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Independence of the transient fluctuation theorem to thermostatting details
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The fluctuation theorems show how macroscopic irreversibility arises from time reversible microscopic
dynamics. They have been confirmed in computer simulations and in laboratory experiments. The standard
proofs of the transient fluctuation theorems involve the use of time reversible deterministic thermostats to
control the temperature of the system of interest. These mathematical thermostats do not occur in Nature.
However, since in a gedanken experiment the thermostatting regions can be removed arbitrarily far from the
system of interest, it has been argued that the precise details of the thermostat cannot be important and that the
resulting fluctuation theorems apply to natural systems. In this paper we give a detailed analysis showing how
the fluctuation theorem is independent of the precise mathematical details of the thermostatting mechanism for
an infinite class of fictitious time reversible deterministic thermostats. Our analysis reinforces the implications
of the gedanken experiment and implies that thermostats used in the derivations of fluctuation theorems are a
convenient but ultimately irrelevant device.
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INTRODUCTION of the system—the system of interest. An excellent review

. o on thermostatting has appeared recedly
If one wants to treat nonequilibrium dissipative systems one of the major achievements in this field was the dis-

that are maintained at a constant temperature, some form %very [5] and subsequent proof6—9] (and references
thermostatting mechanism must be employed. A natural profereiry of fluctuation theorems. The fluctuation theorem is
cedure would be to surround the nonequilibrium system oyso closely related to the Jarzynski equality, otherwise
interest with an extremely large inert block of heat conductynown as the nonequilibrium work relatig0]. For further

ing material—the thermal reservoir. If the heat capacity ofinformation on fluctuation theorems see revig#s]. These
the reservoir is much greater than that of the system of ingeqrems showed for the first time how macroscopic irrevers-
terest, then we can expect that the composite system mayjjiry arises from time reversible microscopic equations of

relax to a nonequilibrium quasi-steady-state in which the ratenstion. A number of experimental tests have confirmed the
of temperature rise for the composite system is so small thaqqictions of some of these fluctuation theorems in the labo-
it can be regarded as being zero. This approach is mathema htory [11-13.

cally and computationally complex. _ The standard proofs of the transient fluctuation theorems
Twenty years ago Hoovest al. [1] and Evang2] inde- (1T [7] involve the use of time reversible deterministic
pendently but simultaneously developed time reversible demermostats to control the temperature of the system of inter-
terministic thermostats to enable convenient and efficiengst These mathematical thermostats do not occur in Nature.
computer simulations of thermostatted dissipative systemsy, ihe present paper we give a detailed analysis showing how
These thermostats do not exist in Nature but nonequilibriumpe fiyctuation theorem is independent of the precise math-

statistical mechanics has been used to prove that under sp&atical details of the thermostatting mechanism for an infi-
cific circumstances thermodynamic properties and transpoffite class of fictitious time reversible deterministic thermo-

coefficients computed from simulations using these thermogiais. Our analysis reinforces the view that the thermostats

stats are free of artifac8]. _ used in the derivations of fluctuation theorems are a conve-
The development of fictitious mathematical thermostatsient put ultimately irrelevant devidg].

and algorithms for simulating transport coefficients of non-

equilibrium thermodynamic systems has led to an enormous

advancement of nonequilibrium statistical mechanigs THEORY

These two developments have allowed the mathematical ap- \y,e denote the phase space vedioe (q,p) of our sys-

paratus of dynamical systems theory to be brought to bear op., 14 consist of BN variables being the position vector,

statistical mechanics. Recently, thermostatting mechanisrrE the momentum vectol the Cartesian dimension of the

have been made more realistic by thermostatting only part ngstem, andN the number of particles. We divide the system
a systemsuch as the walls The synthetic thermostat does jns N wall or reservoir particles that are thermostatted, and

not directly modify the dynamics of the particles in the restyre i contact withN, particles that are not thermostatted.

These latter particles comprise the nonequilibrium system of
interest. They experience a dissipative fi€ldwhich does
* Author to whom correspondence should be addressed. Email agvork on the system of interest, driving it away from equilib-
dress: evans@rsc.anu.edu.au rium. This work is convertedirreversibly) into heat. This
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heat is removed by the thermostatted wall particles, allowing Under these conditions we will now show that the phase
a nonequilibrium steady state to develop at sufficiently longspace compression factor is solely determined by the rate of
times after the application of the dissipative field. loss of energy(hea) from the total system due to the ther-
Consider the family of thermostats which, following mostat divided by the absolute temperature of that thermo-
Gauss's principle of least constraif8,14,15, maintain the stat. Furthermore, the phase space compression factor is in-
pth moment of the momentum distribution for the wall par- dependent of the precise momentum momentthat is
ticles, constrained by the thermostat. The rate of change of the total
internal energy[H=3;p? /2m+<I>(q)] may be split into an

Ny N
9= (pi-p)“2= s(p; - p)*2=go(w), (1)  adiabatiqor work) component\(t) and a heat transf@ (1)
i= i= component,

as a constant of the motion. In E€l) p; denotes the mo- i i _
mentum vector for théth particle ands=1 for i <N,, while H(t) = WI(t) + Q,(1),
s=0 for i >N,,, where we choosg to be any real number
with the provisionu>1 for D=1 and x>1-D/2 for all
higher dimensions, thus ensuring that the averages of all
variables used in this paper converge. Using Gauss's prin-
ciple of least constraint3,14,19 we obtain the equations of
motion for the system subject to the thermostatting constraint

o, = OS2
y - m = pl pl ’

g(M): W) = - % {& D -F C] F.=-JIO)V-F
qi:pi/m+(1_si)ci(r)'|:e, - =Ngyt1 m [ i i e e

Bi=Fi(Q) + (1 -$)Di(T) - Fo- (b - p)“2 sy, ®)

The teerM(t) is the change in energy due to the thermostat.

> (pi - P)M s - F It involves only the reservoir particles, as the particles in the
i system of interest are not thermostatted. In &).J is the
a= Ny : 2 so-called dissipative flux and is the volume of the system
> (pi-p)tt of interest[3]. By construction the rate of change of the work

W(t) only involves the coordinates and momenta of the par-

In these equations the dissipative fi€lgcouples to the sys- ficles in the system of interest—see E6). We will show
tem via the dyadic phase functio®(I') and D;(I"). The  that for sufficiently largeN,,

phase space compression factor for the full system is defined .

as|[3] Q.- keTAMT,w)=0 [0 u>2-D. (7)

0 .
AN = T T, (3)  For the special case qf=2 this will be so regardless of the
chosen value olN,. Note that for a system with a large
and determines the evolution of an infinitesimal volume elereservoir undergoing reversible heat transfer &g.shows

ment of phase spacd/; surrounding a trajector¥ (t), that the phase space compression factor is related to the en-
tropy lost from the thermostatting reservoir region

t
6Vr[l“(t)]=e><p{ f A(F(S))dS] vr(©). (4 : .
0 QuT=Ses=keA(\w) O u>2-D. 8
Assuming in the absence of the thermostatting terms that the
phase space compression factor is z&mown as the adia- The kinetic temperature of the reservoir is defined by
batic incompressibility of phase spacg3] and ignoring
terms involving the momentum dependencexgfvhich is of
O(1/N,) relative to the terms involving; explicitly] we keT = WNE Pi - Pi- 9
obtain the phase space compression factor foritinether- =t
mostat:

Ny

Since the reservoir is very large compared to the dissipative

system of interest, temperature gradients in the reservoir will

AT, w)=-a(D+pu- 2)2 (p; - P2 7% (5 be negligible, and we can assume that the momentum is dis-
=1 tributed according to an equilibrium Maxwell-Boltzmann

If the ratioN,,/ N is large enough, the perturbation caused todistribution in this region. The synthetic thermostat regulates
the wall particles by the nonequilibrium system of interestthe temperature of the reservoir and plays the role that cir-
can be regarded as infinitesimal. In this limit, the thermostatClJ'atlng water often does in an experiment. The sum
ting particles can be described by the appropriate equilibriunEiip; -p; may be treated as an averagg(p; -p;). It is con-
distribution. venient to define

Ny
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I(a,b)zfoc
0

1
= Eb‘(“"")’zl“((l +a)/2) O a>-1, (10

dx @ exp(— bx?)

wherel” denotes the gamma function, and then one can show

that
= aN(D + u—1,8/2m)
~7 mlI(D-1,8/2m) (1)
and
A= —a(D+,lL—2)NW|(D+/.L—3,B/2m). (12)

I(D - 1,8/2m)

Using Egs.(11) and (12) and the relationl(a,b)=(a-1)
Xl(a-2,b)/2b it is easy to prove Eq7).

We can now derive the equilibrium distribution function
for a large system of particles where theéh moment of the

momentum distribution is constrained using the dynamics

defined by Eq(2). The Liouville equation may be written as

(3]

d%m f(C(t),t) = - AT (b)), (13

wheref(I',t) is the phase space distribution function at time

t. When combin_ed with Eq7) z_ind th_e fact that the system is
at equilibrium[W=0 and thusQ(t)=H(t)] gives

d __HI®)
In f(I'(t),t) = kT

at (14)
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I'((u+D)/2)
I'(D/2)
Since the distribution function for the thermostatted system

is known, we can apply the TFT to these systems. The dis-
sipation function appearing in the TFT is defined[dk

o() = Ny, (2migT)*2. (16)

e[ _[fc@o]
Qtt—fo dsQ@'(s) = In{ f(F(t),O)} fo A(T'(s))ds.
(17
The TFT then gives the probability ratio
M =exdAt]. (18)
p(Q=-A)

We may now combine Eq$7), (15), and(17) to show that,
when the number of degrees of freedom in the walls is large
and much larger than the number of degrees of freedom in
the system of interest,

Ot = BAH() - AQ, (1))

t
= BAW(t) = —ﬁf dsJ(I'(s))V-F, O u>2-D.
0
(19
Substituting into Eq(18) gives
p(_[i]t Fe=A) | exdAVi] O u>2-D. (20
p(=BIi-Fe=—A)

Equation(20), which is independent of the value gf is the
central result of this paper.

SIMULATION

Upon integrating both sides with respect to time we obtain

the distribution function
exf - BH(I)]8(g(x, ") — go(w)
f dI' exd - BH(I)]8(9(w, ') — go(a))

(0= . (15

wheregy(u) is the value to which thexth moment is con-
strained, ang3=1/kgT is the inverse thermal energy. In the
case of the Gaussian isokinetic thermosjat 2) the kinetic

degrees of freedom are distributed microcanonically and thg

We test this theory by carrying out simulations using two
thermostats, the usual Gaussian isokinetic thermqste2
and the higher constrained moment©f4. We choose an
application of the TFT that has been investigated in the past
by both simulation and experimerjl]. A particle, im-
mersed in a fluid, is held by a stationary harmonic wefi-
tical trap in the experimeritll]) at equilibrium. At an arbi-
trary time t=0 the trap suddenly moves at a constant
velocity. In the large thermostat limit we have just proved
that the dissipation function is independent of the thermostat-
ng momentw. The dissipation function has been given be-

configurational degrees of freedom are distributed canonig,q [11] and is

cally; thus we have a clear link with equilibrium thermody-
namics. For our system involving thermostatted wall par-

ticles this distribution function will be correct for the whole

system given that there are enough thermostatted particles to

make Eq.(7) valid: hereg(u,I') is only a function of the
wall particle momenta.

o t
Qttzﬁf dsVopt'Fopr 0 w>2-D. (21
0

Computer simulations were carried out in two dimensions
using periodic boundary conditions and a Weeks-Chandler-

After some rather tedious algebra one can prove that foAnderson(WCA) potential, the fluid number density was

systems inD Cartesian dimensions theth moments of the

=No3/V=0.4 whereo is the particle diameter from the

momenta are related to the equilibrium thermodynamic temWCA potential. The number of fluid particles in the system

perature by the equation

of interest wad\s=32 and for theu=2 thermostat the num-
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FIG. 1. TFT data. Theu=2 thermostat simulation has 28 wall
particles while the u=4 thermostat simulation has 112 wall
particles.

FIG. 2. IFT data. Theu=2 thermostat simulation has 28 wall
particles while theu=4 thermostat simulation has 112. The differ-
ence betweefexp(-BAW))aw-o for the two thermostats cannot be

ber of thermostatted wall particles whis=28 while for the ~ resolved on the scale of this figure.
pn=4 thermostat systems withl,=28 and N,,=112 were

simulated. The thermostatted wall particles were harmoni- (5 <0) -
cally bound to an ideal hexagonal lattice, with close packed A = (exp(—- Qt))o~0- (22
layers aligned in the direction of the Cartesian axis having p(Q; > 0) ‘

seven particles per layer. The distance between these layer ) ) . )
in the ypdirectionpwas y1.106@ and the periodic distance iny The left-hand sidgLHS) is the probability of observing a
the y direction was such that the fluid was bound by closenegative value for the dissipation functién, divided by the
packed layers whose axes were separated by 894  probability of observing a positive value. The RHS is an
periodic distance in the direction was 8.9443. For both  ensemble average formed from the set of trajectories which
thermostats X 10° trajectories were computed to form the have a positive value for the dissipation function at timie
averages with the trajectories being of duratier6.0, in  Fig. 2 we plot both sides of Eq22) which have been cal-
dimensionless time units. All other details were as reportegulated directly from our simulation data for both thermo-
by Wanget al. [11]. stats(again in the case of the=4 thermostat only the large
For all systems the kinetic temperature of the fluid par-Nw=112 system results are showim both cases we observe
ticles increased, on average, bY2% over the full duration —excellent agreement.
of the trajectory, while the kinetic temperature of the wall In the case of the smalléd, =28, n=4 thermostat sys-
particles did not change. For the=4 thermostats the nomi- tem, systematic differences between the fluctuation relation
nal dimensionless wall temperature was sefaf by fixing  thatis derived for large thermostatting regions and the simu-
the constraint Eq(1) to the value specified by E¢L6). This  lation results are observed and this is shown in Fig. 3 for the
resulted in an average kinetic temperature for the wall parcase of the integrated fluctuation theorem. The systematic
ticles of T=1.01 for theN,,=112 system an@=1.03 for the  difference is a result of the distribution function for the wall
N,,=28 system. particles’ momentum being somewhat non-Gaussian due to
A direct test of Eq.(20) is plotted in Fig. 1 for the time both the heat flow from the system of interest and the con-

t=5.0 where the trajectory finishes. This shows the logarithn$traint Eq.(1). As the number of wall particles is increased,
of the probability ratio of observing a trajectory which hasWhile keeping both the system of interest and the field
had a positive value for the time integral of the dissipationfixed, the heat flow per particle into the wall will decrease as
function relative to its negative, as a function of the integralwill the effect of the constraint on its momentum distribu-
value. For a dissipative field coupled with a large volume oftion. As the number of wall particles increases, the wall can
particles or for long times this probability ratio diverges to be approximated more and more accurately by equilibrium
infinity recovering the second law of thermodynamics. Equadistributions. Again this difference would become insignifi-
tion (20) is expected to be valid for aM,, whenx=2, and  cant for a system with a very large number of wall particles.
for largeN,, in other cases. The figure shows excellent agree-

ment b_etween the data for both t_hermostats and the plotted CONCLUSION

prediction of Eq.(20). Note that in the case of thg=4

thermostat only the larghl,,=112 system results are shown In this paper we have shown that if we study a nonequi-

here. librium system which is in contact with a thermostat then
The TFT Eqg.(18) may be partially summed to obtain the when the number of degrees of freedom in the thermostat is
integrated fluctuation theorem: large and also large compared to the number of degrees of
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1.0 v T v T v T v T v the composite system through the boundary region to the
ool J thermostat. Again this relation is independent of the precise
: ®  pRAW<O)p(BA>0), p=4 details of the thermostat.

08 [ <eXp(-PAW)> o =4 Since Eq.(7) is true regardless of the mathematical form
07 4 of the thermostat we propose the following conjecture. Con-
sl sider a nonequilibrium dissipative systdthe system of in-

-1 teresj embedded in axinitially) equilibrium nondissipative
05| 1 Hamiltonian system. This system of interest has a fixed num-
04k ber of particles and a fixed dissipative figtd is applied for

t>0. Assume the initial equilibrium thermodynamic tem-

[ perature of the embedding systemTis Very far from the

02} system of interest, beyond the embedding system, there may
be some form ofu thermostatting region or the Hamiltonian
embedding system may simply continue on forever, at tem-
peraturerT.

If we consider a composite systeggystem of interest plus
a surrounding sphere of the embedding systefrradiusr,

FIG. 3. IFT data. The simulation has 28 wall particles with a then for a flxed. timet>0, asr increases the embedd'”g
u=4 thermostat. A small systematic disagreement between th8yStem located in the spherical shell regiorr adr will be
theory and the simulation may be seen. closer and closer to thermodynamic equilibrium. We can now

apply Eq.(7) to relate the phase space compression of the
freedom in the nonequilibrium system, the transient fluctua€omposite(system of interest plus embeddjngf radius
tion relation is insensitive to the details of the thermostatting » A+(I'), to the entropy lost from the composite system at
mechanism. We have shown this both theoretically and nutadiusr to the surrounding equilibriuniembedding system
merically for a class of time reversible deterministic thermo-S:
stats that fix various moments of the momentum distribution. )
In this large thermostat limit the TFT is independent of the lim A(I') =S. (23)
precise moment that the thermostat fixes. =

These results are thus consistent with the previous gedarrhis equation is expected to be true regardless of whether
ken arguments that for large thermostats the fluctuation theqsitimately at very large distances the composite system con-
rem is insensitive to the precise details of the thermostattinggins a time reversible deterministic thermostat or whether
mechanism, and although the fluctuation theorems may bge Hamiltonian embedding system continues indefinitely.
derived using fictitiougi.e., unnaturglthermostats, the theo- Thjs equation relates entropy loss through an equilibrium
rems nevertheless apply to natural systems. boundary to the phase space compression of the phase space

One of the key results of this paper is K@). In a literal ~ of the system enclosed within that boundary. In this sense
sense this equation says that there is an instantaneous re'jhase space compression can occur in purely Hamiltonian
tionship between the instantaneous phase space compress{@iihsystems, which is consistent with results obtained from
factor for the composite system and the instantaneous energjeoretical work on simple mode[46,17. This occurs in
lost from the composite system due to the thermostat and thépite of the obvious fact that in the full phase space of any

absolute temperature of the thermostat. This happens for anyamiltonian system the phase space compression is identi-
thermostat among the infinite family of thermostats considcally zero[18].

ered here as long as the thermostat is sufficiently large that

the thermostatting region can be regarded as being at equi- ACKNOWLEDGMENTS
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