not
described by the dependencies between smaller subgroups of
spins. It is, for example, found in the case of a frustrated
antiferromagnet where the frustration occurs for groups of
three spins but not for two. Here the collective “constraint”
seems to have its origin in the gradual “localization” of the
statistically populated spin-configurations around the fully
aligned states, and the concomitant “exclusion” of configu-
rations with low total magnetization. The behavior is much
more dramatic, with significantly larger positive and negative
excursions, for the mean-field model because it imposes the
constraints on collective magnetization more directly. The
behavior disappears in the strong-coupling limit because
pairwise interactions are strong enough to force alignment,
not just multiple interactions.(Intuitively, this corresponds to
the behavior of finite correlation lengths in a spatial Ising
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model, where in the ordered phase, disorder persists on
scales shorter than the correlation length.)

The different behavior of fine- and large-scale correlations
becomes more clearly visible when the complexities for sys-
tems of a given size are plotted against the scalek at various
values of the coupling strength[Figs. 2(a)–2(d)]. In the fer-

romagnetic phase of the mean-field model[couplings bJ
ù sbJdcr=1.0], the large-scale complexities display a charac-
teristic oscillatory behavior, whose amplitude increases rap-
idly with the system size. A similar oscillatory pattern is seen
in the exact model with more than,15 spins, under cou-
plings bJù1.5. The amplitude of the oscillations also in-

FIG. 1. The complexitiesCNskd of a system of
N=3,6,9,12,15, or 18spins for increasing
scalesk=2,3, . . . ,N, as a function of the cou-
pling strength bJ. Exact infinite-range Ising
model results are shown in(a)–(f) (left) panels,
modified mean-field model results in(g)–(l)
(right) panels. Left and right panels compare ex-
act and mean-field results in this and Figs. 2–4.
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creases with the system size, but at a considerably slower
rate(by approximately two orders of magnitude) than in the
mean-field case.

This feature has a twofold significance. First, oscillatory
large-scale information correlations apparently are indicative
of an ordered phase, or a coexistence of ordered phases, with

collective constraints on a scale comparable to the system
size. In the mean-field model, such a coexistence of phases is
seen to develop abruptly above the transition point at
sbJdcr=1.0, while in the exact model long-range correlations
seem to build up gradually forbJ.1, until a “constrained”
behavior appears forbJù1.5. Second, the growth of oscil-

FIG. 2. (a)–(d) The complexitiesCNskd of a
system ofN=9 and N=15 spins for increasing
coupling strengthbJ=0.5, 0.75, 1.0, 1.25, 1.5,
and 1.75, as a function of the scalek, 2økøN.
(e)–(h) ComplexitiesCNskd for a given scalek
=6 and k=15 for systems with an increasing
number of spinsN, 10øNø20, as a function of
the coupling strengthbJ. (i)–(l) Complexities
CNskd for given relative scalek/N=1/4 andk
=3/4 in systems with at most 20 spins as a func-
tion of the coupling strengthbJ.
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lations with the system size brings into question the exis-
tence of a thermodynamic limit for large-scale complexities.
To explore this issue in more detail, in Figs. 2(e)–2(h) we
examine complexities at a fixed scale as functions of the
interaction strength, for increasing system sizes. Since in this
case the minimum allowedN equals the selected scalek, the
corresponding complexities for small systems describe large-
scale correlations, whereas complexities for larger systems
eventually describe fine-scale correlations. As the magnitude
of the given scale increases, we expect the appearance of
increasingly nonmonotonic complexities for the smaller sys-
tems, while larger systems should show the typical mono-
tonic behavior characteristic of fine-scale correlations. This
pattern is indeed observed for the exact model. The mean-
field model, on the other hand, shows nonmonotonic behav-
ior with the size of the system even at the relatively small
scalek=6.

The origin of this phenomenon can be understood from
the behavior of complexities as functions of coupling
strength at a fixed scale-to-size ratio, constantk/N [Figs.
2(i)–2(l)]. The exact complexities display a clear converging
trend with increasing system size fork/Nø1/2. At these
scales we may infer the existence of a thermodynamic limit
scaling asCN→`skd<Csk/Nd. For larger ratios, i.e., scales
comparable to the system size, there is no apparent conver-
gence, and the existence of a unique thermodynamic limit is
doubtful. For the systems studied here, the divergence of
complexities appears roughly forbJù1.5. In the mean-field
ferromagnetic phase, the complexities show convergence
with the system size only fork/N,1/3. At larger ratios, the
divergent behavior begins abruptly above the critical point.

In both the exact and the mean-field model, the large-
scale oscillations eventually disappear in the strong-coupling
limit, and the complexities converge to the asymptotic unit
value. This is more easily seen in Fig. 3, where complexities
are plotted as functions of the relative scalek/N for increas-
ing system sizes, at prescribed coupling strength[coupling
strength increases in the panel sequence(a) to (f), (g) to (l),
i.e., down the page, with the upper panels in the disordered
phase and the lowest panels in the ordered phase]. The scal-
ing behavior of fine-scale complexities is again evident. Re-
gardless of the system size, the fine-scale complexities for a
given k/N have virtually identical values, which increase
smoothly from zero to one as the strength of the coupling
increases. Figure 3 also gives a clear representation of the
change of regime in the large-scale correlations of the exact
model, in the neighborhood ofsbJd0<1.5. The discrepancy
between this transition point and the mean-field critical point
is a finite-size effect. The behavior of the critical point with
increasing system size can be inferred from the correspond-
ing finite-size specific heat(Fig. 4), which has its maximum
in the vicinity of the same coupling value.

III. ANALYTIC DISCUSSION

The calculation of the numerical results presented in the
previous section was considerably simplified by the permu-
tation symmetry of the infinite-range Ising model, in both the
exact and the mean-field version. For any configurationhsij

the corresponding energy and probability distributionPshsijd
are functionals only of the total magnetization of that con-
figuration, or equivalently, of the numberK of ↑ spins. The
density of states at a specific energy is given bys N

K
d. Simi-

larly, the probabilityosi1
,si2

,. . .,si j
Pshsijd of a given configura-

tion of sN− jd spins withL ↑ spins, irrespective of the con-
figuration of the remainingj spins, is a functional ofL only,
and not of the exact positions of thesN− jd spins. Let us
denote this probability byPN−j ;NsLd, and let PNsKd be the
probability of anN-spin configuration withK ↑ spins, such
that, under full permutation symmetry,

PN−j ;NsLd = o
K=0

j S j

K
DPNsK + Ld. s6d

Recalling Eq.(1) for the complexitiesCNskd, we see that the
sum of subsystem entropiesQsN− jd can be calculated as

QsN − jd = − SN

j
Do

L=0

N−jSN − j

L
DPN−j ;NsLd log2PN−j ;NsLd,

s7d

where the sum on the right-hand side gives the average en-

tropy Q̄NsN− jd=QsN− jd / s N
N−j

d of sN− jd spins in the pres-
ence of j additional spins. Use of expression(7) in Eq. (1)
yields the desired complexitiesCNskd. For the exact model,
we have PNsKd=ZN

−1expfsbJ/2NdsN−2L−2Kd2g, and the
probabilitiesPN−j ;NsLd are

PN−j ;N
0 sLd =

1

ZN
o
K=0

j S j

K
DexpF bJ

2N
sN − 2L − 2Kd2G , s8d

where the partition function isZN=ok=0
N s N

k
dexpfsbJ/2NdsN

−2kd2g.
As in a standard statistical calculation, the sums inZN and

PN−j
0 sLd may be given closed expressions by using a Gauss-

ian transformation to linearize the quadratic exponents, and
subsequently applying a steepest-descent approximation to
the resulting integral[12]. But the steepest-descent approxi-
mation is valid only for large values ofN andN−2L, respec-
tively. The resulting expressions forCskd, which involve
sums overL=0,1, . . . ,N, yield good results only for fine
scales, and break down above some scalek,N/2. These
steepest-descent results are illustrated in Fig. 5. However,
our reference calculations remain based on the exact expres-
sions provided by Eqs.(7) and (8), and are compared to the
mean-field approximation as a working framework, as de-
scribed below and in Sec. IV.

We turn now to the analysis of the mean-field approxima-
tion. For the modified mean-field ansatz, the probability dis-
tribution is given by Eq.(4), and it is again a function only of
the numberK of spins↑, Psmfdshsijd; PN

smfdsKd. Also, due to
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the product form of its two terms, the probabilityPN−j ;NsLd
for a configuration withL↑ spins in a given set ofsN− jd
spins is seen to be

PN−j ;N
smfd sLd ; PN−j

smfdsLd. s9d

As a result, the average subsystem entropyQ̄N
smfdsN− jd is

identical to the mean-field entropySN−j
smfd for a system of

sN− jd spins(i.e., in the absence of any additional spins).
It is worth noting that the entropySN

smfd for the modified
distribution (4) deviates slightly from the standard mean-
field entropy. We show in the Appendix that this deviation is
always less than one bit in absolute value, hence it becomes

FIG. 3. The complexityCNskd as a function of
the relative scalek/N in systems with an increas-
ing number of spinsN, 10øNø20, at given cou-
pling strengthbJ=1.0, 1.25, 1.5, 2.0, 3.0, and
4.0.
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negligible in the thermodynamic limit. Nonetheless, it is this
small, nonextensive deviation that accounts for the occur-
rence of nontrivial information correlations in the modified
mean-field model. To see this, it suffices to express the com-
plexities (1) in terms of the average subsystem entropies,

CN
smfdskd = kSN

k
Do

j=0

k−1

s− 1dk−1−jSk − 1

j
D SN−j

smfd

N − j
,

and observe that the sum on the right-hand side vanishes for
an extensive entropySN−j

smfd,sN− jd, unlessk=1.
We write now, employing the results in the Appendix[Eq.

(A4)],

SN
smfd = Nssmfd + 1 −DSN

smfd, s10d

where ssmfd is the usual mean-field entropy per spin, and
DSN

smfd<s1−m2dN/2 [Eqs. (A3) and (A7)]. Using this ap-
proximation in the previous expression forCN

smfdskd, together
with the identityks N

K
do j=0

k−1s−1dk−1−js k−1
j

dsN− jd−1;1, yields

CN
smfdskd < dk,1Nssmfd + 1 −kSN

k
Do

j=0

k−1

s− 1dk−1−j

3 Sk − 1

j
D s1 − m2dsN − jd/2

N − j
. s11d

The last two terms in the expression on the right-hand side
may be recognized as an incomplete beta function[13], and
we are left with the following closed-form approximation for
the mean-field complexities:

CN
smfdskd < dk,1Nssmfd + I1−Î1−m2sk,N − k + 1d. s12d

The domain of validity of expression(12) is restricted by the
approximation for the termsDSN−j

smfd to sN− jd@1, which im-
plies both a large total systemsN@1d and a small relative
scale,k/N!1. Thus the characteristic large-scale oscillations
above the transition point are not captured by this approxi-
mation. In fact, from the properties of the incomplete beta
function, it can be seen that

FIG. 4. The specific heatcM as a function of
the coupling strengthbJ. (a) Exact model,(b)
modified mean-field model.

FIG. 5. Complexities as functions of the cou-
pling strengthbJ at a given scalek=3, 6, 8 for a
system with N=20 spins: (a),(c),(e) exact vs
steepest-descent complexities;(b),(d),(f) mean-
field complexities and their approximation by Eq.
(12).
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0 ø CN
smfdskd ø 1

for any scalek.1. The approximation Eq.(12) and the ac-
tual mean-field complexity are compared in Fig. 5.

IV. FLUCTUATIONS BEYOND THE MEAN-FIELD
APPROXIMATION

Although the mean-field results capture many fundamen-
tal features of the exact information correlations, it is evident
that they do not provide good quantitative approximations to
the latter. A better description of scale-dependent correlations
demands a statistical description beyond the simple mean-
field ansatz. We now show that it is possible to augment the
modified mean-field model to improve the agreement for
both fine-scale and large-scale correlations.

The main idea is to regard the mean-field magnetization
as a stochastic parameter with a Gaussian distribution. We
assume that the system samples randomly mean-field distri-
butions of type(4), each distribution occurring with a pre-
scribed probability. Further, we assume that this probability
has a Gaussian dependence on the magnetizationm, e.g.,
A expf−asmG−md2g, whereA is a normalization factor,mG

sets the center of the Gaussian distribution, anda determines
the width of the distribution. Here all parameters must be
regarded as functionals of the coupling constantbJ. We set
mG to the mean-field magnetization given by Eq.(5), mG
;m, and let the widtha be determined such that the root-
mean-square deviation of the magnetization,kDsoisid2l1/2, is
identical to the magnetization deviation in the exact model.
The corresponding probability distribution for a spin con-
figuration withK↑ spins becomes

PN
smfdsKd = AE

−1

1

dm expf− asm− md2g

3
1

2
FS1 + m

2
DkS1 − m

2
DN−k

+S1 + m

2
DN−kS1 − m

2
DkG .

s13d

with A a normalization constant, and the Gaussian widtha is
a solution of

N + NsN − 1d
E

−1

1

dm m2 expf− asm− md2g

E
−1

1

dm expf− asm− md2g

=
1

ZN
o
k=0

N SN

k
DsN − 2kd2expF J

2N
sN − 2kd2G . s14d

Note that the mean-field distribution averaged in Eq.(13) is
retained in symmetric form with respect to the magnetization
m, in order to account for the two possible orientations of the
ordered phase and the corresponding macroscopic bit of in-
formation. For illustration, we apply the above enhanced
model to a system of 20 spins. In this case, we find that a
good approximation to the solution of Eq.(14) is given by
(see Fig. 6)

asbJd < H1.69 expf− 4.2sJ − 1.0dg for J , 1.0,

1.69 expf4.9sJ − 1.0dg for J ù 1.0.
s15d

Figure 6(b) shows that the agreement between the square-
root deviation of the magnetization in the exact and in the
present model with the approximation given by Eq.(15) is
indeed very good. Comparative plots of complexities at se-
lected scales are presented in Fig. 7. As an immediate effect
of the Gaussian averaging, the enhanced model no longer
displays a well-defined phase transition, and all correlations
have a smooth dependence on the coupling constant, as in
the exact results. ForbJ,1.0, there are only small-
amplitude fine-scale correlations that vanish as the coupling
decreases, whereas forbJ.1.0 the system gradually devel-
ops large-scale correlations. We note that the quantitative
agreement of fine-scale correlationssk!20d becomes re-
markably good over the entire interaction range studied. For
large-scale correlations, the nonmonotonic behavior charac-
teristic of collective “constraints” is still seen at lower cou-
pling, lower scales, and with larger amplitudes, than in the
exact model. This is shown in detail in Figs. 7(e)–7(n),
which compare plots of complexities against relative scale at
a given coupling. However, there is a significant decrease in
the amplitude of the associated maxima and minima as com-
pared to the mean-field model, and the agreement with the
exact model is also improved in the strong-coupling limit, as
the scale-dependent oscillations diminish[Figs. 7(h), 7(i),
7(m), and 7(n)]. We note again that in the strong-coupling
limit, all complexities approach 1, and thus all information
about the system is in the macroscopic bit due to the two
alternative orientations of the ordered phase.

V. CONCLUSIONS

Our study ofk-fold correlations in the infinite-range, fer-
romagnetic Ising model reveals a contrast in the behavior of

FIG. 6. (a) Exact and approximate solutions of Eq.(14) for the
Gaussian widthasbJd against the couplingbJ. The approximate
solution is defined by Eq.(15). (b) Square-root deviation of the
magnetization per spin against the couplingbJ in the exact model
[ssbJd] and in the enhanced model with Gaussian width given by
Eq. (15) [sGsbJd].
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fine-scale and large-scale information interdependencies with
increasing coupling strength and system size. We found that
in both the exact model and the mean-field version, the fine-
scale correlations have a smooth, mostly monotonic variation
that converges with increasing system size towards a well-

defined thermodynamic limit, both below and above the tran-
sition point. They also display a clear scaling behavior with
the relative scalek/N, and for a fixed ratiok/N,1/2
(k/N,1/3 in mean-field) are virtually independent of the
system size. Large-scale correlations have a qualitatively

FIG. 7. (a)–(d) The complexitiesCNskd of a
system ofN=20 spins for selected scalesk=3
and k=9, as a function of the coupling strength
bJ. Left panels(a), (c) show the exact model;
right panels(b), (d) show the enhanced mean-
field model. (e)–(n) The complexityCNskd as a
function of the relative scalek/N in a system
with N=20 spins, at given coupling strengthbJ
=1.0,1.25,2.0,3.0,and 4.0. Left panels(e)–(i)
show the exact model; right panels(j)-(n) show
the enhanced mean-field model.
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similar behavior below the transition point, in the disordered
phase, whereas above the transition point they oscillate with
amplitudes that increase with the size of the system. This
feature indicates a nonanalytic behavior in the thermody-
namic limit. It is also reminiscent of the typical non-
monotonic behavior of the usual statistical correlation func-
tion in the vicinity of the critical point. Eventually, the large-
scale oscillations diminish and disappear in the strong-
coupling limit, when the scale-specific amount of
information becomes independent of the scale itself. This
study lays the groundwork for applications of information
theoretic measures to models of traditional and nontradi-
tional statistical mechanical systems.
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APPENDIX: THE MODIFIED MEAN-FIELD
ENTROPY

In this appendix, we show that the total entropy for the
modified mean-field distribution(4),

SN
smfd = − o

k=0

N SN

k
DPN

smfdskdlog2PN
smfdskd, sA1d

differs from the standard mean-field entropyNssmfd by a non-
extensive amount that is less than one bit in absolute value,
and we find a suitable analytic approximation for this devia-
tion.

We start by bringing the entropy(A1) to the form

SN
smfd = − o

K=0

N SN

K
D1

2
S1 + m

2
DN

fS1 − m

1 + m
;N,KD

3 log2F1

2
S1 + m

2
DN

fS1 − m

1 + m
;N,KDG , sA2d

where fsx;N,Kd=xN−K+xK. The sum over the term
log2hs1/2dfs1+md /2gNj reduces to 1, while the sum contain-
ing the remaining logarithmic factor can be rearranged as

−
1

2
S1 + m

2
DN

o
K=0

N SN

K
D fN,KS1 − m

1 + m
Dlog2fN,KS1 − m

1 + m
D

= NS
smfd − DSN

smfd,

where ssmfd=1−1
2fs1+mdlog2s1+md+s1−mdlog2s1−mdg is

the usual mean-field entropy per spin, and

DSN
smfd = S1 + m

2
DN

o
K=0

N SN

K
DS1 − m

1 + m
DK

3log2F1 +S1 − m

1 + m
DN−2KG . sA3d

This yields the total entropy in the form

SN
smfd = NS

smfd + 1 −DSN
smfd. sA4d

Note that the unit term in expression(A4) represents a mac-
roscopic bit due to the coexistence in the modified ansatz of
ordered phases with opposite magnetizations.

To see that the overall corrections1−DSN
smfdd is always

less than one bit in magnitude, it suffices to recall the well-
known inequality lns1+xd=ln 2 log2s1+xdøx, for any x.
−1, and to observe that

0 ø DSN
smfd ø

1

ln 2
S1 + m

2
DN

o
K=0

N SN

K
DS1 − m

1 + m
DKS1 − m

1 + m
DN−2K

=
1

ln 2
. sA5d

Hence

u1 − DSN
smfdu ø 1. sA6d

A first-order approximation forDSN
smfd follows if we note

that the factor fs1−md / s1+mdgKlog2h1+fs1−md / s1
+mdgN−2Kj under the sum in Eq.(A3) attains a maximum at
someK0 such thatfs1−md / s1+mdgN−2K0<3.923. In this case
fs1−md / s1+mdgK0<s1/2dfs1−md / s1+mdgN/2, and every
term of the sum is less than or equal to

aSN

K
Dfs1 − md/s1 + mdgN/2,

wherea,1.161. For a crude estimate, we approximate the
entire sum as

o
K=0

N SN

K
DS1 − m

1 + m
DK

log2F1 +S1 − m

1 + m
DN−2KG < S1 − m

1 + m
DN/2

2N,

and obtain

DSN
smfd < s1 − m2dN/2. sA7d

It also follows, from the corresponding upper bound, that
DSN

smfd vanishes asN→` for m.0.

[1] J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman,
The Theory of Critical Phenomena(Clarendon, Oxford, 1992);
D. A. Lavis and G. M. Bell,Statistical Mechanics of Lattice
Systems, Vol. 2: Exact, Series and Renormalization Group
Methods(Springer-Verlag, Berlin, 1999).

[2] C. E. Shannon and W. Weaver,The Mathematical Theory of
Communication(University of Illinois Press, Urbana, 1963).

[3] D. J. Amit, Modeling Brain Function: The World of Attractor
Neural Networks(Cambridge University Press, Cambridge,
UK, 1989); Y. S. Abu-Mostafa, IEEE Commun. Mag.27, 25

S. GHEORGHIU-SVIRSCHEVSKI AND Y. BAR-YAM PHYSICAL REVIEW E70, 066115(2004)

066115-10



(1989); J. Taylor and M. Plumbley,Information Theory and
Neural Networks, in Mathematical Approaches to Neural Net-
works, edited by J. Taylor(Elsevier Science, Amsterdam,
1993), p. 307; G. Tononi, O. Sporns, and G. Edelman, Proc.
Natl. Acad. Sci. U.S.A.91, 5033 (1994); G. Deco and D.
Obradovic, An Information-Theoretic Approach to Neural
Computing(Springer-Verlag, New York, 1996); O. A. Rosso,
Physica A 313, 587 (2002); D. MacKay, Information Theory,
Inference and Learning Algorithms(Cambridge University
Press, Cambridge, UK, 2003).

[4] P. Grassberger, Int. J. Theor. Phys.25, 907 (1986); K.
Lindgren and M. G. Norhdal, Complex Syst.2, 409 (1988);
Cellular Automata and Modeling of Complex Systems, Vol. 46
of Springer Proceedings in Physics, edited by P. Manneville,
N. Boccara, G. I. Vichniac, and R. Bideaux(Springer, Berlin,
1990); Cellular Automata: Theory and Experiment, edited by
H. A. Gutowitz (MIT Press, Cambridge, MA, 1991).

[5] P. Szepfalusy and G. Gyorgyi, Phys. Rev. A33, 2852(1986);
N. B. Abraham, A. M. Albano, A. Passamante, and P. E. Rapp,
Measures of Complexity and Chaos(Plenum, New York,
1989); L. Diambra and A. Plastino, Phys. Lett. A216, 278
(1996); J. Freund, W. Ebeling, and K. Rateitschak, Phys. Rev.
E 54, 5561(1996); Y.-C. Tian, Physica D108, 113(1997); C.
Schittenkopf,ibid. 110, 173(1997); A. G. Bashkirov and A. V.
Vityazev, Physica A277, 136 (2000); G. Boffetta, Phys. Rep.
356, 367 (2002); A. Shabunin, V. Demidov, V. Astakhov, and
V. Anishchenko, Phys. Rev. E65, 056215(2002); C. Beck and
F. Schlogl,Thermodynamics of Chaotic Systems(Cambridge

University Press, Cambridge, UK, 1993); R. Metzler, Y. Bar-
Yam, and M. Kardar, Phys. Rev. E70, 026205(2004).

[6] C. H. Bennett, Found. Phys.16, 585 (1986); K. Lindgren,
Phys. Rev. A38, 4794 (1988); Complexity, Entropy and the
Physics of Information, edited by W. Zurek(Addison-Wesley,
Redwood City, CA, 1990); R. Wackerbauer, A. Witt, H. At-
manspacher, J. Kurths, and H. Scheingraber, Chaos, Solitons
Fractals 4, 133 (1994); Y. Bar-Yam, Dynamics of Complex
Systems(Addison-Wesley, Reading, MA, 1997); R. Badii and
A. Politi, Complexity: Hierarchical Structure and Scaling in
Physics(Cambridge University Press, Cambridge, UK, 1997);
J. S. Shiner, M. Davison, and P. T. Landsberg, Phys. Rev. E
59, 1459 (1999); Yu. A. Andrienko, N. V. Brilliantov, and J.
Kurths, Eur. Phys. J. B15, 539(2000); P. M. Binder and J. A.
Plazas, Phys. Rev. E63, 065203(R) (2001).

[7] J. P. Crutchfield and D. P. Feldman, Phys. Rev. E55, R1239
(1997). They describe the effect of ordering on information in
a one-dimensional Ising model.

[8] Y. Bar-Yam, Complexity9, 37 (2004); 9, 15 (2004).
[9] Y. Bar-Yam, Adv. Complex Syst.7, 47 (2004).

[10] D. R. Wolf, Ph. D. dissertation, University of Texas, Austin,
Texas, 1996.

[11] H. S. Green,The Molecular Theory of Fluids(North-Holland,
Amsterdam, 1952).

[12] S. Gheorghiu-Svirschevski and Y. Bar-Yam(unpublished).
[13] Handbook of Mathematical Functions, edited by M.

Abramowitz and I. Stegun(Dover, New York, 1970).

MULTISCALE ANALYSIS OF INFORMATION … PHYSICAL REVIEW E 70, 066115(2004)

066115-11


