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We performed vertical and horizontal sandwich two-dimensional brittle fragmentation experiments. The
weighted mean fragment mass was scaled using the multiplicityhe scaling exponent crossed over at
0910 #c=—1.4. In the smallu(<u,) regime, the binomial multiplicativéBM) model was suitable and the
fragment mass distribution obeyed log-normal form. However, in the lafgeu.) regime, in which a clear
power-law cumulative fragment mass distribution was observed, it was impossible to describe the scaling
exponent using the BM model. We also found that the scaling exponent of the cumulative fragment mass
distribution depended on the manner of impédading conditions it was 0.5 in the vertical sandwich
experiment and approximately 1.0 in the horizontal sandwich experiment.
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The origin of the power-law distribution in brittle frag- sults of viscoelastic crystal fragmentati¢8]. A discussion
mentation is one of the best-examined problems in statisticaif the log-normal distribution for a fragmentation process is
physics[1,2]. It has been examined in many recent experi-found in Kolmogoloff[20]. It is not clear how the fragment
ments and simulationf8-16. In particular, the universality mass distribution approaches the power-law form from the
of fragmentation transition and low-impact energy fragmen4og-normal distribution. Do the fragments obey any other
tation have been discussgi13. Due to the success of scal- gjstributions before they reach the power-law form? The re-
ing theory with critical phenomena, it is natural to consider|ation between the universal scaling law, the log-normal
the universality of critical behavior for various phenomena.jqqel, and multifractality is one of the most frequently dis-
Kun and Herrmann discussed the possibility of percolation,ssed topics, even in the turbulent energy cascade problem
universality using a point impacted granular solid md@8! 21 since the brittle fragmentation phenomenon is very
They also investigated the universality of shell fragmentationsimme, it is very useful to investigate the origin of, and path
[10]. Astréom et al. proposed another universality law for to, the power-law form.

Lennard-JonegLJ) liquid and elastic beam modef$3]. Di- | order to study this problem, we performed low-impact
mensional analyses of the exponent of the power-law distrignergy fragmentation experiments. In addition to the glass
bution have also been derivei,8,14,13 tube results we reported previously7,19, we also analyze

Previously, we conducted two-dimension@D) britlle  {he results for glass plate samples, which correspond to a
fragmentation experiments in which we applied a flat impact,qrizontal sandwich procedure.

to one side of the specimégt7]. This consisted of a vertical The experimental apparatus was very simple. Samples

sandwich procedure using glass tubes. We showed that thgare sandwiched between a stainless-steel plate and a

critical scaling differed from that of percolation transition, gtzinjess-steel stage. Then, a heavy brass weight was dropped

and proposed a binomial multiplicativBM) (or biased cas-  zjong guide poles. This experimental system was described

cade model for critical fragmentation. The BM model is i ref, [17]. After fragmentation, all the fragments were col-

very similar to the turbulent multifractgd model[18]. This |ected and their masses were measured using an electronic

implies the similarity between brittle fragmentation and tur-jj51ance. We broke 25 new glass plates. Fifteen were 30

bulence by means of multifractality. However, the BM model x 30% 0.1 mn? in size, and ten were 6060x 0.1 mn? in

included a fitting parameter that was fixed @& 2/3, al-  gjze We set the measurement limit for the minimum mass at

though the origin of this value was not clear. When a morey g1 g, but only analyzed the data for fragments down to

realistic case was considered, the model predictions did n%min:O-Ol g. Thism,,, value is the same as that used in the

fit the experimental resultgl9]. The model results also did glass tube experiments. The glass tubes and plates corre-

not follow the power-law fragment mass distribution; rather,snonded to vertical and horizontal sandwich procedures, re-

they obeyed a log-normal distribution due to the central "mitspectively.

theorem. _ _ _ Let us introduce a critical divergence of the weighted
Low-impact energy fragmentation measured in experi-nean fragment mass,

ments that involved dropping a one-dimensio(ED) glass

rod yielded log-normal distributions in the relatively low-

impact energy regimg3]. The log-normal form has also M,

been observed in the three-dimensio(&D) numerical re-

~n, (1)
|\/llmmin

*Electronic address: katsurag@asem.kyushu-u.ac.jp whereM, and u are written as
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FIG. 1. The log of the dimensionless weighted mean fragment FIG. 2. Log-normal form of the fragment mass distribution in
masq M,/ (M;my,;»)] as a function of the log of the pseudo-control- the low-impact energy regiméog;ou=-2.55 data The sample
parameteru. The scaling crossed over from a log-normal to awas a 150-mm-long glass tube. The inset shows a semilog plot of
power-law distribution regime around lggu.=-1.4. Whileo sat-  the same distribution. The dashed line indicates an exponential-like
isfied o<1 in the smallu(<u;) regime, it exceeded 1 in the tail.
> u. regime. This implies that the BM model is unsuitable for the
large 1 regime. was obtained, the fragment mass distributionuire . fol-

lowed a log-normal distribution.
Mo While most of the data exhibited a log-normal form, there
M= 2 mn(m), u= Mhnin (2 was a small number of fragments in the low-impact energy
m ! regime in generdle.g., raw curves in Fig.(8)] so that it was
of the massn, respectively. Note that the summation in Eq. Therefore, we measured the weighted mean fragment mass

(2) includes the largest fragment mass. The left-hand side dfSing the momeni, of the distribution to obtain sufficient
Eq. (1) also includes the factan} , which was not consid- _ewdence. However, we encountered problems when calculat-

ered in the previous definition af (Eq. 4 in Ref[17]). This NG the —multiscaling ~exponent o [defined as
factor is a normalization term for the weighted mean frag-Ms1/ (MMyin) ~ %] for the glass plate data due to the
ment mass and gives a dimensionless value. It does not affe@ge fluctuations iMy.../ (MyMy;). We did not obtain reli-
the value of the scaling exponent. The multiplicity paramete@ble estimates oy for the glass plates, particularly in the
w was introduced by Campi as a pseudo-control-parameter t@rgek regime. Therefore, we focused only dy/(Mimy,q)
analyze nuclear fragmentatiq@?2). It indicates the dimen- scaling here. The scaling in the largeegime is obviously
sionless normalized fragment number. determined mainly by the largest fragment. This means that
The entire plot of logfM,/(M;myin)] Vs logou is we used mean mass statistics instead of the largest mass
shown in Fig. 1. The figure shows that the scaling crossestatistics, in this paper.
over around(log;o s.=-1.4). There are also two divergent For the gI_as; tul.)es,. some fragmentation resylts showed a
points in Fig. 1, which are likely due to experimental failure, Power-law distribution in the relatively large regime[17].
such as an oblique impact. However, we did not removdn such a regimey was close tqu, i.e., the crossover might
these points, since we do not have clear criteria to distinguisRave already occurreFig. 4(b) in Ref. [17]). Due to the
between success and failure. In the regjme ., the scal- dimensional restrictions of the expepmental apparatus, we
ing exponents can be described using the previously ob-could only examine the smalk regime for glass tubes.
tained values=0.84<1 [17]. The higher-order weighted Therefore, the clear crossover found in the glass plate frag-
mean fragment mass exhibited a multiscaling nature and itg'€ntation data has not been observed previously.
exponent agreed with the one predicted by the BM model. Another important characteristic is the power-law form of
Therefore, we expect the fragment mass distribution to obe{’® cumulative fragment mass distribution for a fully frag-
the log-normal form in this regime. Figure 2 shows an ime_mente_d state. It had different exponents for the tube and plate
grated log-normal form of the cumulative fragment mass dis€xperiments. Figure 3 shows the cumulative fragment mass
tribution N(m) = [Zn(m’)dm’ for a typical low-impact energy distributions in the rangen=0.01g for the glass plate
fragmentation(150-mm-long glass tube data with lgg.= ~ S@mPples. Figures(d) and 3b) give the low- and high-impact
~2.55). The integrated log-normal function can be written as€Nergy regime distributions, respectively. Each curve repre-
sents a different imparted energgropping height of the
N(m) _Afmw exfd - {log(m'/m)}?/202] weight) state. The cumulative distributions of well-
m m’ \““'271'(751

dm’, 3) fragmented eventgFig. 3b)] have a power-law portion

N(m) ~m~ ™Y with an exponent—1 of about 1. Some dis-
where A, m, and o}, are parameters, which were taken astributions in Fig. 3b) contain large fragments, so that the
0.24, 10.0, and 2.0 for the solid curve in Fig. 2, respectivelyscaling regions are restricted to almost one order of magni-
We usedm,,=20 as the cutoff scale. Since good agreementude; however, most portions of the distributions follaw
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lations of Astrémet al. By contrast, Beherat al. obtained a

1 value of r—1=1 in the highly fragmented state for a lateral
o] TegTaied log-normal - | - impact disk fragmentation simulatigii]. This value agrees
with our experiments, despite the difference in the loading
conditions. Kadono discussed the energy balance and ob-
tained the inequality 1/ 7—1<1 [6]. This inequality
range is also close to our result.

On the other hand, our distributions in the low-impact
energy regime showed the remains of large fragments and
were rather flaf{Fig. 3@)]. This behavior resembles that of
the integrated log-normal form, as described in Fig. 2. Al-
though all the curves in Figs.(® and 3b) correspond to

m (g) different imparted energy states, we tried summing those up.
N R . As a result, summed curves are shown in the insets; these
' - ' 33 more clearly indicate the integrated log-normal and power-

Slope=-1 j law distributions. The solid curve in the inset of Figagis
\ 1] the same as that in Fig. 2, except for the cutoff scale

1000 ¥ T T 3

T T T T T

BWw s we

N(m)

=3.5.

°Q% The weighted mean fragment mass scaling of the glass
E plate samples only is shown in Fig(c3. Here, the triangles

1 correspond to the low-impact energy regime distributions
[Fig. @] and the circles correspond to the high-impact en-
ergy regime distribution§Fig. 3(b)]. As expected, we con-
firmed a distinct separation between the two regimes using
the weighted mean fragment mass and the multiplicity. The
value of o became largéo=1.7) in the largeru(>pu.) re-
gime (Fig. 1). Although the BM model can be applied to

10

N(m)
o
1

1
1

0w s o

30T T T T O small o(<1) values, it is inappropriate for large(>1). Fur-
thermore, other models, such as the distributed and remain-
- 25 AA 7] ing cascade model, also break down for lasgealues[19].
2 Ll o i The point u indicates the distribution crossover from the
% A A A A o6} log-normal to the power-law. We cannot explain what hap-
< 151 ? . pens in the large: regime at present. Perhaps the smallest
EN limit of the splitting mass might appear aboug, similar to
z T Q@ 7 an idea proposed by Matsushita and Sumji2a). We as-
S sk ch) _ sumed that the crossover point was universal, but there ap-
pears to be a slight difference between the points shown in
00{£c) . . L L R Figs. 1 and &). More details and direct observations of
-2, -1. -1, 0. X

fragmentation are necessary to understand the crossover pre-
cisely. Theoretical studies are also required. In particular, an
FIG. 3. The cumulative fragment mass distribution of the g|assanaly3|s In the vicinity ofu. would be interesting to see how
plate samples ifa) the low-impact energy regime ai) the high-  th€ transition occurs. - , , _
impact energy regimec) Scaling plot of logd Mo/ (M;myi)] vs The crossover in Fig. 1 is reasonable from the viewpoint
logyo  for all glass plate samples. The triangles correspond to th&®f  the limit  point.  The limit point (log;ou,
low-impact energy cases), and the circles correspond to the high- 1091l M2/ (M1m,,)))=(0,0) corresponds to the completely
impact energy caseg). The insets of(a) and (b) show the all ~ fragmented state. In such a state, all fragments are the small-
summed curves. est unit size fragments. While it is extremely difficult to
achieve such a statee., fragment mass distributions exhibit
power-law in generg] it can exist as an ideal limit case. If
—-1=1. Theglass tube experiments hae1=0.5[17]. This the BM scaling stretches until lggu=0 in Fig. 1,
difference between the tubes and plates indicates that tHeg;q M,/(M;m;,) ] never reaches the value 0. This is a non-
exponentr depends on the fracturing method. The vaitie physical state. Therefore, it is natural that the crossover point
—1=1 does not concur with the value predicted by Hay-corresponds to a certain valye.
akawa[8] and Astromet al. [14], 7-1[=(d-1)/d]=1/2 (for Astrom et al. recently proposed a generic fragment mass
d=2). They considered the propagating and branching dyslistribution form that was composed of a power-law portion
namics of the crackor the failure wave Therefore, in the and an exponential portigii4]. The former originates from
horizontal sandwich fragmentation of glass plates, mechathe dynamics of crack branching and merging, and the latter
nisms other than crack dynamics might determine the valueesults from the Poisson process. Their proposed form also
of 7. Moreover, the boundary conditions are different be-applies to the low-impact energy regime. The inset in Fig. 2
tween our horizontal sandwich experiments and the simueepicts a semilog plot of the sariém) distribution that was

log, 1
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explained using a log-normal distribution. It shows astraighthe weighted mean fragment mass scaling, as demonstrated
(i.e., exponentigltail, which suggests that the Astrém model above.

may also be suitable. However, from the viewpoint of the Wittel et al. also revealed that the scaling exponeris
multiscaling nature of critical fragmentation, the BM model dependent on the loading conditions in numerical simula-
and log-normal distribution are more plausible. Diellal. tions [10]. While this was not consistent with their experi-

obtained a similar coincidence between 2D explosive frag—mental rgsults, it concurs with our findings q.ualitatively i
mentation simulations and the BM modgl6]. They also we consider the vertical and horizontal sandwich procedures

0 Corespong Lo act and exposve agmeriaton oo
Very recently, Wittelet al. reported the results of shell » resh Y- Y,

fragmentation experiments and simulatiqas]. They con- from ours slightly. This might result from the difference be-

. _ tween an open 2D sample and a closed-shell sample.
cluded that thémpactfragmentation of shells showed a con- In summary, we examined 2D brittle fragmentation using
tinuous transition, while thexplosiveone showed an abrupt

" . . experiments with glass tubes and glass plates. The exponent
transition. In our experiments, fragmentation seemed 10 0C: paq different values depending on the loading conditions,
cur suddenly. We could not obtain samples that only hadypich consisted of either a horizontal or vertical sandwich
visible macrocracks, but did not split. A small amount Ofimpact to the 2D surface. Contrarily, the normalized
imparted energy cannot make brittle solids cleave. Thigyeighted mean fragment mass scaling was universal and had
might imply a “latent-heat-like behavior.” That is, the begin- 5 crossover point at which the fragment mass distribution
ning of fragmentation requires a finite “latent energy to,ge”'changed from a log-normal to a power-law type. The results
erate macrocracks. The splitting occurs abruptly and it progyere consistent with other recent experiments and numerical
ceeds according to the BM model statistics. We can observgmations, but included unique experimental findings about

critical scaling in the rangg.>0. However, we cannot dis-  q relatively largen weighted mean fragment mass scaling.
cuss the scaling in the range<0, since it corresponds to

the unfragmented state. The fragmentation transition of open We thank Dr. J. A. Astrém and Professor H. Nakanishi for
2D objects involved in flat impacts is not yet understoodtheir helpful comments. This research was partially sup-
very well in terms of the phase transition, and this is still anported by the Ministry of Education, Culture, Sports, Science
open question. Conversely, the transition from the log-and Technology, through a Grant-in-Aid for Young Scientists
normal to the power-law is characterized by the crossover ofNo. 16740206.
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