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The fluctuation theorems show how macroscopic irreversibility arises from time reversible microscopic
dynamics. They have been confirmed in computer simulations and in laboratory experiments. The standard
proofs of the transient fluctuation theorems involve the use of time reversible deterministic thermostats to
control the temperature of the system of interest. These mathematical thermostats do not occur in Nature.
However, since in a gedanken experiment the thermostatting regions can be removed arbitrarily far from the
system of interest, it has been argued that the precise details of the thermostat cannot be important and that the
resulting fluctuation theorems apply to natural systems. In this paper we give a detailed analysis showing how
the fluctuation theorem is independent of the precise mathematical details of the thermostatting mechanism for
an infinite class of fictitious time reversible deterministic thermostats. Our analysis reinforces the implications
of the gedanken experiment and implies that thermostats used in the derivations of fluctuation theorems are a
convenient but ultimately irrelevant device.
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INTRODUCTION

If one wants to treat nonequilibrium dissipative systems
that are maintained at a constant temperature, some form of
thermostatting mechanism must be employed. A natural pro-
cedure would be to surround the nonequilibrium system of
interest with an extremely large inert block of heat conduct-
ing material—the thermal reservoir. If the heat capacity of
the reservoir is much greater than that of the system of in-
terest, then we can expect that the composite system may
relax to a nonequilibrium quasi-steady-state in which the rate
of temperature rise for the composite system is so small that
it can be regarded as being zero. This approach is mathemati-
cally and computationally complex.

Twenty years ago Hooveret al. [1] and Evans[2] inde-
pendently but simultaneously developed time reversible de-
terministic thermostats to enable convenient and efficient
computer simulations of thermostatted dissipative systems.
These thermostats do not exist in Nature but nonequilibrium
statistical mechanics has been used to prove that under spe-
cific circumstances thermodynamic properties and transport
coefficients computed from simulations using these thermo-
stats are free of artifacts[3].

The development of fictitious mathematical thermostats
and algorithms for simulating transport coefficients of non-
equilibrium thermodynamic systems has led to an enormous
advancement of nonequilibrium statistical mechanics[3].
These two developments have allowed the mathematical ap-
paratus of dynamical systems theory to be brought to bear on
statistical mechanics. Recently, thermostatting mechanisms
have been made more realistic by thermostatting only part of
a system(such as the walls). The synthetic thermostat does
not directly modify the dynamics of the particles in the rest

of the system—the system of interest. An excellent review
on thermostatting has appeared recently[4].

One of the major achievements in this field was the dis-
covery [5] and subsequent proof[6–9] (and references
therein) of fluctuation theorems. The fluctuation theorem is
also closely related to the Jarzynski equality, otherwise
known as the nonequilibrium work relation[10]. For further
information on fluctuation theorems see reviews[7,8]. These
theorems showed for the first time how macroscopic irrevers-
ibility arises from time reversible microscopic equations of
motion. A number of experimental tests have confirmed the
predictions of some of these fluctuation theorems in the labo-
ratory [11–13].

The standard proofs of the transient fluctuation theorems
(TFTs) [7] involve the use of time reversible deterministic
thermostats to control the temperature of the system of inter-
est. These mathematical thermostats do not occur in Nature.
In the present paper we give a detailed analysis showing how
the fluctuation theorem is independent of the precise math-
ematical details of the thermostatting mechanism for an infi-
nite class of fictitious time reversible deterministic thermo-
stats. Our analysis reinforces the view that the thermostats
used in the derivations of fluctuation theorems are a conve-
nient but ultimately irrelevant device[7].

THEORY

We denote the phase space vectorG;sq ,pd of our sys-
tem to consist of 2DN variables,q being the position vector,
p the momentum vector,D the Cartesian dimension of the
system, andN the number of particles. We divide the system
into Nw wall or reservoir particles that are thermostatted, and
are in contact withNs particles that are not thermostatted.
These latter particles comprise the nonequilibrium system of
interest. They experience a dissipative fieldFe which does
work on the system of interest, driving it away from equilib-
rium. This work is converted(irreversibly) into heat. This
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heat is removed by the thermostatted wall particles, allowing
a nonequilibrium steady state to develop at sufficiently long
times after the application of the dissipative field.

Consider the family of thermostats which, following
Gauss’s principle of least constraint[3,14,15], maintain the
mth moment of the momentum distribution for the wall par-
ticles,

gsmd = o
i=1

Nw

spi ·pidm/2 = o
i=1

N

sispi ·pidm/2 = g0smd, s1d

as a constant of the motion. In Eq.(1) pi denotes the mo-
mentum vector for theith particle andsi =1 for i øNw while
si =0 for i .Nw, where we choosem to be any real number
with the provisionm.1 for D=1 and m.1−D /2 for all
higher dimensions, thus ensuring that the averages of all
variables used in this paper converge. Using Gauss’s prin-
ciple of least constraint[3,14,15] we obtain the equations of
motion for the system subject to the thermostatting constraint
gsmd:

q̇i = pi/m+ s1 − sidCisGd ·Fe,

ṗi = Fisqd + s1 − sidDisGd ·Fe − spi ·pidm/2−1siapi ,

a =

o
i=1

Nw

spi ·pidm/2−1pi ·Fi

o
i=1

Nw

spi ·pidm−1

. s2d

In these equations the dissipative fieldFe couples to the sys-
tem via the dyadic phase functionsCisGd and DisGd. The
phase space compression factor for the full system is defined
as [3]

LsGd =
]

] G
· Ġ, s3d

and determines the evolution of an infinitesimal volume ele-
ment of phase spacedVG surrounding a trajectoryGstd,

dVGfGstdg = expFE
0

t

L„Gssd…dsGdVG„Gs0d…. s4d

Assuming in the absence of the thermostatting terms that the
phase space compression factor is zero(known as the adia-
batic incompressibility of phase space) [3] and ignoring
terms involving the momentum dependence ofa [which is of
Os1/Nwd relative to the terms involvingpi explicitly] we
obtain the phase space compression factor for themth ther-
mostat:

LsG,md = − asD + m − 2do
i=1

Nw

spi ·pidm/2−1. s5d

If the ratioNw/Ns is large enough, the perturbation caused to
the wall particles by the nonequilibrium system of interest
can be regarded as infinitesimal. In this limit, the thermostat-
ting particles can be described by the appropriate equilibrium
distribution.

Under these conditions we will now show that the phase
space compression factor is solely determined by the rate of
loss of energy(heat) from the total system due to the ther-
mostat divided by the absolute temperature of that thermo-
stat. Furthermore, the phase space compression factor is in-
dependent of the precise momentum momentm that is
constrained by the thermostat. The rate of change of the total
internal energyfH=oipi

2/2m+Fsqdg may be split into an

adiabatic(or work) componentẆstd and a heat transferQ̇mstd
component,

Ḣstd = Ẇstd + Q̇mstd,

Q̇mstd =
− astd

m
o
i=1

Nw

spi ·pidm/2,

Ẇstd = − o
i=Nw+1

N Fpi

m
·Di − Fi ·CiG ·Fe ; − JsGdV ·Fe.

s6d

The termQ̇mstd is the change in energy due to the thermostat.
It involves only the reservoir particles, as the particles in the
system of interest are not thermostatted. In Eq.(6) J is the
so-called dissipative flux andV is the volume of the system
of interest[3]. By construction the rate of change of the work

Ẇstd only involves the coordinates and momenta of the par-
ticles in the system of interest—see Eq.(6). We will show
that for sufficiently largeNw,

Q̇m − kBTLsG,md = 0 ∀ m . 2 − D. s7d

For the special case ofm=2 this will be so regardless of the
chosen value ofNw. Note that for a system with a large
reservoir undergoing reversible heat transfer Eq.(7) shows
that the phase space compression factor is related to the en-
tropy lost from the thermostatting reservoir region

Q̇m/T = Ṡres= kBLsG,md ∀ m . 2 − D. s8d

The kinetic temperature of the reservoir is defined by

kBT ;
1

DmNw
o
i=1

Nw

pi ·pi . s9d

Since the reservoir is very large compared to the dissipative
system of interest, temperature gradients in the reservoir will
be negligible, and we can assume that the momentum is dis-
tributed according to an equilibrium Maxwell-Boltzmann
distribution in this region. The synthetic thermostat regulates
the temperature of the reservoir and plays the role that cir-
culating water often does in an experiment. The sum
oi=1

Nwpi ·pi may be treated as an averageNwkpi ·pil. It is con-
venient to define
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Isa,bd ; E
0

`

dx xa exps− bx2d

=
1

2
b−s1+ad/2G„s1 + ad/2… ∀ a . − 1, s10d

whereG denotes the gamma function, and then one can show
that

Q̇m =
− aNwIsD + m − 1,b/2md

mIsD − 1,b/2md
s11d

and

L =
− asD + m − 2dNwIsD + m − 3,b/2md

IsD − 1,b/2md
. s12d

Using Eqs. (11) and (12) and the relationIsa,bd=sa−1d
3Isa−2,bd /2b it is easy to prove Eq.(7).

We can now derive the equilibrium distribution function
for a large system of particles where themth moment of the
momentum distribution is constrained using the dynamics
defined by Eq.(2). The Liouville equation may be written as
[3]

d

dt
ln f„Gstd,t… = − L„Gstd…, s13d

where fsG ,td is the phase space distribution function at time
t. When combined with Eq.(7) and the fact that the system is

at equilibrium[Ẇ=0 and thusQ̇std=Ḣstd] gives

d

dt
ln f„Gstd,t… = −

Ḣ„Gstd…
kBT

. s14d

Upon integrating both sides with respect to time we obtain
the distribution function

fmsGd =
expf− bHsGdgd„gsm,Gd − g0smd…

E dG expf− bHsGdgd„gsm,Gd − g0smd…
, s15d

whereg0smd is the value to which themth moment is con-
strained, andb=1/kBT is the inverse thermal energy. In the
case of the Gaussian isokinetic thermostatsm=2d the kinetic
degrees of freedom are distributed microcanonically and the
configurational degrees of freedom are distributed canoni-
cally; thus we have a clear link with equilibrium thermody-
namics. For our system involving thermostatted wall par-
ticles this distribution function will be correct for the whole
system given that there are enough thermostatted particles to
make Eq.(7) valid: heregsm ,Gd is only a function of the
wall particle momenta.

After some rather tedious algebra one can prove that for
systems inD Cartesian dimensions themth moments of the
momenta are related to the equilibrium thermodynamic tem-
perature by the equation

g0smd = Nw
G„sm + Dd/2…

GsD/2d
s2mkBTdm/2. s16d

Since the distribution function for the thermostatted system
is known, we can apply the TFT to these systems. The dis-
sipation function appearing in the TFT is defined as[7]

V̄tt =E
0

t

dsV„Gssd… ; lnF f„Gs0d,0…
f„Gstd,0… G −E

0

t

L„Gssd…ds.

s17d

The TFT then gives the probability ratio

psV̄t = Ad

psV̄t = − Ad
= expfAtg. s18d

We may now combine Eqs.(7), (15), and(17) to show that,
when the number of degrees of freedom in the walls is large
and much larger than the number of degrees of freedom in
the system of interest,

V̄tt = b„DHstd − DQmstd…

= bDWstd = − bE
0

t

dsJ„Gssd…V ·Fe ∀ m . 2 − D.

s19d

Substituting into Eq.(18) gives

ps− bJ̄t ·Fe = Ad

ps− bJ̄t ·Fe = − Ad
= expfAVtg ∀ m . 2 − D. s20d

Equation(20), which is independent of the value ofm, is the
central result of this paper.

SIMULATION

We test this theory by carrying out simulations using two
thermostats, the usual Gaussian isokinetic thermostatm=2
and the higher constrained moment ofm=4. We choose an
application of the TFT that has been investigated in the past
by both simulation and experiment[11]. A particle, im-
mersed in a fluid, is held by a stationary harmonic well(op-
tical trap in the experiment[11]) at equilibrium. At an arbi-
trary time t=0 the trap suddenly moves at a constant
velocity. In the large thermostat limit we have just proved
that the dissipation function is independent of the thermostat-
ting momentm. The dissipation function has been given be-
fore [11] and is

V̄tt = bE
0

t

dsvopt ·Fopt ∀ m . 2 − D. s21d

Computer simulations were carried out in two dimensions
using periodic boundary conditions and a Weeks-Chandler-
Anderson(WCA) potential, the fluid number density wasr
=Ns3/V=0.4 wheres is the particle diameter from the
WCA potential. The number of fluid particles in the system
of interest wasNs=32 and for them=2 thermostat the num-
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ber of thermostatted wall particles wasNw=28 while for the
m=4 thermostat systems withNw=28 and Nw=112 were
simulated. The thermostatted wall particles were harmoni-
cally bound to an ideal hexagonal lattice, with close packed
layers aligned in thex direction of the Cartesian axis having
seven particles per layer. The distance between these layers
in the y direction was 1.1066s and the periodic distance in
the y direction was such that the fluid was bound by close
packed layers whose axes were separated by 8.9443s: the
periodic distance in thex direction was 8.9443s. For both
thermostats 23105 trajectories were computed to form the
averages with the trajectories being of durationt=5.0, in
dimensionless time units. All other details were as reported
by Wanget al. [11].

For all systems the kinetic temperature of the fluid par-
ticles increased, on average, by,2% over the full duration
of the trajectory, while the kinetic temperature of the wall
particles did not change. For them=4 thermostats the nomi-
nal dimensionless wall temperature was set atT=1 by fixing
the constraint Eq.(1) to the value specified by Eq.(16). This
resulted in an average kinetic temperature for the wall par-
ticles ofT=1.01 for theNw=112 system andT=1.03 for the
Nw=28 system.

A direct test of Eq.(20) is plotted in Fig. 1 for the time
t=5.0 where the trajectory finishes. This shows the logarithm
of the probability ratio of observing a trajectory which has
had a positive value for the time integral of the dissipation
function relative to its negative, as a function of the integral
value. For a dissipative field coupled with a large volume of
particles or for long times this probability ratio diverges to
infinity recovering the second law of thermodynamics. Equa-
tion (20) is expected to be valid for allNw whenm=2, and
for largeNw in other cases. The figure shows excellent agree-
ment between the data for both thermostats and the plotted
prediction of Eq.(20). Note that in the case of them=4
thermostat only the largeNw=112 system results are shown
here.

The TFT Eq.(18) may be partially summed to obtain the
integrated fluctuation theorem:

psV̄t , 0d

psV̄t . 0d
= kexps− V̄ttdlV̄t.0. s22d

The left-hand side(LHS) is the probability of observing a

negative value for the dissipation functionV̄t, divided by the
probability of observing a positive value. The RHS is an
ensemble average formed from the set of trajectories which
have a positive value for the dissipation function at timet. In
Fig. 2 we plot both sides of Eq.(22) which have been cal-
culated directly from our simulation data for both thermo-
stats(again in the case of them=4 thermostat only the large
Nw=112 system results are shown). In both cases we observe
excellent agreement.

In the case of the smallerNw=28, m=4 thermostat sys-
tem, systematic differences between the fluctuation relation
that is derived for large thermostatting regions and the simu-
lation results are observed and this is shown in Fig. 3 for the
case of the integrated fluctuation theorem. The systematic
difference is a result of the distribution function for the wall
particles’ momentum being somewhat non-Gaussian due to
both the heat flow from the system of interest and the con-
straint Eq.(1). As the number of wall particles is increased,
while keeping both the system of interest and the fieldFe
fixed, the heat flow per particle into the wall will decrease as
will the effect of the constraint on its momentum distribu-
tion. As the number of wall particles increases, the wall can
be approximated more and more accurately by equilibrium
distributions. Again this difference would become insignifi-
cant for a system with a very large number of wall particles.

CONCLUSION

In this paper we have shown that if we study a nonequi-
librium system which is in contact with a thermostat then
when the number of degrees of freedom in the thermostat is
large and also large compared to the number of degrees of

FIG. 1. TFT data. Them=2 thermostat simulation has 28 wall
particles while the m=4 thermostat simulation has 112 wall
particles.

FIG. 2. IFT data. Them=2 thermostat simulation has 28 wall
particles while them=4 thermostat simulation has 112. The differ-
ence betweenkexps−bDWdlDW.0 for the two thermostats cannot be
resolved on the scale of this figure.
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freedom in the nonequilibrium system, the transient fluctua-
tion relation is insensitive to the details of the thermostatting
mechanism. We have shown this both theoretically and nu-
merically for a class of time reversible deterministic thermo-
stats that fix various moments of the momentum distribution.
In this large thermostat limit the TFT is independent of the
precise moment that the thermostat fixes.

These results are thus consistent with the previous gedan-
ken arguments that for large thermostats the fluctuation theo-
rem is insensitive to the precise details of the thermostatting
mechanism, and although the fluctuation theorems may be
derived using fictitious(i.e., unnatural) thermostats, the theo-
rems nevertheless apply to natural systems.

One of the key results of this paper is Eq.(7). In a literal
sense this equation says that there is an instantaneous rela-
tionship between the instantaneous phase space compression
factor for the composite system and the instantaneous energy
lost from the composite system due to the thermostat and the
absolute temperature of the thermostat. This happens for any
thermostat among the infinite family of thermostats consid-
ered here as long as the thermostat is sufficiently large that
the thermostatting region can be regarded as being at equi-
librium. Because the thermostat can be regarded as at equi-
librium, the energy lost to the thermostat can be regarded as
heat. Furthermore, the heat loss divided by the absolute tem-
perature is precisely the thermodynamic entropy lost from

the composite system through the boundary region to the
thermostat. Again this relation is independent of the precise
details of the thermostat.

Since Eq.(7) is true regardless of the mathematical form
of the thermostat we propose the following conjecture. Con-
sider a nonequilibrium dissipative system(the system of in-
terest) embedded in an(initially ) equilibrium nondissipative
Hamiltonian system. This system of interest has a fixed num-
ber of particles and a fixed dissipative fieldFe is applied for
t.0. Assume the initial equilibrium thermodynamic tem-
perature of the embedding system isT. Very far from the
system of interest, beyond the embedding system, there may
be some form ofm thermostatting region or the Hamiltonian
embedding system may simply continue on forever, at tem-
peratureT.

If we consider a composite system(system of interest plus
a surrounding sphere of the embedding system) of radiusr,
then for a fixed timet.0, as r increases the embedding
system located in the spherical shell region atr ±dr will be
closer and closer to thermodynamic equilibrium. We can now
apply Eq.(7) to relate the phase space compression of the
composite (system of interest plus embedding) of radius
r , LrsGd, to the entropy lost from the composite system at
radiusr to the surrounding equilibrium(embedding) system

Ṡr:

lim
r→`

LrsGd = Ṡr . s23d

This equation is expected to be true regardless of whether
ultimately at very large distances the composite system con-
tains a time reversible deterministic thermostat or whether
the Hamiltonian embedding system continues indefinitely.
This equation relates entropy loss through an equilibrium
boundary to the phase space compression of the phase space
of the system enclosed within that boundary. In this sense
phase space compression can occur in purely Hamiltonian
(sub)systems, which is consistent with results obtained from
theoretical work on simple models[16,17]. This occurs in
spite of the obvious fact that in the full phase space of any
Hamiltonian system the phase space compression is identi-
cally zero[18].
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