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We examine the Seidel aberrations of thin spherical lenses composed of media with refractive index not
restricted to be positive. We find that consideration of this expanded parameter space allows for the reduction
or elimination of more aberrations than is possible with only positive index media. In particular, we find that
spherical lenses possessing real aplanatic focal points are possible only with a negative index. We perform ray
tracing, using a custom code that relies only on Maxwell’s equations and conservation of energy, that confirms
the results of the aberration calculations.
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In 1968, Veselago proposed the idea that a material could
have a negative index of refraction, and described how this
would impact many basic electromagnetic phenomena[1]. In
recent years, there has been great interest in this subject due
to experimental demonstrations of negative index artificial
materials[2], and the introduction of the perfect lens concept
[3]. A perfect lens is aflat slab of index minus one, which
can focus radiation from nearby objects with the resolution
exceeding the diffraction limit.

However, the perfect lens, which can be correctly de-
scribed as antivacuum[4], has little in common with tradi-
tional optical elements. While it does offer a working dis-
tance equal to its thickness, it does not possess a focal length.
Radiation from distant sources is not focused by a perfect
lens; plane waves remain plane waves after traversal. Many
applications(cameras, telescopes, antennas, etc.) require the
ability to focus radiation from distant objects. As with tradi-
tional positive index lenses, this can be achieved with nega-
tive index media by using curved surfaces[5]. While it is
impossible to achieve subdiffraction image resolution of dis-
tant sources, spherical profile lenses composed of negative
index media have several advantages over their positive in-
dex counterparts: they are more compact, they can be per-
fectly matched to free space, and here we demonstrate that
they can also have superior focusing performance.

The monochromatic imaging quality of a lens can be char-
acterized by the five Seidel aberrations: spherical, coma,
astigmatism, field curvature, and distortion. These well-
known corrections to the simple Gaussian optical formulas
are calculated from a fourth-order expansion of the deviation
of a wave front from spherical.(A spherical wave front con-
verges to an ideal point focus in ray optics.) The coefficients
in this expansion quantify the nonideal focusing properties of
an optical element for a given object and image position[6].
We find that there is an asymmetry of several of the Seidel
aberrations with respect to index about zero. Considering
that an interface with a relative index of +1 is inert and one
of relative index −1 is strongly refractive, this asymmetry is
not surprising. However, our conclusion that the asymmetry
can yield superior focusing properties for negative index
lenses is not obvious.

We note that negative index media are necessarily fre-
quency dispersive, which implies increased chromatic aber-
ration and reduced bandwidth. However, diffractive optics,
which possess a similar limitation, have found utility in nar-
row band applications[7].

To confirm the analytical aberration results, we developed
a custom ray tracing code that does not rely on the sign of
the index to determine the path of the ray, but relies only on
the permittivity,«, the permeability,m, Maxwell’s equations,
and conservation of energy.

Between interfaces, in homogenous media, the ray propa-
gates in a straight line following the direction of the Poyn-
ting vector. Refraction across an interface, from a region la-
beled 1 into a region labeled 2, is handled as follows. Wave
solutions are sought that satisfy the dispersion relation(ob-
tained from Maxwell’s equations) in region 2,

sc2/v2dk2 ·k2 = «2m2, s1d

wherek2 is the wave vector in region 2. The solutions must
also satisfy a boundary match to the incident wave, requiring

n 3 sk2 − k1d = 0, s2d

where n is the unit normal to the interface. The outgoing,
refracted wave must carry energy away from the surface if
the incident wave carried energy in,

sP2 ·ndsP1 ·nd . 0, s3d

whereP= 1
2ResE3H*d is the time-averaged Poynting vector.

Finally, the wave must not be exponentially growing or de-
caying, Imsk2d=0, since the media are assumed passive and
lossless. If a solution exists that satisfies all the above crite-
ria, the ray is continued with the newfound wave vector and
Poynting vector. Furthermore, since we consider only isotro-
pic media, the solution will be unique.

We find that the form of the expressions for the Seidel
aberrations of thin spherical lenses found in the optics litera-
ture are unchanged by the consideration of negative index
media. We reached this conclusion by rederiving these ex-
pressions, from first principles, using only the definition of
optical path length and Fermat’s Principle. We interpret the
optical path length,LOP=eCnssdds, to be the phase change
(in units of free-space wavelength) that a wave would un-
dergo along the pathC, if C is oriented parallel to the Poyn-
ting vector. The optical path may have contributions that are
negative where the Poynting vector and the wave vector are
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antiparallel, i.e., where the index is negative. These aberra-
tion formulas are further corroborated by agreement with the
results of our ray tracing.

The wave aberration,DLOP, is the difference in optical
path length of a general ray and a reference ray, where the
reference ray passes through the optic axis in the aperture
stop and the general ray is parametrized by its coordinate in
the aperture stop,r , and its coordinate in the image plane,h
(Fig. 1). To be in the Gaussian optic limit, where spherical
interfaces yield perfect imaging,r andh must be near zero. A
series expansion of the wave aberration in these parameters,

DLOP= o
l,m,n=0

`

Clmnsr · r dlsr ·hdmsh ·hdn, s4d

yields corrections to Gaussian optics of any desired order.
The lowest-order corrections for a thin spherical lens with
aperture stop in the plane of the lens are given by

C200= − h1/f32f83nsn − 1d2gjfn3 + sn − 1d2s3n + 2dp2

+ 4sn + 1dpq+ sn + 2dq2g, s5ad

C110= −
1 − p

8f83nsn − 1d
fs2n + 1dsn − 1dp + sn + 1dqg, s5bd

C020= − fs1 − pd2/8f83g, s5cd

C101= − fs1 − pd2/16f83ngsn + 1d, s5dd

C011= 0. s5ed

These coefficients are the Seidel aberrations: spherical,
coma, astigmatism, field curvature, and distortion, respec-
tively. Also appearing in these expressions arep, the position
factor, andq, the shape factor, where we follow the defini-
tions of Mahajan[6]. The position factor is given by

p ; 1 − s2f8/S8d, s6d

wheref8 is the focal length referred to the image side andS8
is the image position. Through the thin spherical lens imag-
ing equation,

s1/S8d − s1/Sd = s1/f8d = sn − 1dfs1/R1d − s1/R2dg, s7d

whereS is the object position andR1 andR2 are the lens radii
of curvature, the position factor is directly related to the
magnification,

M = sS8/Sd = fsp + 1d/sp − 1dg. s8d

The shape factor is given by

q ; sR2 + R1d/sR2 − R1d. s9d

A lens with a shape factor of 0 is symmetric, and ±1 is a
plano-curved lens. Using the shape and position factor, all
thin spherical lens configurations are described.

We will first examine the very important case of a source
object at infinite distance. This is a position factor of −1. We
are left with two parameters that can be used to reduce ab-
errations,n andq. We will set the value ofq to eliminate one
of the aberrations and compare the remaining aberrations as
a function of index. We will restrict our attention to moderate
values of index. At large absolute values of index, the aber-
rations approach the same value independent of sign, but
dielectric lenses with a high index have significant reflection

FIG. 1. Construction used for aberration calculation. The aper-
ture stop, labeled AS, is at the plane of the thin lens(although the
lens shown is thick). The Gaussian image plane is labeled IP. The
aperture stop coordinate vector,r , and the image plane coordinate
vector,h, are not necessarily parallel as shown.

FIG. 2. (Color) The top plot shows spherical aberration(black),
astigmatism(green), field curvature(blue), and shape factor(light
gray) as a function of index for a lens focusing an object at infinity
and bent for zero coma. The thin gray vertical lines indicate prop-
erties for lenses shown in ray tracing diagrams(bottom), meridional
profile (left), and image spot(right). The incident angle is
0.2 radians and lenses aref /2. Index, shape factor, relative rms spot
size, and spot diagram zoom are shown tabularly. In the meridional
profile, the lens principle planes are shown as thin black vertical
lines, and the optic axis and Gaussian image plane are shown as
blue lines. In the spot diagram, the Gaussian focus is at the center of
the blue cross hairs.
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coefficients due to the impedance mismatch to free space.
The usual ordering of the aberrations is from highest to

lowest in the order ofr, the aperture coordinate. This is the
ordering of greatest to least image degradation, at least if one
is forming images with a significant lens aperture, but with a
small to moderate image size, which is a common occur-
rence in applications. Thus, spherical aberration is an obvi-
ous target for elimination. However, there are no roots of
C200 for values of index greater than one, which is why this
aberration is referred to as spherical aberration, since it ap-
pears to be inherent to spherical lenses. The usual practice is
to eliminate coma(the next in line), and it so happens that
the resulting lens has a value for the spherical aberration that
is very near the minimum obtainable. Adjusting the shape
factor,q, is often called lens bending. If we bend the lens for
zero coma, that is, find the roots ofC110 with respect toq, we
obtain

qc = fs2n + 1dsn − 1dg/sn + 1d. s10d

We plug this value forq and p=−1 into (5) and plot the
remaining three nonzero aberration coefficients as well asqc
in Fig. 2. We note that there are two values of index where

q=1, which represent a plano-concave/convex lens. Setting
(10) equal to one, we obtain

n2 − n − 1 = 0, s11d
the roots of which are the ubiquitous golden ratios,n=f
.1.62 andn=1−f.−0.62 [8]. We also note that there is a
window of index values nearn=−0.7 where both the spheri-
cal aberration and field curvature are small. There is no
equivalent window in positive index.

Several ray tracing diagrams with both meridional rays
and ray spot diagrams are shown for specific values of index
in Fig. 2. The reference lens has an indexf, which is close
to the typical values used in visible optical lenses and near
enough ton=1 for reasonably low reflection. The lenses of
negative index shown are, in fact, closer ton=−1, which is
the other index that permits perfect transmission, so this is a

FIG. 3. (Color) All as in Fig. 2, except the following: the lens is
bent for zero spherical aberration. The coma is shown in red. The
solid and dashed lines indicate different solutions. Spot size,rrms, is
relative to the bottom lens spot in Fig. 2. All spot diagrams are at
the same scale.

FIG. 4. (Color) All as in Fig. 2, except the following: lens con-
figuration with object and image at finite positions and bent for zero
spherical aberration and coma. The position factor is shown in dark
gray. Real image object pairs only occur when the position factor is
in the shaded region,upu,1. The lens pairs aref /1.23, f /1.08,
f /0.90, and have magnifications −1, −2, −3. In the second to last
spot diagram, the horizontals103 d and verticals1003 d zooms are
not equal.
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fair comparison. The negative index lenses both show sig-
nificantly tighter foci than the positive index lens.

If we attempt to bend a lens withp=−1 to obtain zero
spherical aberration, we obtain the two solutions

qs = f2sn2 − 1d ± nÎ1 – 4ng/sn + 2d. s12d

These expressions have real values only fornø1/4, so an
implementation of such a lens(embedded in free space) is
not possible with normal materials. It is a surprising and
significant result that negative index permits an entire family
of spherical aberration-free spherical lenses that can focus a
distant object to a real focus(Fig. 3). The solution with the
negative sign in the expression forqs (solid curves) has less
coma for moderate negative values of index, so ray tracing
diagrams are shown for that solution. We note that atn=−1,
the field curvature is also zero, thus this lens has only two of
the five Seidel aberrations, coma and astigmatism. For a
positive index reference we use the zero coma,n=f lens
from above. Here again, negative index lenses achieve a
tighter focus than a comparable positive index lens.

Now we examine the case ofupu ,1, that is, a real object
and real image both at finite position. Sincep andq are both
free parameters, we can conceivably eliminate two aberra-
tions. If we eliminate spherical aberration and coma, the re-
sulting lens is calledaplanatic. It is a well-known, though
incorrect, result that a spherical lens can only havevirtual
aplanatic focal pairs. The correct statement is that only nega-
tive index spherical lenses can havereal aplanatic focal
pairs.

If we setC200 andC110 to zero and solve forp andq, we
obtain four solutions, the two nontrivial ones are given by

psc= 7 fsn + 1d/sn − 1dg, s13ad

qsc= ± s2n + 1d. s13bd

We will focus on the solution with a minus sign forp and the
plus sign forq. This solution has smaller aberrations for lens
configurations that magnify an image. The other solution is
better for image reduction. Inserting expressions(13) into (5)
we have plotted the two remaining nonzero coefficients, as
well as the values ofpsc andqsc (Fig. 4). Ray diagrams are
shown for lenses with magnifications of −1, −2, and −3. Also
shown is a reference positive index lens for each. The refer-
ence lenses(which cannot be aplanatic) are of moderate in-
dex,f, with the same magnification andf /# as the lenses to
which they are compared. They are bent for zero coma but

also have spherical aberration near the minimum possible for
the configuration. Again, the negative index lenses produce
superior foci.

The lens of index −1 and magnification −1 is particularly
interesting. At this index value, the field curvature is also
zero. This remarkable lens configuration has only one of the
five Seidel aberrations, astigmatism. This is confirmed by ray
tracing, which shows a one-dimensional “spot” at the image
plane. This is perfect focusing in the sagittal plane. Perfect
focusing also occurs in the meridional plane, in front of sag-
ittal focus.

One may ask why this asymmetric lens,q=−1, performs
so well in a symmetric configuration,p=0. This lens can be
equivalently viewed as a biconcave doublet with one com-
ponent having index −1 and the other having index 1, i.e.,
free space. Driven by this observation, we found that all
biconcave doublets with arbitrary indices of ±n have identi-
cal focusing properties. The only observable difference is in
the internal rays, which are always symmetric about the
planer interface, but make more extreme angles at higher
index magnitude.

Fabrication of any of these negative index lenses is quite
feasible using periodically structured artificial materials.
Current artificial material designs can operate at frequencies
from megahertz through terahertz[9], where there are nu-
merous communication and imaging applications. For ex-
ample, lens antennas could benefit both by a reduction in
aberrations, which translates directly into increased gain, and
by a reduction of mass, afforded by low-density artificial
materials.(Antenna applications of artificial materials have
both historical and recent[10] interest.) Furthermore, these
lenses are even easier to implement than a perfect lens, since
they lack its severe structure period per wavelength require-
ments and are more tolerant to losses[11]. Negative index
lenses at visible light frequencies may also be possible, by
using photonic crystals, which have shown potential for
negative refraction[12,13].

Using the current optical system design paradigm, aberra-
tions are minimized by combining elements with coefficients
of opposite sign[14]. However, more elements mean greater
complexity and cost. Taking advantage of an expanded pa-
rameter space that includes negative index can reduce the
number of required elements—possibly even to one.
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