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Preventing alternans-induced spiral wave breakup in cardiac tissue:
An ion-channel-based approach
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The detailed processes involved in spiral wave breakup, believed to be one major mechanism by which
tachycardia evolves into fibrillation, are still poorly understood. This has rendered difficult the proper design of
an efficient and practical control stimulus protocol to eliminate such events. In order to gain new insights into
the underlying electrophysiological and dynamical mechanisms of breakup, we applied linear perturbation
theory to a steadily rotating spiral wave in two spatial dimensions. The tissue was composed of cells modeled
using the Fenton-Karma equations whose parameters were chosen to emphasize alternans as a primary mecha-
nism for breakup. Along with one meandering mode, not just one but several unstable alternans modes were
found with differing growth rates, frequencies, and spatial structures. As the conductance of the fast inward
current was increased, the instability of the modes increased, consistent with increased meandering and pro-
pensity for spiral breakup in simulations. We also explored a promising new approach, based on the theory, for
the design of an energy efficient electrical stimulus protocol to control spiral wave breakup. The novelty lies in
addressing the problem directly at the ion channel level and taking advantage of the inherent two dimensional
nature of the rotating wave. With the help of the eigenmode method, we were able to calculate the exact timing
and amplitude of the stimulus, and locate it optimally to maximize efficiency. The analysis led to a special-case
example that demonstrated that a single, properly timed stimulus can have a global effect, suppressing all
growing alternans modes over the entire tissue, thus inhibiting spiral wave breakup.
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[. INTRODUCTION sions drawn when using this approach alone have been
. T . N somewhat limited because of the complex and interrelated
. Ventricular fibrillation remains one Of. the leading imme- phenomena typically present in spiral waves. To overcome
diate causes of S“S’de” cardiac .death in North Ameia this difficulty, researchers have often employed simplified
Yet, despite extensive research, its nature as well as the eler(ffodels of arrhythmige.g., pulse propagation in a ring, low

trophysiological mechanisms responsible for its initiationdimensional maps[2,19,26—29, and/or simplified dynami-
and sustenance are still not fully understood. In the structurz, g models[2,3 21 ’30—3]4’or supported their studies
ally normal heart, recent experimental and theoretical re o

with concepts or analytical expressions derived from these

search suggest that the breakup of a single stationary or mﬁipes of model$16,18,21,22,3p The use of these simplified

andering spiral or scrqll wave intq multiple regntrapt WaVeSmodels has helped greatly to advance our understanding of
may be one of the major mechanisms underlying flbrlllat|onSpiral wave dynamics, but they often present some limita-

[2-9]. However, the conditions during which breakup occursy s some fail to capture mechanisms of reentry that are

are rs]tlll_the ;ourlcg of lmuch _debr;[é—lq.bln palrtlcular, inherently two-dimensional in natui@.g., dynamics of the
mechanisms involving alternagise., beat-to-beat alternation spiral core, wavefront curvature and fundamentally two-

in action potelntial durgtic)n as an important cause Of. dimensional aspects of electrotonic interaction and conduc-
breakup, are still the subject of much research and discussiqy velocity dispersioy) which, as we hypothesize and some
[S_Alﬂ' ber of hes h b ken in the i studies have already suggest&]11,16,18,19,21,36 often

A number of approaches have been taken in the INVestly .., 5, essential role in the wave dynamics and its stability.
gation of spiral wave dynamics and wave breakup. One apx g, the models sometimes do not include some of the de-

girf(?:rcehnt(i:glnSIeStLSja?{o?]lsre(g[Dcé);npu(g?/rersr;ri?}mattlﬁg 0(; tzzrﬁiigla ailed electrophysiological and often interrelated processes
(211 16-25 'Ighe Aalvis erfogrmed oft%n reveal); e hePresent in spiral wave dynamicalternans, memory, ionic
= ySIS p mechanisms, etg.

dynamlc_s are modified Wh?” certain properties of the _ceIIs The application of linear perturbation theory to the system
and/or tissugsuch as gap Junction, sodium and/or CaICIumequations is another avenue taken by investigators to study
channel conductances, etare varied. However, the conclu- spiral wave stability. This approach sidesteps some of the
limitations just discussed. A nice property of this method lies
in its ability to separate out various phenomeaéernans,
*Electronic address: nfol@cornell.edu meandering, memory, ejcallowing one to analyze each in-
URL: http://reentry.cwru.edu/otani dependently and characterize stability through the use of so-
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called “eigenmodes.” The method has already been used to Our approach offers several advantages and improve-
study the stability of a steady rotating spiral wave in twoments over other previously described studi€ésy The
dimensions (2D) or a vortex in three dimension&3D) method is able to isolate, analyze independently and charac-
[37-41. Its implementation is, however, computationally in- terize the stability of the multiple and intricate phenomena
tensive and consequently has only been applied to th&avolved in spiral wave dynamics, especially close to the
FitzHugh-Nagumd@FN) equations, a relatively simple model spiral tip, where meandering is often combined with altern-
that generally does not produce spiral wave breakup. Thans.(2) In contrast to the FitzHugh-Nagumo model, the use
analysis was thus limited to a study of the meandering obf 3V-SIM includes the three basic ionic currents, which will
spiral waves in 2D or filament twist in 3D. allow the study of alternans and provide a basis for forming
The ultimate goal of studying spiral wave dynamics usingsimple, but physiological, explanations of processes involved
these methods is to find an efficient method to prevent, sugn spiral wave instability(3) Since the method is applied to
press or control arrhythmia, and reestablish normal cardiastudy stability in 2D rather than pulse propagation in 1D or
activity. If alternans is indeed a major player in the transitionconstant pacing in a single cell, we will be able to look at
from ventricular tachycardia to ventricular fibrillation mechanisms of reentry that are inherently two-dimensional.
[6,12,15,18,21,27,42—3Athen one step towards this goal (4) The method automatically provides stimulus sensitivity
would be to find ways to suppress or control alternans. Thisnformation through the examination of left eigenvectors.
might be accomplished by formulating drug therapies thafThis allows objective determination of the optimal locations
modify ionic currents and thereby alter the overall dynamicsand timing ofthe control stimuli for maximum efficienap)
of the tissue. However, our lack of understanding of the comThe method’s ability to embrace the global dynamics of the
plex dynamics of arrhythmia has led to catastrophic results ispiral wave and directly investigate the precise electrophysi-
early drug trials(CAST and SWORD[45-47). Electrical ological mechanisms of its instability will help in the design
stimulation protocols have also been explored as an approacti smart and efficient protocols to target and control specific
for the control of alternans, both at the cellular level and inmodes, a difficult task if phenomenological concepts such as
2D [48-53. One type of protocol applied to single cells and those based on low dimensional maps and variable sets are
one-dimensiona(1D) cables adjusts the pacing interval to used. These advantages must be balanced against inherent
suppress alternari§1,53,54. However, this approach seems limitations of the method, which will be discussed in detail
to be difficult to extend to the case of reentry, where controin the discussion section.
cannot easily be exerted on the “pacing interval.” A different The purpose of this paper is therefore several falgl:;To
approach was used by Rappel al. [49]. Their control introduce the method?) to extract and describe spiral wave
scheme applied a feedback current to a discrete set of poingdternans mechanisms for a simple ion channel mg8gto
during repolarization, thereby controlling alternans at eactpresent a new approach for the control of alternans using
point. Overdrive pacing has also been shown to control spirdtnowledge obtained from perturbation theory, af@ to
wave chaos under certain conditiof,56. demonstrate the potential of the method to develop control
A number of methods for completely suppressing reenstrategies for spiral wave instabilities. We first present linear
trant patterns using electrical stimuli have also been sugperturbation theory as it applies to our problem, and describe
gested56—-64. These include displacing the reentrant wavehow the method is implemented numerically. We then exhibit
towards a boundary where it will self-extingui§h8,63,64, the various modes obtained, in particular the alternans
applying suitable stimuli in the recovery phase to generate anodes, and describe briefly their characteristics. Finally, we
new wavefront which would collide with and suppress thedemonstrate how perturbation theory can help design an ef-
original reentrant wavgs7,59,69, using pulse modulation to ficient stimulus which, despite being very localized, can con-
force the tissue to resume its normal rhyth®d], and simu-  trol meandering and alternans over the entire tissue, thus
lating no flux boundary conditions inside the tissue usinginhibiting breakup of the spiral wave in the nonlinear regime.
lines of stimuli, where reentry would then vanig,6q.
Recently in our group, we have also applied linear pertur-
bation theory to the twin goals of identifying the physiologi-  We will study the propensity for rotating action potential
cal basis for, and controlling, alternans in rapidly paced, isowaves to break up by assuming that the breakup phenom-
lated cardiac cells. A distinction relative to many of the otherenon is related to the instability of a steadily rotating action
studies, is that we have applied the method directly to the iootential wave. That is, if a test were conducted in which a
channel equations. This helped us reveal the ionic proceddidly rotating wave is initiated in cardiac tissue, and this
responsible for alternari84,67 and led to the development Wave were unstable to small perturbations, leading to a pro-
of new, ion-channel based strategies for the electrical contrdl®SSively more and more unsteady rotating pattern and
of alternans in single cellE58]. breakup, then we would expect that, more generally, arbi-

Encouraged by these results, we now propose to agaigary rotatir!g wave patterns ir] the same med!um would al_so
apply the eigenmode method at the ion channel level, thi e susceptible to breakup. With this assumption, we confine

time in two spatial dimensions, to gain new insights into YT study to the consideration of the stability of a single,

spiral wave dynamics, and in particular alternans, and t&'g'dly rotating wave.

present a new approach for controlling spiral wave breakup. A. The method

In this study, we used the three variable Fenton-Karma )

model (referred to as the three variable simplified ionic 1. The dynamical system

model or 3V-SIM [21,22 as a first step towards the use of  The system we will use will be two-dimensional and cir-
more detailed ionic models. cular in geometry. The idea will be to first calculate a

II. STUDY OF SPIRAL WAVE STABILITY
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steadily rotating wave solution in this system, with the centerivatives. The Crank Nicholson method was employed for
of rotation coinciding with the center of the system, and therany terms involving azimuthal derivatives to avoid the strin-
study the stability of these solutions using linear perturbatiorgent stability timestep limit imposed on the F&n the order
theory. of 10* my) arising from the very small azimuthal grid spac-
The dynamics of this circular system will be governed bying at the very center of the polar grid. Solution to the equa-
the equations of the three-variable Fenton-Karma m@\!  tions was then facilitated by using a standard FFT with re-
SIM) [22]: spect to the azimuthal coordinat,The parameter values of
B ) the 3V-SIM model were those listed in Appendix A. The
du=D- (V) + F(u) (D timestep was generally chosen to be 0.01 ffiis is much
whereu(x,y,t) is the vectorfu(x,y,t),v(x,y,t),w(x,y,)]T  Smaller than the fastest timescale which is approximately
which includes the membrane potentigiinactivation gate ~ €dual t073~0.3-0.6 ms; see Appendix A for definition.
of the fast inward currentsodium currentand inactivation
gatew of the slow inward currentcalcium current, respec- 2. Linear perturbation theory
tively. Here theT superscript designates the transpd3es

When a rigidly rotating wave is unstable, linear perturba-
equal to:

tions (i.e., small changes in membrane voltage or the other
D OO dynamical quantitigswill typically grow, often leading to
_ spiral wave breakup in the nonlineére., large-amplitude
D=0 00 ) regime. When small, these perturbations can be regarded as
0 00O the sum of a number of independent components, called
eigenmodes, each of which is associated with a distinct type
of behavior, such as spiral wave meandering or alternans.
Eigenmode theory, which is derived from linear perturbation
theory, allows the extraction and study of the growth and
nature of each of those modes independently.
The first step of the method consists of finding a rigidly
rotating spiral wave solution to the governing equations,

}Psea'gﬂinst'ge fg&g:t'ggir'glv \?Jgsg gvr';glfuur nsitgoi?é ﬁgdsif;r_which we refer to as the “steady state.” Mathematically, this
ylop P P P can be achieved by looking for a nontrivial steady state so-

plicity, the model has been shown to accurately reproduc%‘tion to Eq. (1) in the frame of reference rotating at the

where D is the diffusion tensor as determined by the gap
junction conductivities between cells, adf is the vector
function [ 7, F,,F,]", the component functions which de-
fine the local(i.e., isolatedl cell behaviors for, v, andw,
respectively, as described in Appendix A.

This model was chosen mainly for its simplicity due to

key aspects of the dynamics of other more detailed and a ame angular frequend as the spiral wave. The natural

\é?néﬁgr{gﬂf.gnn;ﬁﬁlsaf urgg daeﬁstpzelgeael\,evﬁﬁ ZUte:6 L::;){(Ie?ludy- oordinate system to use with this method for our system is
’ ’ pprop y polar coordinatesr, 6) wherer is the radius distance from

chosen parameters. tpe center of rotation andthe azimuthal angle. Transforma-

The 3V-SIM parameters were chosen to reduce the rate . . ? ;
rise of the upstroke to about 30 V//s compared to the norm;ﬁ'on to the rotating frame consists of making the following

value of about 200 V/s, assuming an AP amplitude Ofchang_e of var|abl_esr—>r, ‘9._? A andt—>t._Th|s trans-

100 mV. This was accomplished by reducing the fast inwarc{ormatlon results in .the ad_d|t|on of an advection term of the

conductanceg;; while simultaneously decreasing the gap orm QJyu to Eq. (1); thatis,

junction resistance to keep the propagation velocity similar

to that of healthy tissue(See Appendix A for parameter du=G(u) 3)

values and definitionsThis was done for two reasons. First,

we were principally interested in studying alternans as avhere

cause of spiral breakup; thus the parameters were chosen to

limit the meandering instabilities relative to instabilities as- G(u) = Qdgu + D - (V2u) + F(u). (4)

sociated with alternans. Second, it was necessary to have

“smoother” functions to facilitate the convergence of theA rigidly rotating wave is stationary in this frame, implying

Newton-Raphson method, which was used to find the steadihat the time derivatives must be zero. The steady state so-

state (as described later in this sectjorTo ensure proper lution ug(r, ) must, therefore, satisfy:

convergence, we also modified the model's equations to

make them second order differentiable. The new set of equa- G(ug) = 0. (5)

tions is described in Appendix A. _ _ _
Computer simulations of spiral waves were performed to Once the steady state is obtained, we can determine the

verify the appropriateness of our choice of system paramdynamics governing small perturbationsu around the

eters. Simulations were conducted in polar geometry with teady state by expanding E@) to first-order:

system radius of 3 cm. We used 100 computational nodes in

the radial direction and 600 in the azimuthal direction. 36U ="D(G(ug))éu (6)
The integration of the equations forwards in time was

performed using the standard forward EUlEE) method for ~ whereD is the Jacobian with respect tpv, andw. In other

the local dynamics terms and any terms involving radial dewords:
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D(G(up)) = N3y + DV? subspace spanned by, say, the 100 most dominant eigen-
modes with the 100 largest growth rates using a modified
duFu(Uo) 3,7 (Uo)  duFuUo) version of the Arnoldi method69]. Once this subspace is
+| 9 F,(ug)  9,F,(up) 0 . (7)  obtained, we can easily extract an approximation to the 100

9 FoUo) 0 aFulUo) dominant eigenvalues and corresponding eigenvectors.
ul wito W wiEo Those modes are defined as the right eigenmodes of the sys-
We study the dynamics of the perturbatiofs as ex- tem in contrast to the left eigenmodes which will be defined

pressed in Eq(6) by finding the eigenmodes of the system. in Sec. Ill A.

Each eigenmoda(r, §) and its eigenvalua satisfy the dy- Discretization is accomplished through the use of a polar
namical equation: grid composed oN, =100 grid points in the radial direction
andN,=606 points in the azimuthal direction, with a single
D(G(up))a=\a (8)  extra grid point in the center of the grid. We defiNe=1

+N;Ny, the total number of grid points, andu
=[ut,u?, ..., uN, ot oV wt, L wWNT, whered!, of, andw
correspond to the variablesv andw associated with thih
cell on the polar grid, totaling '$=3+3X 100X 606
au(r,6,t) = a(r, 9)eM. (99  =180000 variables. When there is no ambiguity, we have

. : L found it convenient to use the same notatioffior both the
Each mode is, therefore, characterized by its eigenvectQl,aiia)ly discrete and continuous vector representation of the

and eigenvalue. The eigenvector gives the spatial structure Qjate variables. The grid spacings in the radial and azimuthal

the perturbation for the membrane potential and the othefjiractions were chosen to ke =0.03 cm andh 9= 27/606
variables as we shall see in Sec. Il B. The eigenvalue is ' '

fesulting in a disk-shaped patch of radius 3 cm. The grid

Cr?mmeé( number contai(;]ikr;g the QLOWth rlate and frr]eqqency fpacings are thus substantially smaller than the resting space
the mode. As suggested by HE), the real part of the eigen- hqant 'D/g~1 mm, as required for numerical accuracy.

value (=\g) is the growth rate, indicating how fast the per- (Hereg is the total ion channel conductance at fest.
turbation associated with the mode grogessitive valug or

decays(negative valug The imaginary part of the eigen-

value(\,) is the mode frequency, which gives the oscillation B. Results

frequency of the mode. For instance, the alternans modes

have mode frequencies very close to half the spiral wave, , . : . . .
rotation frequency, which implies that the width oscillation 3V-SIM was verified by running several simulations of spiral

. ; . .~ waves and their breakup for different valuesggfusing the
completes half of its cycle during each period of rOtat'On.‘numerical method described in the Methods section. A typi-

This is consistent with alternans as classically defined, i spiral wave and its breakup is shown in Fig. 1 &r

\évg;(;h the action potential duration alternates from beat t°=1_75 mS/crh. To study breakup, we perturbed a steady

state spiral wave by adding spatially random ngise0.001
amplitudeg at timet=0 to the membrane voltage component.
This noise was introduced to hasten the onset of breakup
To solve Eq.(5) for the steady state and E) for the  which would have appeared anyway, due to the presence of
eigenmodes, we use to a large extent the numerical approaehnall amplitude perturbations resulting from numerical and
presented by Henry and Hakip0,41, which will be briefly  roundoff errors, but only after a much longer period of time.
described here. More details can be found in Appendix BNote that, as intended, the spiral wave does not noticeably
The MATLAB software packagéMathworks, Inc) is used to  meander, and that breakup occurs due to increasing oscilla-
perform all computations. tions in the spiral width, consistent with spiral wave altern-
The steady state is found using the Newton-Raphsoans. The spiral almost breaks up at 225 ms before going
method applied to the discretized version of Ef). We first  through another alternans cycle to eventually break at around
find the steady state of a stable spiral wave having a circulag50 ms.
core obtained with a reduced value for the conductance as- When linear perturbation theory was applied to the par-
sociated with the fast inward(sodium) current (g; ticular simulation case described above for a fast inward con-
=1.4 mS/cm) compared to the “standard” case. Once theductance ofy;=1.75 mS/cri, we found a number of modes
steady state is found for a stably rotating waggwas step-  of interest among the 100 largest eigenmao@es, those with
wise increased with the new steady state being calculated #te largest growth ratgsWe found the usual translational
each step. The steady state obtained for the previous value igenvalues close toif) and rotational mode&ero eigen-
05 was used as the initial guess in the Newton-Raphson akalue) which do not reveal any important dynamics of the
gorithm for each new value djy. This procedure was per- perturbations. These modes are a reflection of the fact that
formed up to sodium conductance values for which the spirathe rotated and translated versions of the steady state are
wave breaks up. themselves steady states. We also found one dominant me-
Once the steady states are found, we extract the dominaahdering mode, which has been studied extensively in previ-
perturbation eigenmodes of the discretized version ofq ous publicationg[37,39,4Q. Apart from these well-known
This is accomplished by extracting an approximation to themodes, we found not just one but several alternans modes

so that, if the initial perturbationéu has the form,
au(r,0,0)=a(r, §), thendu satisfying Eq(6) is forever pro-
portional to the eigenmode:

The appropriateness of our choice of parameters for the

3. The numerical method
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FIG. 1. Membrane potential and its contours
(white solid ling at different times showing spiral
wave breakup for the case whereyy
=1.75 mS/crA. The time related to each frame is
shown in the top left corner. The rotation period
is 131 ms. Increasing alternans amplitude in the
spiral width leads eventually to breakup at time
close to 430 ms. Meandering does not occur, as
evidenced by the circular trajectory of the spiral
tip (black dotted ling The movie related to this
figure can also be found in R€f70].

having different degrees of instability and different modeeigenvalues of these modes are labeled in Fig. 2. The fastest
frequencies. The eigenvalues associated with the 21 largegtowing mode, which we will refer to as Alternans Mode 1,
eigenmodes are shown in Fig. 2. Note that the alternanis the one we would normally expect to be the main cause for
modes frequencies are approximate half integer multiples dpreakup in the nonlinear regime. It also has the lowest mode
the rotation frequency) (i.e., #)/2, +30/2, +50/2, etc)  frequency, being equal /2. Other modes of interest will
This is consistent with the frequency of the modes found foie referred to as Alternans Modes 2 and 3. These three eigen-
perturbations of action potentials traveling around a ringmodes have eigenvalues(Ag,\)=(1.142/2m,0.52),
[27]. It is also consistent with the alternans nature of thesd0.382/27,3.52), and(-0.39)/21,0.X)), respectively.
modes—in alternans, the pattern repeats every two pacing Although the frequency of a mode can give us a clue as to
periods at every point in the lab frame, and repeats witithe type of mode it is, alternans modes can only be rigour-
opposite sign every period. Since any point in the rotatingously differentiated from other modes, including the mean-
frame returns to the same point after each rotation of thelering mode, by looking at their spatial structures. Figure 3
wave, the pattern as observed in the rotating frame will alsshows a typical time course for an alternans mode perturba-
repeat every two rotations, and have opposite polarity eaction (Alternans Mode }, showing its various phases through
rotation. Consequently, the real part of the frequency of thesene mode period. We plotted the sum of membrane potential
modes can only be half-integer multiples of the wave rotacomponentsae' and aeM' of a related pair of alternans
tion frequency. eigenmodes having complex conjugate eigenvalues

For simplicity and comparative purposes, we will describe=(\g, £\)). (Here the overbar designates complex conjuga-
in detalil three typical alternans modes chosen for their diftion.) The perturbation amplitude and width increase as the
ferences in frequency, spatial structure and/or behavior. Theerturbation propagates along the spiral wave leading and
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FIG. 2. Eigenmode map showing the eigenvalugs corre-
sponding to the most unstable modes fp=1.75 mS/cri. The
frequency of each modgmaginary part ofA) normalized to() is
plotted versus its growth raigeal part of\) normalized toQ)/ 2.

The rotational, translational and meandering modes are represente-3
by circle, square and star symbols respectively. All the other domi-
nant modes, represented by points, are alternans modes. The eige
values of the eigenmodes are arranged in complex conjugate pairs
of which five (excluding the rotational and translational modae
unstable with positive growth rates. Note that the frequencies of the
alternans modes are near half-integer multiple$)ofThe pairs of
eigenvalues designated as 1, 2, and 3 refer to Alternans Modes 1, -
and 3, as discussed in the text.

trailing edges outward from the point of zero curvature near
the spiral wave tip. The sign of the perturbation is the same_3
on both sides of the steady state spiral wésteown in red -3
when positive and blue when negativerhich translates into

a widening or narrowing of the perturbed spiral wave width, ﬂ
as shown by the solid red line contour. The spiral width is -0.8 -0.4 0 0.4 08
seen to vary between the widthis andw_ shown in panels

A and D. These alternations in the action potential width,
together with the fact that they occur over a period of two

rotation perIOd.S’ is strongly indicative of alt.ernans. 1/6" of an eigenmode period apart. The contour of the spiral wave
The oscillation pattern of any perturbation moag as is shown as a red dashed line for the steady state and as a solid line

shown in Fig. 3 for the dominant mode, can be succinCtlyagier the perturbation has been added. For the purpose of illustra-
represented by plotting its amplituda,| and phasep(am).  tion, the red line contours were drawn using an artificially large
This representation was used to show the spatial structure @krturbation amplitudé3 times that of the normalized eigenmode
the membrane potential component of the perturbation fop positive perturbationiyellow-red leads to a widening while a
Alternans Modes 1, 2, and 3 and the meandering mode iRegative perturbatior{blue) to a narrowing of the spiral wave
Fig. 4. width. The width fluctuates betweewn andw_, typical of alternans.
Note that, for all alternans modes, the red isophase coriFhe depolarized region of the spiral wave may be distinguished
tours run perpendicular to the spiral wave edges, indicatinfrom the recovery region because it is always narrower, for the
that the perturbations on the two edges are in phase, which jErameters we use in this stu@s illustrated explicitly in Fig. L
typical of alternans. In contrast, for the meandering modeThe movie related to this figure can also be found in IRE].
the perturbations on the two edges are 180° out of phase, as
shown in panel H. This corresponds to local translationathe wave rotation frequend, the result in the lab frame is
shifts of the spiral wave relative to its steady state countera combination of the circular translational motion with the
part, with no significant increase or decrease of the waveverall rotation of the spiral wave. This creates the flower
width. We observe this translational motion to be generallypetal like motion of the wave characteristic of spiral wave
circular as a function of time in the rotating frame. Since themeandering. For Alternans Modes 1 and 3, the phases of the
mode frequency, (here=1.3()) is not commensurate with perturbations change rather modestly along the entire length

FIG. 3. (Color) Snapshots of the membrane potential perturba-
tion associated with an alternans eigenmode, and its effect on the
spiral wave. The mode frequency(y 2. The snapshots were taken
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0.8
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0.4

0.2

-3 -1

FIG. 4. (Color) Amplitude (top panelg and phas&bottom panelsplots for the Alternans Mode (\g,\;)=(0.1402/27,0.5Q) in panels
A and B, Alternans Mode 20.38)/27,3.%}) in panels C and D, Alternans Mode (30.3%2/27,0.5}) in panels E and F, and the
meandering modé€0.6&1/24,1.33)) in panels G and H. In the amplitude plots, mode amplitudes are represented by the various colors
appearing in the colorscale to the right, while steady state membrane potential level contours, shown as black dotted lines, reveal the location
of the steadily rotating spiral wave. In the phase plots, the intensity of the color associated with the phases is proportional to the amplitude,
while the color itself represents the mode phase. Outlines of both the steady state and perturbed spiral waves are shown as black dashed an
solid lines, respectively, in the phase plots. For the purpose of illustration, the black line contours were drawn using an artificially large
perturbation amplitud€3 times that of the normalized eigenm@dehe red solid line contours in the phase plot are isophase contours plotted
every 7 radians. For clarity, these contours are only plotted in and around the depolarized region of the steady state. Movies showing the
phase patterns and amplitude of each mode in a similar manner as in Fig. 3 can also be found76] Ref.

of both leading and trailing edges of the spiral wave. On thedent on the parameter values of the ionic model. As an ex-
other hand, for higher frequency modes, such as Alternanample, to illustrate the dependency of the eigenmodes on the
Mode 2, the perturbation phase rotates through several mugy-S|M parameter values, we computed the eigenmodes and
tiples of 27 (67 for Mode 3 as one travels outward along theijr eigenvalues for various values of the fast inward current
either wave edge. This produces rapid spatial oscillations Oéonductancégﬁ). The results are shown in Fig. 5, where the

the spiral wave width, as exhibited by the solid black Iin(':‘translational rotational, meandering and dominant alternans
perturbed wave outline in panel D for Mode 3. This is typical . . ' 9 .
eigenmode eigenvalues are plotted for different values;of

of discordant alternan@.e., alternans that exhibit opposite ) X ; .
polarities in different regions of the tiss{igl]). Differences The trajectories of the eigenvalues are represented by solid

other than just the mode frequencies exist among the variod$1€s asgs is increased from 1.5 to 3.5 mS/émAs the
alternans modes. Some seem to display larger perturbatiogonductance of the fast inward currégt) is increased, so
near the spiral tip than others, while in some cases, there ado the growth rates of all the alternans and meandering
greater perturbations in the wake of the spiral wave than omodes.(The translational and rotational growth rates do not
the wa\(efront. These differen_ces seem to present themselv@frease—they are theoretically independent@f The al-
more distinctly when comparison was made between modégrnans mode frequencies remain relatively unchanged rela-

belonging to different parabola-shaped sets of points in Figy e 1o (). (The rotational frequency does increase, how-
2, rather than among modes of the same set. For mstancg

. i ver, asgs; increases. The meandering mode seems to drift

such differences appear when comparing Alternans Mode : . : . .
with either Alternans Mode 1 or Mode 2 in the top panels of oward higher frequenc!es. The mcrga;ed ms_tablllty ‘_)f the
Fig. 4. Perturbations associated with Alternans Mode 3 als@/t€mans and meandering modes wgihis consistent with
seemed to involve the tip of the spiral wave more than thos&€ spiral wave’s greater tendency to break up and meander
of Alternans Modes 1 and 2. These variations in the spatiaft high conductance of the fast inward currestdium cur-
structure of the various modes suggest the existence d¢€nY as seen in the simulations and as previously observed
physiologically different types of alternangl8,21, for by others[17,18,3§. Finally, we note that the relative posi-
which further analysis is needed. tions of the alternans mode eigenvalues change atdyighs

It is well known that the dynamics and, in particular, theillustrated by the dotted lindeading to the emergence of a
propensity for breakup of the spiral wave are highly dependominant mode with frequency higher thén 2.
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5.5

Other Eigenmodes
gs=1.5 1.6 175

i 2‘ 2.25 2%'5;;'/3‘5 |
a5t i \‘ \\:“-"

Perturbation

35r

Alternans Eigenmode
25

Frequency [ Im(A)/Q ]

Stimulus
1.5+

Other Eigenmodes

0.5 Alternans Eigenmode
0
o . . .5 ‘ . FIG. 6. (Color onling Any modes(black arrow$ can be decom-
3 -2 = 0 1 2 3 posed into components along the alternans mode to be suppressed
Growth Rate [ 2ntRe(A)/Q2 ] (red vectory and other modegblue vectors In order to suppress

) ) ) ) the undesired alternans mode, the stimulus amplitimeer black
FIG. 5. (Color onling Eigenmode map showing the dominant arrow) must be adjusted so that its alternans compotesttor in

eigenvalue for each(approximatg half-integer mode frequency red) is exactly equal and opposite of th@ed) of the perturbation
for several values afi;; (1.5, 1.6, 1.75, 2, 2.5, 3, and 3.5 mS/Am (top black arrow.

Only positive half-integer frequency eigenvalues are shown for sim-
plicity. (The negative frequency eigenvalues are a mirror-image. L
The mode frequenciesim(\)/Q) are plotted versus the mode \_Ne can e“m!nate thenth mOde- comp_onent of the Pe”“r'
growth rate(2 Re(\)/Q)). The eigenvalues associated with the ro- batlon_ by ap_plymg a current_ pulseto theith cell, as_soma_ted
tational, translational, meandering and alternans modes are shovifl theith variable, at some timg. If the pulse durationt is

as circles, squares, crosses, and points, respectively. A black line fguch ?horter than the fastest time §calg of the membrane
drawn through the dominant alternans modes of each half-integedynamics, the cell membrane potential will be increased or
frequency. Additionally, a blue lingsmaller dotsis drawn through ~ decreased by a voltage offs&V'=1'At/(Sc), wherec is the

the next lower dominant mode for th@/2 frequency alternans membrane capacitance per unit area. This voltage offset may
mode (corresponding to the Alternans Modg Jhe red line with  also be thought of as an added perturbation to the system, so
crosses shows the motion of the meandering eigenvalues, while that it too can be represented in terms of eigenmodes:

red line with squares indicates the behavior of thetranslational ei-
genvalue. Note that, for larger conductanags the A)/2 fre- i T_
quency eigenvalue takes over from thd?2 eigenvalue as the ei- [0.0....,0AV%,0, ....0"= El S (11)
genvalue for the fastest growing mode.

3N

where thes,’'s are constants.
. CONTROL OF ALTERNANS We can think of this situation schematically as shown in
Fig. 6 where both the preexisting perturbation and the stimu-
We can use knowledge gained through the eigenmodgys can be decomposed into tinth mode(an unstable alter-
analysis of spiral wave stability to develop methods for prenans mode, in redand all their other component eigen-
venting spiral wave breakup. The goal here is to cancel ofodes, grouped together in one vectam blue). If the
stabilize the unstable eigenmode components of perturbgmplitude of the stimulus is chosen so thatritth eigen-
tions present in the rotating wave. To achieve this goal, wenode component is equal and opposite in amplitude to the
first show how left eigenvectors can be used to design @nth component, the alternans component we wish to elimi-
stimulus protocol to cancel any unstable mode. We themate, as suggested by the length and direction of the red
show an example in which alternans can be controlled wittarrows in Fig. 6, it is clear that this alternans mode will
the application of a single, properly chosen stimulus. immediately be suppressed when the stimulus is applied, ef-
fectively eliminating the corresponding instability. Compar-
A. Method ing Eqg. (10) at timet, to Eg. (11), we see that, mathemati-
' cally, the stimulus amplitude should be chosen so that,
In the linear regime, any arbitrary perturbation may be=- sy _etmlo,
expressed as a linear combination of the eigenvectors, each The required stimulus amplitude can be calculated rigour-
of which grows or decays exponentially with its own rate ously by using the left eigenvectors of the system, which are
constant,\,. Thus, for a given perturbatiodu, we can defined in relation to the inner product in polar coordinates,

write: {,) given as,
3N 3N
8u(t) = 2 Supanet (10) (21,2) = 2 22,8 (12)
m=1 i=1
where thedu,,’s are constants. for any two vectorg, andz,.
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12 FIG. 7. Amplitudes of the left

eigenvectors corresponding to Al-
0.8 ternans Modes 1, 2, and(Banels
A, B, and O and the meandering
mode(panel D. Level membrane
potential curves of the steady state
are shown as contours.

Any left eigenvectora, has the nice property of being larger for smaller cells sincAV' =1'At/(Sc).
perpendicular to all the right eigenvectors of the system ex- The presence &, in the denominator of Eq18) means

cept its associated right eigenvecty; i.e., (a,,a,=0 for
n# m (see Appendix C for more detajlsNe can, therefore,
calculate both coefficientsu,, and s,, by taking the inner
product of du(ty) and[0,0,...,0AV',0,...,0" with &, in
Egs.(10) and(11). We then obtain:

_ @[0,0,+,0AV1,0,-+-,0]") _ FAVS

= (13
(@mam (@m am)
and
_ &Jm@mto —_ (ém! &J(to» (14)
(@mam
which, by settings,,=-due'n" yields,
AVISE, = - @, du(ty) (15)
which may also be expressed as,
liAt= - w@mto (16)

showing the explicit dependence of the required chalye
on ty. Since the charge must be real, E46) imposes a
condition on the timingassociated with the phasas well as

that the amplitude of the left eigenvector as a function of
space can be considered to be a measure of the sensitivity of
the mth eigenmode to modification when a stimulus is ap-
plied to theith cell. Since the choice of an energy efficient
stimulus is important while suppressing a particular mode,
we should generally attempt to apply the stimulus where the
amplitude of the left eigenvector is the largésind therefore
the amount of charge required is the smajlest

Note finally that the chargBAt and timingt, that cancel
a certain eigenmode also eliminate the corresponding com-
plex conjugate eigenmode. This can be easily seen by taking
the complex conjugate of E@l5). Since both the perturba-
tion, du(ty), and the voltage offset resulting from stimula-
tion, AV/, must be real, this yields exactly the relationship
that must be satisfied to eliminate the complex conjugate
eigenmode for these same values &f(t;) and AV' (and,
therefore,|'At andty).

B. Results

When the sensitivities of Alternans Modes 1, 2, and 3 and
the meandering mode, as measured by the left eigenvectors,
are plotted as functions of space, we obtain the diagrams

the amount of charge. Specifically, for a positive charge, weshown in Fig. 7. One can see that, in all cases, the stimulus

require that,

7= ¢(@) — H(@B, 8U(0)))
- Im(\py)

to (17)

and

At = eRelmto

c‘ @ (19

where ¢(x), |x

should be applied in the recovery regi@re., in the region
outside the spiral wayewhere the left eigenvector ampli-
tudes are the largest. For Alternans Modes 1 and 3 and the
meandering mode, the sensitivity to a stimulus is greatest
close to the center of rotation, while for Alternans Mode 2 it
is greatest some distance from the center.

We have seen that a simple stimulus applied at the proper
time and with proper amplitude in a single cell can eliminate
any conjugate pair eigenmodes even though these modes

, Re(x) and Im(x) stand for the angle, ampli- have significant amplitude throughout the tissue. Thus, in

tude, real part and imaginary part of the complex number theory, we would, therefore, need five stimuli to eliminate all
Analogous expressions hold for a negative stimulus chargdive pairs of unstable modes for the case of;

Note that theC, norm used to normalized the eigenvectors=1.75 mS/cm. The development of an appropriate algo-
(cf. Appendix B and, therefore, the produéd,,, éu) is in-  rithm turns out to be somewhat tricky, so we settle here for a
dependent of the choice of grid spacing or type of grid usedlemonstration wherein a single stimulus cancels all five un-
to first approximation, since the inner product is weighted bystable pairs of modes in a specially chosen perturbation. To
the grid point area(see definition earligr Consequently, do this, we simply choose the valués,, for all the unstable
given the expression of E@18), the amount of charge re- modes equal to s;, for a given stimulus strength and timing.
quired to suppress a particular mode is independent of th&he stimulus was applied at a single grid point where the
grid cell area and, therefore, the choice of the level of disamplitudes of the left eigenmodes associated with the five
cretization. On the other hand, the membrane potential offsatnstable modes are generally the largest—that is, close to the
AV' necessary to suppress the mode does change with tlzenter of rotation. This stimulus was generated by artificially
grid cell area in which the stimulus is applied. It will be increasing or decreasing the membrane voltage of the chosen
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A

-3 -1

-3 0 3 -3 0 3 -3 0 3 -3 0 3

FIG. 8. (Color) Snapshots of the membrane potential perturbation in the lab frame taken at selected 2in@€s 380, and 510 mg$or
the case where no control stimulus is appligab subploty and for the case for which a control stimulus is introduced at tim&0 ms
(bottom subplots The two cases were initialized with the same, specially chosen perturbation, as described in the text. Level membrane
potential contours are shown in black lines. A small black circle was drawn in each of the lower subplots to designate the region in which
the stimulus was applied. The movie related to this figure can also be found if7REf.

grid point, during one timestep, by the corresponding valugheless, it took 5 spiral wave rotations for the amplitudes of
of AV as defined by Eq15). these modes returned to their initial values. In contrast, some
The results for this specially designed case are shown iof the stable mode amplitudes increased quite significantly,
Fig. 8. The specially chosen perturbation was first introducedby two orders of magnitude when the stimulus was applied,
at timet=0. For the controlled case, the calculated stimulusalthough the resultant amplitudes were still smaller than the
was applied at=10 ms, within the small circle seen in panel largest initial perturbation amplitudéabout 0.2 times as
E. At t=12 ms in panel E, evidence of the stimulus currentlarge). Some of the modes exhibiting this sudden jump in
diffusing to neighboring cells appears in the form of a blueamplitude were modes, which, while stable, had relatively
coloration. For the uncontrolled case, the perturbatiormodest damping rates.
reaches amplitudes that would be large enough to produce
breakup if nonlinear dynamic_s had been included, as sug- IV. DISCUSSION
gested by the black contours in panel D. Note that we chose
a large initial perturbation amplitude for the purpose of illus- Using the linear perturbation method, we were able to
tration (on the order of 0.2 for the membrane potentidhe  extract the various modes and in particular alternans modes
behavior we see for the uncontrolled case is mainly causeihvolved in the spiral wave dynamics. We find that, due to
by the alternans mode, as suggested by the widening of tiiée 2D nature of spiral waves, the alternans modes have ad-
spiral wave width in panel C, one rotation period prior to theditional features compared to alternans in the single cell,
narrowing of the width in panel D. In contrast, in the con- which are characterized principally by a long-short-long-
trolled case, the perturbation amplitudes remain small duringhort alternation in action potential duration. In particular,
at least four complete rotations of the spiral wave. we do not have one but instead several alternans modes hav-
The effect of the stimulus is further clarified by consider-ing very distinct characteristics. The alternans mode frequen-
ing the behavior of the individual modes, as shown in Fig. 9cies are half integer multiples of the fundamental spiral wave
In this plot, the component amplitudeisi,, of selected un- rotation frequency((2). Interestingly, if one plots the time
stable and stable modes that comprise the perturbation wemmurse of the membrane potential at a point fixed in the lab
calculated and plotted as functions of time. As expectedframe for any of the alternans modes, one observes patterns
when no stimulus is applied, the stable mode amplitudes derery similar to those of the single cell alternans mode inde-
crease while the unstable modes grow exponentially. Theendent of the mode frequency. Instead the higher frequency
same is true of the controlled case, except that, when thmodes differentiate themselves from their lower frequency
stimulus is applied at=10 ms, the unstable mode ampli- counterparts through the presence of short wavelength oscil-
tudes are drastically reduced by two orders of magnitude, dgtions which are typical of what we refer to as discordant
clearly seen in panel B. Note that the unstable modes weralternang16,18,21,71,7p
not completely eliminated due to the presence of perturba- An important consideration in this analysis is the effect of
tions introduced by round-off and numerical errors. Never-the finite system siz¢21,32,731 and the presence of the

061903-10



PREVENTING ALTERNANS-INDUCED SPIRAL WAVE... PHYSICAL REVIEW E 70, 061903(2004)

to the upstroke dynamid80], we can reasonably speculate
that, in contrast to Modes 1 and 2, conduction velocity plays
a significant role in the perturbation dynamics associated
with Alternans Mode 3. Despite its known limitations
[9,21,73, restitution theory has been a valuable tool that has
helped improve our understanding of spiral wave dynamics
gl [9,12,13,21,71 In particular, it was found that CV disper-
-------------- 2 PV sion can have an important effect on spiral wave breakup
S [9,12,16,21,71 In our case, when the CV and APD restitu-
tion curves(which relate the APD and CV to the preceding
I diastolic interval D) are plotted for a 1D cable composed of
/ . p o this type of cells, the steep part of the CV restitution curve
107 P/ N N \ ! ; occurs at DIs shorter than the value at which the slope of the
0 200 400 00 APD restitution curve becomes greater than gy shown.
Time (ms) Since the latter is correlated with spiral wave instability, then
. . . for intermediate Dls, where the APD restitution curve has
slope greater than one but the CV restitution curve is rela-
tively flat, we would expect those modes driven by APD
10 E restitution to be unstable, whereas those dominated by CV
variation to be stable. This is just the case illustrated in Fig.
D 4; here, Alternans Modes 1 and 2 are driven principally by
i 3 steep APD restitution, as suggested by their large waveback
perturbation amplitudes, and are found to be unsté&big.
2), whereas Alternans Mode 3 is stable, since it is dominated
by CV variation, as suggested by its large wavefront pertur-
. bation amplitude. The situation changes whgp is in-
107 | emmm—— 777 3 creased, since this increases the rotation frequency, which
e shortens the steady state DI. In this case, we find that all
. . three modes now have large wavefront perturbation ampli-
0 10 20 30 tudes(not shown, suggesting all three are being influenced
Time (ms) by CV variation dynamics. Since the CV restitution curve is
, _ ) steep for these values of DI, we can infer that, although APD
_ FIG. 9. (Color onling Time course of the amplitudes of selected yggtitytion dynamics are still probably involved, all three are
eigenmodes for the simulations initialized with the specially Choserbeing driven more unstable by the dynamics of CV variation.
perturbation. Eigenmode amplitudes associated with the controllepndeed’ all three modes are unstable wigeris large[e.g.,
case(stimulus applied at=10 m9g are shown as thick lines; the .=3.5 (Fig. 5)]. Thus, as previously suggestgal], two
uncontrolled case eigenmode amplitudes are plotted as thin line ﬁechanisms appear tO’ exist, one dominated by Alé’D restitu-
The _Iower panel_shows the first 30 ms of the upper panel in greatef dynamics, and one in \;vhich CV and APD restitution
detail. The amplitudes of one of the _unstable alternans modes_ar}goth play significant roles.
two stable modes are shown as solid red and dashed black lines, Since substantial CV dispersion is necessary to initiate
respectively, for both the controlled and uncontrolled cases. discordant alternang71], which occurs at short DI in our

boundary on the stability and structure of the modes. To ad¢@Se, it is also not surprising that in our study, higher fre-
dress this issue, we conducted a brief study in which théluéncy modes, i.e., discordant alternans, become dominant
system radius was varied from 1.8 cm to a maximum ofat high rotational frequencsee Fig. 3.
6 cm. We observe that there are indeed some modifications The example of control presented in the previous section
in mode structure as the system size is varied, although th@troduces an important new approach towards the control of
overall mode structure remains qualitatively the same. Wepiral wave breakup. A study by Echebarga al. [53]
find that the alternans modes become more unstable as tishowed that, in the context of their stimulus protocol, a
system size is increased. However, the alternans mode frsingle electrode cannot control alternans beyond a critical
guencies remain nearly constant at values that are halflistance from the stimulus site. This would suggest that
integer multiples of the rotation frequency, strongly suggeststimuli applied at a single location using this protocol might
ing that the modes are governed primarily by alternansiot be capable of controlling instabilities present in a large
dynamics, independent of system size. Clearly, this issue rdissue. A similar limitation was found by Rappelal. [49] in
quires further investigation, which we plan for the future. the control of wave breakup in 2D tissue. In contrast, our
An examination of the relative amplitudes of the pertur-results, although obtained for a specialized case, demonstrate
bations on the wavefronts and wavebacks of the spiral wavethat a single stimulus applied at one instant in tismieapable
suggests that two different mechanisms may exist for alternef controlling the amplitude of unstable perturbations over a
ans in spiral waves. For Alternans Mode 3, the perturbatiodarge area, hundreds of square space constants in size, during
amplitude is large along the spiral wavefront whereas thosalmost five rotation periods of the spiral wave.
of Alternans Modes 1 or 2 are larger along the waveliaek As can be seen in panel F of Fig. 8, it appears that, when
Fig. 4). Since the velocity of the wavefront is directly related the spiral wavefront first passes through the previously
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stimulated region, the disturbance is picked up and amplifiethe transition from tachycardia to fibrillation occurs
by the dynamics of the wavefront, and then propagates alongmoothly and in an idealized rotating spiral wave, with a
both edges of the spiral wayaot shown. Such propagation well defined center of rotation, initial conditions close to the
is possible because the linear perturbation dynamics alongeady state, in a homogeneous and isotropic tissue in two
these edges is active and highly unstable. This suggests th@inensions.

we might be able to improve stimulus protocols for control-  However despite all the limitations inherent to the theo-
ling spiral wave instabilities by taking advantage of thesergtical approach of the study, we believe that linear perturba-
active regions of spiral waves, rather than relying solely thgjo theory will shed new light on the problem. A wealth of
diffusive property of the medium, as has been done previjytormation can be extracted from the eigenvalue map and
ously [53,74. One might therefore expect that a very effi- yo ajgenvectors structure. Future work will concentrate on

ﬁ'ﬁ%tbs:;n;?lgt?rﬁgﬁtiﬁgt rgi)ypgggcgstsr:gli?,ié?l\ﬂr\ﬂ:lg tﬁrrgggrrroeﬂ texploiting this information to further study the physiological
the spiral wave by “surfing’ the wave edges, bringing aboutmechanlsm underlying alternans and spiral wave breakup, its

major changes in the overall spatial and temporal dynamicQOSSible relation to re_stitution the_ory, the effe_ct of wavefront
of the entire wave. curvature, etc. We will pay particular attention Fo the ex-
The particular example of control presented in this papefrapolation of results derived from the methoathich are
is an extreme demonstration of the potential of the methodth€oretically only valid for small perturbationgo the non-
since the various unstable modes composing the perturbatidfear regime. Studies employing perturbation theory could
were specifically chosen so as to allow their elimination with@lS0 be performed for more physiologically relevant sets of
a single stimulus. For the more general case, we will probParameters of the 3V-SIM modéie., those that reproduce
ably need at least half as many stimuli as there are unstabfertain properties of the LRd, Beeler-Reuter, or other ionic
modes, applied with different amplitudes at different timesmodels, etq. than those used in this paper. Perturbation
and/or different locations. Mathematically, this is explainedtheory could also be applied to more advanced models.
by the necessity of satisfying as many conditions, as ex- 'his new approach may lead to new and useful concepts
pressed in Eq(15), as there are modes to be eliminated. This2nd properties of spiral waves that will also help in the de-
leads to solving a set of coupled equations with the timingSign of practical electrical stimuli protocols or drug thera-
and amplitudes of the stimuli being the unknowns. We haveies. Our results suggest, for example, that stimuli should be
a lot of freedom in choosing the locations and the timing of2Pplied in the resting state and close to the core for optimal
the stimuli. Choosing the proper, most efficient and mosgfficiency. Our studies also suggest that a single or a few
practical control protocol may require the use of an Optimi_locahzed ;tlmull at one instant in time can control the alter-
zation scheme, employing concepts and tools from contrdd@ns at d_lstgnces muc_h greater than the space constant. The
theory and a deeper understanding of the physiology angharacteristic frequencies and general spatial structure of the
dynamics of the spiral wave alternans than can be obtaine@térnans modes we have found may also lead to new strat-
using perturbation theory by itself. This is beyond the scopeedies for the design of control protocols that use modulated
of this paper and will be the focus of future studies. Thecontinuous stimuli at defined frequencies.
main purpose here is rather to demonstrate the potential of
perturbation theory, and to introduce new concepts discov- ACKNOWLEDGMENTS
ered through its use in identifying active properties of the

spiral wave as a whole, to control spiral wave breakup effi- This work was supported by the Whitaker Development
ciently. Award (3426162. We are grateful to V. Hakim, H. Henry, D.

A number of limitations of our approach must be stated.Christini, D. Gauthier, and A. Karma for valuable discus-

First the 3V-SIM, does not reproduce properly some of thesions. Many of these occurred at the Workshop for Biologi-
detailed ionic processes, and the action potential shape 6@l Excitable Media, at the Aspen Center for Physics, Aspen,
more advanced ionic models, which have been shown t§&O, August 26 to September 8, 2002.

have noticeable effects on spiral wave stabili8;19,75.

Thus pgrticular caution must _be e_xercised Whe_n_drawing APPENDIX A: MODIEICATIONS TO THE 3V-SIM
conplusmns on the elect_rophysllolog.lcal characterls.t.ms of the FENTON-KARMA MODEL

various modes and their role in spiral wave stability when

using 3V-SIM. Most importantly, perturbation theory, as We found it necessary to make modifications to the 3V-
used here, is limited to the study of linear behavior, and isSIM Fenton-Karma equations, so that they could be used
therefore theoretically only valid for small perturbations. with the Newton-Raphson method. The latter, which was em-
However insights obtained using the analogous methodployed in finding the steady state spiral wave, generally re-
when applied to the study and control alternans in singlejuires differentiable functions for convergence. We therefore
cells, have been shown to have application in both the lineaieplaced the Heaviside functions in the original equations
and nonlinear regimes, and thereby have produced venyith sigmoidal functions defined aS(u)=(1+tankk,u))/2,
promising result§68]. There is, of course, a long way to go wherek, was set to 50. The notations used are the same as
before the method can be useful in practical application. Théhose used in Ref21]. Thus,u, v andw represent the mem-
control schemes suggested here presuppose knowledge lwfine potential, and the fast inward and slow inward inacti-
each eigenmode composing the perturbation, which is notation gates, respectively. The total ionic current is com-
possible to obtain in practice. The method also assumes thapsed of the sum of three different ionic currents: the fast
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inward (I;), the slow outwardly) and the slow inwardl ;) obtained with a reduced value for the conductance associated
currents. The modified equations of the model are thus:  with the fast inwardsodiumn) current(gs;=1.4) compared to
the “standard” case. This is done by first creating a spiral
U=V . (DVU)-Tguv) = Isfw) —1sUuw) (A1) \yave in a square system discretized within a rectangular co-
ordinate system, using the time and space discretized version
=V .(DVu)+F(uv,w) (A2)  of Eq. (3). The 9-point diffusion tensor is used to reduce
effects associated with the anisotropy of the rectangular grid.
(1-v) v The time advance is performed using the forward Euler
dv =S(Uc - U)W = S(u- Uc); (A3)  method. The spiral wave is initiated using cross-field stimu-
v v lation. Once the center of the core as well as the rotation
frequency are found with reasonable accuracy, we transfer
the spiral wave solution to a polar grid, where it is used as
the initial guess to the Newton-Raphson convergence algo-
rithm. In some cases, prior to transferring the spiral wave,
the wave is allowed to rotate one extra time in a rectangular
system from which cells in the four corners outside the even-
(A6) tual boundary of the new circular system are removed. This
is done to lessen the impact of the change in boundary con-
where the currents are ditions between the two systems.
Given the initial guessal;, we would normally use the
li(u,v) =— ES(u —u)(1-u)(u-uy (A7) Newton—R_aphson ‘convergence method to solve it.eratively
Ty the following relation for the Bl components ofi,; given
Ui (see Sec. Il A 3 for the definition afy):

=F,(u,v) (A4)

aw=S(u, - u)(l_—_w) -S(u- uc)ﬂ+ (A5)
T

w TW

= F(u,w)

1
lsfU) = TES(UC —u)+ :S(u = Ue) (A8) H(UW) (Upe g — U) = = G(Uy). (B1)

W Iteration would continue until convergence to the desired
lsi(u,w) = — — (1 + tankk(u — Ugg))) (A9)  steady state is obtained. Heteefers to the iteration number
27 and G is the discretized version @ as defined in Eq(4).
where The matrixH(u) represents the Jacobian®fwith respect to
the components ofi, which is also equivalent to the dis-
7,(0) =S(u-u,) 7, +S(u, —u)7,;. (A10)  cretized version of Eq7). The advective term is discretized
- in space according to the standard upwind-downwind para-
The parameters of the model were also modified. The)ﬁigm[?G] (which is possible, since the direction of advection

were chosen to reduce instabilities c_aused by meanderiqg fixed by the rotation direction while we use the usual
while emphasizing alternans as a primary mechanism fo econd order finite differencing for the diffusion term. Mat-

tzreakup. J’he value_for the_parame}e_rs are qs_follogﬁs. lab’s standard matrix solver for sparse matrix equations is
=1.75, =383.83, 75=29, 7,=12.5, 7,=7.99, 7,=3125, < t0 solve EqB1) for u
- = +_ - — — — — ¢ k+1+
71=9.8, 7,=870, 7,241, u;=0.13,u,20.04, Us=0.861,k Note, however, that there are actually-81 unknowns in
=10, k=50, andD—0.0(_)Z cri/ms with _Td_C/gfi' yvherec these Bl equations, since the rotation frequenQyis also
the membrane capacnan.ce. _per _unlt area 1s eqqal Bnknown. Thus, we must modify the iterative equatiBi)
1 uF/cnt. Not_e that the definition of,,, and7, here_a_n_d N to take this into account. Fortunately, due to the rotational
Ref. [21] are mte_rchange_d compared to the def'n't'ons_'nsymmetry of the problem, any solution that is rotated around
Ref. [22]. Time is in units of ms and conductances in o center point by any angle is also a steady state which
mS/cnf. The membrane potential was normalized t0yoqiq in an infinite number of solutions. We are, therefore,
ﬂ'ee to remove this ambiguity by fixing the membrane poten-
tial of one cell, reducing the number of unknowns back to
aN. By choosing this value equal to 0.5, a value that typi-
cally occurs in the leading edge of the spiral wave, the solu-
tion with leading edge passing through this point will be
APPENDIX B: FINDING THE STEADY-STATE AND found. We have found that this “anchoring” point is best
EXTRACTING THE DOMINANT EIGENVALUES chosen about two-thirds of the distance from the center, close
to the location of the leading edge of the initial guess. Thus,
the actual Jacobian matrix used in placebin Eq. (B1) is
To find the steady state of the discretized version of Eqthe one obtained by assuming the independent variables are:
(5), we used to a large extent the numerical approach pre€), and all the components of except the membrane poten-
sented by Henry and Hakif#0,41. tial at the anchor point. This results in changes to one column
Using the Newton-Raphson method, we first find thein the matrixH as defined above. The functi@in Eq. (B1)
steady state of a stable spiral wave having a circular cordoes not change.

function was relatively short, simulation results using this
model turned out to be very close to those obtained with th
3V-SIM Fenton-Karma model with discontinuous functions.

1. Finding the steady state
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With a properly chosen initial guess, the steady state spiperformed at each step of the Arnoldi method minimizes the
ral wave was obtained in less than 10 iterations to a precisioimcreasing contribution of the most dominant modes€gf
of 10%as measured using ti® norm of G(up), ||G(up)|. I coming from repeated applications of the operatbrThe
polar coordinates, the, norm, [u|, of u, is defined as less dominant modes &% and therefore itself can then be
VEN|U|?S, whereu' refers to theith element ofu andS to  obtained with greater accuracy.
the area of the cell associated with thé grid point (S Once the orthonormalized bagis)y_is obtained, we cal-
= 7r(Ar/2)? for the central node an8=r'ArA¢ otherwisg.  culate the matrixP, defined as the projection @'t onto

Once the steady state is found fgf=1.4 for a stably ICNS(thl,Xl). The elements of the matri® come from the
rotating wave, gy was stepwise increased with the new various combinations o((Y)NS,(X)NS> where the vectors
steady state being calculated at each step. The steady stgg, as defined earlier, were obtained during the Arnoldi
obtained for the DTEViOUS value gf| was used as the initial procsess_ The eigenva|ues Bfare juste}\mtl where the}\m are
guess for each new value gf. This procedure was per- the eigenvalues of the projection ®f onto Ky (H,Xy).
formed up to sodium conductance values for which the spirafnese) . are approximationgalbeit very good onggo the
wave breaks up. leading eigenvalues dfi. SinceP is of dimensionNgX Ng
with Ng typically chosen much smaller thaftN3on the order
of 100), its eigenvalues can be easily calculated using con-
ventional methods. Sincel and e have the same eigen-

The next step of the method consists of flndlng the eigenvectorS, so do their projections onto the Subspace
values ofH evaluated for the steady statg. Determination (eH1,X,). The eigenvectors,, associated with\,, can
of the dominant eigenmodge., those eigenmodes with the hen pe obtained from the eigenvectors associated Rith
largest growth rates, or largest real part of the eigenvalges denotedb,, by transferring the eigenvectots, from the
not a simple task, due to the immense size of the madrix (X),_ basis onto the original basis df. Explicitly, a,,

S

(3N by 3N, or about 180 000 by 180 050To handle this . =Qby,, whereQ is a N X Ng matrix whose columns are filled
problem, we use a method presented by Henry and Hak"ﬂ/ith the vectorsxX
m

[40,41). The idea is to use the Arnoldi meth@@d] to build The accuracy of the method depends on the choidg, of
an approximation to the subspagespanned by théls most e gjze of the subspace and the timestep. Typically we

dominant eigenmodes. The eigenvalues and eigenvectors éged a space of dimensioN,=100, a time durationt,
interest are then easily obtained by projectlﬂgor)to this  _50'ms and,=10 ms. The Opératmu’tl is approximated by
approxmaﬂon of thg subspacé,. Let us consider the integrating, 5,0u=D(G(Uy)) U [Eq. (6)], for time duration
method_ In more detall._ ) t; using the simulation method described in Sec. Il A1. The
In this section, we will defindCy (H, u), the Krylov space o4 action term is handled using a standard upwind-
of dimensionN; defirzled by thNe matriki and the vectou, 8 yq\nwind method. The timestep was chosen to be 0.001 ms
being spartu,Hu,H, ... ,H%u). It can be shown that a 4 gptain the first vector of the basi¥)y_and 0.01 ms for all
Iargg enough Krylov subspage of any matrican yield thg the other vectors. A smaller value of timestep was necessary
dominant eigenmodes df with great accuracy. To obtain ¢, e first vector in order to have enough iterations to allow
these eigenmodes, we create an orthogonal b&8JR,  the high spatial discontinuity in, v, andw associated with
= (Xp)er,...n, for the subspacéCy (€™, X,) using the Ar-  the random nature of the initial condition to dissipate. This
noldi method, wherd; is a suitably chosen real constant. \as increasingly important toward the center, due to the very
Note thate™"* andH have the same eigenvectors while\if  fine grid size used in the azimuthal direction. Using these
are the eigenvalues ¢, the eigenvalues o™ are simply  parameters values, we were able to obtain an accuracy of
e'm1. By using the matrixe™ rather thanH itself in the |(Ha,~\yam)/\y| <1078 for the first 10 and<107 for the
Arnoldi method[69], we can more easily eliminate the con- pext 5 eigenmodes. This resulted in less than 1% error for the
tribution of the more heavily damped modes and obtain argj e maxX|Ham—Amam|)/max|\may) for the 10 first eigen-

accurate approximation of the subspageising a relatively  mgdes. Note that the eigenvectors are all normalized to 1
low dimensional Krylov subspace. using the, norm.

We obtain an orthonormal basis using the Arnoldi method
as follows. Having the firsi orthonormalized vectors of the
basis(X); = (Xm)m=1,.. j, We construct the next vectolj,, by APPENDIX C: LEFT EIGENVECTORS AND ADJOINT
first calculatinng:thlxj, and then orthonormalizing it with OPERATOR
respect to the rest of the basis by defining:

2. Extracting the eigenvalues

The left eigenvectors are defined to be the eigenvectors of

Y. _EJ (Y, X)X the adjoint of the matrixH as defined in Appendix B. The
Xipq = : = _ (B2)  adjoint of H, H', is defined relative to the inner product in
: IY; - 2::1 Y3 X Xil| polar coordinates,) given by Eq.(12). In this appendix, we

show how to obtain the left eigenvectors and we describe
The first vectorX, is obtained using a random initial con- useful properties they have with respect to the right eigen-
dition X, and calculating; =€"X,. This first operation en- vectors.
sures that we are eliminating all unwanted, heavily damped Let us define a diagonal matr&for which each element
eigenmodes. Similarly, the orthonormalization of the basisS' of the diagonal is equal to the surface of the grid element

061903-14



PREVENTING ALTERNANS-INDUCED SPIRAL WAVE... PHYSICAL REVIEW E 70, 061903(2004)

associated with théth variable. We therefore have thgt  thatHa,=\ya, Similarly, we have the left eigenvectdas,
=r'/ArA 6@ (Ar andA@ are the grid spacing in direction and  associated wittH'. SinceH™ and H have the same set of
angle step in azimuthal directiprexcept at the center where eigenvalues, so doeS*HTS, since they all have the same
S'=xAr?/4. For convenience, we will defi@=S'. characteristic polynomial. Therefore, from E6), we can
The inner product in polar coordinates as defined by Eginfer thatH and H™ have the same set of eigenvalugsit
(12) between the vectorgs andy may then be written as, different vectory as expected. For any pair of right and left
X,y)=x*-(Sy)=(x*S*)-y=3xXy'S, where * refers to the eigenvectors,, anda,, we have:
conjugate transpose operator* =X"). Defining H' to be

the adjoint matrix associated with this inner product, we then (@, Hay = Np@n, am) (C7)
have, by definition:
(y,Hx) = (H'y,%) (C1) =(H"&,,am (C8)
=y* - (SHx) (C2) =N (G- (C9)
=y* . (SHS'X) (C3 This implies that eithem,=\,, or (&,,a,)=0. In other
words, those left eigenvectors with eigenvalues distinct from
=(y* (SH*H*S*)*) X (C4) \m are each perpendicular to the right eigenvectors associ-

ated with\,. We, therefore, define the left eigenvector and
its associated eigenvalu@,,,\,,) to be the left eigenmode

- Iy * *
(STH= S - S (€ associated with the right eigenmode,,,\,,) by assigning
However H* is equal to the transpose df (H*=HT) each the same subscript
sinceH is real. Consequently, the adjoint Hfis given by: The left eigenvectors are easily calculated by first finding
HT=S1H* S=SIHTS (C6) the eigenvalues,, and corresponding right eigenvectars

of H™. From Eq.(C6), we then see that the left eigenvectors
When solving the eigenvalue problem, we obtaiN 3 may be calculated using the relatigp=S*c,, while corre-
eigenmodes,,, and associated eigenvaluig, for H such  sponding eigenvalues aig,= yp.
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