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Nucleation rate of critical droplets on an elastic string in a ¢° potential
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We obtain the nucleation rate of critical droplets for an elastic string moving df bcal potential and
subject to noise and damping forces. The critical droplet is a bound soliton-antisoliton pair that carries a section
of the string out of the metastable central minimum into one of the stable side minima. The frequencies of
small oscillations about the critical droplet are obtained from a Heun equation. We solve the Fokker-Planck
equation for the phase-space probability density by projecting it onto the eigenfunction basis obtained from the
Heun equation. We employ Farkas’ “flux-overpopulation” method to obtain boundary conditions for solving
the Fokker-Planck equation; these restrict the validity of our solution to the moderate to heavy damping
regime. We present results for the rate as a function of temperature, well depth, and damping.
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[. INTRODUCTION In the present paper we extend these calculations to a
string moving in a symmetric triple-well local potential en-
“The problem of escape from metastable states is ubiquiergy, the so-calledt® potential, restricted to the situation
tous in almost all scientific areas.” This felicitous character-where the right and left side wells are deeper than the center
ization of the importance and range of applicability of reac-well. There is a bound soliton-antisoliton solution to the
tion rate theory begins an authoritative revi¢®j of the  equations of motion, which lies mostly in the center well but
development of the subject, up to 1990. Since the presentavhich makes a single excursion into one of the side wells.
tion in this review is so complete, we refer the reader to it forThat solution is the critical droplet for nucleation of the
the details of this development. Additional papers relevant tetring out of the metastable central well into one of the stable
the subject, which were published after REf] was com-  side wells. The calculation of the spectrum of small oscilla-
pleted, are mentioned below. tions about this critical droplet again reduces to solving a
The present paper is a contribution to the calculation offeun equation, and we provide the details of that calculation

reaction rates for a one-dimensional continuum system—i.enere. ) )
an elastic string moving in a external local potential energy The calculations here are restricted to the case of moder-

and subject to damping and noise forces arising from coudte to large damping. Different methods are required to treat

_ . ) A . the case of weak dampirid3].
pling to a heat bath. This particular application of nucleation To our knowledge there has not been a calculation of the

theory was initiated by Seeger and Schifl2f and by Hirth nucleation rate for a continuum system with t#é local

2psd L_fthe['%,r ?Qgszaasurtﬁgrlsmfhogtzgt gﬁnmtggg:??ns g?un; gg:;] otential energy. There has been one paper that treats a single
[4-6]. ! P P article moving in a triple-well potential, with emphasis on

from observations of dislocation motion in crystals. In thisy "\ hole range of dampinghe “Kramers’ turnover prob-
approach, the dislocation moves through the crystal b¥em”) [14]

nucleation of bound soliton-antisoliton pairs in its displace-
ment field.

In a previous papef7], we outlined a calculation of the
soliton-antisoliton nucleation rate for a string moving in an
asymmetric double-wellp* potential. In general such rate
calculations require calculating the frequency spectrum o
small oscillations about the “critical drople{the soliton-
antisoliton paiy. For this system we showed how this calcu-

The outline of this paper is as follows. In Sec. Il we
describe our system, give the critical droplet solution of its
equation of motion, and formulate the problem of small os-
cillations about the critical droplet. In Sec. Il we relate the

mall oscillation problem to the Heun equation and calculate
he spectrum of small oscillations about the critical droplet.
In Sec. IV, we describe our Fokker-Planck equation, taking
) . X ) care that we include the whole phase space of our continuum
lation reduced to solving a Heun equation, a particular 9€N5ystem. In Sec. V, we solve the Fokker-Planck equation for

eralization of the “hypergeometric equation that waspe phase-space probability distribution function with appro-
introduced in 18898]. In recent years this equation has been riate boundary conditions, and in Sec. VI we use it to cal-

found useful to solve several problems of physical interes ulate the flow of probability flux over the saddle point on

[9-12. the energy surface in phase space. This last calculation gives
the nucleation rate. We give the results of numerical evalua-
tions of our formula for the nucleation rate in Sec. VII, and

*Electronic address: wck@wfu.edu we give our conclusions in Sec. VIII. Some technical parts of
"Electronic address: grahamaj@appstate.edu our calculations are given in the Appendixes.
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Equations (2.7)«2.9) imply that extremal solutions are

static. Two trivial solutions of EqY2.9) are the metastable
FIG. 1. The local potentiaV;(u). From bottom to top the values solution

of the shape parametarare 0.01, 0.1, 0.18, 0.22222.

-0.10 PR P R - L P
-1.5 -1.0 -0.5 0.0 0.5 1.0
u

o

TindX) = 0, UndX) = Ups=0 (2.10
Il. SYSTEM and the stable solution
We consider a one-dimensional system consisting of an m(X) = 0, Ug(X) = Us. (2.11

elastic string moving in an external potential energy. The N )
Hamiltonian, a functional of the momentum density field We look for additional solutions of Eq$2.9) that have
m(x,t) and the displacement fiela(x, t), is the string lying in the uppe¢metastablgwell of V;(u) for
. . L )2 moit of the rangtra1 of, but also havehan ti)nterval of the stringh
_ 4L 1 ofdu making a smooth transition over the barrier separating the
Hlmu]= f . dx[ 2™ 2C°< ax) * Vl(”)} 2D etastable well from one of the stable wells and back. These
are solutions that describe a configuration of the string
wherec, is a constant and the local potential is the symmet=__which is everywhere the same as the initial metastable
ric function state except for the presence of a single localized fluctuation,
Vy(U) = %auz— §u4+ %uﬁ, 0<a<2/9 (22 ©9.a droplet[15]. [Of course for thgvl(.u) in _Eq. (2.2 _
there are two, symmetric, solutions going into either the right
(see Fig. 1 (All quantities here are dimensionless. The scal-or left stable well; for definiteness, we choose the solution
ing factors used to achieve this form are given in Appendixwith u(x)>0.] Thus the boundary conditions to be imposed
A.) For values of the “shape parametea’in the range are thatu and its first derivative vanish abe; corresponding
0<a<2/9, V,(u) has a double root ai=0 and four other to most of the chain lying in the metastable minimum. In
roots at Appendix B we find such a spatially honuniform extremal

5 > 1/2 solution, the “critical dropletT15] or “bounce”[16],
u= i|:§i \/2(5—3):| . (2.3 Wb(X)EO, (2.12

V,(u) has a metastable minimum at

Up(X) = i (2.13
ums:0' (24) " ) l+i\/g>—acos"(2LEX> |
stable minima at V2 Vo Co
¢, S
tUg= i[§+ 5(2—7—21)} , (2.5 \/\/; {@ } {\/; }
= —) tanh —(x+xg) | —tanH —(X—Xp)
2 Co Co

and maxima at

1/2 (2.19
+ = + ﬂ- g E 2 6
FUmax= = 9 Vi3lo7™ a ) (2.6 Equation(2.14) shows that the bounce is a soliton-antisoliton
bound pair[17] whose centers are separated by
For 0<a<2/9, Vi(xug) <V;(uy,e, and ata=2/9, thethree — ~
minima become degeneraté,(+uy) =V;(Uns). o= S0 1N V2/3 +va 2.15
The deterministic Hamiltonian equations of motion 0 2\a V213 -va |’ '

(EOM) obtained from Eq(2.1) are ) ] o )
which diverges logarithmically whema—2/9. The maxi-

auxt _ oH _ a(x,0) (2.7  mum value ofu,(x) is the smaller root o¥/,(u), given in Eq.
at om(X) T ' (2.3) [cf. Eq.(B2) for K=2] and increases with increasiiag
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0.6 -
5 [ 1 where the functional derivatives are evaluated at the bounce.
s | j To simplify this expression we introduce the eigenfunctions
045 7 #n(x) and eigenvalues? of (8°H/ du(x)du(x')),, which are
L _ solutions of
0.2 - i b S°H
. . x| ——— X) = wlp(x). (2.2
O'Ew 10 We use Eq(2.19 in Eq. (2.21) and find that this eigenvalue
y equation is the differential equation
FIG. 2. From bottom to top along the ordinate, the bounce so- _ 2¢n ny
Iutiog for a=0.01, 0.1, 0.18, 0.2222. The independent variable is CO dx@ 1(ub(x))¢”
y=\ax/ c. >y -
N =g {a— Au5(x) + —ué(x)] $nlX)
In writing Egs.(2.13 and(2.14), we have chosen to center d 2
the bounce at the origin; it could be anywhere. Plots0xk) - wnd>n(X)- (2.22

for several values o& are in Fig. 2.
The energy of the bounce is obtained by using @qL3 Since this is a Schrédinger equation, the set of eigenfunc-

in Eq. (2.1) and evaluating the integral. The result is tions {¢y} is a complete orthonormal set, and we use it to
express the small oscillations about the bounce as
a 1 (2 2/13-\a du(x,t) = 1) bn(X), 2.23
A +7(__a)| [\ | } (216 060 = 2 (0 n(0) (2.23
3 2y2\9 V2/3 +Va
om(Xx,t) = t X). 2.24
It rises monotonically fromEy(a=0)=0 to Ey(a=2/9) D % &) ( ‘

:cov’§/9. A condition for the validity of the statistical-
mechanical calculations presented in this paper is that th
temperatureT should satisfykgT<E,. This condition en-
sures that the notion of metastability makes sense. It be- 5 5o

comes quite restrictive of the temperature range &os 0 H=E,+ EE &t 52 Wplp* (2.29
becauseE, — 0 there. We can expect that this theory is not " "

valid for smalla because quantum effects become importanin Egs.(2.21)«2.25 n denotes a generic eigenfunction label

gnally, we use Eqsi2.17), (2.20, (2.22), (2.23, and(2.29
to write the energy for small fluctuations about the bounce as

at low temperature. and the sums are over the complete set of eigenfunctions.
From Eq.(2.9) we calculate the functional second deriva- The e|gen\/alue3) and corresponding eigenfunctiogg in
tives of the energy to be Egs.(2.21) and(2.22) are calculated in Sec. III.
The Hamiltonian can also be expanded for small oscilla-
SH tions about the metastable solution, ER.10). The expan-
=8(x—X'), (2.17 sion looks like Eq(2.20 except that the energy of the meta-

om(x)6m(X’) stable solution is zero and thesubscripts are replaced by

mssubscripts. Instead of E(R.22), the eigenvalue equation

o =0 (2.18 i d? (m9
u(x)ém(x') - ~ Cg(;ﬁ_):z ragi™ = o2 gm (2.26
$H , P ) iaénd the expansion of the energy near the metastable solution
Su(x)ou(x’) :{ o2t V1 (U)}é(x—x’). (2.19

H= %2 Eant %2 Wrenloent . (222D
Because of Egs(2.9 and (2.18), for small fluctuations " "
om(x,t) and du(x,t) about the bouncém,(x),u,(x)) the en-  The partition function determined by this quadratic Hamil-
ergy is tonian will be needed in Sec. VI.

066103-3



W. C. KERR AND A. J. GRAHAM PHYSICAL REVIEW E70, 066103(2004)

Ill. SMALL OSCILLATIONS AROUND THE CRITICAL B. Manipulations on the eigenvalue equation

DROPLET Several manipulations must be carried out on 422

In this section we describe the solution of the linear ei- in order to solve it. We describe those here but omit details.
genvalue equation for the small oscillations about theWe substitute Eq(2.13 into Eq.(2.22, we change the in-
bounce, Eq(2.22), as a function of the shape parameger dependent variable fromto

Since Eq(2.22 is a one-dimensional Schrédinger equation, fa
all the knowledge developed to solve this equation for quan- y= Lx, (3.5
tum systems is applicable here. For example, the “potential Co

energy” in Eq.(2.22 is an even function ok, sinceuy(X)  anq we use identities for hyperbolic functiofisosh26)
[Eq. (2.14)] is an even function ok. Therefore, nondegen- _» cosR(6)-1 and seck6)=1-tanR(6)]. We introduce an
erate solutions of Eq2.22) have definite parity, and degen- important parameter

erate solutions can be chosen to have definite parity.

[ 9
+ —_——
A. Stability of the bounce 1 1 2a

V(@) = ——F——;
Equations(2.7) and (2.8) can be combined to form a 9
single second-order partial differential equati¢RDE), 1-41 _Ea
which is a member of the class of nonlinear Klein-Gordon .
equations[18]. For this equation, it can be shoWh8] that  for 0<a<2/9,%0>»>1. We also change the eigenvalue by
the derivative of the stationary bounfeq. (2.13) or (2.14)] shifting it from w? to (the 1/4 factor is for later convenience
is a solution of Eq(2.22 with eigenvaluew?=0, indepen- 1/ o2

dent ofa. This “translation” mode restores the translational ANa) = —<— - 1), (3.7
invariance that was lost when the bounce was centered at 4

=0. We label the normalized eigenfunction g and it is Then Eq.(2.22 becomes

(3.6

I
: z_asmh(%_ax ©0 -0, 58
dUb \ 3a \/5 9 CO h h “ | ” 5
b(X) o — == —— —. where the “potential energy” is
dx Co 3 2 2\a -6(v+1)secfy 15vsecHy
1+-—~/—-acosl —x v(y) = + 5. (3.9
I v—tantfy (v-tantty)
V2 v 9 Co

It is also useful to substitute E@2.14) into Eqg. (2.22 and
then carry out the same steps, which gives another form for
Since ¢4(X) in Eq. (3.1) has odd parity, it cannot be the v(Y):
ground state of Eq(2.22), and there iqat least one other
solution ¢, with a negative squared frequenayé<0. We

(3.2

v(y) = - Isech(y +yo) + secR(y - yo)]

then see from Eq.2.25 that the bounce is actually a saddle 1
point on the energy surface of the system and that the eigen- + E[tanr(y +Yo) —tanHy-yo)] (3.10
function ¢, specifies a direction along which the evolution of
the system is unstable. [yo is obtained by substituting Eq2.15 into Eq. (3.5)].
By integrating Eq(B2) for the caseK=2, [cf. Eq.(2.2]  Plots ofv(y) for several values o are shown in Fig. 3.
we obtain It is evident from Eqs(3.9) and (3.10 and Fig. 3 that
. ; . v(y) is an even function of and thatv(y) —0 for y— * .
Up Therefore there is a finite number of discrete bound-state
f_wd 2C°( d ) - j_ dxV(Up(x)) (3.2 eigenvalues withh <0 and a continuum fok >0. In terms

of the original eigenvaluey?, there are discrete values for
which showgcf. Eq.(2.1)] that the elastic and local potential w?<a and a continuum fow?>a. [We have already deter-
energy contributions to the total energy are equal for themined that there is one discrete levela#t=0 and(at least

stationary bounce. Therefore, one more with v><0.] wv(y) has a single well for
0<a<32/225=0.14222... and a double well for

E =2 ” d dub (3.3 32/225<a<2/9. For 16/75=0.21333.<a<2/9, there is

b= Co _ X dx /"’ ' a symmetric interval aroungi=0 wherev(y) >0 (see Fig. 3.

and the normalized eigenfunction for the translation mode is C. Limiting cases

In the two end-point cases— 0 anda—2/9, Egs.(3.8)

A )——ﬂib (3.4 and (3.9 reduce to well-known examples for the
E, dx Schrédinger equation.
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T T T T ] TABLE |. Characteristic exponents.
i Characteristic
il ] r Regular singular points exponents
I 1 0 0,1/2
0 2 1 -\
= 3 1a) -3/2,5/2
4 © 0,1/2

] in Schrodinger equations with a ségp well—viz., to the
1 variablez=tanlf(y). The physical range of is —c <y <<,

| and this variable change gives a one-to-one map of half of
e that interval—say, 6&Cy<<eo—to the interval 6<z<1. To

y obtain the solution on the other half of the rangeypfwe
recall that the solutions have definite parity, and thus the
solution on - <y<0 is obtained by symmetry. Equations
(3.8) and(3.9) become

FIG. 3. From bottom to top along the ordinate, the “potential
energy” function in Eq(3.8) for a=0.01, 0.14223, 0.21, 0.222222.

1. a0 ¢ (1/2+i)d_¢+{ N 15/4
In this limit, from Eqg.(3.6), v(a)—, and Eqs(3.8) and dZ dz | (z-1? (z-v)?
(3.9 become , (15/4=0)z+ v(3/2+)) - 9/4] 0. (313
2(z-1)(z-v) ¢=0. G

+[(4N) +2(2 + Dsech 0. 3.1
dy2 [+ ‘ yié= (31D Inspection shows that this equation has three regular singular

oints[22] at z=0, 1, andv(a), and it is straightforward to
erify that there is a fourth regular singular point zt.
he singular point ai(a) [Eq. (3.6)] moves with changes in
the value of the shape parameteror, equivalently, with
changes in the separation of the soliton and antisoliton in the
tationary bounce solutidiieqg. (2.14)] or changes in the “po-
éntial energy” in the Schrddinger equatigRig. 3). The
characteristic exponents at each of these singularities, ob-
tained from the Frobenius method of series solufi23], are
2.a—2/9 given in Table I.

Fora—2/9 the two minima in EQ(3.9) separate to = We now transform Eq(3.13) so that one of the character-
(Fig. 3), so we change the independent variabletg-y,to  istic exponents at each of the finite singularitees0, 1, and
place the right well at the origin and send the other ta — v(a) is reduced to zero. The appropriate transformation is to
The eigenvalues are doubly degenerate in this limit, sinca new dependent variabl(z) defined by
each state is duplicated ate+ Equationg3.8) and (3.9) be-

Then(n+1)secR y potential well with integen is a standard P
example of a reflectionless potential in quantum mechanic
[19,20. There are two bound states with eigenvaluﬁ&a&
=-4,-1, WhICh are equivalent {af. Eq.(3.7)] wo—)—3a for
a—0 and w?=0. The lowest value corresponds to the un-
stable mode, and the second value to the translation mod
both of which we have previously identified.

come H2)=7%z- 1) z-v) *A®2). (3.149
2¢ 15 The exponentg, u, andk are thenegativesof either one of
(4)\)+—seci'°r z——[1—tanhz] ¢=0. the characteristic exponents at the respective singularity
de listed in Table I; i.e., each one is chosen to be one of the

(3.12 following possibilities:

This equation is a special case of a textbook exampig, k=3/2,-5/2;=0,-1/2; u= =\ (3.1H
which has the result that E¢3.12) has a single bound state
NMa=2/9)=-1 or »*=0. Because of the double degeneracy
of this limit, there must be twa? eigenvalues that approach d’A [(1/2-2¢ 1- 2p dA 3k
zero in this limit. One of these is the translation mode, with g2 B T il TV e
a)l 0 for everya in the range &<a<2/9, and the other

must be the unstable mode. +2ué- g . 125_ A)z— Oké+ g _8

(recall thatA <0 for bound state)sThe resulting equation is

i 3 A
D. Calculation of the spectrum ( 2,U«§+ Boyein+ )]
We continue the solution of Eq¢3.8) and(3.9) by mak- 2Az=-1)(z- V)
ing another independent variable change similar to that used (3.16

066103-5
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TABLE Il. Values of Heun parameters.

K & a B y 1) by
3/2 0 -u-3/2 -1 1/2 -3 w(pu+1)(u-3/2)-3/2
3/2 -1/2 -1 -u-1/2 3/2 -3 W+ 1/2)(u-2)
-5/2 0 -u+3 -u+5/2 1/2 5 wu+1)(u-3/2)-7/2
-5/2 -1/2 w+7/2 -u+3 3/2 5 v(u+1/2)(u-2)-6
Equation(3.16) is now in a canonical form known as the IV. STATISTICAL PROBLEM

normal form of the Heun equatiq@-10,24, which is To cause sections of the elastic string to flip over the

barrier between the metastable and stable wells of the local

RA [y l+a+B-y-8 & \dA  aBz+by potential energy, we add damping and noise forces, so that
92 (E o1 A )E + 2z-1)(z- )A the EOM are modified from the deterministic E¢8.7) and
v v (2.8) to the Langevin or stochastic PDE’s
-0 (347 W(x,t) = m(x,1),
Heun originally introduced this equatigB] with four regu- m(X,1) = Colg — au+ §u3— §u5— (X, 1) + 7(X,1).

lar singular points to generalize the hypergeometric equation, 4.1)
which has three regular singular points at 0, 1, andrhe '
constantsy, B, y, andé are related to the characteristic ex- Here y is a damping constant ang(x,t) is a random noise
ponents of Eq(3.17) at its singularities. However, an ordi- force density. The damping and noise forces result from cou-
nary differential equatiofODE) with four regular singular  pling the system to a heat bath at temperaffir@he prob-
points is not determined solely by the singularity structureapility distribution function(PDF) p,({n}) for the random

[10], as it is for the hypergeometric equation; the Heun equaforce densitys(x,t) is assumed to be Gaussian:
tion has an additional free parameter, which is the Heun ac-

cessory parametdy,. We equate coefficients of correspond- 1 (" -
ing terms in the generic Heun equati@®17) and our Eq. po{n}) = expl— ﬁ,f_m dxf_m dtnz(x,t)]. (4.2
(3.1 and solve fora, B, v, 6, and by in terms of our

exponentsé, «, and u. The results are given in Table 1I, With this PDF the mean valugy(x,t)) is zero and the cor-
where the first two columns give the choices forand ¢  relation function is

from Eg.(3.15 and the remaining columns give B, v, 6, Lo , ,

andby. The entries for, 8, andb, come out to be functions (X)X, 1)) = 2yTox = x) St =1). (4.3
of the exponeniu and the parameter. The eigenvalues Stochastic differential equations with a prescribed PDF
requireu through Eq.(3.15), and the eigenfunctions require for the noise terms are equivalent to a PDE, known as the
w through Eq(3.14). For a given value of the shape param- Fokker-Planck equatio(FPE), for the probability distribu-
etera [EqQ. (2.2)] v(a) is determined from Eq.3.6), and thus

the problem reduces to finding the allowed values of 03—~ T T T T T T T T T T T T
which give the physically appropriate solutions of E8}16). E
Power series procedures have been developed to solve tt  o.2F P
Heun normal form, Eq(3.17 and are described in Refs. & E
[9,10,24. We detail the application of these methods to our . E §° 3
problem in Appendix D. : S ]
Figure 4 shows the results of the calculation in Appendix.,_ ]
D. For an arbitrary value cd in the range 6<a<2/9 there § 00 E
are two discrete eigenvalues; one is the“ground” state with
w5<0, and the other is the first “excited” state, which is the -01F E
translation mode withw?=0. Then there is a continuous 2 3
spectrum withw?>a. The limiting values and degrees of  -o2f =
degeneracy ofs? at the ends of tha range agree with the 2 E
values obtained in Sec. Ill C. The negative value «ff —03E. . . L | N
shows that the bounce solution of the equation of motion is 0.00 0.05 0.10 015 0.20 0.25
unstable and is a saddle point in the phase space of motions 4
of the string. The corresponding eigenfunctigg(x) gives FIG. 4. The values of the squared frequencies for small oscilla-
the unstable direction through this saddle point. tions for the two discrete eigenvalues for Eg.22): the unstable
These results will be used in the next sections to calculatghode withwj<0 and the translation mode wit¥=0. The dashed
the nucleation rate. line is the lower limit of the continuum, which begins af=a.
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tion function of the solution§25—-27. For a continuum sys- fo dx{ 8y 8 } @7
— = 4.

tem, the set of solutions(x,t),u(x,t) of Eq. (4.1) for every su(x) | om(x)
specific realization of the random foregx,t) describes the
phase space of possible motions of the system, and the PDF
plr,u] is a functional of these functions. Because the system V. SOLUTION FOR THE PHASE-SPACE PDF

is a continuum, the FPE is a functional PDE on the full phase our method for solving Eq(4.7) is obtained from solu-

space of the system. It has the form of a continuity equatioRjons of the FPE already in the literature for other systems—

for the flow of probability in the phase space and is e.g.,[15,32. We transform the dependent variable in the FPE
. 53 53 according to
dp u,x X
Lo |y 2uxy Zmx 4.4 - -
P fw X{ u(x) 577()()} (4.9 pl,u] = B[ m,ulexp(— H[m,u]/T). (5.1

The boundary conditions op, described at the end of Sec.
The right-hand side of Eq4.4) is the phase-space diver- 1V, require B to approach 17, for the phase-space point
gence; one choice of coordinate axes in phase space is |pm,u] approaching the metastable w¢tq. (2.10] and to
beled by the canonical variables—that is, by both displaceapproach zero fof,u] approaching the stable welEq.
ment and momentum at each For the noise PDF in Eq. (2.11)]. Z,is the partition function for the metastable state;
(4.2), the components of the probability current along eachwe will evaluate it later in the paper. In terms Bfthe for-

axis in phase space are mulas for the current components are
B H

oH % Julmul=T exp(— —)

J Ul=——p+T—, 4.5 uxL 7 )
ud U] 700" Vom0 (4.5 8u(x) T

J_[mu] { T B8 T o8 ]exp( H) (5.2
XL = - - - —_ . .
) Lt . S BT L
' SU(X) om(X) om(X) Su(x)

Now we combine Eq(5.2) with Eq. (C5) to obtain the com-
(4.6 ponents of the current along the eigenfunction directions:

Fokker-Planck equations for systems of discrete particles are 3 _ T@ _H

given in many places in the literatuf@5—-27, and our Egs. unlm U] = o, ex 1)

(4.4H—(4.6) are obtained by placing these particles on a lattice

and then taking th€one-dimensionalcontinuum limit. For JB JB H

example, from Eq(2.1), sH/ m(x)=m(x), and in our dimen- Jpplmu]l = (— yT— - T—)ex;{— ?> (5.3
sionless units where the mass density is ufify Appendix %n

A), the momentum density is the same as the velocity. ThereFhe next step is to use E(C8) to rewrite the equation to be
fore the first term in Eq(4.5) is the familiar convective term solved, the vanishing of the divergence of the phase-space
vp. Similarly in Eq. (4.6), —6H/du(x) is the deterministic current Eq(4.7), in terms of the eigenfunction directions. To
force density, and the terms proportionalt@ome from the compute the derivatives of the current, we recognize that we
coupling to the heat bath. The last terms in E@s5 and  need to know the current only in the vicinity of the saddle
(4.6) actually cancel between the two terms in [E4.4), so  point, so it is sufficient to use Eq2.25 for the Hamiltonian.
they make no contribution to the FPE. We include them,The derivatives are

following Ref. [15], so that the probability current vanishes 23 2B B
for the equilibrium solutiorp[ 7, u] < exp(—-H[ 7, u]/T) [28]. Zlun _ [ _— wﬁgn—}exp(— —), (5.4)
We reduce the time-dependent FRE.4) to a time- 9Ly 9Ln0&n 9&n T
independent boundary value problem by using the procedure
introduced by Farka$29] (called the “flux-overpopulation Amn _ 7B #B JB B
method”[1]) and used by many of the subsequent papers on ST T \Yoe T JEn
07§n ﬁfn agn&gn 07§n &gn

the subject—e.g[13,15,30,31 The method changes the ini-

tial value problem into a time-independent boundary value xexp(— ﬂ) (5.5)
problem in which the distributiorp[7,u] approaches the

thermal equilibrium solution in the metastable region of
phase space, E@2.10), and approaches zero in the stable
region, Eq.(2.11). The procedure assumes that probability
flowing into the lower well is immediately put back into the
upper well to replenish it. This steady-state solution has cur- #B 5, . 0B
rent flowing over the “pass” at the saddle point, so that we |- VTa_gz +(vén - “’ngn)g + §HE =0. (5.6
can calculate the nucleation rate by integrating the current . " 3

over a surface which passes through the saddle point. Thus To solve the infinite-dimensional PDE&.6), we employ
the FPE we solve with the stated boundary conditions is the technique initiated by Kramef43] to reduce it to an

The requirement that the divergenceJ¥anish[Egs.(4.7)
and(C8)] now gives the equation fd8, which is(after some
cancellationy

B

n
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ODE. We assume tha is a function of only a single vari- We have shown that only the=0 terms are allowed in
abley which is related to the€,'s and &,’'s by Egs.(5.7—5.9). Equationg5.10) determine the rati&,/R,,
which is
y=2 (Rodn* Sién), (5.7)
n

A2
, . o D yzzl 1+—|w°|—1} (5.15
with parameter®R,, S, to be determined. With this assump- Ro  2Jwpl ¥

tion Eq.(5.6) becomes and which shows tha%, and R, have opposite signs. We
d’B 5 dB choose to have the variable which now isy=Ry{y+Sé
(‘ > YT§>W + {E [(vSh+ Rén = wnSwgn]}d_ =0. from Eq.(5.7), become negative when the phase-space point
n n y [7,u] moves from the saddle poirithe bounce solution
(5.8 toward the metastable region and positive when it moves
toward the stable region. We also choose the phase of the
nodeless eigenfunctiogh, so that it is positive. Therefore we
must chooseR,>0, and consequentl$,<0. The solution

S (Y8, + R)é - 028,41 = ( Ay = (- AD (R + Siéy) for B that satisfies the boundary conditions specified earlier
= .
n n

In order for this to be an ODE, the coefficientdB/dy must
be proportional toy:

is
(59) A 12
- o SYRE B VR R
Linear independence of thg's and {,'s requires 29T
(y+A)S,+R,=0, (5.16)
5 This form for the solution assumes that the saddle point is
oS AR =0; (5.10  sharp and well isolated from both the metastable and stable

minima. Then the metastable minimum is described/by
—o and the stable minimum by—c. We change the inte-
gration variable in Eq(5.16) to y"=y'/|S)| so that

2
A:Z[m/l—(ﬂ)—l]. (5.11 [ A p( Ay’2>
2 Y B(y)— Zwnyy/de exp—-——|. (5.17

2T

these must hold for alh. To have a nontrivial solution fdr,
and S, the proportionality coefficien must be

Equationg’5.10 must hold for alln, but Eq.(5.11 can apply i . )
for only onen value, since there can be only ofevalue. The final result for the phase-space PDF is obtained by com-

The only way to satisfy these conditions is Rg=S,=0 for ~ Pining Eq.(5.17) with Eq. (5.1) to obtain

all but onen value, call itn*, and thenA is determined by exp( HIT) Ay”
2 I "’
wp+. Next we must determing*. plm,u] = > Tf dy’ exp( )
Y1 (Rylsohéo-to

With Eq. (5.9) satisfied, Eq(5.8) becomes 2yT
@B A dB (5.18
dy? * PTL Yay ~ 0. 512 s way of writing the solution shows that it depends only
) ) on the ratioR,/ S, and not on the separate factofg.and &,

The solution of Eq(5.12) is are the components of the displacement and momentum den-
dB Ay y Ay'2 sity fluctuations about the bounce in the direction of the un-
— exp(— ) B(y) f dy exp(— ) stable eigenvector, from EgR.23) and(2.24). This solution
dy 27T§* 27’T§* of the FPE correctly approaches both tnermalized ther-

(5.13 mal equilibrium distribution in the metastable state and zero

. . ~___inthe stable state.
The only way forB(y) to give a normalizable distribution is

to haveA>0. To see how that can be achieved, we return to VI. CALCULATION OF THE NUCLEATION RATE

Eq.(5.11). The only way to haveA>O is to use the plus sign

on the first termand to have w <0. Now we recall that To obtain the nucleation rate, we need expressions for the
because the bounce is a saddle point on the energy surfapeobability current near the saddle point, which we obtain
and therefore has an unstable direction passing through ifom Egs.(5.3) using our solution foB. The derivatives oB
thereis a negative squared frequency, and it is for=0. that appear in Eqg5.3) are evaluated using E¢6.7—e.g.,

The correct value oA is aB/&§m=(dB/dy)(ay/&§m) We showed in Sec. V that de-
pends only orR, andS,. Therefore, near the saddle point in
Y 4|a)g| phase space only the components of the current in the un-
A= 2 Vi+ A 1 (5.14 stable direction are nonzero:
which is obviously positive. With this choice of we have - TSOd—B exp(— ﬂ) (6.1)
achieved a suitable solution for the phase-space PDF. u0 T) '
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dB the bounce solutiom,(x) can be expanded as shown in Eq.

Jro=-T(yS+ RO)d_y exp - T) (6.2 (2.23. We consider a very particular fluctuation—namely,

the one produced by shifting the bounce solution an infini-

We note that tesimal amountlx:
)
Jro=—| v+ = |duo- 6.3 du
0 (7 S/™ ©9 Up(x-+ 0 = Up() = ldx= 3 ddpdhy(0). (6.9
n

From Eq.(5.17),
5 In Eg. (3.1) we showed that the derivative of the bounce
d_B: 1 /A exp{— i(i) }i (6.4) du,/dx is proportional to the eigenfunctio,, so only the
Zns ¥ 2myT 2yT\ IS/ 1S n=1 term is nonzero in Eq6.9). Equation(3.4) gives the

dy
. proportionality factor betweenu,/dx and ¢;. Combining
The zeroth component of the displacement part of the pro : : —( e
ability current is(noting thatSy/|S,|=—1) bt’hese two equations givel;=(VE,/cp)dx, and then the in

tegral needed in E(q6.7) is

Judmul=T = \/ A E.
omul=To—\/-——= ® E
b0 Zos N 27y T f dgl:%L, (6.10

-2l Jool-3) s
Xexpl - ——=| =% &) |exp—=]|.
29T\ || T whereL is the system length. The nucleation rate is extensive
(6.5  in the thermodynamic limit. —c. (If we had considered a
) _ finite system with specific boundary conditions, the depen-
These equations hold only near the saddle point, so we Usence on the system size would be differé8].) To this

Eq. (2.29 for the Hamiltonian and obtain point we have the following result for the nucleation rate per
unit length:
1 A 1
Juolmu]=To— [ s——e®Texp - ——2> (& + i) _
Zons ¥V 2myT 275, | VE, v 4|w(2)|
5 —_= Te_Eb/T——/_ 1+—-1
A [ Ry L Co 2\y|wé| ¥
“ o7l g b0 éo (6.6)
29T\ || 1 ” 2 - 2.2
) - X — H dgne—gn/ZTH dgne—wngn/ZT’
We obtain the other nonzero component of the probability Zsn=1 J —o n=2 J —o
current from Eq(6.3). 6.11)

To obtain the nucleation rate we integrate the probability

current over any surface pa_ssing through the sad_dle p_c’i%herezms is the partition function obtained from the Hamil-
whose normal is not perpendicular to the current. It is easiegh o, expanded around the metastable minimum(ZEg7).

to F'Ck thde Eurface whose n(?rrrw]wal IS 1N tg‘tgadlrectllon, Sr? W€ " The factor inZ.,scoming from the kinetic energy cancels the
only need thel, o component; thd,, o component is orthogo- integrals over, in Eq. (6.11), except that the numerator has
nal to this direction. Also, since the surface passes througf,« tewer factor than the denominator because oftad
Fhe Sa?dle pOII?t,h we hsej(,:O: Tlhe .nucleatlon rate is the restriction. Then, the integrals ovéyin Eq.(6.11) and com-
integral over all the other variables: ing from ¢, ms in Eq. (2.27) have the same form but with

1 A o & A different frequencies. The restrictior= 2 in the numerator
I=T— | ——e T f déy expl - =2 - —gg) means that there are two fewer factors in the numerator than
Zms ¥ 2myT —o 2T 29T in the denominator. The ratio of these integrals is
11 sseior] [ an| 11 [ o e
=1 ) ~  Lne2) m 27TT[H\/2WTT_ 1.
(6.7 n=2 wﬁ n w%sn 27T H o, '
The Gaussian integrals here are elementary, but we give the n=2
evaluation of the one ovef: (6.12
A (7 & A, The nucleation rate per length is now
S| dbex-1-5—&
27yT ) _, 2T 29T
| 1 1 _ |Ey vy | 4w
4| w? —= e ET ——[ 1+—-1|Q,
= 7_2{ o+ el 1} . 6.9 L (2m*c T 2V[w| 4
2V|wd '

(6.13
The integral over the coefficient of the translation mode,
d,, requires separate evaluatifi6]. Any fluctuation about where

066103-9



W. C. KERR AND A. J. GRAHAM PHYSICAL REVIEW E70, 066103(2004)

R
B Hn ®msn ~ Hn \s‘wrznsn/a

0 aH = (6.14) X y = 0.300
n=2 @n n=2 VoL@ i

The ratiosw?/a are introduced because they are related to
the eigenvalues of the Schrédinger equation inBd). The
prefactor ofa results because the numerator has two fewer<,
factors than the denominator. ¢
Our final problem is to evaluat® in Eq. (6.14), which
involves only continuum modes for both metastable and
bounce solutions. We squag® take its logarithm, write the
resulting sums in terms of the density of states function
(DOYS) for squares of the frequencies of the metastable
modes and continuum part of the bounce modes, and thel

vl vl v

|

L ' L ' 1 ' ' ' ' ' ' ' '
o} 500 1000 1500 2000

take the square root. That is, cofT
— 1(” ~ ~ FIG. 5. Temperature dependence of the scaled nucleation rate
Q= anp{ 2J1 de[pmd€) = po(€)JIn 6}' (6.19 for y=0.3 and for differentn values. From right to lefta=0.030,

0.040, 0.050, 0.060, 0.070, 0.0878.
The DOS for the bounce modes is defined by

(@) = > 8- wija); (6.16

n=2

for the shape parameter The ordinate and abscissa have
been scaled by, as discussed in the preceding section. The
value of y satisfiesy> \|w5(@)| for all a. This condition is
the DOS for the continuum modes has a similar definition insufﬁcient for the calculations to be in the range where the
terms of the corresponding squared frequeneigs,/a and  theory in the preceding sections is valit]. However, it is
the sum om is over all continuum modes. The lower limit of not a necessary conditigs5].
the integral in Eq(6.15 expresses the fact that the lower  yUnfortunately, at the present time there do not appear to
limit on the continuum for both sets of modes is@t=a.  pe any existing experiments or simulations to which these
The final step is to shift the integration variable in E8.15 results could be compared.
to e=é-1—i.e., e=w?/a—-1 [34]. We define shifted DOS The results presented here should be contrasted with our
functions for both sets of modes Ipye) =p(1+e€) and obtain  earlier results for the asymmetri local potential energy
1 (= [7]. The range of temperature was much smallef7ij due
Q:aexp{af dE[Pms(ﬁ)—Pb(E)]|n(1+6)}- to t_he limited temperature range of the simulation results
0 available for comparison there. The temperature range shown
(6.17) here is large enough to show the deviation from linearity on
a semilogarithmic plot caused by the temperature depen-
For the metastable modes the DOS is obtained from a Kleindence of the prefactor in E¢6.13. For a givena this de-
Gordon equation and is well known. To obtain the DOS forviation is most pronounced at larde t is also larger for the
the bounce modes, we use a WKB approximation, similarlysmallera values.
to the procedure used by Biittiker and LandalgZ]. The
details are given in Appendix E. 10" —— T 3
Equations(6.13, (6.17), and (E11) are our final formal 2 ]
result for the nucleation rate per unit length. Equaiiari6 -
gives the bounce enerdy, as a function of shape parameter
a and characteristic velocityy; it is proportional tocy. From
the way thatcy enters in Eq(6.13), we see that ity /L is
plotted as a function o€,/ T, then, for given values of the
shape parametes and the damping constant, a single
curve is obtained. 1074
Numerical results for the nucleation rate are obtained by
using the values for the discrete eigenvahﬁeand the results
for Q from the calculations in Appendix E. These are given
in the next section.

102

—
~
S

Q

VII. NUMERICAL RESULTS co/T

In Figs. 5 and 6 we show the logarithm of the nucleation  FIG. 6. Temperature dependence of the scaled nucleation rate
rate per unit length as a function of inverse temperature for or y=0.3 and for different values. From right to lefta=0.0972,
fixed value of the damping constant and for a range of values.109, 0.124, 0.142, 0.167, 0.191, 0.210.
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FIG. 7. Scaled nucleation rate per unit lengthl,/L as a func-
tion of cy/ T for fixed a and for differenty values.

Figure 7 shows the nucleation rate per unit length as a

function of inverseT for an intermediate value @ for three
different values of the damping constaptNot surprisingly,
the rate decreases rather uniformly for increasyng

The temperature dependence of the preexponential factor

found here in Eq(6.13 and in[7] is proportional toT~%2,

PHYSICAL REVIEW E 70, 066103(2004
” w1 ,(du\? 1 B
H= f dx) — +=c3| — | +pu| AP - uk*2
o 20w 2% x 2 K+2

+ C u2<ez |
2K+2

where p, is mass density and all factors have dimensions.
The caseK=1 is the asymmetrig* system anK=2 gives
the ¢° system considered in the main text. The local poten-
tial energyV,(u) [quantity in square brackets in EGAL)]
has dimensions ofL/T)? (i.e., velocity squared Therefore
we introduce a velocity unit

K+1 1+2K 3 2+2K BZ+2/K
vo= \/( 2 ) <K+2) CcLzK:
a length unit
lo= [§<K+ 1>ET/K,
2\K+2/C
and the time unit obtained from these:

EERLCE
0 o \K+1 3 /B

(A1)

This result agrees witfb], where it is claimed that this is the \yjith these scale factors, the nondimensional form of the lo-
universal temperature dependertoatside the quantum tun- 4 potential energy is

neling regimg. That claim was made on the basis of a theory

valid only where the local potential energy was only slightly

asymmetriq(i.e., thea— 2/9 limit for our system We have

found that dependence here for all values of the shape pathere the shape parameter is

rameter.

VIIl. SUMMARY

Vl(U) — %aUZ _ %UK+2 + %U2K+2, (AZ)
2(K+2)2AC

a=— —. A3

9 K+1 B? (A3)

_In summary we have presented a calculation of the nucleye choose,, to be the unit of mass density; thep, |o, and
ation rate of critical droplets on a continuum one-t  can be combined to form the unit of any other physical

dimensional elastic string moving in a symmete local  quantity. The text considers tie=2 case of these equations.
potential energy. We have shown that the evaluation of the

spectrum of small oscillations about the critical droplet can
be done by solving a Heun equation. For this system this
o o e s oo e o sy We slart b considerng th more general version o
: - : 2.9) obtained by using the local potential energy from Eq.
tion of the functional Fokker-Planck equation on the phaseiAz)_
space of this continuum system, which involves projecting '
the equation onto the eigenfunction directions obtained from
the Heun equation. These results are exact except for the use
of the WKB approximation to obtain the frequency ratios of
the continuum small oscillation modes about the criticallt has been noted by several auth{it§,43,44 that by con-
droplet and the metastable minimum. sideringx to be “time,” this equation is analogous to New-

A subject for future work would be to extend the use ofton’s second law for a particle moving in one dimension in
the Heun equation to discuss the case of weak dampinghe invertedpotential energy—V;(u)]. This observation al-
where different methods are requirgh8]. A further problem  lows integration of Eq(B1) by elementary techniques. From
is to obtain a generalization that treats the whole range othe shape of the inverted potential ene(gge Fig. 1 for the
damping; this is the so-called “Kramers turnover problem,”"K=2 casg, we see that there is a solution with zero “energy”
which so far seems to have been treated only for the singldn which the particle starts at=0 at “time” x=-c, moves
particle problen{35-42 and not for a continuum system. across the well in the inverted potential energy until it
reaches the first zero dfV;(u)] at positiveu, and then
decreases back to=0 at “time” x=+. This is the “bounce”

In this appendix we begin with the more general Hamil-solution that satisfies the boundary conditions described in
tonian with a parametdf [7]: Sec. I, and we refer to it ag,(x). The first integral of Eq.

APPENDIX B: SOLUTION OF Eq. (2.9)

1d/1 1 1
u’(x) = —2—(—au2 - -uf 2+ —u2K+2> : (B1)
du\2” "3 4

APPENDIX A: SCALE FACTORS
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(B1) with integration constant chosen to be consistent within terms of some complete orthonormal setedl functions

this description is {¢,}, the changes in the fields have expansions
, 2(1 1.0 1, ) =26
[up()]? = C—g<§auﬁ - éubK 24 ZuﬁK 2) : (B2) (%) Enz Endn(X),
We change the dependent variable here to
J P () = 2 S (3
g(x) = [u(x)]¢ (B3) n
and find thaty satisfies the equation We substitute EqgC3) into Eq.(C2) and obtain
2K2( 1 1, 1 f B B }
VI P St ] dB= d dx—— +d d .
(9" Cg <2a92 3g + 4g ) (B4) % |: én X577(X) (X &n XéU(X) n(X)
Except for theK? factor, Eq.(B4) is the “quasienergy” con- (C4

servation equation for the bounce solution of K181 case  gjnce the fields in the functiond are completely specified
of Eq. (A2), ‘A’IVh'Ch is the potential energy function of an py theijr expansion coefficients with respect to the{get, B
asymmetricg” system. That is, all values >0 in the 55 equivalently be thought of as a function of this infinite
local potential energy, EqA2), can be reduced to solving ot of coefficients—i.e. B, U=B(&, &1, ... L0 L1r ).

tgiK;l.case. with an Fx}ra fac_torhmzl._ The squt|fon of Eq. | We compare Eq(C4) to the familiar equation from multi-
(B4)1is given in several places in the literature—for example,, o japle calculus for the differential in terms of partial de-

[45-47—and is rivatives and obtain
3a B 5B B 5B
g(x) = &—&—demd)n(xx a—gn—fdxmd)n(x). (C5)

The functional derivatives are evaluated at the initial point in
phase spackm,u].
Now suppose we have a phase-space vector functional of
(BS)  these fields—e.g(Jy,{7,u],J,[7,ul). Since the complete

Xyay IS the location of the center and maximum of the orthonormal set of real functiof,(x)} is the unitary trans-

bounce, and it enters the solution as an integration constarfP'mation between the representation and tirerepresenta-
The arbitrariness of the location of the bounce center extOn: the components along the directions of this orthonormal

presses the translational invariance of the system and leads 6! '€

the translation mode discussed in Sec. Ill A. For2 the

transformation back to the original functiarix) [Eq. (B3)] Junlmu]= J dyJ, [, uleén(y),
gives the result for the bounce given in Eg.13. The other
form given in Eq.(2.14) is obtained using identities for hy-
perbolic functions. For th&=2 case another solution is ob-
tained by taking the negative square root. It describes the
symmetrical situation where the critical droplet forms toward
the left minimum ofVy(u).

Jonlmul= f dyJ, [m,ulen(y). (Co)

Using Eq.(C5), we obtain, from Eq(C6),

aJd oJ o
é{u.n = dXéUEJXr; ¢m(x) :f dXéU(X) f dyJuy¢n(y) ¢m(X),
APPENDIX C: CHANGE OF VARIABLE IN FUNCTIONAL m
DERIVATIVES (C?

We consider a scalar functionBlof two one-dimensional and similarly foraJ; ./ ¢, Next we add these two deriva-
fields ((x),u(x)). (The notation is the same as in the main tives, sem=n, and sum om. In the resulting expression the
body of the paper, but the functional and the fields are nofompleteness relatiol,¢n(y) y(x)=&ly—-x) appears, and
necessarily the same physical quantities as considered)ther/e obtain another way to write the phase-space divergence:

When the fields are changed from arbitrary but definite 23 9 s N
choices (m,u) to some infinitesimally close fieldqn > {—”” + —’”‘} f x{ ux —”} (C9)
+ 67, u+éu), the functional changes by n Lol 08 aux)  om(x)
dB=B[ 7+ &m,u+ éu] - B[m,u], (C1
and by definition of functional derivative this is the same as APPENDIX D: SOLUTION OF Eq. (3.16)
5B 5B Procedures that have been developed to solve the Heun
dB= J dx 57X om(x) + m&(x) : (C2)  normal form, Eq(3.17), are described in Ref§9,10,24, and
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we have adapted those to our problem, in which the paranmeationby is expressed in terms @f (Table 1I), satisfying this

eters in Eq(3.17) are constrained by the conditions in Table condition will determine the allowed values gfand there-

[I. The fundamental solution of E¢3.17) is the power series fore of the eigenvalua through Eq.(3.15.

aboutz=0 associated with the characteristic exponent zero. Equation(D3) has the form

A power seriesEJ?“:Ocjzl substituted into Eq(3.17) comes out
r ,

to be[9] ij,-—qj+EJ—:o,J>1, (D5)

o i—1

b . j

A =Alv,by;a.B,7,6,2) = 1 _y_?}z“L 2 ¢Z. (DD \hich can be turned around to

j=2

The coefficients; for j =2 are determined from a three term Roi= ri =1 (D6)

recursion relation g~ PR,

(i + D+ Ve~ {2+ D +j[y+ 8- 1+(a+ B~ o] We obtain the definitions af;, g;, andr; from Eq.(D3), for
-buig* (- 1+a)(-1+p)c4=0,j=1, (D2 =L

starting fromcy=1 andc;=-by/(yv). We divide this equa- 1 v
; 20 (i ; ; =vll+- )1+ (D7)
tion by j°c; (j=1), both to obtain an equation for the coef- Pj i i)
ficient ratioR;=c;,,/c; and to obtain coefficients that have a
limit as j — oo;
1 by,

1 y 1 g=v+l+-[y+d-1+(a+B-9v]-—, (DY)

V1+JT 1+JT R - V+1+JT[‘)/+5—1+(C¥+IB—5)V] J J

—?—3}+(1+L1)<1+L_1>i:0,j>1. rj=<1+a__l>(1+ﬂf_l). (DY)
j i /R j j

(D3) The j=1 case of Eq(D6) is Ry=r;/(g;—-r;Ry), and we al-
By knowing the limit of the ratio of the coefficients, we can ready knowR,=c,/cq=—by/(y»). Further we have the re-
use the ratio test to determine whether our series convergeglirement of “augmented convergeno@ef. [10], p. 77,
and to determine its radius of convergence. We introducghat lim,_..|R;|=1/»<1. By iterating Eq(D6), we expand it
R.=lim;_..R;, and then from Eq(D3) we have thaR. must  into a continued fraction, and we obtain the equation that is
be a solution of to be solved foru:

R, = (v+ DR.+1=0. (D4) 0 Py —Tr1PaloPalsPala
This equation has the pair of rook, ;=1/v and R, ,=1. Yv o Qi O~ Oz— Ua—
Equation(3.6) shows that 6<1/v <1, so these two roots are
unequal except at the extreme valuel, which is thea
=2/9 limit for the shape parametdEq. (2.2)], where we
already know the answgiec. Il Cl. We now quote from
Refs.[10,24 the conclusion of a theory due to Perron. If the
roots of Eq.(D4) have different moduli withR.. 1| <|R. 4, f=by+
then in general lim_..|R| exists and takes the larger value
|R.o|. In our caseR,,=1, so the ratio test shows that our
series converges only in a restricted interval aroem@ that
does not include=1. Perron’s theory further states that if
the Heun accessory parametgf takes on certain special
values, then lim_..|Rj| equals the smaller rodR.. . Since B a, a, a a, A,
R.1=1/v<1, convergence of the series is assured, with a fa=bg+ btbtbt bt0 B (D12
radius of convergence that is larger than 1, and therefore our 1 n n
series converges at two singular poiats0 andz=1. It was  The numerator and denominator in this expression are calcu-
in order to make this use of Perron’s theorem that we chosgyteq recursively from
the parametrization in our Heun equation so that the “mov-
ing” singularity would have the property(a)>1. In our A,=b.A1+aAr0 B,=bB1+aBy, (D13
application we need convergence at bathO and z=1.
These points arg=0 andy== of the position variable in our and the initial values\ =1, Ay=b,, B_;=0, andB,=1. We
Schrédinger equation, and we need the wave function for theompare Eqs(D10) and(D11) and obtain
bound states to be finite and zero, respectively, at these two
points. Therefore we have to ensure tbathas one of the bo = % (D14)
special values for this situation to occur. Since in our appli- yv

(D10)

At this point we introduce the small part of the theory of
continued fraction$48] that we need. The generic continued
fraction has the form

8 @ 83

— s D11

by + by + g+ (1D

If this expression is truncated at tim¢h level, the result is
called thenth convergent, and it can be simplified into an
ordinary fraction
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&=~ Pj-1fj k<x+ E) + lA(ff‘v")(k) - [k(x - E) - }A(e’o)(k)}
2 2 2 2

o oo
BT A j A =KL + A©9(K) = 27m(®9), (E2)

(D15  wheren®=1,2,3,....
We use the WKB approximatiofbQ] to obtain the phase

bj=q;, (D16)  shift. For familiarity we revert to textbook quantum mechan-
S ) _ . ics notation for a few equations, where the Schrodinger equa-
for j=1; we definep,=-1 for consistency. tion is
We now have the formulas we need to determine the al-
lowed values ofu numerically.We substitute for all param- h? o?
etersa, B, 7y, 8, by from the first and second line of Table II. oM d@ +V(X)¢=Ey. (E3)

(The results from the third and fourth lines duplicate those _
from the first two lines. For a given value of the shape With V(x)=V(-x), the even and odd WKB wave functions
parametera, v is determined from Eq(3.6), so the only are

unknown isu. We truncate the continued fraction at some (€0)

nth level where we can accurately repldReby its required PO (x) = ————

limit 1/ ». Then, by use of EqD13), the truncated version of IZ—M[E V(]

Eq. (D10) becomes a high-order polynomial equationgin h2

and we need to determine its roots. We wrote a computer «

algebra program to determine these roots from three con- X{COS]{J dx’ /@[E—V(x’)]} (E4)
secutive convergents, f,.,, andf,,,. We found that taking sin 0 h?

n equal to 8, 9, or 10, we obtained agreement among the ©0) ; o )
three convergents to at least 10 decimal places. This agre€C'®” is a normalization constantThe total phase shift
ment deteriorated to about 5 decimal placesifer 1, which ~ across the periodicity interval is

is a—2/9; however, we already know the answer in that L2 M -L/2 M

limit from other consideration&Sec. Il O. f dx\/ —[E-V(X)] —f dx\/—5[E-V(X)]
From the allowed values gk we obtain the eigenvalues 0 h 0 h

\, and then the allowed values for the squares of the small L2

oscillation frequencie&)iz. The results forw? are shown in = zf dxA /y[E_V(X)]_ (E5)

Fig. 4 and are discussed in Sec. Il D. 0 h?

We equate this to the total phase change in &g) and
APPENDIX E: FREQUENCY RATIOS obtain

To calculate the frequency ratio in E¢6.17), we use Lz om
techniques employed by Trullinger and de Leonafdg to KL+ A®9(K) = 2am'*°(E) = ZL dx ﬁ[E_V(X)]'
analyze the small oscillation spectrum about the kink solu-
tion of a double-quadratic system and by Biittiker and Lan- (E6)
dauer[32] to calculate the kink-antikink nucleation rate for \yie have writtenn®®(E) here because it is the number of
an overdamped biased.sine—Gordon"chain. The pqtential Etates up to energy. In the WKB approximation, this num-
ergy v(x) [Eq. (3.10] in our Schrodinger equation ap- pe is the same for the even- and odd-parity states. The de-
proaches zero exponentially foq —c. Therefore we imag- yjyative with respect t of the number of states is the DOS.

ine a large lengthl. such that the region where(X) is  The total density of states is the sum of the even and odd
appreciably different from zero is contained within the inter- c5ces 5o

val -L/2<x<L/2; eventually, we wanL —x~. We have

previously noted that(x) is an even function ok and that _2m (Y2 1
; . . po(BE)=—5 dx—F——. (E7)
we can choose eigenfunctions that are either even or odd mh? ), M
functions. ?[E—V(X)]
For x= £L/2, the particle is essentially free, so the even
(e) and odd(o) eigenfunctions have the form We compare EqE3) with Eq. (2.22 and see that we should
cos 1 replace
#eO(x) — c{f@{sm}(er EA(G'O)(k)>. (ED) o> oM  a 4, 15,
x=tli2 E——-1,—5 — 5, V(X)) — - —ug(x) + ——u,(x).
a ﬁZ Cg ( ) a b( ) 2a b( )

[The upper and lower elements in the array are(#)eand
(o) cases, respectively. In addition, the upper and lower signs (E8)

go togetherCff’o) is a normalization constait. To countthe Finally, we change the integration variable yofrom Eq.
states, we impose periodic boundary conditigRBC’s) on  (3.5), introduce the eigenvaluefrom Eq.(3.7) and the func-
the interval +/2<x<L/2 and obtain the condition tion v(y) from Eq.(3.10, to write the DOS as
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1 Val/(2cp) 1
po(N) = = f dy————. (E9)
mJo VA —o(y)

PHYSICAL REVIEW E 70, 066103(2004)

which also removeg, from this function. Then we inter-
change the order of integration, so that

In(Q2/a2):lfwdyfxd)\ |n(1+x){%-;_}
mJo 0

The DOS for small oscillations about the metastable mini- YA VA - o(y)
mum is obtained by omitting the functian(y), so (E11)

The integral on\ can be done analyticallj51]; the result
depends on whethe(y) is less than or greater than -1. For
a<10/49, there is one solution to the equatidy)=-1, and
for 10/49<a<2/9, there are two. The integral gmmust be
broken into intervals depending on the magnitudev ©f),
and then those integrals must be evaluated numerically.

1 (@U@0 1 | yalc
X):—f dy==—"F. (E10
Pms( 7, y\")\ o0 \’/)\

We substitute Eqs(E9) and (E10) into Eq. (6.17) for
In(Q?/a?), and we take the thermodynamic limit—s oo,
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