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Distribution of work in isothermal nonequilibrium processes
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Diffusive motion in an externally driven potential is considered. It is shown that the distribution of work
required to drive the system from an initial equilibrium state to another is Gaussian for slow but finite driving.
Our result is obtained by projection method techniques exploiting a small parameter defined as the switching
rate between the two states of the system. The exact solution for a simple model system shows that such an
expansion may fail in higher orders, since the mean and the variance following from the exact distribution
show nonanalytic behavior.
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In macroscopic thermodynamics, the wov spent in  spread applications recenfl$,7-11. The statistical and con-
changing the state of a system at constant temperdture vergence properties of this nonlinear average deserve
obeys particular attentiorj12—14.

W AF B For time-dgpendent ql_Jadratic potentialls, i.e.., linear sto-
=2 chastic equations of motiorR(W) can easily derive to be

which is one version of the second law whek€ is the — Gaussian[15]. Jarzynski's relation then implies that the
difference in free energy of the final and the initial equilib- meanW and the variance” are necessarily related 4]

rium state. As the system gets smaller, thermal fluctuations

play an in(_:reasingly r_elev_ant role. Hence this Wor_k a_cqu_ires W=AF +Bo?I2. (4)

a stochastic contribution, i.e., the work follows a distribution

function P(W). The shape of this function depends on how ) ) )

the system is driven. If this change is induced by the timeForthese potentials, thg Ga.uss"'?‘” nature holds independently
variation of an external control paramete(t), the distribu- on the speed of theQn\{lng, I.e., independently of how far the
tion P(W) becomes a functional of(t). system is from equilibrium.

o . The purpose of this paper is to add a third general state-
Such distributions have recently become accessible X ont aboutP(W) to this list of exact resuilts. We will show

perimentally for systems with only a few degrees of freedo o : -
diffusing in a thermal environment under the influence of anr:that this distribution becomes a Gaussian for slow but finite

externally controlled potential. Paradigmatic examples in_drlvmg even if the equations of motion are nonlinear. Since

. . : : our approach is constructive, it yields an explicit algorithm
clude dragging a colloid particle by an optical tweezer : — . .
through a viscous fluid1,2] and the forced unfolding of of hOW. to o.bta.m t_he meaV and the vgnqnc_eﬂ O.f th|_s
RNA hairpins [3]. In both cases some realizations of theGaussmn dlstrlbutl_on. In the quasistatic limit of infinitely
process showV<AF. Slightly overstated, such findings slow external manipulation, this Gaussian reduce®(td/)
have been called violations of the second [@\ In a more =5(W_AF)'_ o )
conservative interpretation of the second law for such meso- A Gaussian character of the distributi&\W) near equi-

scopic systems, the average work should and does still obd{Prium seems to be expected or taken for granted in the
recent literaturd3,4,8,12,1%. Closer scrutiny of the refer-

ences usually cited for this assumption, if any are cited at all,
however, reveals that they do not provide an explicit proof of
this statement. The often cited papers by Hernfdn$ and
Obviously, the distributiorP(W) is of paramount impor- Wood et al. [18] explicitly assume a Gaussian shape. Allud-
tance for a better understanding of isothermal stochastic dying in a more general way to an Onsager-Machlup functional
namics. Exact statements, however, abB(V) are scarce. [19] also fails, since this Gaussian functional is derived for
In 1997, Jarzynski has shown under rather mild assumptionénear stochastic equations of motion. The presumably most

V_VEJ de RW)W = AF. 2)

that the distributiorP(W) obeys an integral constraint promising case to date in favor of a Gaussian distribution
suggests to invoke the central limit theorem for the incre-
+o0 . . .
ments of work[20]. However, without translating this pro-
dw F{Vv)e—,EW:e—ﬁAF (3) : [ ] . - g p -
. posal into a definite calculation, which seems to be nontrivial

for time-dependent potentials, this argument is not a clear-cut
for any external protocok(t) [4—6]. Here, B=1/kgT with proof yet, let alone does it give an expression for mean and
Boltzmann’s constankg. Since this remarkable relation al- variance of this putative Gaussian.
lows one to extract equilibrium free energy differences from Based on this unsatisfying state of affairs concerning such
measuring or calculating the work distribution in nonequilib- a fundamental issue, we believe that a constructive deriva-
rium experiments or simulationg25], it has found wide- tion of the Gaussian nature of this distribution for finite but
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slow driving is indeed called for as a step towards a compre- _|r oosrw

hensive thgory of isothermal stochastic I[()jynamics. P %P = [L” ALy ]p, (12
For the derivation we consider a finite classical systemwhere

coupled to a heat reservoir of constant temperature. Let then

X=(Xp,...,X,) be the state of the system with enefgy(x) (W= _ JAYNES (13)

where\ is an externally controlled parameter. The stochastic » IN IW

dynamics is governed by the Langevin equatif represents a drift term of the work. The reduced probability

IV distribution of the workP(W,t) can be obtained by integrat-

== Mija_):\ +75(0), (5  ing outx as
where w;; are the mobility coefficient§26] and #(t) is the P(W,1) :J dx p(x, W, ). (14)
thermal noise representing the heat bath with

2 Since we start the process out of thermal equilibrium,xhe

(p())=0 and (p)n(t))=—w;dt-t), (6) are initially distributed according to the canonical distribu-
B tion and therefore the initial condition is

where(---) denotes the ensemble average. We describe the e

continuous process of switching the system from an initial p(X, W,0) = f51x) o(W). (15)

state[\(t=0)=0] to a final statg\(t=t9=1] by a protocol As our main theoretical tool we introduce a projectby

(1), over a total switching timé. Without loss of general-  acting on a functionp(x, W, t) such that

ity, we set\(t)=t/ts and hence a constant switching rate

—+-1 ~

=t 4] . . . ¢ =f7° J dx’ (X', W,t). (16)

We now consider an ensemble of infinitely many realiza-

tions of this Markov process, each evolving stochasticaIIyNote that

according to Eq(5). The normalized distribution of this en-

semble in phase spaé€éx,t) obeys a Fokker-Planck equation

1] LT, ¢=11,L,¢=0. (17)
P N 14 The first statement is evident from definitigh6) and the
af= |A_)\f with |A_A = —Mij[—” + ——} , (7)  fact thatf{%is in the null space of,. The second conclusion
9% X BIX follows when ¢ is expanded in terms of eigenfunctions of

equivalent to the Langevin equatiof®. This introduces the L. Then the Fokker-Planck operatby cancels the eigen-

. . N o0
(through\ time-dependentFokker-Planck operatdt,. The funptlon to e|_ge_:nvalue 0, Wh'Ch. in fact ﬁ ; whereas the_
stationary solution of Eq(7) for fixed \ is the equilibrium projector annihilates all other eigenfunctions corresponding
distribution to higher eigenvalues.

The other important property of the projectﬁg\, which
- _ ) distinguishes it from the usual application to the adiabatic
— \/ l \V
i) =e” A(X)/f dx’e e, (8)  elimination of fast variablef21], is that it does not commute

_ _ with the time derivative but rather leads to
The total work performed along one particular trajectory

X(t) up to timet is the time integra[4,22] [4,11,] = a1, - [1,0,= - \BS\I1,,, (18)
LoV where we define
WX, t]= | dUA—"S(x(1). 9
: _ <ﬂ> 9
We can now compose a combined stochastic process consist- I\ IN [\
ing of {x,W} as[15] The equilibrium ensemble average-), is defined as
. (9V)\
= wi—— + ), 10 _
%=t Tl (19 (B = f o 12500 6. (20)
A We.can now expand the joint probabilify(x,W,t) for
W‘)‘X' (1) small A, which corresponds to a separation of time scales

[23]. The slow time scale is\=t/t;. The fast time scale,

Note that the equation of motion fal does not have an Which we do not need explicitly, is determined by the intrin-
independent noise but is stochastic throughxtiiependence sic relaxation processes. As the time derivative transforms
of V,. The joint probability distribution functiomp(x,W,t) according tod,— N\d,, switching to the slow time scale Eq.
then obeys a Fokker-Planck equation (12) becomes
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Hp= D.\_lﬂ)\ + me (21 \\—/
By using the projectoﬂAL we decompose the distribution

function p=py+p; into
Po(X, W,\) = IT,p = fE4x)P(W,)) (22)
and

PL(X, W,\) = (1 - TI,)p. (23)

We applyll,, respectively(1-I1,), to Eq.(21) and keep in
mind both Eq.(17) and the commutatail8). We finally get

the two coupled differential equations, FIG. 1. Scheme of the experiment of Rgf]. A colloidal par-

ticle at positionx(t) is dragged by an optical tweezer with focus at
P :Ao +Ao _ , 24 y(N)=L\ through a viscous fluid. The effective potential is har-
\Po = AyPo + AP1~ BS\Po (24) monic with a spring constarit

NP1 = [X"ll:)\ + Aﬂ p1+ Alpo + BS,Po, (25) o
where we abbreviatd? =11, and Al = (1-T1,)LY. w= L d)\{

In this form, an expansion iR becomes possible. In low- This is the central result of the present paf@f]. First, it
est order(\ —0), Ed. (25 implies prlz_o_. .Slncepl 'S0 proves that the distribution of the work in isothermal non-
thogonal to the null space df, by definition (23), p;=0  equilibrium processes is Gaussian in the near-equilibrium re-
follows. For a solution of Eq(24) we explicitly calculate gime. Second, we recover independently from Jarzynski's

IV v | oap s P
(9)\>%+)\BSA]—AF+202. (32

. IV J gV J relation (3) the constraint that the mean and variance are
Agfiq: ‘fqu dx—”ffq— =—fF Ay 2 connected according to E@4). Third, it yields an explicit
IN " IW IN [\ IW algorithm of how to calculate these quantities.
(26) For an assessment of the range of validity of this approxi-
) . ) . mation, we recall that it is based essentially on a separation
Using this and Eq(22) we finally obtain of time scales. Hence the Gaussian distribution will be a
P aVy\ JdP good approximation as long as<1, wherer is an intrinsic
an .\ an AWV (27) relaxation time.

As an example, we illustrate our approach for a simple
for the distribution of the worl(W,\). The solution of this  one-dimensional case, where we can compare our expansion
equation is P(W)=8W-AF) with the initial condition with an exact solutiorf15]. We consider a colloidal particle
P(W,0)=8(W) following from Eq.(15), where we recognize at positionx with mobility u trapped by an optical tweezer
AF=[3d\(aV,/d\), as the change in free energy of the en-whose centel(\) is moved at constant speedthrough a
tire process. We thus have recoveredXer 0 the quasistatic  Viscous fluid(see Fig. 1. The potential of the trap is as-
limit as expected. sumed to be harmonic near the focal poivif(x)=(k/2)[x
—-y(\) ]2, with effective strengttk. In this case, the free en-
ergy is independent of(\). For the two states, we choose
D= _)'\[;1[,&%4_3%]‘)0_ (28 With yA=0)=0 andy(\=1)=L two positions of the trap.
The switching rate becomes=v/L, while the relaxation
time is 7=1/uk.

Within our scheme, we first have to calculat&,
P AN -~ |dP .~ PP :IA_;lsAffqin Eg. (30) which amounts to solving the inhomo-
an [<K>A * )"BSA} W )‘SAW’ (29) geneous differential equation

To first order in\ we get from Eq(25)

Putting this back into Eq.24) we get after a straightforward
calculation a diffusion-type equation f&(W,\) in the form

IN
where f_xqfk =S, {9, (33)
S =- dxa_v)‘i;;]-s)\fiq (300  Where\ only appears as a parameter. This is easily solved as
dN W, (x)=f{4x)Lx/ x and thus the average work becomes

The solution is a Gaussian —
W=L*k\T. (34)

(31 Of course, for this harmonic potential, the distributi®()
is Gaussian at any drivingd.5]. The exact result for the mean

with variancec?=2\ [ éd)\NSA and mean W as a function of reads

1 _(W-w)?
P(W)_—\;’ﬁ ex —2 2 }
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w= LA - 222(1 -], (35) T AP @7
. . o Mgt ap ¢
which agrees to first order in with Eq. (34) as expected.

The exact expressiqi35) points to an interesting property
which seems not to have been discussed yet in the context gfith stationary solution f$%cexd—gH, —(n/2)72{%]. Our
stochastic dynamicg28]. The exponentially small last term  gerivation of Eq.(29) holds in this case as well since the
shows that the average work is nonanalytiirWe expect  crucial ingredient for our proof is the existence of a time-
order, some Sgnature of this nonanalytity anould show upc*2 10" OPeratot, and a projectof into the null space

X g yetty Pof L, such that Eq(17) remains valid.

Therefore the approach to equilibriufor the deviation from e
Pb g u In summary, we have shown for general diffusive systems

equilibrium) even in this almost trivial case is somewhat AT . :
sﬂbtle ) that the distribution of work required to drive the system
It is instructive to note that the Gaussian distribution for'crom an 'n'.t'fil equ_lll_bnum state to another_|s a Gaussian for
slow but finite driving. Its mean and variance can be ob-

weak driving also holds if the stochastic dynami& is ined i inh giff tial i
replaced by a deterministic Nosé-Hoover thermostated dy.t—aIne rom solving an innomogeneous ditterential equation

namics where the heat bath is simulated by a pseudofrictioWVOl\”ng the Fokker-PIan_c_k operator. As a”_exaC“y sol\_/abl_e

coefficient{ [24]. The dynamics of the system with Hamil- case Sh_OWS’ the_se quantities are nonanalytic in the switching

tonian Hy = p2/2m+V, now reads rate. This result indicates that in general calculating the next
AT A

) order correction to the Gaussian derived here may face fun-
P IV 1/pB

. : damental difficulties.
g=—_,p=- —fpi,andé”:;[E—l}, (36)

m 70 Stimulating discussions with O. Braun and R. Finken are

for n degrees of freedom. The time-evolution operator begratefully acknowledged, as well as valuable hints and com-
comes ments by H. Spohn.
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