
Critical behavior of nonequilibrium continuous phase transition
in A+BC catalytic reaction system

Da-yin Hua
Physics Department, Ningbo University, Ningbo 315211, China

(Received 29 March 2004; revised manuscript received 13 July 2004; published 2 December 2004)

We study two lattice gas models for theA+BC→AC+ 1
2B2 reaction system. Model I includes the influences

of the adsorbate diffusion and model II includes the effect of the diffusion and position exchange ofB andC
atoms. Model I exhibits a continuous phase transition with infinitely many absorbing states from a reactive
state to a poisoned state ofB andC atoms and a discontinuous transition to a poisoned state ofA andB atoms
when the fraction ofA in the gas phase varies. The critical exponents are estimated accurately. The simulation
results indicate clearly that the critical behavior of the continuous phase transition in model I belongs to the
directed percolation(DP) universality class. Model II, however, exhibits a continuous transition with two
absorbing states, and its critical behavior is obviously distinct from the DP universality class.
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I. INTRODUCTION

The study of the nonequilibrium continuous phase transi-
tions (NECPT’s) in many-particle systems has attracted a
great deal of interest over the past two decades, since they
possess wide-ranging applications in many branches of phys-
ics, chemistry, biology, and even sociology[1,2]. Compared
to their equilibrium counterpart, nonequilibrium phase tran-
sitions are much less understood due to the lack of a general
framework[1,2]. One of the most remarkable progress is that
the critical behaviors of the continuous phase transitions with
absorbing states in many systems have been found to belong
to a few universality classes. The most robust is the directed
percolation(DP) class in spite of the quite dramatic differ-
ences in the microscopic processes of various models[1–14].
An important exception of the DP class is the so-called
parity-conserving(PC) class[8,15–20]. On the other hand,
recent work suggests that the conserved field should intro-
duce another kind of critical behavior[21].

Recently, the influence of particle diffusion in a system on
the critical behavior of the NECPT has been paid much more
attention. Dickman has noted that the continuous phase tran-
sition in the contact process(CP) model including the diffu-
sion still belongs to the DP universality class[22]. However,
a study of the pair contact process with diffusion(PCPD) or
annihilation-fission(AF) process 2A→ x ,2A→3A suggests
that the diffusion of the particles should introduce a new kind
of critical behavior[23–32]. This model without diffusion
was first investigated by Jensen, and its critical behavior of
the continuous transition with infinitely many absorbing
states belongs to the DP class[13].

For the basic CP model, there is only an absorbing state
and the diffusion of the single particle does not change the
structure of the absorbing state. However, when particle dif-
fusion is introduced in the PCP model, the number of the
absorbing states can be changed obviously and the system is
trapped in only two absorbing states: one a vacuum state and
the other a single-particle state.

In the present paper, we will study the influence of par-
ticle diffusion on the phase transition with absorbing states

through two modifiedABC lattice models[33]. Model I in-
cludes the influences of the adsorbate diffusion but model II
includes the effect of the diffusion and position exchange of
B and C atoms. In our investigation by means of Monte
Carlo simulations, both models exhibit a continuous phase
transition from the reactive state to the poisoned state, but
their critical behaviors are obviously different.

II. MODEL AND ALGORITHM

Brosilow and Ziff (BZ) have suggested anA+BC→AC
+ 1

2B2 reaction net to study the NO+CO catalytic reaction
system[34,35] through a simplified Langmuir-Hinshelwood
(LH) mechanism. The model gives rise only to the surface
speciesA,B, and C, which is called theABC model [33],
which was later studied by Meng, Weinberg, and Evans
(MWE) [36,37].

The ABC model:
(a) Ag+ * →Aads,
(b) Aads→Ag,
(c) BCg+2* →Bads+Cads,
(d) Aads+Cads→ACg+2*,
(e) Bads+Bads→B2sgd+2*.

The subscriptg means a species in the gas phase,ads
indicates the adsorption state of a species on the surface, and
* is the active site on the catalytic surface.

This model can exhibit a continuous phase transition from
the reaction state into one of the infinitely many absorbing
states of adsorbedC andB with the fractiony of A species
varying in the gas phase. The critical behavior of the con-
tinuous transition belongs to the DP universality class when
the desorption of adsorbedA is neglected[38,39]. In these
investigations, the particle diffusion is neglected. Actually,
the particles on the surface can diffuse rapidly in some cases
and can take an important role in the dynamical behavior
[40–43]. When the diffusion of adsorbedC on the surface is
included, it can have an important effect on the phase dia-
gram[44]. On the other hand, the reversible process of rapid
BC dissociation can lead to a position exchange ofB andC
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atoms at the two nearest-neighbor(NN) sites, which may
play an important role in the dynamical behavior although it
is very slow.

In order to investigate the effect of the particle diffusion
on the critical behavior, we study two modified models of the
ABC model. In model I, only the diffusion of particleC is
included cooperating with theABC model reaction scheme.
In model II, the diffusion of particlesA, B, and C and the
position exchange between adsorbedB and C atoms at two
NN sites are considered.

We introduce two relative probabilitiespdif and pexch of
the particle diffusion and exchange processes, respectively.
We carry out our simulation on aL3L triangular lattice by
sequential trials of the adsorption-reaction, diffusion, and ex-
change processes. Initial empty lattice and periodic boundary
conditions are used in our simulation.

At the beginning of a simulation step, a random number
r0 between 0.0 and 1.0 is generated. A diffusion attempt,
exchange process, or adsorption-reaction process is per-
formed, respectively, forr0,pdif, pdif ,r0, spdif +pexchd, or
r0. spdif +pexchd following (a), (b), and(c).

(a) At the beginning of the diffusion process, a site is
chosen randomly, and the trial continues if the site is occu-
pied by a corresponding particle. Then, an adjacent site is
selected randomly, and if the latter site is vacant, the particle
jumps to it. If the diffusion succeeds, a reaction trial will
follow as in item(c).

(b) For the exchange process, a site is chosen ran-
domly, and the trial continues if the site is occupied byB or
C. Then, an adjacent site is selected randomly, and if the
latter site is occupied by anotherB or C, the two particles
exchange their positions. If the exchange process succeeds, a
reaction trial will also follow as in item(c).

(c) The adsorption-reaction process begins with a ran-
dom collision of a gas molecule on aL3L triangular lattice.
The colliding molecule is chosen to be a monomersAd with
a given probabilityy which is the fraction ofA in the gas
phase and a dimersBCd with a probability 1−y. If a mono-
mer A is chosen, a site is chosen randomly. If the site is
occupied, the trial ends; otherwise,A adsorbs. Then the six
NN sites are checked, and if there areC atoms, the adsorbed
A reacts with aC atom to formAC, which desorbs at once
and leaves two vacant sites. If a dimerBC is selected, a pair
of NN sites is selected randomly. If either site is occupied,
BC rebounds back and the trial ends. OtherwiseBC dissoci-
ates and adsorbs on the two sites, and then checks the eight
NN sites of the pair. TheC atom reacts with an adjacentA on
the NN site to form anAC which desorbs at once and leaves
two vacant sites, andB reacts with anotherB atom on the
NN site to produce aB2 molecule which also desorbs at once
and leaves two vacant sites.

III. SIMULATION RESULTS

As pexch=0 and only particleC can diffuse, the system
evolves along the dynamic rules of model I, and we can
obtain Fig. 1 aspdif =0. Wheny is near to the continuous
transition pointyc, the adsorbed species on the surface are
mainly C atoms and they can form domain structure easily.

The diffusion of C atoms on the surface has an important
influence on the domain interface, and therefore increases the
opportunity ofA to be adsorbed. From the simulation results
in Fig. 2 for pdif =0.1, it shows that the critical pointyc shifts
toward a lower value but the discontinuous transition point
y2 changes a little. It is obvious that the reaction window
increases with the diffusion rate increasing. These simulation
results are well consistent with the results of previous work
[45].

It is quite difficult to directly estimate the accurate critical
valueyc and corresponding critical behaviors atyc [46] due
to the critical slowing down and strong finite-size effects. In
this work, we employ the finite-size scaling(FSS) method
developed for the nonequilibrium continuous phase transi-
tion by Aukrust, Browne, and Webman[12,19,46] to esti-
mate the critical pointyc, the order parameter exponentb,
and other correlation length exponents.

The order parameter describing the absorbing phase tran-
sition isr, which is the fraction of vacant sites on the surface
in the steady state; it behaves as below wheny is near to the
critical fractionyc:

FIG. 1. The rate ofAC production and the average coverage of
A, C, andB are plotted as a fraction ofy. Phase transitions occur at
yc andy2.

FIG. 2. The stationary coverage and production rate under dif-
ferent diffusion rates:(a) The coverage ofC, (b) the coverage ofA,
(c) the coverage ofB, and(d) the production rate ofAC.
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r ~ sy − ycdb, s1d

where b is the order parameter exponent and the critical
point yc is accurately estimated by the FSS method. For the
second-order phase transition, there are a characteristic
length scalej and a time scalet which denote the correlation
length in space and time directions and they diverge in the
neighborhood of the critical point as

j ~ uy − ycu−y', s2d

t ~ uy − ycu−yi, s3d

wherey' syid is the correlation length exponent in the space
(time) direction.

At criticality, various ensemble-averaged quantities de-
pend on the system sizeL through the ratio of the system
size and the correlation lengthL /j. Therefore, we can take
the following scaling form for the order parameterrsy,Ld in
the adjacence of the critical point:

rsy,Ld ~ L−b/y'ffsy − ycdL1/y'g, s4d

so that, atyc,

rsyc,Ld ~ L−b/y' s5d

and the scaling function

fsxd ~ xb s6d

for largex. In the supercritical regionsy.ycd, the order pa-
rameterrsy,Ld remains finite in the limitL→`, but it de-
cays faster than a power law in the subcritical region
sy,ycd.

For the characteristic timet, we can take the following
finite-size scaling form in the vicinity ofyc:

tsy,Ld ~ Lzhfsyc − ydL1/y'g, s7d

wherez=yi /y' is the usual dynamical exponent. Atyc we
have

tsyc,Ld ~ Lz. s8d

We calculate the momentsts for each samples which de-
notes a simulation entering the absorbing state from the ini-
tial empty state; therefore, we can measure the characteristic
time t following the equation

tssy,L,sd = o
t

trsy,L,t,sd/o
t

rsy,L,t,sd, s9d

wheret=ktsls, andrsy,L ,t ,sd is the order parameter defined
above.

The system first reaches a quasi steady state, stays for a
reasonably long time, and finally evolves into an absorbing
state. In the simulation process, we first calculate the average
of time series of the vacancy fraction over a set of surviving
independent samples which have not yet entered the absorb-
ing state when the simulation ends and then measure the
stationary value of the vacancy fraction as order parameter
from the average of time series. The number of Monte Carlo
steps varies from 1000 asL=8 to 33104 for L=128 (a
Monte Carlo step refers to an attempted adsorption-reaction
step on the average at every lattice site). From about 5000
independent simulations, we choose 500 surviving samples
to calculate the order parameterr whenL=8. The number of
independent surviving samples varies from 500 forL=8 to
200 for L=128.

From Eq.(5), the data should fall on a straight line with a
slope −b /y' for y=yc on a log-log plot ofr as a function of
L. In Fig. 3, we show the log-log plot ofr as a function ofL
which is selected to be 8, 16, 32, 64, and 128, respectively.
For our system, we findyc=0.1335±0.0005 andb /y'

FIG. 3. The log-log plot forrsy,Ld vs L with different values of
y as pdif =0.1. The slope of the straight line that goes through the
data gives an estimate of −b /y'.

FIG. 4. The double-logarithmic plot for the data ofrLb/y'

againstsy/yc−1dL1/y' for the two system sizes.pdif is the same as
that in Fig. 3.

FIG. 5. The time dependence of the order parameterr for vari-
ous sizesL at yc=0.1335. From top to bottom, the curves corre-
spond toL=8,16,32,64,128. The slope of the straight line gives
the value ofb /yis=0.465±0.005d. pdif is the same as that in Fig. 3.
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=0.81±0.01 atyc from the slope of the straight line. This
value of b /y' is in excellent agreement with that
s0.80±0.01d of the DP universality class[47]. We can get
further supporting results for our simulation.

In Fig. 4, we have plottedrLb/y' versussy/yc−1dL1/y' on
a log-log plot. From Eqs.(4) and (6), whenx is small, the
data should approach a constant, while for largex, the data
should fall on a line with a slopeb. It is shown that with the
choicesb /y'=0.81 andy'=0.73, the data for the two sys-
tem sizes shown are well collapsed on a single curve. The
solid line has a slope of 0.578±0.005, which gives the
asymptotic behavior forrLb/y' asL→`.

To check our simulation results, we can also calculate the
decay exponent of the order parameter at the critical point.
For the time dependence of the order parameterrsyc,L ,td at
criticality, one assumes a scaling form

rsyc,L,td ~ L−b/y'fstL−yi/y'd. s10d

For L@1 and t!Lyi/y', we have the relationrsyc,L ,td
~ t−b/yi. In Fig. 5, we show the double-logarithmic plot of the
rstd as a function of time t, and then we getb /yi

=0.465±0.005, which is consistent with the above results.
Moreover, in Fig. 6, we show the characteristic timet as a
function ofL on a log-log plot. From Eq.(8), the data should
fall on a line with slopez=yi /y' at the critical point. Every
calculation result is averaged over 5000 samples, and we
obtain the slopez=1.68±0.03 atyc=0.1335.

Therefore, model I exhibits a continuous phase transition
with infinitely many absorbing states and the critical expo-
nents are estimated accurately,b=0.578±0.005, b /y'

=0.81±0.01, b /yi=0.465±0.005, andz=1.68±0.03. The
simulation results indicate clearly that the continuous phase
transition in model I belongs to the DP universality class[47]
and the diffusion of particles does not change the critical
behavior of the continuous phase transition. This result is
expected because particle diffusion in model I does not
change the structure of the absorbing states.

When the position exchange ofB andC atoms on two NN
sites and the influence of the diffusion ofA, B, andC atoms
are considered, the reaction system evolves along dynamic
rule of model II. From the simulation results in Fig. 7, it is
found that the system still exhibits a continuous phase tran-
sition from the reactive state to the poisoned state ofC andB
atoms whenpexch=0.2. However, there is an obvious differ-
ence between Figs. 7 and 1. In Fig. 1, the coverage ofC and
B atoms is near to 0.83 and 0.17 in the poisoned state, re-
spectively. But in Fig. 7, the coverage ofC atom in the
poisoned state is near to 1 and the coverage ofB atom is near
to zero. In model II, there are only two absorbing states for
the continuous phase transition. One of them is that in which
all sites are occupied byC atoms and another one is that in
which there is only oneB atom on the surface and the other
sites are occupied byC atoms. It is very interesting to inves-
tigate the critical behavior of the continuous phase transition
in model II.

FIG. 6. The characteristic timet against the system sizeL in a
log-log plot. The solid line is of slope 1.68s=yi /y'd. pdif is the
same as that in Fig. 3.

FIG. 7. The stationary coverage ofA, C, andB and production
rate ofAC with pdif =0.1 andpexch=0.2.

FIG. 8. The log-log plot forrsy,Ld vs L with different values of
y as pdif =0.1, pexch=0.2. The slope of the straight line that goes
through the data gives an estimate of −b /y'.

FIG. 9. The double-logarithmic plot for the data ofrLb/y'

againstsy/yc−1dL1/y' for the two system sizes. The parameters are
the same as those in Fig. 8.
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In Fig. 8, we show the log-log plot ofr as a function ofL
which is selected to be 8, 16, 32, 64, and 128, respectively.
For the system, we obtainyc=0.059±0.0005 andb /y'

=1.28±0.05 atyc from the slope of the straight line. This
value ofb /y' is obviously distinct from thats0.80±0.01d of
the DP universality class[47].

In Fig. 9, we have plottedrLb/y' versussy/yc−1dL1/y' on
a log-log plot. It is shown that with the choicesb /y'=1.28
and y'=0.80, the data for the two system sizes are well
collapsed onto a single curve. The solid line has a slope of
1.05±0.05, which gives the asymptotic behavior forrLb/y'

asL→`.
We can calculate the decay exponent of the order param-

eter at the critical point following the method mentioned
above. In Fig. 10, we show the double-logarithmic plot of the
rstd as a function of time t, and then we getb /yi

=1.03±0.05. Moreover, in Fig. 11, we show the characteris-
tic time t as a function ofL on a log-log plot. Every calcu-
lation result is averaged over 5000 samples, and we obtain
the slopez=1.20±0.06 atyc=0.059.

In order to understand the effect of the exchange ofB and
C atoms, we calculate the critical behavior whenpexch
changes to 0.05. In Fig. 12, we show the double-logarithmic
plot of the rsLd as a function of sizeL. It is found thatyc

=0.070±0.001 andb /y'=1.25±0.05 atyc=0.070 from the
slope of the straight line. According to the same methods in
Figs. 10 and 11, we can calculateb /yi=0.94±0.09 andz
=1.24±0.05 whenyc=0.070±0.001.

In Ref. [26], Hinrichsen has shown that the critical behav-
ior at the transition can be affected by unusually strong cor-
rections to scaling for the PCPD model; therefore, it be-
comes very difficult to estimate the critical exponents of the
model accurately. In model II, there are two possible order
parameters: one is that we defined above and another one is
r=1−rc (rc is the fraction of particleC on the surface in the
steady state). Compared to Fig. 8, we show the log-log plot
of r as a function ofL for the two different order parameters
in Fig. 13 atyc=0.059, respectively. It is shown that, for the

FIG. 10. The time dependence of the order parameterr for
various sizesL at yc=0.059. From top to bottom, the curves corre-
spond toL=8,16,32,64,128. The slope of the straight line gives
the value ofb /yi s=1.03±0.05d. The parameters are the same as
those in Fig. 8.

FIG. 11. The characteristic timet against the system sizeL in a
log-log plot. The solid line is of slope 1.20s=yi /y'd. The param-
eters are the same as those in Fig. 8.

FIG. 12. The log-log plot forrsy,Ld vs L with different values
of y aspdif =0.1,pexch=0.05. The slope of the straight line that goes
through the data gives an estimate of −b /y'.

FIG. 13. The log-log plot forrsy,Ld vs L for the two different
order parameters aspdif =0.1, pexch=0.2. The slope of the straight
line that goes through the data gives the same estimate of −b /y'.
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two order parameters, we can obtain the same value ofb /y'

accurately in the uncertainty range.
In conclusion, we studied two modifiedABC models for

theA+BC→AC+ 1
2B2 reaction system. Model I includes the

influences of the adsorbate diffusion but model II includes
the effect of the particle diffusion and the position exchange
of B and C atoms. Model I exhibits a continuous transition
with infinitely many absorbing states from a reactive state to
a poisoned state ofB andC atoms and a discontinuous tran-
sition to a poisoned state ofA andB atoms with the fraction
of A varying in the gas phase. The critical exponents are
estimated accurately,b=0.578±0.005, b /y'=0.81±0.01,
b /yi=0.465±0.005, andz=1.68±0.03. The simulation re-
sults indicate clearly that the continuous phase transition in
the model belongs to the DP universality class[47] and the
diffusion of particles does not change the critical behavior of
the continuous transition in model I.

Model II also exhibits a continuous transition with ab-
sorbing states. The critical exponents are estimated accu-
rately for pexch=0.2, b=1.05±0.03,b /y'=1.28±0.05,b /yi

=1.03±0.05, andz=1.20±0.06. We also calculate the expo-
nent ratios b /y'=1.25±0.05, b /yi=0.94±0.09, and z
=1.24±0.05 whenpexch changes to 0.05. The numerical re-
sults show that there is no apparent change in the error range
for the exponent ratios.

The numerical simulation shows that the critical behavior
of the continuous phase transition in model II is obviously
distinct from the DP universality class in model I. Further-
more, it is also different from the critical behavior of the

PCPD model studied intensively in the past several years
[48,49]. Our simulation results in model II do not contradict
previous investigations about the DP university class and
PCPD model[1–4,48,49]. Although the system described in
model II has two absorbing states, the system only can reach
one of the two absorbing states because the last adsorbed
molecule must beBC before it enters into the absorbing
state. Moreover, the absorbing state is not completely frozen;
only the B atom can move on the surface because of the
exchange ofB andC atoms. Therefore, the absorbing state is
not a singlet and its structure is different from the PCPD
model. On the other hand, in an almostC-particle-poisoned
state, with the motion ofB atoms and the reactionBads
+Bads→B2sgd+2* and the adsorption ofBC and A, the dy-
namics ofB particles is in analogy with a binary spreading
process. However, a pair ofB particles in two NN sites does
not exist at the surface because of the infinite reaction rate in
the model and theB atoms cannot be annihilated completely
into theC poisoned state; then, its dynamics is different from
the binary process in the PCPD model. A deeper investiga-
tion of the critical behavior in model II is highly desirable.
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