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We obtain the nucleation rate of critical droplets for an elastic string moving in af6 local potential and
subject to noise and damping forces. The critical droplet is a bound soliton-antisoliton pair that carries a section
of the string out of the metastable central minimum into one of the stable side minima. The frequencies of
small oscillations about the critical droplet are obtained from a Heun equation. We solve the Fokker-Planck
equation for the phase-space probability density by projecting it onto the eigenfunction basis obtained from the
Heun equation. We employ Farkas’ “flux-overpopulation” method to obtain boundary conditions for solving
the Fokker-Planck equation; these restrict the validity of our solution to the moderate to heavy damping
regime. We present results for the rate as a function of temperature, well depth, and damping.

DOI: 10.1103/PhysRevE.70.066103 PACS number(s): 64.60.Qb, 05.40.2a, 11.10.Lm, 98.80.Cq

I. INTRODUCTION

“The problem of escape from metastable states is ubiqui-
tous in almost all scientific areas.” This felicitous character-
ization of the importance and range of applicability of reac-
tion rate theory begins an authoritative review[1] of the
development of the subject, up to 1990. Since the presenta-
tion in this review is so complete, we refer the reader to it for
the details of this development. Additional papers relevant to
the subject, which were published after Ref.[1] was com-
pleted, are mentioned below.

The present paper is a contribution to the calculation of
reaction rates for a one-dimensional continuum system—i.e.,
an elastic string moving in a external local potential energy
and subject to damping and noise forces arising from cou-
pling to a heat bath. This particular application of nucleation
theory was initiated by Seeger and Schiller[2] and by Hirth
and Lothe[3], and has had important contributions from oth-
ers[4–6]. For these authors, the experimental impetus came
from observations of dislocation motion in crystals. In this
approach, the dislocation moves through the crystal by
nucleation of bound soliton-antisoliton pairs in its displace-
ment field.

In a previous paper[7], we outlined a calculation of the
soliton-antisoliton nucleation rate for a string moving in an
asymmetric double-wellf4 potential. In general such rate
calculations require calculating the frequency spectrum of
small oscillations about the “critical droplet”(the soliton-
antisoliton pair). For this system we showed how this calcu-
lation reduced to solving a Heun equation, a particular gen-
eralization of the hypergeometric equation that was
introduced in 1889[8]. In recent years this equation has been
found useful to solve several problems of physical interest
[9–12].

In the present paper we extend these calculations to a
string moving in a symmetric triple-well local potential en-
ergy, the so-calledf6 potential, restricted to the situation
where the right and left side wells are deeper than the center
well. There is a bound soliton-antisoliton solution to the
equations of motion, which lies mostly in the center well but
which makes a single excursion into one of the side wells.
That solution is the critical droplet for nucleation of the
string out of the metastable central well into one of the stable
side wells. The calculation of the spectrum of small oscilla-
tions about this critical droplet again reduces to solving a
Heun equation, and we provide the details of that calculation
here.

The calculations here are restricted to the case of moder-
ate to large damping. Different methods are required to treat
the case of weak damping[13].

To our knowledge there has not been a calculation of the
nucleation rate for a continuum system with thef6 local
potential energy. There has been one paper that treats a single
particle moving in a triple-well potential, with emphasis on
the whole range of damping(the “Kramers’ turnover prob-
lem”) [14].

The outline of this paper is as follows. In Sec. II we
describe our system, give the critical droplet solution of its
equation of motion, and formulate the problem of small os-
cillations about the critical droplet. In Sec. III we relate the
small oscillation problem to the Heun equation and calculate
the spectrum of small oscillations about the critical droplet.
In Sec. IV, we describe our Fokker-Planck equation, taking
care that we include the whole phase space of our continuum
system. In Sec. V, we solve the Fokker-Planck equation for
the phase-space probability distribution function with appro-
priate boundary conditions, and in Sec. VI we use it to cal-
culate the flow of probability flux over the saddle point on
the energy surface in phase space. This last calculation gives
the nucleation rate. We give the results of numerical evalua-
tions of our formula for the nucleation rate in Sec. VII, and
we give our conclusions in Sec. VIII. Some technical parts of
our calculations are given in the Appendixes.
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II. SYSTEM

We consider a one-dimensional system consisting of an
elastic string moving in an external potential energy. The
Hamiltonian, a functional of the momentum density field
psx,td and the displacement fieldusx,td, is

Hfp,ug =E
−`

`

dxF1

2
p2 +

1

2
c0

2S ]u

]x
D2

+ V1sudG , s2.1d

wherec0 is a constant and the local potential is the symmet-
ric function

V1sud = 1
2au2 − 1

3u4 + 1
4u6, 0 , a , 2/9 s2.2d

(see Fig. 1). (All quantities here are dimensionless. The scal-
ing factors used to achieve this form are given in Appendix
A.) For values of the “shape parameter”a in the range
0,a,2/9, V1sud has a double root atu=0 and four other
roots at

u = ± F2

3
±Î2S2

9
− aDG1/2

. s2.3d

V1sud has a metastable minimum at

ums= 0, s2.4d

stable minima at

±us = ± F4

9
+Î2

3
S 8

27
− aDG1/2

, s2.5d

and maxima at

±umax= ± F4

9
−Î2

3
S 8

27
− aDG1/2

. s2.6d

For 0,a,2/9, V1s±usd,V1sumsd, and ata=2/9, thethree
minima become degenerate,V1s±usd=V1sumsd.

The deterministic Hamiltonian equations of motion
(EOM) obtained from Eq.(2.1) are

]usx,td
]t

=
dH

dpsxd
= psx,td, s2.7d

]psx,td
]t

= −
dH

dusxd

= c0
2]2u

]x2 − V18sud = c0
2]2u

]x2 − au+
4

3
u3 −

3

2
u5.

s2.8d

Extremal points on the energy surface(in phase space) are
solutions of the equations

dH

dpsxd
= 0 =psxd,

dH

dusxd
= 0 = −c0

2uxx + V18„usxd….

s2.9d

Equations (2.7)–(2.9) imply that extremal solutions are
static. Two trivial solutions of Eqs.(2.9) are the metastable
solution

pmssxd ; 0, umssxd ; ums= 0 s2.10d

and the stable solution

pssxd ; 0, ussxd ; us. s2.11d

We look for additional solutions of Eqs.(2.9) that have
the string lying in the upper(metastable) well of V1sud for
most of the range ofx, but also have an interval of the string
making a smooth transition over the barrier separating the
metastable well from one of the stable wells and back. These
are solutions that describe a configuration of the string
“…which is everywhere the same as the initial metastable
state except for the presence of a single localized fluctuation,
e.g., a droplet”[15]. [Of course for theV1sud in Eq. (2.2)
there are two, symmetric, solutions going into either the right
or left stable well; for definiteness, we choose the solution
with usxd.0.] Thus the boundary conditions to be imposed
are thatu and its first derivative vanish at ±̀, corresponding
to most of the chain lying in the metastable minimum. In
Appendix B we find such a spatially nonuniform extremal
solution, the “critical droplet”[15] or “bounce” [16],

pbsxd ; 0, s2.12d

ubsxd =Î 3a

1 +
3
Î2
Î2

9
− a coshS2Îa

c0
xD s2.13d

=ÎÎa

2
HtanhFÎa

c0
sx + x0dG − tanhFÎa

c0
sx − x0dGJ .

s2.14d

Equation(2.14) shows that the bounce is a soliton-antisoliton
bound pair[17] whose centers are separated by

2x0 =
c0

2Îa
lnFÎ2/3 +Îa

Î2/3 −Îa
G , s2.15d

which diverges logarithmically whena→2/9. The maxi-
mum value ofubsxd is the smaller root ofV1sud, given in Eq.
(2.3) [cf. Eq. (B2) for K=2] and increases with increasinga.

FIG. 1. The local potentialV1sud. From bottom to top the values
of the shape parametera are 0.01, 0.1, 0.18, 0.22222.
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In writing Eqs. (2.13) and (2.14), we have chosen to center
the bounce at the origin; it could be anywhere. Plots ofubsxd
for several values ofa are in Fig. 2.

The energy of the bounce is obtained by using Eq.(2.13)
in Eq. (2.1) and evaluating the integral. The result is

Eb = c0HÎa

3
+

1

2Î2
S2

9
− aDlnFÎ2/3 −Îa

Î2/3 +Îa
GJ . s2.16d

It rises monotonically fromEbsa=0d=0 to Ebsa=2/9d
=c0

Î2/9. A condition for the validity of the statistical-
mechanical calculations presented in this paper is that the
temperatureT should satisfykBT!Eb. This condition en-
sures that the notion of metastability makes sense. It be-
comes quite restrictive of the temperature range fora→0
becauseEb→0 there. We can expect that this theory is not
valid for smalla because quantum effects become important
at low temperature.

From Eq.(2.9) we calculate the functional second deriva-
tives of the energy to be

d2H

dpsxddpsx8d
= dsx − x8d, s2.17d

d2H

dusxddpsx8d
= 0, s2.18d

d2H

dusxddusx8d
= F− c0

2 ]2

]x2 + V19sudGdsx − x8d. s2.19d

Because of Eqs.(2.9) and (2.18), for small fluctuations
dpsx,td anddusx,td about the bounce(pbsxd ,ubsxd) the en-
ergy is

H = Eb +
1

2
E

−`

`

dxE
−`

`

dx8FS d2H

dpsxddpsx8d
D

b
dpsxddpsx8d

+
1

2
S d2H

dusxddusx8d
D

b
dusxddusx8dG + ¯ , s2.20d

where the functional derivatives are evaluated at the bounce.
To simplify this expression we introduce the eigenfunctions
fnsxd and eigenvaluesvn

2 of (d2H /dusxddusx8d)b, which are
solutions of

E
−`

`

dx8S d2H

dusxddusx8d
D

b
fnsx8d = vn

2fsxd. s2.21d

We use Eq.(2.19) in Eq. (2.21) and find that this eigenvalue
equation is the differential equation

− c0
2d2fn

dx2 + V19„ubsxd…fn

= − c0
2d2fn

dx2 + Fa − 4ub
2sxd +

15

2
ub

4sxdGfnsxd

= vn
2fnsxd. s2.22d

Since this is a Schrödinger equation, the set of eigenfunc-
tions hfnj is a complete orthonormal set, and we use it to
express the small oscillations about the bounce as

dusx,td = o
n

znstdfnsxd, s2.23d

dpsx,td = o
n

jnstdfnsxd. s2.24d

Finally, we use Eqs.(2.17), (2.20), (2.21), (2.23), and(2.24)
to write the energy for small fluctuations about the bounce as

H = Eb +
1

2o
n

jn
2 +

1

2o
n

vn
2zn

2 + ¯ . s2.25d

In Eqs.(2.21)–(2.25) n denotes a generic eigenfunction label
and the sums are over the complete set of eigenfunctions.
The eigenvaluesvn

2 and corresponding eigenfunctionsfn in
Eqs.(2.21) and (2.22) are calculated in Sec. III.

The Hamiltonian can also be expanded for small oscilla-
tions about the metastable solution, Eq.(2.10). The expan-
sion looks like Eq.(2.20) except that the energy of the meta-
stable solution is zero and theb subscripts are replaced by
mssubscripts. Instead of Eq.(2.22), the eigenvalue equation
is

− c0
2d2fn

smsd

dx2 + afn
smsd = vms,n

2 fn
smsd s2.26d

and the expansion of the energy near the metastable solution
is

H =
1

2o
n

jms,n
2 +

1

2o
n

vms,n
2 zms,n

2 + ¯ . s2.27d

The partition function determined by this quadratic Hamil-
tonian will be needed in Sec. VI.

FIG. 2. From bottom to top along the ordinate, the bounce so-
lution for a=0.01, 0.1, 0.18, 0.2222. The independent variable is
y=Îax/c0.
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III. SMALL OSCILLATIONS AROUND THE CRITICAL
DROPLET

In this section we describe the solution of the linear ei-
genvalue equation for the small oscillations about the
bounce, Eq.(2.22), as a function of the shape parametera.
Since Eq.(2.22) is a one-dimensional Schrödinger equation,
all the knowledge developed to solve this equation for quan-
tum systems is applicable here. For example, the “potential
energy” in Eq.(2.22) is an even function ofx, sinceubsxd
[Eq. (2.14)] is an even function ofx. Therefore, nondegen-
erate solutions of Eq.(2.22) have definite parity, and degen-
erate solutions can be chosen to have definite parity.

A. Stability of the bounce

Equations(2.7) and (2.8) can be combined to form a
single second-order partial differential equation(PDE),
which is a member of the class of nonlinear Klein-Gordon
equations[18]. For this equation, it can be shown[18] that
the derivative of the stationary bounce[Eq. (2.13) or (2.14)]
is a solution of Eq.(2.22) with eigenvaluev2=0, indepen-
dent ofa. This “translation” mode restores the translational
invariance that was lost when the bounce was centered atx
=0. We label the normalized eigenfunction asf1, and it is

f1sxd ~
dub

dx
= −

Î3a

c0

3

Î2
Î2

9
− a sinhS2Îa

c0

xD
F1 +

3

Î2
Î2

9
− a coshS2Îa

c0

xDG3/2
.

s3.1d

Since f1sxd in Eq. (3.1) has odd parity, it cannot be the
ground state of Eq.(2.22), and there is(at least) one other
solution f0 with a negative squared frequency,v0

2,0. We
then see from Eq.(2.25) that the bounce is actually a saddle
point on the energy surface of the system and that the eigen-
functionf0 specifies a direction along which the evolution of
the system is unstable.

By integrating Eq.(B2) for the caseK=2, [cf. Eq. (2.2)]
we obtain

E
−`

`

dx
1

2
c0

2Sdub

dx
D2

=E
−`

`

dxV1subsxdd, s3.2d

which shows[cf. Eq.(2.1)] that the elastic and local potential
energy contributions to the total energy are equal for the
stationary bounce. Therefore,

Eb = c0
2E

−`

`

dxSdub

dx
D2

, s3.3d

and the normalized eigenfunction for the translation mode is

f1sxd =
c0

ÎEb

dub

dx
. s3.4d

B. Manipulations on the eigenvalue equation

Several manipulations must be carried out on Eq.(2.22)
in order to solve it. We describe those here but omit details.
We substitute Eq.(2.13) into Eq. (2.22), we change the in-
dependent variable fromx to

y =
Îa

c0
x, s3.5d

and we use identities for hyperbolic functions[coshs2ud
=2 cosh2sud−1 and sech2sud=1−tanh2sud]. We introduce an
important parameter

nsad =

1 +Î1 −
9

2
a

1 −Î1 −
9

2
a

; s3.6d

for 0,a,2/9, `.n.1. We also change the eigenvalue by
shifting it from v2 to (the 1/4 factor is for later convenience)

lsad =
1

4
Sv2

a
− 1D . s3.7d

Then Eq.(2.22) becomes

d2f

dy2 + f4l − vsydgf = 0, s3.8d

where the “potential energy” is

vsyd =
− 6sn + 1dsech2 y

n − tanh2 y
+

15n sech4 y

sn − tanh2 yd2 . s3.9d

It is also useful to substitute Eq.(2.14) into Eq. (2.22) and
then carry out the same steps, which gives another form for
vsyd:

vsyd = − 15
4 fsech2sy + y0d + sech2sy − y0dg

+
1

Î2a
ftanhsy + y0d − tanhsy − y0dg s3.10d

[y0 is obtained by substituting Eq.(2.15) into Eq. (3.5)].
Plots ofvsyd for several values ofa are shown in Fig. 3.

It is evident from Eqs.(3.9) and (3.10) and Fig. 3 that
vsyd is an even function ofy and thatvsyd→0 for y→ ±`.
Therefore there is a finite number of discrete bound-state
eigenvalues withl,0 and a continuum forl.0. In terms
of the original eigenvaluev2, there are discrete values for
v2,a and a continuum forv2.a. [We have already deter-
mined that there is one discrete level atv2=0 and(at least)
one more with v2,0.] vsyd has a single well for
0,a,32/225=0.14222. . . and a double well for
32/225,a,2/9. For 16/75=0.21333. . .,a,2/9, there is
a symmetric interval aroundy=0 wherevsyd.0 (see Fig. 3).

C. Limiting cases

In the two end-point casesa→0 anda→2/9, Eqs.(3.8)
and (3.9) reduce to well-known examples for the
Schrödinger equation.
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1. a\0

In this limit, from Eq.(3.6), nsad→`, and Eqs.(3.8) and
(3.9) become

d2f

dy2 + fs4ld + 2s2 + 1dsech2 ygf = 0. s3.11d

Thensn+1dsech2 y potential well with integern is a standard
example of a reflectionless potential in quantum mechanics
[19,20]. There are two bound states with eigenvalues 4lsad
=−4,−1, which are equivalent to[cf. Eq.(3.7)] v0

2→−3a for
a→0 and v1

2=0. The lowest value corresponds to the un-
stable mode, and the second value to the translation mode,
both of which we have previously identified.

2. a\2/9

For a→2/9 the two minima in Eq.(3.9) separate to ±̀
(Fig. 3), so we change the independent variable toz=y−y0 to
place the right well at the origin and send the other to −`.
The eigenvalues are doubly degenerate in this limit, since
each state is duplicated at ±`. Equations(3.8) and (3.9) be-
come

d2f

dz2 + Hs4ld +
15

4
sech2 z−

3

2
f1 − tanhzgJf = 0.

s3.12d

This equation is a special case of a textbook example[21],
which has the result that Eq.(3.12) has a single bound state
lsa=2/9d=−1 or v2=0. Because of the double degeneracy
of this limit, there must be twov2 eigenvalues that approach
zero in this limit. One of these is the translation mode, with
v1

2=0 for every a in the range 0,a,2/9, and the other
must be the unstable mode.

D. Calculation of the spectrum

We continue the solution of Eqs.(3.8) and (3.9) by mak-
ing another independent variable change similar to that used

in Schrödinger equations with a sech2syd well—viz., to the
variablez=tanh2syd. The physical range ofy is −`,y,`,
and this variable change gives a one-to-one map of half of
that interval—say, 0,y,`—to the interval 0,z,1. To
obtain the solution on the other half of the range ofy, we
recall that the solutions have definite parity, and thus the
solution on −̀ ,y,0 is obtained by symmetry. Equations
(3.8) and (3.9) become

d2f

dz2 + S1/2

z
+

1

z− 1
Ddf

dz
+ F l

sz− 1d2 −
15/4

sz− nd2

+
s15/4 −ldz+ ns3/2 +ld − 9/4

zsz− 1dsz− nd Gf = 0. s3.13d

Inspection shows that this equation has three regular singular
points [22] at z=0, 1, andnsad, and it is straightforward to
verify that there is a fourth regular singular point atz=`.
The singular point atnsad [Eq. (3.6)] moves with changes in
the value of the shape parametera or, equivalently, with
changes in the separation of the soliton and antisoliton in the
stationary bounce solution[Eq. (2.14)] or changes in the “po-
tential energy” in the Schrödinger equation(Fig. 3). The
characteristic exponents at each of these singularities, ob-
tained from the Frobenius method of series solution[23], are
given in Table I.

We now transform Eq.(3.13) so that one of the character-
istic exponents at each of the finite singularitiesz=0, 1, and
nsad is reduced to zero. The appropriate transformation is to
a new dependent variableAszd defined by

fszd = z−jsz− 1d−msz− nd−kAszd. s3.14d

The exponentsj, m, andk are thenegativesof either one of
the characteristic exponents at the respective singularity
listed in Table I; i.e., each one is chosen to be one of the
following possibilities:

k = 3/2,− 5/2;j = 0,− 1/2; m = ± Î− l s3.15d

(recall thatl,0 for bound states). The resulting equation is

d2A

dz2 + S1/2 − 2j

z
+

1 − 2m

z− 1
−

2k

z− n
DdA

dz
+ FS2mk −

3k

2
+ 2kj

+ 2mj −
m

2
− j +

15

4
− lDz− 2kj +

k

2
−

9

4

+ nS− 2mj +
m

2
+ j + l +

3

2
DG A

zsz− 1dsz− nd
= 0.

s3.16d

FIG. 3. From bottom to top along the ordinate, the “potential
energy” function in Eq.(3.8) for a=0.01, 0.14223, 0.21, 0.222222.

TABLE I. Characteristic exponents.

r Regular singular pointszr

Characteristic
exponents

1 0 0, 1/2

2 1 ±Î−l

3 nsad −3/2, 5/2

4 ` 0, 1/2
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Equation (3.16) is now in a canonical form known as the
normal form of the Heun equation[8–10,24], which is

d2A

dz2 + Sg

z
+

1 + a + b − g − d

z− 1
+

d

z− n
DdA

dz
+

abz+ bH

zsz− 1dsz− nd
A

= 0. s3.17d

Heun originally introduced this equation[8] with four regu-
lar singular points to generalize the hypergeometric equation,
which has three regular singular points at 0, 1, and`. The
constantsa, b, g, andd are related to the characteristic ex-
ponents of Eq.(3.17) at its singularities. However, an ordi-
nary differential equation(ODE) with four regular singular
points is not determined solely by the singularity structure
[10], as it is for the hypergeometric equation; the Heun equa-
tion has an additional free parameter, which is the Heun ac-
cessory parameterbH. We equate coefficients of correspond-
ing terms in the generic Heun equation(3.17) and our Eq.
(3.16) and solve fora, b, g, d, and bH in terms of our
exponentsj, k, and m. The results are given in Table II,
where the first two columns give the choices fork and j
from Eq. (3.15) and the remaining columns givea, b, g, d,
andbH. The entries fora, b, andbH come out to be functions
of the exponentm and the parametern. The eigenvaluesl
requirem through Eq.(3.15), and the eigenfunctions require
m through Eq.(3.14). For a given value of the shape param-
etera [Eq. (2.2)] nsad is determined from Eq.(3.6), and thus
the problem reduces to finding the allowed values ofm
which give the physically appropriate solutions of Eq.(3.16).

Power series procedures have been developed to solve the
Heun normal form, Eq.(3.17) and are described in Refs.
[9,10,24]. We detail the application of these methods to our
problem in Appendix D.

Figure 4 shows the results of the calculation in Appendix
D. For an arbitrary value ofa in the range 0,a,2/9 there
are two discrete eigenvalues; one is the“ground” state with
v0

2,0, and the other is the first “excited” state, which is the
translation mode withv1

2;0. Then there is a continuous
spectrum withv2.a. The limiting values and degrees of
degeneracy ofv2 at the ends of thea range agree with the
values obtained in Sec. III C. The negative value ofv0

2

shows that the bounce solution of the equation of motion is
unstable and is a saddle point in the phase space of motions
of the string. The corresponding eigenfunctionf0sxd gives
the unstable direction through this saddle point.

These results will be used in the next sections to calculate
the nucleation rate.

IV. STATISTICAL PROBLEM

To cause sections of the elastic string to flip over the
barrier between the metastable and stable wells of the local
potential energy, we add damping and noise forces, so that
the EOM are modified from the deterministic Eqs.(2.7) and
(2.8) to the Langevin or stochastic PDE’s

utsx,td = psx,td,

ptsx,td = c0
2uxx − au+ 4

3u3 − 3
2u5 − gutsx,td + hsx,td.

s4.1d

Hereg is a damping constant andhsx,td is a random noise
force density. The damping and noise forces result from cou-
pling the system to a heat bath at temperatureT. The prob-
ability distribution function(PDF) rhshhjd for the random
force densityhsx,td is assumed to be Gaussian:

rhshhjd ~ expF−
1

4Tg
E

−`

`

dxE
−`

`

dth2sx,tdG . s4.2d

With this PDF the mean valuekhsx,tdl is zero and the cor-
relation function is

khsx,tdhsx8,t8dl = 2gTdsx − x8ddst − t8d. s4.3d

Stochastic differential equations with a prescribed PDF
for the noise terms are equivalent to a PDE, known as the
Fokker-Planck equation(FPE), for the probability distribu-

TABLE II. Values of Heun parameters.

k j a b g d bH

3/2 0 −m−3/2 −m−1 1/2 −3 −nsm+1dsm−3/2d−3/2

3/2 −1/2 −m−1 −m−1/2 3/2 −3 −nsm+1/2dsm−2d
−5/2 0 −m+3 −m+5/2 1/2 5 −nsm+1dsm−3/2d−7/2

−5/2 −1/2 −m+7/2 −m+3 3/2 5 −nsm+1/2dsm−2d−6

FIG. 4. The values of the squared frequencies for small oscilla-
tions for the two discrete eigenvalues for Eq.(2.22): the unstable
mode withv0

2,0 and the translation mode withv1
2=0. The dashed

line is the lower limit of the continuum, which begins atv2=a.
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tion function of the solutions[25–27]. For a continuum sys-
tem, the set of solutionspsx,td ,usx,td of Eq. (4.1) for every
specific realization of the random forcehsx,td describes the
phase space of possible motions of the system, and the PDF
rfp ,ug is a functional of these functions. Because the system
is a continuum, the FPE is a functional PDE on the full phase
space of the system. It has the form of a continuity equation
for the flow of probability in the phase space and is

]r

]t
= −E

−`

`

dxH dJu,x

dusxd
+

dJp,x

dpsxdJ . s4.4d

The right-hand side of Eq.(4.4) is the phase-space diver-
gence; one choice of coordinate axes in phase space is la-
beled by the canonical variables—that is, by both displace-
ment and momentum at eachx. For the noise PDF in Eq.
(4.2), the components of the probability current along each
axis in phase space are

Ju,xfp,ug =
dH

dpsxd
r + T

dr

dpsxd
, s4.5d

Jp,xfp,ug = S−
dH

dusxd
− g

dH

dpsxdDr − gT
dr

dpsxd
− T

dr

dusxd
.

s4.6d

Fokker-Planck equations for systems of discrete particles are
given in many places in the literature[25–27], and our Eqs.
(4.4)–(4.6) are obtained by placing these particles on a lattice
and then taking the(one-dimensional) continuum limit. For
example, from Eq.(2.1), dH /dpsxd=psxd, and in our dimen-
sionless units where the mass density is unity(cf. Appendix
A), the momentum density is the same as the velocity. There-
fore the first term in Eq.(4.5) is the familiar convective term
vr. Similarly in Eq. (4.6), −dH /dusxd is the deterministic
force density, and the terms proportional tog come from the
coupling to the heat bath. The last terms in Eqs.(4.5) and
(4.6) actually cancel between the two terms in Eq.(4.4), so
they make no contribution to the FPE. We include them,
following Ref. [15], so that the probability current vanishes
for the equilibrium solutionrfp ,ug~exps−Hfp ,ug /Td [28].

We reduce the time-dependent FPE(4.4) to a time-
independent boundary value problem by using the procedure
introduced by Farkas[29] (called the “flux-overpopulation
method”[1]) and used by many of the subsequent papers on
the subject—e.g.,[13,15,30,31]. The method changes the ini-
tial value problem into a time-independent boundary value
problem in which the distributionrfp ,ug approaches the
thermal equilibrium solution in the metastable region of
phase space, Eq.(2.10), and approaches zero in the stable
region, Eq.(2.11). The procedure assumes that probability
flowing into the lower well is immediately put back into the
upper well to replenish it. This steady-state solution has cur-
rent flowing over the “pass” at the saddle point, so that we
can calculate the nucleation rate by integrating the current
over a surface which passes through the saddle point. Thus
the FPE we solve with the stated boundary conditions is

E
−`

`

dxH dJu,x

dusxd
+

dJp,x

dpsxdJ = 0. s4.7d

V. SOLUTION FOR THE PHASE-SPACE PDF

Our method for solving Eq.(4.7) is obtained from solu-
tions of the FPE already in the literature for other systems—
e.g.,[15,32]. We transform the dependent variable in the FPE
according to

rfp,ug = Bfp,ugexps− Hfp,ug/Td. s5.1d

The boundary conditions onr, described at the end of Sec.
IV, require B to approach 1/Zms for the phase-space point
fp ,ug approaching the metastable well[Eq. (2.10)] and to
approach zero forfp ,ug approaching the stable well[Eq.
(2.11)]. Zms is the partition function for the metastable state;
we will evaluate it later in the paper. In terms ofB the for-
mulas for the current components are

Ju,xfp,ug = T
dB

dusxd
expS−

H

T
D ,

Jp,xfp,ug = F− gT
dB

dpsxd
− T

dB

dusxdGexpS−
H

T
D . s5.2d

Now we combine Eq.(5.2) with Eq. (C5) to obtain the com-
ponents of the current along the eigenfunction directions:

Ju,nfp,ug = T
]B

]jn
expS−

H

T
D ,

Jp,nfp,ug = S− gT
]B

]jn
− T

]B

]zn
DexpS−

H

T
D . s5.3d

The next step is to use Eq.(C8) to rewrite the equation to be
solved, the vanishing of the divergence of the phase-space
current Eq.(4.7), in terms of the eigenfunction directions. To
compute the derivatives of the current, we recognize that we
need to know the current only in the vicinity of the saddle
point, so it is sufficient to use Eq.(2.25) for the Hamiltonian.
The derivatives are

]Ju,n

]zn
= FT

]2B

]zn]jn
− vn

2zn
]B

]jn
GexpS−

H

T
D , s5.4d

]Jp,n

]jn
= FS− gT

]2B

]jn
2 − T

]2B

]jn]zn
D + Sg

]B

]jn
+

]B

]zn
DjnG

3expS−
H

T
D . s5.5d

The requirement that the divergence ofJ vanish[Eqs. (4.7)
and(C8)] now gives the equation forB, which is(after some
cancellations)

o
n
F− gT

]2B

]jn
2 + sgjn − vn

2znd
]B

]jn
+ jn

]B

]zn
G = 0. s5.6d

To solve the infinite-dimensional PDE(5.6), we employ
the technique initiated by Kramers[13] to reduce it to an
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ODE. We assume thatB is a function of only a single vari-
abley which is related to thezn’s andjn’s by

y = o
n

sRnzn + Snjnd, s5.7d

with parametersRn, Sn to be determined. With this assump-
tion Eq. (5.6) becomes

S− o
n

gTSn
2Dd2B

dy2 + Ho
n

fsgSn + Rndjn − vn
2SnzngJdB

dy
= 0.

s5.8d

In order for this to be an ODE, the coefficient ofdB/dy must
be proportional toy:

o
n

fsgSn + Rndjn − vn
2Snzng = s− Ady = s− Ado

n

sRnzn + Snjnd.

s5.9d

Linear independence of thejn’s andzn’s requires

sg + AdSn + Rn = 0,

− vn
2Sn + ARn = 0; s5.10d

these must hold for alln. To have a nontrivial solution forRn
andSn, the proportionality coefficientA must be

A =
g

2
F±Î1 −S4vn

2

g2 D − 1G . s5.11d

Equations(5.10) must hold for alln, but Eq.(5.11) can apply
for only onen value, since there can be only oneA value.
The only way to satisfy these conditions is forRn=Sn=0 for
all but onen value, call itn*, and thenA is determined by
vn*

2 . Next we must determinen*.
With Eq. (5.9) satisfied, Eq.(5.8) becomes

d2B

dy2 +
A

gTSn*
2 y

dB

dy
= 0. s5.12d

The solution of Eq.(5.12) is

dB

dy
~ expS−

Ay2

2gTSn*
2 D, Bsyd ~ Ey

dy8 expS−
Ay82

2gTSn*
2 D .

s5.13d

The only way forBsyd to give a normalizable distribution is
to haveA.0. To see how that can be achieved, we return to
Eq. (5.11). The only way to haveA.0 is to use the plus sign
on the first termand to havevn*

2 ,0. Now we recall that
because the bounce is a saddle point on the energy surface
and therefore has an unstable direction passing through it,
there is a negative squared frequency, and it is forn* =0.
The correct value ofA is

A =
g

2
FÎ1 +S4uv0

2u
g2 D − 1G , s5.14d

which is obviously positive. With this choice ofn* we have
achieved a suitable solution for the phase-space PDF.

We have shown that only then=0 terms are allowed in
Eqs.(5.7)–(5.9). Equations(5.10) determine the ratioS0/R0,
which is

S0

R0
= −

g

2uv0
2u2
FÎ1 +

4uv0
2u

g2 − 1G s5.15d

and which shows thatS0 and R0 have opposite signs. We
choose to have the variabley, which now isy=R0z0+S0j0
from Eq.(5.7), become negative when the phase-space point
fp ,ug moves from the saddle point(the bounce solution)
toward the metastable region and positive when it moves
toward the stable region. We also choose the phase of the
nodeless eigenfunctionf0 so that it is positive. Therefore we
must chooseR0.0, and consequentlyS0,0. The solution
for B that satisfies the boundary conditions specified earlier
is

Bsyd =
1

Zms
Î A

2pgTS0
2E

y

`

dy8 expS−
Ay82

2gTS0
2D .

s5.16d

This form for the solution assumes that the saddle point is
sharp and well isolated from both the metastable and stable
minima. Then the metastable minimum is described byy→
−` and the stable minimum byy→`. We change the inte-
gration variable in Eq.(5.16) to y9=y8 / uS0u so that

Bsyd =
1

Zms
Î A

2pgT
E

y/uS0u

`

dy9 expS−
Ay92

2gT
D . s5.17d

The final result for the phase-space PDF is obtained by com-
bining Eq.(5.17) with Eq. (5.1) to obtain

rfp,ug =
exps− H/Td

Zms
Î A

2pgT
E

sR0/uS0udz0−j0

`

dy9 expS−
Ay92

2gT
D .

s5.18d

This way of writing the solution shows that it depends only
on the ratioR0/S0 and not on the separate factors.z0 andj0
are the components of the displacement and momentum den-
sity fluctuations about the bounce in the direction of the un-
stable eigenvector, from Eqs.(2.23) and(2.24). This solution
of the FPE correctly approaches both the(normalized) ther-
mal equilibrium distribution in the metastable state and zero
in the stable state.

VI. CALCULATION OF THE NUCLEATION RATE

To obtain the nucleation rate, we need expressions for the
probability current near the saddle point, which we obtain
from Eqs.(5.3) using our solution forB. The derivatives ofB
that appear in Eqs.(5.3) are evaluated using Eq.(5.7)—e.g.,
]B/]jm=sdB/dyds]y/]jmd. We showed in Sec. V thaty de-
pends only onR0 andS0. Therefore, near the saddle point in
phase space only the components of the current in the un-
stable direction are nonzero:

Ju,0 = TS0
dB

dy
expS−

H

T
D , s6.1d
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Jp,0 = − TsgS0 + R0d
dB

dy
expS−

H

T
D . s6.2d

We note that

Jp,0 = − Sg +
R0

S0
DJu,0. s6.3d

From Eq.(5.17),

dB

dy
= −

1

Zms
Î A

2pgT
expF−

A

2gT
S y

uS0uD
2G 1

uS0u
. s6.4d

The zeroth component of the displacement part of the prob-
ability current is(noting thatS0/ uS0u=−1)

Ju,0fp,ug = T
1

Zms
Î A

2pgT

3expF−
A

2gT
S R0

uS0u
z0 − j0D2GexpS−

H

T
D .

s6.5d

These equations hold only near the saddle point, so we use
Eq. (2.25) for the Hamiltonian and obtain

Ju,0fp,ug = T
1

Zms
Î A

2pgT
e−Eb/T expF−

1

2T
o
n

sjn
2 + vn

2zn
2d

−
A

2gT
S R0

uS0u
z0 − j0D2G . s6.6d

We obtain the other nonzero component of the probability
current from Eq.(6.3).

To obtain the nucleation rate we integrate the probability
current over any surface passing through the saddle point
whose normal is not perpendicular to the current. It is easiest
to pick the surface whose normal is in thez0 direction, so we
only need theJu,0 component; theJp,0 component is orthogo-
nal to this direction. Also, since the surface passes through
the saddle point, we setz0=0. The nucleation rate is the
integral over all the other variables:

I = T
1

Zms
Î A

2pgT
e−Eb/TE

−`

`

dj0 expS−
j0

2

2T
−

A

2gT
j0

2D
3Fp

nù1
E

−`

`

djne
−jn

2/2TGE
−`

`

dz1Fp
nù2

E
−`

`

dzne
−vn

2zn
2/2TG .

s6.7d

The Gaussian integrals here are elementary, but we give the
evaluation of the one overj0:

Î A

2pgT
E

−`

`

dj0 expS−
j0

2

2T
−

A

2gT
j0

2D
=

g

2Îuv0
2u
FÎ1 +

4uv0
2u

g2 − 1G . s6.8d

The integral over the coefficient of the translation mode,
dz1, requires separate evaluation[16]. Any fluctuation about

the bounce solutionubsxd can be expanded as shown in Eq.
(2.23). We consider a very particular fluctuation—namely,
the one produced by shifting the bounce solution an infini-
tesimal amountdx:

ubsx + dxd − ubsxd =
dub

dx
dx= o

n

dznfnsxd. s6.9d

In Eq. (3.1) we showed that the derivative of the bounce
dub/dx is proportional to the eigenfunctionf1, so only the
n=1 term is nonzero in Eq.(6.9). Equation(3.4) gives the
proportionality factor betweendub/dx and f1. Combining
these two equations givesdz1=sÎEb/c0ddx, and then the in-
tegral needed in Eq.(6.7) is

E
−`

`

dz1 =
ÎEb

c0
L, s6.10d

whereL is the system length. The nucleation rate is extensive
in the thermodynamic limitL→`. (If we had considered a
finite system with specific boundary conditions, the depen-
dence on the system size would be different[33].) To this
point we have the following result for the nucleation rate per
unit length:

I

L
= Te−Eb/T

ÎEb

c0

g

2Îuv0
2u
FÎ1 +

4uv0
2u

g2 − 1G
3

1

Zms
p
nù1

E
−`

`

djne
−jn

2/2Tp
nù2

E
−`

`

dzne
−vn

2zn
2/2T,

s6.11d

whereZms is the partition function obtained from the Hamil-
tonian expanded around the metastable minimum, Eq.(2.27).
The factor inZms coming from the kinetic energy cancels the
integrals overjn in Eq. (6.11), except that the numerator has
one fewer factor than the denominator because of thenù1
restriction. Then, the integrals overzn in Eq. (6.11) and com-
ing from zn,ms in Eq. (2.27) have the same form but with
different frequencies. The restrictionnù2 in the numerator
means that there are two fewer factors in the numerator than
in the denominator. The ratio of these integrals is

p
nù2

Î2pT

vn
2 Fp

n
Î 2pT

vms,n
2 G−1

=
1

2pT

p
n

vms,n

p
nù2

vn

.

s6.12d

The nucleation rate per length is now

I

L
=

1

s2pd3/2

1

c0
e−Eb/TÎEb

T

g

2Îuv0
2u
FÎ1 +

4uv0
2u

g2 − 1GQ,

s6.13d

where
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Q =
pn

vms,n

pnù2
vn

= a
pn

Îvms,n
2 /a

pnù2
Îvn

2/a
. s6.14d

The ratiosvn
2/a are introduced because they are related to

the eigenvalues of the Schrödinger equation in Eq.(3.8). The
prefactor ofa results because the numerator has two fewer
factors than the denominator.

Our final problem is to evaluateQ in Eq. (6.14), which
involves only continuum modes for both metastable and
bounce solutions. We squareQ, take its logarithm, write the
resulting sums in terms of the density of states function
(DOS) for squares of the frequencies of the metastable
modes and continuum part of the bounce modes, and then
take the square root. That is,

Q = a expH1

2
E

1

`

dẽfr̃mssẽd − r̃bsẽdgln ẽJ . s6.15d

The DOS for the bounce modes is defined by

r̃bsẽd = o
nù2

dsẽ − vn
2/ad; s6.16d

the DOS for the continuum modes has a similar definition in
terms of the corresponding squared frequenciesvms,n

2 /a and
the sum onn is over all continuum modes. The lower limit of
the integral in Eq.(6.15) expresses the fact that the lower
limit on the continuum for both sets of modes is atv2=a.
The final step is to shift the integration variable in Eq.(6.15)
to e= ẽ−1—i.e., e=v2/a−1 [34]. We define shifted DOS
functions for both sets of modes byrsed= r̃s1+ed and obtain

Q = a expH1

2
E

0

`

defrmssed − rbsedglns1 + edJ .

s6.17d

For the metastable modes the DOS is obtained from a Klein-
Gordon equation and is well known. To obtain the DOS for
the bounce modes, we use a WKB approximation, similarly
to the procedure used by Büttiker and Landauer[32]. The
details are given in Appendix E.

Equations(6.13), (6.17), and (E11) are our final formal
result for the nucleation rate per unit length. Equation(2.16)
gives the bounce energyEb as a function of shape parameter
a and characteristic velocityc0; it is proportional toc0. From
the way thatc0 enters in Eq.(6.13), we see that ifc0I /L is
plotted as a function ofc0/T, then, for given values of the
shape parametera and the damping constantg, a single
curve is obtained.

Numerical results for the nucleation rate are obtained by
using the values for the discrete eigenvaluev0

2 and the results
for Q from the calculations in Appendix E. These are given
in the next section.

VII. NUMERICAL RESULTS

In Figs. 5 and 6 we show the logarithm of the nucleation
rate per unit length as a function of inverse temperature for a
fixed value of the damping constant and for a range of values

for the shape parametera. The ordinate and abscissa have
been scaled byc0 as discussed in the preceding section. The
value of g satisfiesg.Îuv0

2sadu for all a. This condition is
sufficient for the calculations to be in the range where the
theory in the preceding sections is valid[1]. However, it is
not a necessary condition[35].

Unfortunately, at the present time there do not appear to
be any existing experiments or simulations to which these
results could be compared.

The results presented here should be contrasted with our
earlier results for the asymmetricf4 local potential energy
[7]. The range of temperature was much smaller in[7], due
to the limited temperature range of the simulation results
available for comparison there. The temperature range shown
here is large enough to show the deviation from linearity on
a semilogarithmic plot caused by the temperature depen-
dence of the prefactor in Eq.(6.13). For a givena this de-
viation is most pronounced at largeT. It is also larger for the
smallera values.

FIG. 5. Temperature dependence of the scaled nucleation rate
for g=0.3 and for differenta values. From right to left,a=0.030,
0.040, 0.050, 0.060, 0.070, 0.0878.

FIG. 6. Temperature dependence of the scaled nucleation rate
for g=0.3 and for differenta values. From right to left,a=0.0972,
0.109, 0.124, 0.142, 0.167, 0.191, 0.210.
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Figure 7 shows the nucleation rate per unit length as a
function of inverseT for an intermediate value ofa for three
different values of the damping constantg. Not surprisingly,
the rate decreases rather uniformly for increasingg.

The temperature dependence of the preexponential factor
found here in Eq.(6.13) and in [7] is proportional toT−1/2.
This result agrees with[5], where it is claimed that this is the
universal temperature dependence(outside the quantum tun-
neling regime). That claim was made on the basis of a theory
valid only where the local potential energy was only slightly
asymmetric(i.e., thea→2/9 limit for our system). We have
found that dependence here for all values of the shape pa-
rameter.

VIII. SUMMARY

In summary we have presented a calculation of the nucle-
ation rate of critical droplets on a continuum one-
dimensional elastic string moving in a symmetricf6 local
potential energy. We have shown that the evaluation of the
spectrum of small oscillations about the critical droplet can
be done by solving a Heun equation. For this system this
spectrum has two discrete states: the unstable mode and the
translation mode. We have presented the details of the solu-
tion of the functional Fokker-Planck equation on the phase
space of this continuum system, which involves projecting
the equation onto the eigenfunction directions obtained from
the Heun equation. These results are exact except for the use
of the WKB approximation to obtain the frequency ratios of
the continuum small oscillation modes about the critical
droplet and the metastable minimum.

A subject for future work would be to extend the use of
the Heun equation to discuss the case of weak damping,
where different methods are required[13]. A further problem
is to obtain a generalization that treats the whole range of
damping; this is the so-called “Kramers turnover problem,”
which so far seems to have been treated only for the single-
particle problem[35–42] and not for a continuum system.

APPENDIX A: SCALE FACTORS

In this appendix we begin with the more general Hamil-
tonian with a parameterK [7]:

H =E
−`

`

dxH p2

2rM
+

1

2
c0

2S ]u

]x
D2

+ rMF1

2
Au2 −

B

K + 2
uK+2

+
C

2K + 2
u2K+2GJ , sA1d

whererM is mass density and all factors have dimensions.
The caseK=1 is the asymmetricf4 system andK=2 gives
the f6 system considered in the main text. The local poten-
tial energyV1sud [quantity in square brackets in Eq.(A1)]
has dimensions ofsL /Td2 (i.e., velocity squared). Therefore
we introduce a velocity unit

v0 =ÎSK + 1

2
D1+2/KS 3

K + 2
D2+2/K B2+2/K

C1+2/K ,

a length unit

l0 = F3

2
SK + 1

K + 2
DB

C
G1/K

,

and the time unit obtained from these:

t0 =
l0
v0

= S 2

K + 1
D1/2SK + 2

3
DÎC

B
.

With these scale factors, the nondimensional form of the lo-
cal potential energy is

V1sud = 1
2au2 − 1

3uK+2 + 1
4u2K+2, sA2d

where the shape parameter is

a =
2

9

sK + 2d2

K + 1

AC

B2 . sA3d

We chooserM to be the unit of mass density; thenrM, l0, and
t0 can be combined to form the unit of any other physical
quantity. The text considers theK=2 case of these equations.

APPENDIX B: SOLUTION OF Eq. (2.9)

We start by considering the more general version of Eq.
(2.9) obtained by using the local potential energy from Eq.
(A2):

u9sxd =
1

c0
2

d

du
S1

2
au2 −

1

3
uK+2 +

1

4
u2K+2D . sB1d

It has been noted by several authors[16,43,44] that by con-
sideringx to be “time,” this equation is analogous to New-
ton’s second law for a particle moving in one dimension in
the invertedpotential energyf−V1sudg. This observation al-
lows integration of Eq.(B1) by elementary techniques. From
the shape of the inverted potential energy(see Fig. 1 for the
K=2 case), we see that there is a solution with zero “energy”
in which the particle starts atu=0 at “time” x=−`, moves
across the well in the inverted potential energy until it
reaches the first zero off−V1sudg at positive u, and then
decreases back tou=0 at “time” x= +`. This is the “bounce”
solution that satisfies the boundary conditions described in
Sec. II, and we refer to it asubsxd. The first integral of Eq.

FIG. 7. Scaled nucleation rate per unit length,c0I /L as a func-
tion of c0/T for fixed a and for differentg values.
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(B1) with integration constant chosen to be consistent with
this description is

fub8sxdg2 =
2

c0
2S1

2
aub

2 −
1

3
ub

K+2 +
1

4
ub

2K+2D . sB2d

We change the dependent variable here to

gsxd = fusxdgK sB3d

and find thatg satisfies the equation

sg8d2 =
2K2

c0
2 S1

2
ag2 −

1

3
g3 +

1

4
g4D . sB4d

Except for theK2 factor, Eq.(B4) is the “quasienergy” con-
servation equation for the bounce solution of theK=1 case
of Eq. (A2), which is the potential energy function of an
asymmetricf4 system. That is, all values ofK.0 in the
local potential energy, Eq.(A2), can be reduced to solving
theK=1 case with an extra factor ofK2. The solution of Eq.
(B4) is given in several places in the literature—for example,
[45–47]—and is

gsxd =
3a

1 +
3

2
Î212

9

− a2 cosh3KÎa

c0

sx − xmaxd4
.

sB5d

xmax is the location of the center and maximum of the
bounce, and it enters the solution as an integration constant.
The arbitrariness of the location of the bounce center ex-
presses the translational invariance of the system and leads to
the translation mode discussed in Sec. III A. ForK=2 the
transformation back to the original functionusxd [Eq. (B3)]
gives the result for the bounce given in Eq.(2.13). The other
form given in Eq.(2.14) is obtained using identities for hy-
perbolic functions. For theK=2 case another solution is ob-
tained by taking the negative square root. It describes the
symmetrical situation where the critical droplet forms toward
the left minimum ofV1sud.

APPENDIX C: CHANGE OF VARIABLE IN FUNCTIONAL
DERIVATIVES

We consider a scalar functionalB of two one-dimensional
fields spsxd ,usxdd. (The notation is the same as in the main
body of the paper, but the functional and the fields are not
necessarily the same physical quantities as considered there.)
When the fields are changed from arbitrary but definite
choices sp ,ud to some infinitesimally close fieldssp
+dp , u+dud, the functional changes by

dB= Bfp + dp,u + dug − Bfp,ug, sC1d

and by definition of functional derivative this is the same as

dB=E dxF dB

dpsxd
dpsxd +

dB

dusxd
dusxdG . sC2d

In terms of some complete orthonormal set ofreal functions
hfnj, the changes in the fields have expansions

dpsxd = o
n

djnfnsxd,

dusxd = o
n

dznfnsxd. sC3d

We substitute Eqs.(C3) into Eq. (C2) and obtain

dB= o
n
FdjnE dx

dB

dpsxd
fnsxd + dznE dx

dB

dusxd
fnsxdG .

sC4d

Since the fields in the functionalB are completely specified
by their expansion coefficients with respect to the sethfnj, B
can equivalently be thought of as a function of this infinite
set of coefficients—i.e.,Bfp ,ug;Bsj0,j1, . . . ;z0,z1, . . .d.
We compare Eq.(C4) to the familiar equation from multi-
variable calculus for the differential in terms of partial de-
rivatives and obtain

]B

]jn
=E dx

dB

dpsxd
fnsxd,

]B

]zn
=E dx

dB

dusxd
fnsxd. sC5d

The functional derivatives are evaluated at the initial point in
phase spacefp ,ug.

Now suppose we have a phase-space vector functional of
these fields—e.g.,sJu,xfp ,ug ,Jp,xfp ,ugd. Since the complete
orthonormal set of real functionshfnsxdj is the unitary trans-
formation between thex representation and then representa-
tion, the components along the directions of this orthonormal
set are

Ju,nfp,ug =E dyJu,yfp,ugfnsyd,

Jp,nfp,ug =E dyJp,yfp,ugfnsyd. sC6d

Using Eq.(C5), we obtain, from Eq.(C6),

]Ju,n

]zm
=E dx

dJu,n

dusxd
fmsxd =E dx

d

dusxd E dyJu,yfnsydfmsxd,

sC7d

and similarly for]Jp,n/]jm. Next we add these two deriva-
tives, setm=n, and sum onn. In the resulting expression the
completeness relationonfnsydfnsxd=dsy−xd appears, and
we obtain another way to write the phase-space divergence:

o
n
F ]Ju,n

]zn
+

]Jp,n

]jn
G =E dxF dJu,x

dusxd
+

dJp,x

dpsxdG . sC8d

APPENDIX D: SOLUTION OF Eq. (3.16)

Procedures that have been developed to solve the Heun
normal form, Eq.(3.17), are described in Refs.[9,10,24], and
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we have adapted those to our problem, in which the param-
eters in Eq.(3.17) are constrained by the conditions in Table
II. The fundamental solution of Eq.(3.17) is the power series
aboutz=0 associated with the characteristic exponent zero.
A power serieso j=0

` cjz
j substituted into Eq.(3.17) comes out

to be [9]

Aszd ; Asn,bH;a,b,g,d;zd = 1 −
bH

gn
z+ o

j=2

`

cjz
j . sD1d

The coefficientscj for j ù2 are determined from a three term
recursion relation

ns j + 1ds j + gdcj+1 − h j2sn + 1d + jfg + d − 1 + sa + b − ddng

− bHjcj + s j − 1 +ads j − 1 +bdcj−1 = 0, j ù 1, sD2d

starting fromc0=1 andc1=−bH / sgnd. We divide this equa-
tion by j2cj s j ù1d, both to obtain an equation for the coef-
ficient ratioRj =cj+1/cj and to obtain coefficients that have a
limit as j →`:

nS1 +
1

j
DS1 +

g

j
DRj − Hn + 1 +

1

j
fg + d − 1 + sa + b − ddng

−
bH

j2
J + S1 +

a − 1

j
DS1 +

b − 1

j
D 1

Rj−1
= 0, j ù 1.

sD3d

By knowing the limit of the ratio of the coefficients, we can
use the ratio test to determine whether our series converges
and to determine its radius of convergence. We introduce
R`=lim j→`Rj, and then from Eq.(D3) we have thatR` must
be a solution of

nR`
2 − sn + 1dR` + 1 = 0. sD4d

This equation has the pair of rootsR`,1=1/n and R`,2=1.
Equation(3.6) shows that 0,1/n,1, so these two roots are
unequal except at the extreme valuen=1, which is thea
=2/9 limit for the shape parameter[Eq. (2.2)], where we
already know the answer[Sec. III C]. We now quote from
Refs.[10,24] the conclusion of a theory due to Perron. If the
roots of Eq.(D4) have different moduli withuR`,1u, uR`,2u,
then in general limj→`uRju exists and takes the larger value
uR`,2u. In our caseR`,2=1, so the ratio test shows that our
series converges only in a restricted interval aroundz=0 that
does not includez=1. Perron’s theory further states that if
the Heun accessory parameterbH takes on certain special
values, then limj→`uRju equals the smaller rootR`,1. Since
R`,1=1/n,1, convergence of the series is assured, with a
radius of convergence that is larger than 1, and therefore our
series converges at two singular pointsz=0 andz=1. It was
in order to make this use of Perron’s theorem that we chose
the parametrization in our Heun equation so that the “mov-
ing” singularity would have the propertynsad.1. In our
application we need convergence at bothz=0 and z=1.
These points arey=0 andy=` of the position variable in our
Schrödinger equation, and we need the wave function for the
bound states to be finite and zero, respectively, at these two
points. Therefore we have to ensure thatbH has one of the
special values for this situation to occur. Since in our appli-

cationbH is expressed in terms ofm (Table II), satisfying this
condition will determine the allowed values ofm and there-
fore of the eigenvaluel through Eq.(3.15).

Equation(D3) has the form

pjRj − qj +
r j

Rj−1
= 0, j ù 1, sD5d

which can be turned around to

Rj−1 =
r j

qj − pjRj
, j ù 1. sD6d

We obtain the definitions ofpj, qj, andr j from Eq. (D3), for
j ù1:

pj = nS1 +
1

j
DS1 +

g

j
D , sD7d

qj = n + 1 +
1

j
fg + d − 1 + sa + b − ddng −

bH

j2
, sD8d

r j = S1 +
a − 1

j
DS1 +

b − 1

j
D . sD9d

The j =1 case of Eq.(D6) is R0=r1/ sq1−r1R1d, and we al-
ready knowR0=c1/c0=−bH / sgnd. Further we have the re-
quirement of “augmented convergence”(Ref. [10], p. 77),
that limj→`uRju=1/n,1. By iterating Eq.(D6), we expand it
into a continued fraction, and we obtain the equation that is
to be solved form:

0 =
bH

gn
−

− r1

q1−

p1r2

q2−

p2r3

q3−

p3r4

q4−
¯ . sD10d

At this point we introduce the small part of the theory of
continued fractions[48] that we need. The generic continued
fraction has the form

f = b0 +
a1

b1+

a2

b2+

a3

b3+
¯ . sD11d

If this expression is truncated at thenth level, the result is
called thenth convergent, and it can be simplified into an
ordinary fraction

fn = b0 +
a1

b1+

a2

b2+

a3

b3+
¯

an

bn + 0
=

An

Bn
. sD12d

The numerator and denominator in this expression are calcu-
lated recursively from

An = bnAn−1 + anAn−2, Bn = bnBn−1 + anBn−2, sD13d

and the initial valuesA−1=1, A0=b0, B−1=0, andB0=1. We
compare Eqs.(D10) and (D11) and obtain

b0 =
bH

gn
, sD14d
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aj = − pj−1r j

= nS1 +
1

j − 1
DS1 +

g

j − 1
DS1 +

a − 1

j
DS1 +

b − 1

j
D ,

sD15d

bj = qj , sD16d

for j ù1; we definep0=−1 for consistency.
We now have the formulas we need to determine the al-

lowed values ofm numerically.We substitute for all param-
etersa, b, g, d, bH from the first and second line of Table II.
(The results from the third and fourth lines duplicate those
from the first two lines.) For a given value of the shape
parametera, n is determined from Eq.(3.6), so the only
unknown ism. We truncate the continued fraction at some
nth level where we can accurately replaceRn by its required
limit 1 / n. Then, by use of Eq.(D13), the truncated version of
Eq. (D10) becomes a high-order polynomial equation inm,
and we need to determine its roots. We wrote a computer
algebra program to determine these roots from three con-
secutive convergentsfn, fn+1, and fn+2. We found that taking
n equal to 8, 9, or 10, we obtained agreement among the
three convergents to at least 10 decimal places. This agree-
ment deteriorated to about 5 decimal places forn→1, which
is a→2/9; however, we already know the answer in that
limit from other considerations(Sec. III C).

From the allowed values ofm we obtain the eigenvalues
l, and then the allowed values for the squares of the small
oscillation frequenciesvi

2. The results forv2 are shown in
Fig. 4 and are discussed in Sec. III D.

APPENDIX E: FREQUENCY RATIOS

To calculate the frequency ratio in Eq.(6.17), we use
techniques employed by Trullinger and de Leonardis[49] to
analyze the small oscillation spectrum about the kink solu-
tion of a double-quadratic system and by Büttiker and Lan-
dauer[32] to calculate the kink-antikink nucleation rate for
an overdamped biased sine-Gordon chain. The potential en-
ergy vsxd [Eq. (3.10)] in our Schrödinger equation ap-
proaches zero exponentially foruxu→`. Therefore we imag-
ine a large lengthL such that the region wherevsxd is
appreciably different from zero is contained within the inter-
val −L /2,x,L /2; eventually, we wantL→`. We have
previously noted thatvsxd is an even function ofx and that
we can choose eigenfunctions that are either even or odd
functions.

For x< ±L /2, the particle is essentially free, so the even
sed and oddsod eigenfunctions have the form

fse,odsxd →
x<±L/2

Ck
se,odFcos

sin
GSkx±

1

2
Dse,odskdD . sE1d

[The upper and lower elements in the array are thesed and
sod cases, respectively. In addition, the upper and lower signs
go together.Ck

se,od is a normalization constant.] To count the
states, we impose periodic boundary conditions(PBC’s) on
the interval −L /2,x,L /2 and obtain the condition

kSx +
L

2
D +

1

2
Dse,odskd − FkSx −

L

2
D −

1

2
Dse,odskdG

= kL + Dse,odskd = 2pnse,od, sE2d

wherense,od=1,2,3, . . . .
We use the WKB approximation[50] to obtain the phase

shift. For familiarity we revert to textbook quantum mechan-
ics notation for a few equations, where the Schrödinger equa-
tion is

−
"2

2M

d2c

dx2 + Vsxdc = Ec. sE3d

With Vsxd=Vs−xd, the even and odd WKB wave functions
are

cse,odsxd =
Cse,od

Î2M

"2 fE − Vsxdg

3Fcos

sin
GHE

0

x

dx8Î2M

"2 fE − Vsx8dgJ sE4d

(Cse,od is a normalization constant). The total phase shift
across the periodicity interval is

E
0

L/2

dxÎ2M

"2 fE − Vsxdg −E
0

−L/2

dxÎ2M

"2 fE − Vsxdg

= 2E
0

L/2

dxÎ2M

"2 fE − Vsxdg. sE5d

We equate this to the total phase change in Eq.(E2) and
obtain

kL + Dse,odskd = 2pnse,odsEd = 2E
0

L/2

dxÎ2M

"2 fE − Vsxdg.

sE6d

We have writtennse,odsEd here because it is the number of
states up to energyE. In the WKB approximation, this num-
ber is the same for the even- and odd-parity states. The de-
rivative with respect toE of the number of states is the DOS.
The total density of states is the sum of the even and odd
cases, so

rbsEd =
2M

p"2E
0

L/2

dx
1

Î2M

"2 fE − Vsxdg
. sE7d

We compare Eq.(E3) with Eq. (2.22) and see that we should
replace

E → v2

a
− 1,

2M

"2 → a

c0
2, Vsxd → −

4

a
ub

2sxd +
15

2a
ub

4sxd.

sE8d

Finally, we change the integration variable toy from Eq.
(3.5), introduce the eigenvaluel from Eq.(3.7) and the func-
tion vsyd from Eq. (3.10), to write the DOS as
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rbsld =
1

p
E

0

ÎaL/s2c0d
dy

1
Îl − vsyd

. sE9d

The DOS for small oscillations about the metastable mini-
mum is obtained by omitting the functionvsyd, so

rmssld =
1

p
E

0

ÎaL/s2c0d
dy

1
Îl

=
L

2p

Îa/c0

Îl
. sE10d

We substitute Eqs.(E9) and (E10) into Eq. (6.17) for
lnsQ2/a2d, and we take the thermodynamic limitL→`,

which also removesc0 from this function. Then we inter-
change the order of integration, so that

lnsQ2/a2d =
1

p
E

0

`

dyE
0

`

dl lns1 + ldF 1
Îl

−
1

Îl − vsyd
G .

sE11d

The integral onl can be done analytically[51]; the result
depends on whethervsyd is less than or greater than −1. For
a,10/49, there is one solution to the equationvsyd=−1, and
for 10/49,a,2/9, there are two. The integral ony must be
broken into intervals depending on the magnitude ofvsyd,
and then those integrals must be evaluated numerically.
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