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We address azimuthally modulated Bessel optical lattices imprinted in focusing cubic Kerr-type nonlinear
media, and reveal that such lattices support different types of stable solitons whose complexity increases with
the growth of lattice order. We reveal that the azimuthally modulated lattices cause single solitons launched
tangentially to the guiding rings to jump along consecutive sites of the optical lattice. The position of the output
channel can be varied by small changes of the launching angle.
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Weak transverse modulation of refractive index of nonlin-
ear medium creates inhomogeneities that are able to capture
and hold optical radiation. In the simplest case of periodic
modulation of refractive index, creating the array of
waveguides, the formation of discrete solitons is possible
because of the competition between discrete diffraction and
nonlinearity[1]. Waveguide arrays with tunable strength in-
troduce unique opportunities for soliton control[2]. It was
recently shown that such tunable arrays or lattices can be
induced optically in photorefractive medium[3–9], a possi-
bility that enables controlling the lattice period and the re-
fractive index modulation depth. The basic properties of one-
and two-dimensional solitons supported by harmonic lattices
are now well established[2–11].

The landmark idea of all-optical lattice generation with
nondiffracting fields opens broad prospects for the creation
of lattices of different symmetry. We recently put forward
properties of solitons supported byradially symmetric lat-
tices induced by nondiffracting Bessel beams[12]. Such
beams can be created by illuminating a conical-shaped opti-
cal element, called an axicon, with a Gaussian beam, or by
using a narrow illuminated annular slit that is placed in the
focal plane of a focusing lens[13]. More elaborated holo-
graphic techniques can be used to producehigher-order azi-
muthally modulated nondiffracting beams and lattices. Here
we show that such lattices support stable soliton complexes
that intuitively can be viewed as nonlinear combinations of
several lowest-order solitons. We reveal that single solitons
can be set into azimuthal rotation when launched tangentially
to the main guiding ring of azimuthally modulated lattice.
Such rotation is accompanied by small radiation that finally
leads to the controllable trapping of solitons in one of the
guiding lattice channels.

We consider propagation of optical radiation along thez
axis of a bulk focusing cubic medium with transverse modu-
lation of linear refractive index described by the nonlinear
Schrödinger equation for the dimensionless complex field
amplitudeq:
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Here the longitudinalj and transverseh ,z coordinates are
scaled to the diffraction length and input beam width, respec-
tively. The parameterp describes the lattice depth. The pro-
file of the modulated lattice is given byRsh ,zd
=Jn

2fs2blind1/2rgcos2snfd, wherer =sh2+z2d1/2 is the radius,f
is the azimuth angle, and the parameterblin defines the trans-
verse lattice scale. Note that a functionqsh ,z ,jd
=Jnfs2blind1/2rgcossnfdexps−iblinjd describes a higher-order
azimuthally modulated Bessel beam creating the lattice. We
assume that the lattice profile mimics the intensity profile of
the nondiffracting beam, as it occurs in photorefractive crys-
tals. Due to a specific field distribution in higher-order Bessel
beams the depth of azimuthal refractive index modulation in
the lattice is 100%. Note that with several incoherent Bessel
beams of different intensities and orders it is possible to pro-
duce lattices that are weakly modulated in the azimuthal di-
rection. Optical induction of lattices in photorefractive crys-
tals is possible because of the large anisotropy of their
nonlinear response. While linear anisotropy has almost no
effect on propagation of the lattice-creating Bessel beam[be-
cause of the small relative differencesxxx−xyyd /xxx,yy

,10−3 between elements of linear susceptibility tensor], only
the nonlinear anisotropy breaks rotational symmetry and af-
fects the properties of solitons supported by Bessel lattices.
We checked by solving the full system of material equations
for photorefractive crystals that main results(e.g., possibility
of azimuthal switching and existence of stable soliton com-
plexes) obtained with the model(1) remain valid in the pres-
ence of anisotropy of nonlinear response. Nevertheless, here
we use model(1) since it also holds for trapped Bose-
Einstein condensates. Typical profiles of modulated Bessel
lattices with n=1,2 areshown in Fig. 1. The local lattice
maxima situated closer to the lattice center are more pro-
nounced than others and form a ring of guiding channels that
will be referred to as the main lattice guiding ring. The num-

PHYSICAL REVIEW E 70, 065602(R) (2004)

RAPID COMMUNICATIONS

1539-3755/2004/70(6)/065602(4)/$22.50 ©2004 The American Physical Society065602-1



ber of guiding channels in the main ring is given by 2n.
Equation(1) admits several conserved quantities, including
the power or energy flowU=e−`

` e−`
` uqu2dhdz.

We searched for soliton solutions of Eq.(1) in the form
qsh ,z ,jd=wsh ,zdexpsibjd, wherewsh ,zd is a real function
andb is a propagation constant. Soliton families are defined
by parametersb, blin, n, and p. Scaling transformation
qsh ,z ,j ,pd→xqsxh ,xz ,x2j ,x2pd can be used to obtain
various soliton families from a given one, so further we set
the transverse scale in such a way thatblin =2, and varyb, p,
and n. To elucidate the linear stability of solitons we
searched for perturbed solutions of Eq.(1) in the form
qsh ,z ,jd=fwsh ,zd+ush ,z ,jd+ ivsh ,z ,jdgexpsibjd, with u
andv being the real and imaginary parts of the perturbations
which can grow upon propagation with a complex rated. A
standard linearization procedure for Eq.(1) yields a system
of coupled Schrödinger-type equations for perturbation com-
ponentsu,v that we solved numerically, in order to find per-
turbation profiles and growth rate.

One- and two-dimensional lattice soliton configurations
can be stable only when the field changes sign between
neighboring channels. Since the highest refractive index
modulation occurs for the main guiding ring of the modu-
lated lattice, it is natural to expect that the main guiding ring
of annth order Bessel lattice can support stable soliton com-
plexes formed by 2n out-of-phase bright spots. The proper-
ties of the simplest soliton complexes or dipole solitons sup-
ported by the first-order lattice are summarized in Fig. 2. The
typical profile of dipole soliton, found with a standard relax-
ation method, is shown in Fig. 2(a). Such soliton can be
intuitively viewed as a nonlinear combination of two out-of-
phase lowest-orders solitons supported by two guiding sites
of the main ring of the Bessel lattice. The lattice compen-
sates the repulsive interaction between out-of-phase solitons
and makes possible their propagation as a single entity. En-
ergy flowU of the dipole soliton is a nonmonotonic function
of propagation constant[Fig. 2(b)]. At high-energy flows
when b→` two spots forming the dipole become narrow
and almost do not interact. At small lattice depthpøpcr,
where pcr<3, the dipole soliton drastically broadens with
diminishing of the propagation constant and, as the propaga-
tion constant approaches the termination point, the soliton
ceases to exist. Atp.pcr, the energy flow of the dipole soli-
ton vanishes in the cutoff, while its width changes only

slightly. This behavior corresponds to discontinuity in the
cutoff versus lattice depth curve[Fig. 2(c)]. Linear stability
analysis of dipole solitons in lattices with moderate depth
revealed the existence of an instability domain located near

FIG. 1. Azimuthally modulated Bessel lattices. All quantities are
plotted in dimensionless units.

FIG. 2. (a) Soliton supported by first-order Bessel lattice corre-
sponding to point marked by circle in dispersion diagram(b). (c)
Cutoff vs lattice depth.(d) Real part of perturbation growth rate vs
propagation constant atp=10. All quantities are plotted in dimen-
sionless units.

FIG. 3. (a) Soliton supported by second-order Bessel lattice cor-
responding to point marked by circle in dispersion diagram(b). (c)
Cutoff vs lattice depth.(d) Real part of perturbation growth rate vs
propagation constant atp=16. All quantities are plotted in dimen-
sionless units.
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the propagation constant cutoff[Fig. 2(d)]. The correspond-
ing instability is of an oscillatory type, and typically Resdd
! Imsdd. Both the width of the instability domain and the
maximal real part of growth rate decrease with growth of the
lattice depth. For deep enough lattices dipole solitons be-
come free from instabilities in the entire domain of their
existence.

Properties of quadrupole solitons supported by second-
order lattice are summarized in Fig. 3. Quadrupole soliton
can be viewed as a nonlinear superposition of four out-of-
phase bright spots. Its properties are similar to that of dipole
solitons. There exists a lower cutoff on the propagation con-
stant that is a nonmonotonic function of the lattice depth
with a discontinuity atpcr<7 [Fig. 3(c)]. Linear stability
analysis revealed that the structure of the instability domain

for quadrupole solitons(located near the cutoff) is rather
complex, with separate “stability windows,” and both oscil-
latory and exponential instabilities may take place. Thus Fig.
3(d) shows the widest instability band for quadrupole soli-
tons atp=16. At a moderate lattice depth instability vanishes
above a certain propagation constant threshold. The quadru-
pole solitons were found to become stable in the entire do-
main of their existence for deep enough lattices.

To stress that the concept of stable soliton complexes can
be generalized to higher-order structures, we have studied
higher-order lattices withn up to 10. All of them can support
soliton complexes, whose properties are similar to that of
dipole and quadrupole solitons(see Fig. 4 with examples of
stable higher-order soliton complexes). Note that in homog-
enous media soliton complexes(or clusters) tend to self-
destruct through expansion or coalescence[14]. The instabil-
ity may be reduced by the presence of competing
nonlinearities, but even then the complexes exist as meta-
stable objects[15].

Another intriguing opportunity afforded by azimuthally
modulated Bessel lattices is that a single soliton initially lo-
cated in one of the guiding sites of the main lattice ring and
launched tangentially to the ring starts to travel along con-
secutive guiding sites of the ring, so that it can even return to
the input site. In pure cubic medium, the soliton is strongly
perturbed when it leaves the guiding site, making the above
process probably difficult to observe in practice. However,
even small nonlinearity saturation makes the process very
robust. To illustrate this point we included into the model Eq.
(1) small nonlinearity saturation by rewriting the nonlinear
term as −ququ2/ s1+Suqu2d, whereS!1. In such case, a laser
beam does not broaden in between guiding sites, and thus it

FIG. 4. Stable soliton complex supported by third-order Bessel
lattice atb=3 andp=20 (a) and by sixth-order Bessel lattice atb
=5 andp=40 (b). All quantities are plotted in dimensionless units.

FIG. 5. Azimuthal soliton switching to(a) second and(b) fourth
channels of third-order Bessel lattice foraz=0.49 andaz=0.626 at
p=2 and input energy flowUin=8.26.(c) and(d) show switching to
third and sixth channels of sixth-order lattice foraz=0.8 andaz

=0.93 atp=5 and input energy flowUin=8.61. Input and output
intensity distributions are superimposed. The arrows show the di-
rection of soliton motion andSin, Sout denote input and output soli-
ton positions. The parameterS=0.1. All quantities are plotted in
dimensionless units.

FIG. 6. Fusion of soliton launched in zero channel and control
beam launched in fifth channel of third-order Bessel lattice.(a)
input and(b) output intensity distributions for control beam energy
Uc=10.64. (c) input and (d) output intensity distributions forUc

=20.29. Input soliton energyUin=8.26. Sin, Sout, Sc denote input,
output, and control beam positions. The parametersS=0.1, p=2.
All quantities are plotted in dimensionless units.
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is allowed to jump from one site to another. The soliton beam
was set in motion by imposing on it an initial phase tilt
expsiahh+ iazzd. Here we consider the situation when the
soliton beam is initially located in the outermost right guid-
ing site of the main ring, andah=0. The soliton leaves the
guiding site whenaz exceeds a certain critical value and
starts to travel along the guiding ring ifaz is not too high.
Since solitons have to overcome a potential barrier when
passing between neighboring sites, they radiate a small frac-
tion of energy. In the presence of radiation, solitons can be
trapped in different guiding sites of the main ring and the
position/number of output site can be controlled easily by
changing the launching angle or soliton energy flow(Fig. 5).
Thus a higher incident angle is typically required to achieve
trapping of a soliton with a higher-energy flow into the de-
sired guiding site. The potential of the effect to implement
controllable azimuthal soliton switching is clearly visible.

Finally, we note that the azimuthal modulation of the lat-
tice remarkably affects interactions experienced by solitons
located in different guiding channels. When solitons carry
identical energies, the formation of even or dipole solitons is
possible. However, we found that when solitons carry differ-
ent energies, they may fuse into a single soliton, indepen-

dently of the phase difference between input solitons. Figure
6 shows the input and output field distributions for different
energy flows of a control soliton, in the case when the con-
trol and the input solitons are out of phase. If the energy flow
Uc of the control soliton considerably exceeds that of the
input soliton all energy is concentrated in the site where the
control soliton was located[Figs. 6(c) and 6(d)]. When en-
ergy flows are comparable the output soliton can be located
in the same channel as the input one[Figs. 6(a) and 6(b)].

In conclusion, we showed that azimuthally modulated
Bessel optical lattices support soliton complexes that can be
made stable in wide regions of their existence domain by
varying the lattice strength. We also showed that single soli-
tons launched tangentially to the main guiding ring of the
lattice can be trapped by its different guiding sites depending
on the input angle and energy flow. Note that optically in-
duced modulated Bessel lattices may find analogy with pho-
tonic crystals.
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