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Magnetic beads and superparamagnetic(SP) colloid particles have successfully been employed for micro-
mechanical manipulation of soft material,in situ probing of elastic properties, and design of smart materials
(ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two
end-member cases,(a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes,
and(b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing
SP particles. Our analysis yields also metastable equilibrium states(MES’s), which only exist above a critical
filament length, but become more stable with increasing magnetic field. The MES’s for case(a) are, like the
ground state, circular arcs, but more strongly bent. The multiform MES’s in case(b), which comprise hairpin,
sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of
gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the
influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization,
case(a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of
polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material
attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip
is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by
the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments
may hold advantages over tips usually employed in magnetic force microscopy.
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I. INTRODUCTION

Allowing for noninvasive, precise application of point
torques and point forces to soft materials, magnetic beads
have been used in micromechanical experiments to measure
stress-strain curves of biological materials ranging from
single DNA molecules[1] and actin bundles[2] up to stretch
receptors of living cells[3]. Nevertheless, the precise deter-
mination of elastic moduli using the magnetic bead method
requires a sound mathematical framework to describe the
magnetoelastic response of the system. We here derive ana-
lytical expressions for the equilibrium shape of magnetic
filaments under a magnetic field, which can be used to deter-
mine the bending rigidity of the filaments. We first examine
the mathematically simpler case of superparamagnetic(SP)
or permanent-magnetic particles bound to the free end of an
otherwise nonmagnetic cantilevered filament and analyze
stable and metastable equilibrium states(MES’s). We will
also reconsider the case of a filament with magnetic material
distributed along the filament, a system recently designed for
a micromechanical approach to probe elastic parameters at
molecular scale[4–6]. Goubaultet al. [4] produced long
flexible filaments from monodisperse superparamagnetic col-
loid particles connected through molecular linkers, and were

able to determine the bending rigidity of the linkers from the
magnetoelastic response of the filaments. We take their math-
ematical approach one step further and derive analytical ex-
pressions for the static equilibrium shape of magnetic fila-
ments for different scenarios. The dynamics of such a system
in a rotating magnetic field has lately been investigated[7,8].
The magnetoelastic behavior of the single-domain equivalent
to SP filaments, which in nature occurs in the form of chains
of magnetosomes in magnetotactic bacteria[9], was exam-
ined earlier[10]. In the last section, we loosen the constraint
of bending in the horizontal plane and present a formalism to
include the influence of gravity.

II. MATHEMATICAL ANALYSIS

We first consider the case of a fiber with magnetic mate-
rial concentrated at the free end. The fixed end of the fiber
defines the origin of thesx,yd coordinate system(Fig. 1). In
the undeformed state, the fiber is parallel tox. The external
magnetic field is applied horizontally at an angleD (declina-
tion). In the deformed state,l is the curvilinear abscissa
along the fiber. The shape of the deformed fiber may be
described by the anglecsld betweenx and the local tangent
dl of the bent fiber; at the fixed end,csl =0d=c0=0. We
chose a continuum-mechanics approach to calculate the elas-
tic energy of the fiber: According to the Kirchhoff model of
a nonstretchable elastic rod, the elastic energy stored in a
bent rod is given bys1/2dEIedl /Rc

2, where 1/Rc is the local
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curvature,E is Young’s modulus, andI is the area moment of
inertia of the rod. A filament can be regarded as a long cyl-
inder with I =S2/p constant over its length. Withẋ=cosc
and ẏ=sinc, where the overdot denotes differentiation with

respect to the curve parameterl, 1 /Rc is given byċ.

A. Superparamagnetic tip

The tip of the fiber(length of tip,LT! length of fiber,L),
has superparamagnetic material attached to it with effective
susceptibilityx. Its total magnetic energy is

WSP= −
1

2
x2H0

2Ssin2sD − c1d
1 + xN1

+
cos2sD − c1d

1 + xN2
DSLT, s1d

wherec1=csl =Ld, S is the area of the cross section, andN1

and N2 are the demagnetizing factors along the short and
long axes of the SP tip, respectively. In order for a SP system
to produce a torque, it has to have a shape anisotropy, that is,
N1ÞN2. Assuming thatLT@ÎS, then N1<0, N2<4p, and
Eq. (1) becomes

s2d

Thus, the SP system produces a torque of magnitude

TSP= −
dWSP

dc1
= − WSP

0 sin 2sD − c1d, s3d

which gives rise to a bending torque of magnitude
Tb=EI /Rc.

We determine the equilibrium deformation of the fiber by
minimizing its free energy functional,

vtot = sin2sD − c1d +
l0
2
E

0

L Sdc

dl
D2

dl, s4d

where l0, the characteristic length scale of the system, is
defined as the ratio of the structural rigidityEI to the char-
acteristic magnetic energyWSP

0 ,

l0
SP=

s1 + 4pxdEI

2px3H0
2SLT

. s5d

This magnetoelastic length of the fiber,l0
SP, can be used to

express the total energy(4) in terms of dimensionless vari-
ables,

vtot = sin2sD − c1d +E
0

L 1

2
Sdc

dl
D2

dl, s6d

whereL=L / l0
SP anddl=dl / l0

SP.
Variation of the total energy(6) furnishes the Euler equa-

tion,

dvtot = 0 ⇔
d2c

dl2 = 0 ⇒
dc

dl
= k, s7d

that is, the curvatureċ is constant and the equilibrium shape
of the fiber is a circular arc. The constant of integrationk can
be determined from the boundary conditions. The magnetic
point torque acting upon the free end produces a jump in the
bending torque at the free end, that is,

k = Sdc

dl
D

l=L

= sin 2sD − c1d, s8d

Equations(7) and (8) can be combined in the form

csld = l sin 2sD − c1d s9d

wherec1 can be determined from minimizing the total en-
ergy (6), which because of the uniform curvature(7) simpli-
fies to

vtot = sin2sD − c1d +
c1

2

2L
. s10d

Figure 2 showsvtot as a function ofc1. For L=1, mag-
netic energy and bending energy are in a subtle balance and
there is only one minimumsc1=0.676d, which is not very
pronounced either. ForL=10, the first and most favorable
minimum has deepened and shifted toward the asymptotic
value of c1,̀ =D, which means perfect alignment of the SP
tip with the external magnetic field. In addition to the ground
state, there exist metastable equilibrium states as well, which

FIG. 1. Coordinate system. The deformation of the fiber(gray)
is described by the anglecsld. The local tangentdl is given by
scosc ,sincddl. The external magnetic fieldH0 is homogeneous
and applied horiztonally. The magnetic material(black) is bound to
the tip of the fiber. The length of the magnetic tip,LT, is much
smaller than the total length of the fiber,L.

FIG. 2. Total energyLvtot as a function ofc1 calculated accord-
ing to Eq.(10) for L=1 (dotted) andL=10 (solid). The energyvtot

is multiplied byL to allow for better comparison of the two graphs.
The magnetic field angleD is p /3. For L=1, the position of the
minimum is atc1=0.676, but shifts toc1=0.997 forL=10.
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are depicted in Fig. 3. Which one of the MES’s is realized
depends on the initial curvature of the rod.

To calculateLcrit, the critical value ofL above which
MES’s can exist, we minimize(10) with respect toc1 and
obtain L* = c1/sin2sD−c1d for c1.0. Lcrit,i+ with
i P ha ,bj=h1,2j is the minimum on thesi +1dth positive
branch ofL* . Our numerical analysis yieldsLcrit,a+u2.31
+D and Lcrit,b+u5.48+D for the two MES’s with c1.0
sD,p /2d. The corresponding bending angles are
c1,a+u2.25+D andc1,b+u5.45+D, respectively, that is, the
orientation of the tip is lagging behind the ideal alignment
angle ofp+D and 2p+D, respectively. AsL increases, the
magnetic energy more and more dominates the total energy
and the tip becomes increasingly aligned with the field. This
can also be understood in terms of(5), according to which
L~H0

2 for a rod of given lengthL. A good alignment(95%
criterion) is achieved forL<10. The threshold length for
MES’s with c1,0, Lcrit,i−, is obtained as the minimum of
the ith branch of L* =−c1/sin2sD+c1d, leading to
Lcrit,a−u2.31−D andLcrit,b−u5.48−D.

B. Permanent-magnetic tip (i.e.,Mršx2H0)

In the case of a permanent-magnetic material bound to the
free end of the fiber, the magnetic energy is

WSDsc1d = − MrH0 cossD − c1dSLT, s11d

where we assume that the vector of the remanent magnetiza-
tion M r is parallel to the tangentdl of the tip and the external
field H0 is smaller than the coercive forceHc. From the mag-
netic point of view, single-domain(SD) particles are prefer-
able than pseudo-single-domain or multidomain particles as
they have higherHc and do not show nonlinear magnetiza-
tion behavior, that is, the magnetic remanence is always
equal to the saturation magnetization. In that case, the mag-
netostatic self-energy is constant and can be neglected. The

dimensionless length here is given byl0
SD=EI / sMrH0SLTd.

The Euler equation for the SP case carries over unchanged
and we simply have to adjust the boundary condition to find
the new constant of integration, that is,

k = sinsD − c1d.

Compared to Eq.(8), the dimensionless magnetic torque pro-
duced by a SD tip is just half as much as that due to a SP tip,
and, consequently, SP tips will give better alignment with the
external field than SD tips provided the filaments are soft
enough. This is demonstrated by comparing Fig. 4 with Fig.
2. The positions of the minima in the SP case are nearer to
perfect alignment than in the SD case.LSP,10 andLSD

,19 correspond to 95% alignment of the tip with the mag-
netic field, respectively. In absolute units, however,l0

SD/ l0
SP

,x3H0/Mr; thus for a given lengthL, LSD.LSP.
In contrast to the SP case, the antiparallel alignment of the

tip for c1.0 is forbidden in the SD case, and the first
MES—the more strongly curved arc—can develop only for
c1,0, here atc1=−4.74 (Fig. 4), with a critical length of
Lcrit=4.66−1.1D. For the spiral shapesc1=6.61d, we find
Lcrit=4.61+D. The corresponding shapes are depicted in Fig.
5.

FIG. 3. Equilibrium shapes corresponding to the five energy
minima in Fig. 2 atc1=0.997,c1,a−=−1.994,c1,a+=3.983,c1,b−

=−4.976, andc1,b+=6.946. The straight dashed line represents the
magnetic field vector. The relative thickness of the curves is an
inverse measure of the energy of the corresponding states. Param-
eters:L=10, D=p /3.

FIG. 4. Total energyLvtot for a permanent-magnetic tip as a
function of c1 for L=1 (dotted) and L=10 (solid). The magnetic
field angle D is p /3. The position of the minimum is atc1

=0.511 for L=1. For L=10, the three minima are located atc1

=0.952,c1=−4.74, andc1=6.61.

FIG. 5. Equilibrium shapes corresponding to the three energy
minima in Fig. 4sL=10,D=p /3d. The straight dashed line repre-
sents the magnetic field vector. The relative thickness of the lines is
an inverse measure of the energy of the corresponding states.
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C. Magnetic material distributed over fiber

We next consider the case where the magnetic material is
distributed uniformly over the whole length of the fiber, as in
the technically produced filaments composed of SP colloid
particles connected by molecular linkers[4–8]. We now de-
rive analytical expressions for the magnetoelastic equilib-
rium shape of the one-dimensional magnetic elastomer. For
our analysis, it is sufficient to include the magnetic energy
into the Kirchhoff model of elastic rods; readers who are
interested in the complete continuum theory for magnetic
elastomers(ferrogels) are referred to recent work by Refs.
[11] and [12]. The magnetic energy of each linear element
dl is

The total free energy functional now is given by

W=E
0

L HE * I

2
Sdc

dl
D2

+ dWSP
0 sin2sD − cdJdl, s12d

whereE* is the effective Young’s modulus of the magneto-
elastic material, which theoretically depends on the magnetic
field strength[13]. Departures from linear elasticity have
been observed in magnetorheological elastomers[14] (rub-
ber with SP colloid particles) under a magnetic field of
20 kOe[15]. We introduce the characteristic length scalel0,
defined by

l0 =Îs1 + 4pxdE * I

4px3H2S
,

to recast Eq.(12) in dimensionless form,

vSP=E
0

L HSdc

dl
D2

+ sin2sD − cdJdl. s13d

We substitutef=D−c, wheref is the angle betweenH0 and
dl, and get the corresponding Euler equation as

2
d2f

dl2 = sin 2f, s14d

with the boundary conditions

fs0d = f0 = D − c0 and Sdf

dL
D

l=L

= 0. s15d

Multiplication of Eq. (14) by df /dl and integration yields

Sdf

dl
D2

= sin2 f − sin2 f1. s16d

It is interesting to note that Eq.(16) is exactly the equation of
a Bloch wall derived by Ref.[16], except for the different
boundary conditions, which in the case of an infinite crystal
are f0=fsx=−`d=0 and f1=fsx=`d=p. From Eq. (16),
we getlsfd by separation of variables:

L − l =E
f

f1 df̃

Îcos2 f1 − cos2 f̃
s17d

=E
f+p/2

f1+p/2 du

Î1 − sin2 u/cos2 f1

. s18d

Using elliptic integrals, we finally obtain

L − l = Kscos2 f1d − FSarcsin
cosf

cosf1
,cos2 f1D , s19d

where

Fsf,m, 1d =E
0

f du

Î1 − msin2 u

is the incomplete elliptic integral of the first kind, andKsm
,1d=Fsp /2 ,md is the complete elliptic integral of the first
kind. In our case, the parameterm.1; therefore we made
use of Fsf ,m.1d=m−1/2Fsb ,m−1d with sinb=m1/2sinf
(see Eq. 17.4.15 in Ref.[17]). We prefer using the parameter
m instead of the modulusk with m=k2 to allow for compat-
ibility with mathematical computation software. Equation
(19) can be solved forf by applying the Jacobian elliptic
function snfFsf ,md umg=sinsfd:

fsld = arccoshscosf1dsnfKscos2 f1d + l − Lucos2 f1gj,

s20d

where f1 has first to be determined numerically from the
constraint of constant length, that is,

L = Kscos2 f1d − FSarcsin
cosf0

cosf1
,cos2 f1D . s21d

The shape of the fiber can be calculated using Eq.(A1) in the
Appendix.

For the exampleL=2, f0=p /3, D=0, the anglef1 com-
puted from Eq.(21) amounts to 0.32; the corresponding
shape of the rod is represented by the dotted line in Fig. 6.
Evidently, a short fiber is too stiff to align its tip into the
magnetic field. More deformation scenarios can be obtained
by starting from a symmetrical solution cosf1=−cosf0, for
which Eq.(20) simplifies to

L = 2Kscos2 f1d, s22d

from which the minimum lengthLmin=p can be determined
above which symmetrical solutions are possible. Two ex-
amples of symmetric solutionsf1=p−f0 (hairpins) are rep-
resented by the dashed lines in Fig. 6. In addition to the
hairpin shape, we find solutions with closed(O shape) and
sinuous shape(S shape), which can be constructed from the
hairpin solution by symmetry considerations. Rigorously cal-
culated O- and S-shaped solutions are shown in Fig. 6.

It is interesting to compare our results with the ones ob-
tained by Refs.[4] and [8], who in their experiments on
flexible SP filaments observed hairpin and sinuous shapes,
too. The filaments in Ref.[4] were made of SP colloids with
molecular linkers in the gap between two adjacent colloid
particles. Their experiments were designed so as to measure
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the bending rigidity of different molecular linkers from the
magnetic field dependence of the filament curvature. Their
magnetic filaments were dispersed in a liquid and free to
rotate or deform in the horizontal plane. If we adapt the
boundary condition(15) to the case of two free ends, we
obtain

Sdf

dL
D

l=0
= Sdf

dL
D

l=L

= 0 ⇒ sin2 f0 = sin2 f1

with the energetically most stable solutionf0=f1=np ,n
PN, that is, a straight filament pointing into the field direc-
tion. Although the hairpin shape withf0=p−f1=np is a
solution, too, it is energetically less favorable compared to
the straight filament. Nevertheless, hairpin-shaped filaments
are frequently observed in Refs.[4] and [8],, which can be
attributed to their specific experimental setup. The filaments
are first aligned with a static field, which then is rotated
quickly by 90°. Whether or not a filament will rotate in its
straight form into the new field direction will depend on the
ratio of magnetic torque to viscous resistance torque,M =
−hFdf /dt, where h is the dynamic viscosity of the sur-
rounding liquid andF the hydrodynamic resistance factor,
which for a long slender body scales withL3 [18]. Short
enough filaments obviously can rotate fast enough. Longer
filaments, on the other hand, respond to a magnetic torque
with bending into a hairpin, thereby halving the hydrody-
namically effective length. A thorough analysis of the dy-
namics of magnetic filaments is given by Refs.[7] and [8].

The maximum curvature of the hairpin shape,

ḟmax= Sdf

dl
D

l=L/2
s23d

at l=L /2, is of experimental interest and is plotted in Fig. 7
as a function of the dimensionless filament length. For long
enough filamentssL*5d, ḟmax<1, or, expressed in absolute
units,

L * 5l0:Sdf

dl
D

l=L/2
=

1

l0
= HÎ 4px3S

s1 + 4pxdE * I
. s24d

It is interesting to compare(24) with Eq. (2) from Ref. [4],
who in their derivation neglected the demagnetization factor
of the chain of SP particles and therefore obtained an expres-
sion linear inxH in the limit case of very long filaments. For
values ofx!1, their formula leads to an overestimation of
bending rigidity by a factor of 1/s4pxd. Because the numeri-
cal value ofx was not mentioned in Ref.[4], we are not able
to tell whether or not that discrepancy has consequences on
the experimental values determined.

It is noteworthy that a shape similar to the hairpin has also
been obtained for a pair of ferrogel rods, aligned parallel to
each other in zero field, and fixed at their base[11]: in a
perpendicular magnetic field of increasing strength, the tips
of the rods become more and more deflected toward each
other until the slit between the rods shuts. When the field is
reduced, the tips straighten out and the pair of rods becomes
“permeable” again. This way, a magnetoelastic valve can be
realized[11].

D. Bending of fiber with magnetic tip in the vertical plane

So far we have concerned ourselves with magnetic fields
applied in the horizontal plane. Now we allow bending to
occur in the vertical plane, be it caused by an inclined mag-
netic field or simply by the uncompensated gravitational
force due to the excess mass at the tip. We assume that the
mass of the pure fiber can be neglected against the excess
massm of the magnetic material at the tip. The massm will
give rise to a point force at the free end, resulting in a con-
stant line force along the fiber[19]. The total energy of the
fiber can now be written as

FIG. 6. Various equilibrium shapesysxd of a magnetic fiber
(magnetic material distributed over the whole length of the fiber)
from Eq. (A1). The magnetic field is parallel to thex axis sD=0d.
Line styles: L=2, f0=p /3, f1=0.32 (dot); L=5, f0=p /9, f1

=p−f0 (short dash); L=10, f0=0.027, f1=p−f0 (long dash);
L=10, f0=0, f1=2p (solid); L=15, f0=p−p /9, f1=p /9 (dash
dot). The hairpin shape exists forL.p. The sinuous shape has the
nodal points atx=np, nPN0.

FIG. 7. Maximum dimensionless curvatureḟmax of the hairpin
shape as a function of the dimensionless filament lengthL on a
log-log scale. The hairpin shape can develop forL.p and be-
comes tighter with increasingL. The asymptotic value of the cur-
vature is 1.
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Wtot = WSP
0 sin2sI − c1d +E

0

L FEI

2
Sdc

dl
D2

− mgsincGdl

s25d

where I is the inclination angle of the magnetic field(dip
angle with respect to the horizontal); its declinationD is
assumed to be zero. The verticalz is defined by the gravity
vectorg. It is convenient to express Eq.(25) in a dimension-
less form,

vtot = sin2sI − c1d +E
0

L F1

2
Sdc

dl
D2

− a sincGdl, s26d

where L=L / l0
SP, with the characteristic length scalel0

SP as
defined in Eq.(5), and the gravitational coupling parametera
is given as the ratio of the characteristic gravitational energy
of the magnetic tip to its characteristic magnetic energy,

a =
cDrgl0

SPs1 + 4pxd
2px3H2 , s27d

where c is the volume concentration of magnetic material
andDr the density difference with respect to the surrounding
elastic material.

Variation of Eq.(26) delivers the Euler equation

d2c

dl2 + a cosc = 0, s28d

where

Sdc

dl
D2

+ 2a sinc = C. s29d

The second-order nonlinear differential equation(28) is that
of a mathematical pendulum(see Ref.[20], p. 700). The
integration variableC in our case can be found from the
boundary conditions

cs0d = c0 and Sdc

dl
D

l=L

= sin 2sI − c1d, s30d

as

C = sin2f2sI − c1dg + 2a sinc1. s31d

The SD case can easily be derived by analogy with

Sdc

dl
D

l=L

= sinsI − c1d.

Integration of Eq.(28) by separation of variables leads to the
following expression:

lscd =E
c0

c dc̃

ÎC − 2a sin c̃

= 2E
c0

c dc̃/2

ÎsC − 2ad + 4a sin2sp/4 − c̃/2d
. s32d

We now must distinguish three cases.

1. 2a,CÏ2a+1

The caseC.2a is relevant when the magnetic field is
strong compared to gravity(small a); thus, this case is simi-
lar to Sec. II A and equilibrium shapes may be calculated
from Eq. (9) to a good approximation. For the sake of com-
pleteness, we derive the exact expressions below. Under the
conditionC.2a, the integration of Eq.(32) leads to

lscd =
2

ÎC − 2a
FFSp

4
−

c0

2
,mD − FSp

4
−

c

2
,mDG ,

s33d

wherem=4a / s2a−Cd,0. From inverting Eq.(33), we ob-
tain

c =
p

2
− 2 arcsinHsnFFSp

4
−

c0

2
,mD −

ÎC − 2a

2
lumGJ .

s34d

Using the constraint of constant length, the unknownc1 can
be determined by numerically solving Eq.(33) with lsc
=c1d=L. The shape of the fiber may be calculated using Eq.
(A3) in the Appendix.

2. C=2a

From Eq.(32) we see thatC=2a is the limit case for long
rods, with the solutionc1=p /2.

3. C,2a

The caseC,2a is relevant for scenarios with largea,
that is, if the magnetic field is weak compared to gravity. We
let sin2 up=sC+2ad /4a and rewrite Eq.(32) as

lscd =
2

ÎC + 2a
E

usc0d

uscd du
Î1 − sin2 u/sin2 up

s35d

with usc̃d=c̃ /2+p /4, and Eq.(35) can be integrated by
analogy to Eqs.(18) and (19); thus

lsud =
1

Îa
FFSarcsin

sinuc

sinup
, sin2 upD

− FSarcsin
sinu0

sinup
,sin2 upDG , s36d

so that we finally get

c = −
p

2
+ 2 arcsinHsinup

3 snFFSarcsin
sinsc0/2 + p/4d

sinup
,sin2 upD

+ Îalusin2 upGJ . s37d

To find equilibrium states numerically, it is convenient to
rewrite the energy functional(26). From Eq.(31), we get
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v =E
0

L FC

2
− 2a sincsldGdl + sin2sI − c1d s38d

and have

v = −
CL

2
+E

c0

arcsinsC/2ad
ÎC − 2a sincdc

+E
c1

arcsinsC/2ad
ÎC − 2a sinc dc + sin2sI − c1d.

s39d

Equation(39) is equivalent to Eq.(26) as can be shown by
minimizing Eq.(39) with respect toC, which yields exactly
Eq. (31).

We will now consider a scenario where the magnetic field
is horizontalsI =0d and so counteracts gravitysa=0.5d by
further stabilizing the horizontal initial state. The energy
minima here correspond to equilibrium shapes which all
have an inflection point(Fig. 8, left) and therefore relatively
low bending energy. The same is true for the scenario
I =p /4 (Fig. 8, right). Table I shows thatC converges toward
2a for greater values ofL, which reflects the increasingly
dominant role gravity has in controlling the shape of long
filaments. The bell-shaped curves in Fig. 8, which represent
the caseC,2a, are energetically more favorable than the
corresponding arclike shapes from the scenarioC.2a,
which minimize gravitational energy at the expense of bend-
ing energy(see Table I). That advantage, however, declines
as L increases, because of the growing influence of gravity
on longer rods. ForL*10 sI =0,a=0.5d, the minima on the
C.2a branch reach theC=a limit, and the corresponding
arcs are nearly as energetically favorable as the bell shapes
from theC,2a branch. The positions of the minima on the
C.2a branch are complementary to the ones on theC
,2a branch in such a way that

2a − CminsC,2ad = CminsC.2ad − 2a.

It can also be seen in Fig. 8 and Table I that the alignment of
the tip with the magnetic field axis is generally poor for
a=0.5. When investigating the field dependence of the equi-
librium shape of a rod of given lengthL, one has to bear in
mind thatL~H0

2 anda~1/H0
4 [see Eqs.(5) and(27)]. Thus,

in the limit of strong magnetic fields, the influence of gravity
on the equilibrium shape can be neglected, that is, Eq.(9)
from the first section can be used to calculate the equilibrium
shapes.

III. CONCLUSIONS

Our mathematical analysis of the magnetoelastic response
of magnetic filaments to a static field has shown that there
exists a wealth of possible equilibrium shapes. While fila-
ments with a magnetic tip curve into circular arcs when
bending is constrained in the horizontal plane, bell-shaped
curves are the prevailing equilibrium shapes when bending is
allowed to occur in the vertical plane. In the case of strong
magnetic fields, however, circular arcs will develop in the

vertical plane, just as in the case of bending in the horizontal
plane. We also reconsidered the case of filaments with mag-
netic material distributed over the whole length of the fila-
ment. Our analysis here yielded multiform metastable equi-
librium states, most of which have been observed in
experiments on filaments consisting of superparamagnetic
particles held together by molecular linkers. This good
agreement with the recently conducted experiments by Refs.
[4] and[8], confirms the feasibility of our approach based on
continuum mechanics. Our mathematical framework can also
be applied to one-dimensional ferrogels and magnetostrictive
elastomers. Ferrogels are polymer gels that contain dispersed

FIG. 8. Equilibrium shapezsxd for several values ofL
P h1,2,3,4,6j, with a=0.5 (caseC,2a), for I =0 (left) and I
=p /4 (right). The magnetic field vector is indicated by the stippled
line. The values ofC were found from minimizing Eq.(39), the
corresponding shapes were computed using Eqs.(37) and(A2). The
angle of deflectionc at the inflection point is arcsinsC/2ad. Note
that the tips are not well aligned with the magnetic field axis(except
for L=2, I =p /4), which is due to gravity dominating over the
magnetic field. The corresponding values ofC, c1, and energy are
listed in Table I.
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magnetic particles and show magnetic field sensitivity[21].
Such systems are increasingly attracting attention in the de-
sign of smart materials[22] and it has been demonstrated
that a pair of ferrogel rods can be used as a magnetoelastic
valve [11].

An interesting potential application of filaments with
magnetic tips is in scanning probe microscopes. A compara-
tively weak magnetic tip is already sufficient to deflect such
a highly flexible fiber. This way, the magnetization structure
of the object to be investigated would not be influenced by
the probe. Thus, for the examination of magnetically soft
materials, probes in the form of magnetic filaments would
hold advantages over strong magnetic tips usually employed
in magnetic force microscopes(MFM’s). By including mag-
netic gradient forces due to(inhomogeneous) stray fields
from the sample, our mathematical formalism can be tailored
to the MFM scenario. Lastly, we will employ our model to
make quantitative predictions for the working mechanism of
the putative magnetic-sense organ of homing pigeons, that is,
nerve terminals that each contain some 10–20 clusters of SP
magnetite, arranged in a chainlike disposition at the distal
end of the dendrite[23]. This will be reported elsewhere
[24].
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APPENDIX: EQUILIBRIUM SHAPES

1. Magnetic material distributed over filament (Sec. II C)

The expressions for the equilibrium shapes are calculated
from

xsld
l0

=E
0

l

coscsl̃ddl̃ = cosDE
0

l

cosfsl̃ddl̃

+ sinDE
0

l

sinfsl̃ddl̃,

ysld
l0

=E
0

l

sincsl̃ddl̃ = sinDE
0

l

cosfsl̃ddl̃

− cosDE
0

l

sinfsl̃ddl̃, sA1d

with

E
0

l

sinfsl̃ddl̃ =E
f0

fsld sinf df

Îsin2 f − sin2 f1

= arcsin
cosfsld
cosf1

− arcsin
cosf0

cosf1

and

E
0

l

cosfsl̃ddl̃ =E
f0

fsld cosf df

Îsin2 f − sin2 f1

= lnS sinf0 + Îsin2 f0 − sin2 f1

sinfsld + Îsin2 fsld − sin2 f1
D .

2. Magnetic material at the tip, vertical field (Sec. II D)

The equilibrium shape is given by

TABLE I. Values of C, c1, total energyvtot, with contributions from magnetic energyvmagn, bending
energyvbend, and gravitational energyvgrav for the equilibrium shapes depicted in Fig. 8 witha=0.5, c0

=0. For comparison, some complementary(metastable) equilibrium states on theC.2a branch are
juxtaposed.

I L C c1 vtot vmagn vbend vgrav

I =0

1 0.111 0.084 −0.021 0.007 0.014 −0.042

2 0.340 0.196 −0.131 0.038 0.086 −0.254

3 0.593 0.293 −0.365 0.083 0.220 −0.669

3 1.485a 2.517 0.284 0.343 1.085 −1.143

4 0.780 0.358 −0.712 0.122 0.362 −1.197

6 0.944 0.414 −1.591 0.161 0.540 −2.293

6 1.055a 2.690 −1.511 0.191 0.732 −2.434

10 0.997 0.432 −3.554 0.175 0.627 −4.356

10 1.003a 2.708 −3.548 0.177 0.656 −4.371

I =p /4

<0.785 1 0.526 0.483 0.077 0.089 0.125 −0.138

2 0.706 0.785 −0.283 0.000 0.212 −0.495

3 0.811 0.884 −0.662 0.010 0.272 −0.944

4 0.895 0.937 −1.090 0.023 0.339 −1.452

6 0.973 0.979 −2.032 0.037 0.424 −2.494

aMinimum on branchC.2a.
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xscd =E coscslddl =E
c0

c cosc̃ dc̃

ÎC − 2a sin c̃
and

zscd =E sincslddl =E
c0

c sin c̃ dc̃

ÎC − 2a sin c̃
.

sA2d

For C.2a, the integrals above can be expressed as

xscd =
1

a
sÎC − 2a sinc0 − ÎC − 2a sincd, sA3d

zscd =
ÎC − 2a

a
FESp

4
−

c

2
,mD − ESp

4
−

c0

2
,mDG

+
C

aÎC − 2a
FFSp

4
−

c0

2
,mD − FSp

4
−

c

2
,mDG ,

where m=4a / s2a−Cd,0 and E is the incomplete elliptic
integral of the second kind,

Esf,md =E
0

f

Î1 − msin2 b db.
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