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Bending of magnetic filaments under a magnetic field
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Magnetic beads and superparamagnédi) colloid particles have successfully been employed for micro-
mechanical manipulation of soft materiai, situ probing of elastic properties, and design of smart materials
(ferrogel9. Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two
end-member case&@) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes,
and(b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing
SP particles. Our analysis yields also metastable equilibrium SteteS’s), which only exist above a critical
filament length, but become more stable with increasing magnetic field. The MES’s foagase, like the
ground state, circular arcs, but more strongly bent. The multiform MES'’s in(@as@hich comprise hairpin,
sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of
gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the
influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization,
case(a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of
polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material
attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip
is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by
the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments
may hold advantages over tips usually employed in magnetic force microscopy.
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[. INTRODUCTION able to determine the bending rigidity of the linkers from the
. . . ) o . magnetoelastic response of the filaments. We take their math-
Allowing for noninvasive, precise application of point ematical approach one step further and derive analytical ex-
torques and point forces to soft materials, magnetic beadsyessions for the static equilibrium shape of magnetic fila-
have been used in micromechanical experiments to measufgents for different scenarios. The dynamics of such a system
s.tress—stram curves of b|olog|qal materials ranging fromj, a rotating magnetic field has lately been investigde].
single DNA molecule$1] and actin bundlef2] up to stretch  The magnetoelastic behavior of the single-domain equivalent
receptors of living cell§3]. Nevertheless, the precise deter- 15 Sp filaments, which in nature occurs in the form of chains
mination of elastic moduli using the magnetic bead methogys magnetosomes in magnetotactic bact¢gih was exam-
requires a sound mathematical framework to describe th@eq earlieff10]. In the last section, we loosen the constraint
magnetoelastic response of the system. We here derive ang¢ pending in the horizontal plane and present a formalism to
lytical expressions for the equilibrium shape of magneticinclude the influence of gravity.
filaments under a magnetic field, which can be used to deter-
mine the bending rigidity of the filaments. We first examine
the mathematically simpler case of superparamagnisi
or permanent-magnetic particles bound to the free end of an e first consider the case of a fiber with magnetic mate-
otherwise nonmagnetic cantilevered filament and analyzga| concentrated at the free end. The fixed end of the fiber
stable and metastable equilibrium sta{84£S’s). We will  defines the origin of théx,y) coordinate systerFig. 1). In
also reconsider the case of a filament with magnetic materighe yndeformed state, the fiber is paralleiktoThe external
distributed along the filament, a system recently designed fogagnetic field is applied horizontally at an anglgdeclina-
a micromechanical approach to probe elastic parameters ghn) |n the deformed state, is the curvilinear abscissa
molecular scalgf4—6|. Goubaultet al. [4] produced long  gjong the fiber. The shape of the deformed fiber may be
flexible filaments from monodisperse superparamagnetic Colyescribed by the angl@(l) betweenx and the local tangent
loid particles connected through molecular linkers, and wergy of the bent fiber: at the fixed endi(1=0)=y,=0. We
chose a continuum-mechanics approach to calculate the elas-
tic energy of the fiber: According to the Kirchhoff model of
*Electronic address: MICHAELW@LMU.DE a nonstretchable elastic rod, the elastic energy stored in a
TURL: http://www.geophysik.uni-muenchen.defmichael bent rod is given b)(1/2)EIde/R§, where 1R, is the local

1. MATHEMATICAL ANALYSIS
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FIG. 1. Coordinate system. The deformation of the fifggay)
is described by the anglé(l). The local tangentll is given by FIG. 2. Total energy\ oy as a function ofj, calculated accord-
(cosy,sing)dl. The external magnetic fielth, is homogeneous ing to Eq.(10) for A=1 (dotted and A =10 (solid). The energywiy
and applied horiztonally. The magnetic matetialbck) is bound to  is multiplied by A to allow for better comparison of the two graphs.
the tip of the fiber. The length of the magnetic tlp;, is much  The magnetic field angl® is 7/3. For A=1, the position of the

smaller than the total length of the fibér, minimum is aty;=0.676, but shifts tay;=0.997 forA=10.

curvature E is Young's modulus, antlis the area moment of sp_ (L +4my)El

inertia of the rod. A filament can be regarded as a long cyl- 0 = 5 3.2ar - 5
2mx°HgSLy

inder with |=S?/7r constant over its length. Witk=cosy
andy=siny, where the overdot denotes differentiation with This magnetoelastic length of the fibd;g,", can be used to

respect to the curve parameterd /R; is given by . express the total energy) in terms of dimensionless vari-
ables,
A. Superparamagnetic tip A1/ du\?
The tip of the fiberlength of tip,L; <length of fiber,L), o 2\d\

has superparamagnetic material attached to it with effective

susceptibilityy. Its total magnetic energy is where A=L/I5"” andd\ =dI/Ig". _
Variation of the total energy6) furnishes the Euler equa-
1 siré(D - cog(D - tion,
Wep= = =2 c2>< (D =) N ( lpl))SLT, 0 |
2 1 +XN1 1 +XN2 2
8 0 &y 00 dy k (7)
Wit = - —— = — =K,

wherey,=y(l=L), Sis the area of the cross section, axd b d\? dx

and N, are the demagnetizing factors along the short and
long axes of the SP tip, respectively. In order for a SP syste
to produce a torque, it has to have a shape anisotropy, that i
N; # N,. Assuming that_:> S, thenN; =0, N,=4, and
Eq. (1) becomes

at is, the curvaturé is constant and the equilibrium shape

f the fiber is a circular arc. The constant of integratkaran

€ determined from the boundary conditions. The magnetic
point torque acting upon the free end produces a jump in the
bending torque at the free end, that is,

2m°HSLy
_ : _ d .
Wsp(¢1) 1+ 4y sin”(D — ¢y). k= (d—;\b> =sin 2D - ), (8)
—_— A=A
WgP 2) Equationg(7) and(8) can be combined in the form
Thus, the SP system produces a torque of magnitude P(N) =\ sin 2D - ¢) (9)
dw. where ¢, can be determined from minimizing the total en-
Tep=-— —SP_ —vapsin 2D - ), (3) ergy (6), which because of the uniform curvatui@® simpli-
dy fies to
which gives rise to a bending torque of magnitude i A
T,=EI/R.. Wiy = SIF(D = ) + . (10)
We determine the equilibrium deformation of the fiber by
minimizing its free energy functional, Figure 2 showsw, as a function ofy;. For A=1, mag-
. ) netic energy and bending energy are in a subtle balance and
o lo d_l#) there is only one minimunty,=0.676, which is not very
wio = SIP(D = ) + 2JO (dl dl, @) pronounced either. FoA =10, the first and most favorable

minimum has deepened and shifted toward the asymptotic
where |y, the characteristic length scale of the system, isvalue of ¢, ..=D, which means perfect alignment of the SP
defined as the ratio of the structural rigidii to the char- tip with the external magnetic field. In addition to the ground
acteristic magnetic energy2, state, there exist metastable equilibrium states as well, which
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FIG. 4. Total energylwy; for a permanent-magnetic tip as a
function of ¢4 for A=1 (dotted and A=10 (solid). The magnetic
field angle D is #/3. The position of the minimum is ats
=0.511 for A=1. For A=10, the three minima are located #t

o . . =0.952, 4 =-4.74, andy,=6.61.
FIG. 3. Equilibrium shapes corresponding to the five energy
minima in Fig. 2 aty;=0.997, ¢ , ==1.994, ¢ ,,=3.983, ¢ g . . . . _
=-4.976, and}, ,=6.946. The straight dashed line represents thed'mens'onless Ie_ngth here is given tgP__EI/(MFHOSLT)'
magnetic field vector. The relative thickness of the curves is ant N€ Euler equation for the SP case carries over unchanged

inverse measure of the energy of the corresponding states. Parad we simply have to adjusft the bou_ndary condition to find
eters:A=10, D=/3. the new constant of integration, that is,

are depicted in Fig. 3. Which one of the MES's is realized k=sin(D - ).
depends on the initial curvature of the rod.

To calculate Ay, the critical value ofA above which  compared to Eq8), the dimensionless magnetic torque pro-
MES's can exist, we minimiz€10) with respect tojy and  g,ced by a SD tip is just half as much as that due to a SP tip,
obtain A*=ys/sin2AD=¢y) for ¢1>0. Aciis With 504 consequently, SP tips will give better alignment with the
i e{a,p}={1,2 is the minimum on the(i+1jth positive  eyternal field than SD tips provided the filaments are soft
branch of A". Our numerical analysis yield&c,+~2.31  enough. This is demonstrated by comparing Fig. 4 with Fig.
+D and Agi 5. 225.48+D for the two MES's with¢,>0 2 The positions of the minima in the SP case are nearer to
(D<m/2). The corresponding bending angles areperfect alignment than in the SD cas&SP~10 and ASP
1.+ 2.254D andyy 5. ~5.45+D, respectively, that is, the  ~ 19 correspond to 95% alignment of the tip with the mag-
orientation of the tip is lagging behind the ideal alignmentnetic field, respectively. In absolute units, howeugP/IS”
angle of7+D and 27+D, respectively. As\ increases, the ~,3H,/M,; thus for a given lengtt, ASP> ASP,
magnetic energy more and more dominates the total energy |n contrast to the SP case, the antiparallel alignment of the
and the t|p becomes increaSingly aligned with the field. Th|&|p for '/f1>0 is forbidden in the SD case, and the first
can also be understood in terms (&), according to which  MES—the more strongly curved arc—can develop only for
AecH for a rod of given lengti.. A good alignment95%  , <0, here aty,=—4.74 (Fig. 4), with a critical length of
criterion) is achieved forA~10. The threshold length for A _.=4.66-1.D. For the spiral shapéy,;=6.61), we find
MES'’s with ¢/, <0, Acyi;-, is obtained as the minimum of A =4 61+D. The corresponding shapes are depicted in Fig.
the ith branch of A*=-y4/sin2D+yy), leading to g
Acrite-22.31-D and A gy 5 5.48-D.

" H,
B. Permanent-magnetic tip (i.e.,M,>x*H) 4 /’
In the case of a permanent-magnetic material bound to the /
free end of the fiber, the magnetic energy is 2ty
/
Wsp(#1) = = M;Hg cosD - #,)SLy, (11) P
=2 2 4 6 8
where we assume that the vector of the remanent magnetiza- //
tion M, is parallel to the tangerl of the tip and the external ;2
field Hy is smaller than the coercive foré€. From the mag-
netic point of view, single-domai(SD) particles are prefer- /

able than pseudo-single-domain or multidomain particles as

they have higheH; and do not show nonlinear magnetiza-  FiG. 5. Equilibrium shapes corresponding to the three energy
tion behavior, that is, the magnetic remanence is alwaysinima in Fig. 4(A=10,D=/3). The straight dashed line repre-
equal to the saturation magnetization. In that case, the magents the magnetic field vector. The relative thickness of the lines is
netostatic self-energy is constant and can be neglected. The@ inverse measure of the energy of the corresponding states.

061803-3



V. P. SHCHERBAKOV AND M. WINKLHOFER PHYSICAL REVIEW E70, 061803(2004

C. Magnetic material distributed over fiber é1 d%
We next consider the case where the magnetic material is A== L \/ 2 - cod b (17
distributed uniformly over the whole length of the fiber, as in COS’ ¢~ COS ¢
the technically produced filaments composed of SP colloid byl 4o

(18

particles connected by molecular linkgrs-8]. We now de- :f
rive analytical expressions for the magnetoelastic equilib- srm2 V1 — Sirf flcog ¢1'
rium shape of the one-dimensional magnetic elastomer. For S . )

our analysis, it is sufficient to include the magnetic energyJsing elliptic integrals, we finally obtain

into the Kirchhoff model of elastic rods; readers who are cosé
interested in the complete continuum theory for magnetic A= \=K(cog ¢;) - F(arcsin ,co$ qsl), (19
elastomergqferrogely are referred to recent work by Refs. COS¢y

[11] and [12]. The magnetic energy of each linear elementwhere

dlis
3172 F(p,m<1) f‘ﬁ—de
2mH2S : = —
AW 0y = ;T:‘TO sin’[D — ¢ (D)]dL. o \V1-msir? 9
Y
—_— is the incomplete elliptic integral of the first kind, akdm
aw %o <1)=F(w/2,m) is the complete elliptic integral of the first
) o kind. In our case, the parametar>1; therefore we made
The total free energy functional now is given by use of F(¢,m>1)=mY2F(B,m%) with sina=m'Z%sin ¢

L[ E* 1 dy\2 (see Eq. 17.4.15 in Ref17]). We prefer using the parameter
W:f (—) +dWeosir(D - ) (dl, (12)  minstead of the moduluk with m=Kk? to allow for compat-
ol 2 \di ibility with mathematical computation software. Equation
whereE* is the effective Young’s modulus of the magneto- (19) can be solved fok by applying the Jacobian elliptic

elastic material, which theoretically depends on the magnetifcuncuon SHiF(¢,m)[m]=sin(¢):

field strength[13]. Departures from linear elasticity have  ¢(\) = arcco$(cos¢,)siK(cog ¢,) + \ — Alcog ¢4},
been observed in magnetorheological elastoni&d$ (rub- (20)
ber with SP colloid particlosunder a magnetic field of

20 kOe[15]. We introduce the characteristic length sciale  where ¢, has first to be determined numerically from the

defined by constraint of constant length, that is,
cos

lo= + [(L+4mpE* | A =K(cog qﬁl)—F(arcsin ¢°,co§ (]51). (21)

4myPH?S COS¢hy
to recast Eq(12) in dimensionless form, The shape of the fiber can be calculated using(Eg) in the
Appendix.

A 2 - - -

dis . For the example\ =2, ¢o=m/3, D=0, the anglep, com-

wsp= fo {(a) +sirf(D - '/’)}dh- (13 puted from Eq.(21) amounts to 0.32; the corresponding

shape of the rod is represented by the dotted line in Fig. 6.
We substitutep=D -, where¢ is the angle betwee , and Evidently, a short fiber is too stiff to align its tip into the
dl, and get the corresponding Euler equation as magnetic field. More deformation scenarios can be obtained
) by starting from a symmetrical solution c@gs=-cosd¢y, for
d ] A
2_¢ = sin 26, (14) which Eq.(20) simplifies to

d\2 A = 2K(cog ¢y), (22

from which the minimum length\ ,;,= 7 can be determined
deb above which symmetrical solutions are possible. Two ex-
—) =0. (150  amples of symmetric solutiong; =7 — ¢, (hairping are rep-
dA/=n resented by the dashed lines in Fig. 6. In addition to the
Multiplication of Eq.(14) by d¢/d\ and integration yields ~ Nairpin shape, we find solutions with closéd shapg and
sinuous shap€S shapg which can be constructed from the
de\? ) hairpin solution by symmetry considerations. Rigorously cal-
) Sir ¢ = sirt ¢, (16)  culated O- and S-shaped solutions are shown in Fig. 6.
It is interesting to compare our results with the ones ob-
It is interesting to note that E@L6) is exactly the equation of tained by Refs[4] and [8], who in their experiments on
a Bloch wall derived by Ref[16], except for the different flexible SP filaments observed hairpin and sinuous shapes,
boundary conditions, which in the case of an infinite crystaltoo. The filaments in Ref4] were made of SP colloids with
are ¢p=p(x=-)=0 and ¢, =p(x=)=7. From Eq.(16), molecular linkers in the gap between two adjacent colloid
we geth\(¢) by separation of variables: particles. Their experiments were designed so as to measure

with the boundary conditions

#(0)=¢o=D -4y and (
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FIG. 7. Maximum dimensionless curvatu@nax of the hairpin
shape as a function of the dimensionless filament lergton a
log-log scale. The hairpin shape can develop for 7 and be-
comes tighter with increasing. The asymptotic value of the cur-
vature is 1.

The maximum curvature of the hairpin shape,

) d¢)
max= | v 23
¢ ( dN /\=ar2 29

atA=A/2, is of experimental interest and is plotted in Fig. 7
FIG. 6. Various equilibrium shapeg(x) of a magnetic fiber ~as a function of the dimensionless filament length. For long
(magnetic material distributed over the whole length of the fiber enough filament$A = 5), éﬁmax” 1, or, expressed in absolute
from Eg. (Al). The magnetic field is parallel to theaxis (D=0). units,
Line styles:A=2, ¢o=m/3, ¢1=0.32 (dot); A=5, ¢g=7/9, ¢,

xfly —

=m— ¢y (short dash A=10, ¢y=0.027, ;=7— ¢, (long dash; de 1 47x3S

A=10, =0, ¢;=27 (solid); A=15, po=m—m/9, ¢;=m/9 (dash L = 5ly: ol = H L+ 4mE* [ (24)
dot). The hairpin shape exists far> 7r. The sinuous shape has the 1=tz 70 X

nodal points ak=n, ne No. It is interesting to comparé4) with Eq. (2) from Ref. [4],

who in their derivation neglected the demagnetization factor
the bending rigidity of different molecular linkers from the Of the chain of SP particles and therefore obtained an expres-
magnetic field dependence of the filament curvature. Theipion linear inyH in the limit case of very long filaments. For
magnetic filaments were dispersed in a liquid and free t/alues ofy<1, their formula leads to an overestimation of
rotate or deform in the horizontal plane. If we adapt thebending rigidity by a factor of 1(Amy). Because the numeri-
boundary condition15) to the case of two free ends, we cal value ofy was not mentioned in Ref4], we are not able

obtain to tell whether or not that discrepancy has consequences on
the experimental values determined.
(d_¢> - (d_‘i’> =00 sir? ¢p=Sirt ¢ It is noteworthy that a shape similar to the hairpin has also
dA/y—o \dA/yzp 0 ! been obtained for a pair of ferrogel rods, aligned parallel to

each other in zero field, and fixed at their b44&]: in a

) ) g . S , . perpendicular magnetic field of increasing strength, the tips

tieolrj’ %?rt](;i’ ﬂst:‘rggr]]r;ltirﬁlﬁm;n; %ouﬂ;’glntci (t;e_zelo:sdgec of the rods become more and more deflected toward each
» gn pin shap 0= P1= T other until the slit between the rods shuts. When the field is

solution, too, it is energetically less favorable compared to

the straight filament. Nevertheless, hairpin-shaped filament'FSEduced’ the tips straighten out and the pair of rods becomes

are frequently observed in Refgl] and[8],, which can be rggﬂ?:c?[?lﬁ again. This way, a magnetoelastic valve can be
attributed to their specific experimental setup. The filaments '

are first aligned with a static field, which then is rotated
quickly by 90°. Whether or not a filament will rotate in its
straight form into the new field direction will depend on the  So far we have concerned ourselves with magnetic fields
ratio of magnetic torque to viscous resistance tordue; applied in the horizontal plane. Now we allow bending to
-yFdg¢/dt, where 5 is the dynamic viscosity of the sur- occur in the vertical plane, be it caused by an inclined mag-
rounding liquid andF the hydrodynamic resistance factor, netic field or simply by the uncompensated gravitational
which for a long slender body scales witf¥ [18]. Short force due to the excess mass at the tip. We assume that the
enough filaments obviously can rotate fast enough. Longemass of the pure fiber can be neglected against the excess
filaments, on the other hand, respond to a magnetic torqumassm of the magnetic material at the tip. The massvill

with bending into a hairpin, thereby halving the hydrody- give rise to a point force at the free end, resulting in a con-
namically effective length. A thorough analysis of the dy- stant line force along the fibgd9]. The total energy of the
namics of magnetic filaments is given by Rdfg] and[8]. fiber can now be written as

with the energetically most stable solutiaby=¢,=nm,n

D. Bending of fiber with magnetic tip in the vertical plane

061803-5
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1. 2a<C=2a+1

L 2
. El dt//) .
= - + — — -

Whor = WepSirH(l = ) fo { 2 < ar) ~masin w]dl The caseC>2a« is relevant when the magnetic field is

o5 strong compared to gravitgmall «); thus, this case is simi-
(25) lar to Sec. Il A and equilibrium shapes may be calculated

where| is the inclination angle of the magnetic fieidip ~ from Eq.(9) to a good approximation. For the sake of com-

angle with respect to the horizontalts declinationD is pleteness, we derive the exact expressions below. Under the

assumed to be zero. The verticais defined by the gravity ~conditionC>2a, the integration of Eq(32) leads to

vectorg. It is convenient to express E@5) in a dimension-
less form, Ay) = [,:( _ ) F(E_f m)}
VC-2a 4 2° 4 2’ '
A 1 dlﬂ' 2

% . o o wherem=4a/(2a—C) <0. From inverting Eq(33), we ob-
where A=L/I5F, with the characteristic length scalg” as  tain

defined in Eq(5), and the gravitational coupling parameter
is given as the ratio of the characteristic gravitational energy T ) T \JC -2«
=—-2arcsinsn F{ —--—,m| - Am] (.

of the magnetic tip to its characteristic magnetic energy, > ,m 2

(34)

cApglgh(L + 4m
. pgzo (3H2 x)’ 27)
X Using the constraint of constant length, the unknagyrcan
wherec is the volume concentration of magnetic materialbe determined by numerically solving E(83) with \(y

andAp the density difference with respect to the surrounding= 1) =A. The shape of the fiber may be calculated using Eq.

elastic material. (A3) in the Appendix.
Variation of Eq.(26) delivers the Euler equation
5 2. C=2«
g2 Tacosy= 0, (28) From Eq.(32) we see tha€=2a« is the limit case for long
rods, with the solutionf; =/2.
where
) 3. C<L2a
(5) +2asing=C. (29 The caseC< 2« is relevant for scenarios with large,

that is, if the magnetic field is weak compared to gravity. We
The second-order nonlinear differential equati@s) is that  let sirf u,=(C+2a)/4a and rewrite Eq(32) as
of a mathematical pendulurtsee Ref.[20], p. 700. The
integration variableC in our case can be found from the ) = 2 J
boundary conditions VC + 2 u(e V1 - sirf u/sir? Up

u(y) du

(35

W0)= 4y and (d_"/’> =sinZAl-¢y), (30) with u(y)=y/2+m/4, and Eq.(35) can be integrated by
A=A

dx analogy to Eqs(18) and(19); thus
" )\(u)—i F(arcsin% sirfu )
C=sir[2(1 = ;)] + 2a sin . (31) Ve sinuy,’ P
The SD case can easily be derived by analogy with in
Y y i - F(arcsinﬂ,sin2 up)} , (36)
d ' sinup
(—) =sin(l = ¢n). .

d\/\=a so that we finally get
Integration of Eq(28) by separation of variables leads to the -
following expression: == > + 2 arcsin sinu,

sin(yy/2 + 7l4) s U )
i ' p

W d~
)\(w):f —lﬂ~ xsn[F(arcsin
o NC = 2a sin s sinu,

_ Zflll dy/2 (@ +aNsir? up} } (37)
Yo \/ (C - 2a) + 4a sirf(ml4 — yl2)

To find equilibrium states numerically, it is convenient to
We now must distinguish three cases. rewrite the energy functiongR6). From Eq.(31), we get

061803-6
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L7/ Ap—

e
w=f [E—Zasinw()\)}d)wsinz(l—wl) (38)

0

and have

VC = 2a sin ydys

w=-—+

CA arcsinC/2a)
o)

o

arcsin(C/2a) -
+J NC = 2a singr dy+ sirf(l - o).
n

(39

Equation(39) is equivalent to Eq(26) as can be shown by
minimizing Eq.(39) with respect toC, which yields exactly
Eq. (31).

We will now consider a scenario where the magnetic field
is horizontal (I1=0) and so counteracts gravifyr=0.5 by
further stabilizing the horizontal initial state. The energy
minima here correspond to equilibrium shapes which all
have an inflection pointFig. 8, leff) and therefore relatively
low bending energy. The same is true for the scenario
| =/4 (Fig. 8, righy. Table | shows tha€ converges toward 1
2« for greater values of\, which reflects the increasingly
dominant role gravity has in controlling the shape of long
filaments. The bell-shaped curves in Fig. 8, which represent R
the caseC<2a, are energetically more favorable than the 2 “H
corresponding arclike shapes from the scendfio-2a, .
which minimize gravitational energy at the expense of bend- .
ing energy(see Table )l That advantage, however, declines 3 4
as A increases, because of the growing influence of gravity
on longer rods. FoA =10 (1=0,¢=0.5), the minima on the Z/l SP
C>2a branch reach th€=« limit, and the corresponding
arcs are nearly as energetically favorable as the bell shapes 4
from the C< 2« branch. The positions of the minima on the
C>2a branch are complementary to the ones on @e
< 2a branch in such a way that

2a = Crinc<2a) = Crmin(c>24) ~ 2. FIG. 8. Equilibrium shapez(x) for several values ofA

It can also be seen in Fig. 8 and Table | that the alignment of 11:2:3.4,8, with @=0.5 (caseC<2a), for 1=0 (left) and
the tip with the magnetic field axis is generally poor for =/4 (right). The magnetic field vector is indicated by the stippled

a=0.5. When investigating the field dependence of the equil-me' The values ofC were found from minimizing Eq(39), the

librium shape of a rod of given length, one has to bear in corresponding shapes were computed using g73and(A2). The

. > 4 angle of deflectiony at the inflection point is arcsi@/2a). Note
mind thatA «Hg anda = 1/H, [see Eqs(5) and(27)]. Thus, that the tips are not well aligned with the magnetic field a&&iscept

in the limit of strong magnetic fields, the influence of gravity ¢, A=2, 1=m/4), which is due to gravity dominating over the

on the equilibrium shape can be neglected, that is,(BX.  magnetic field. The corresponding valuesQyfi;, and energy are
from the first section can be used to calculate the equilibriungsied in Table 1.

shapes.

vertical plane, just as in the case of bending in the horizontal
plane. We also reconsidered the case of filaments with mag-

. CONCLUSIONS netic material distributed over the whole length of the fila-

ment. Our analysis here yielded multiform metastable equi-

Our mathematical analysis of the magnetoelastic respongyrium states, most of which have been observed in
of magnetic filaments to a static field has shown that ther@xperiments on filaments consisting of superparamagnetic

exists a wealth of possible equilibrium shapes. While fila-particles held together by molecular linkers. This good
ments with a magnetic tip curve into circular arcs whenagreement with the recently conducted experiments by Refs.

bending is constrained in the horizontal plane, bell-shape@] and[8], confirms the feasibility of our approach based on
curves are the prevailing equilibrium shapes when bending isontinuum mechanics. Our mathematical framework can also
allowed to occur in the vertical plane. In the case of strongoe applied to one-dimensional ferrogels and magnetostrictive
magnetic fields, however, circular arcs will develop in theelastomers. Ferrogels are polymer gels that contain dispersed
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TABLE I. Values of C, ¢, total energyayy, with contributions from magnetic energyyag, bending
energy wpeng and gravitational energyyg,, for the equilibrium shapes depicted in Fig. 8 with=0.5, ¢,
=0. For comparison, some complementdrpetastable equilibrium states on theC>2a branch are

juxtaposed.
I AC ¥ Wrot ®magn Whend Wgrav
1=0
1 0.111 0.084 -0.021 0.007 0.014 -0.042
2 0.340 0.196 -0.131 0.038 0.086 -0.254
3 0.593 0.293 -0.365 0.083 0.220 -0.669
3 1.48% 2.517 0.284 0.343 1.085 -1.143
4 0.780 0.358 -0.712 0.122 0.362 -1.197
6 0.944 0.414 -1.591 0.161 0.540 -2.293
6 1.05% 2.690 -1.511 0.191 0.732 -2.434
10 0.997 0.432 -3.554 0.175 0.627 -4.356
10 1.003 2.708 -3.548 0.177 0.656 -4.371
l=m/4
~0.785 1 0.526 0.483 0.077 0.089 0.125 -0.138
2 0.706 0.785 -0.283 0.000 0.212 -0.495
3 0.811 0.884 -0.662 0.010 0.272 -0.944
4 0.895 0.937 -1.090 0.023 0.339 -1.452
6 0.973 0.979 -2.032 0.037 0.424 —2.494

Minimum on branchC> 2a.

A
cosw(ﬁ):)dﬁ)( = cost cos¢(’):)dﬁ):
0

Such systems are increasingly attracting attention in the de- N

sign of smart material§22] and it has been demonstrated 0

that a pair of ferrogel rods can be used as a magnetoelastic ) A

valve [11]. +sin Df
An interesting potential application of filaments with

magnetic tips is in scanning probe microscopes. A compara-

tively weak magnetic tip is already sufficient to deflect such y(l) N

a highly flexible fiber. This way, the magnetization structure N = f sinA\)d\ = sin DJ

of the object to be investigated would not be influenced by

the probe. Thus, for the examination of magnetically soft

materials, probes in the form of magnetic filaments would - COSDJ

hold advantages over strong magnetic tips usually employed

in magnetic force microscop€MFM’s). By including mag-  with

netic gradient forces due tGnhomogeneousstray fields

from the sample, our mathematical formalism can be tailored (* .~ ~ (*M  singde _ cosp(\)

to the MFM scenario. Lastly, we will employ our model to | Sin@¢(M)d\ :f S o-sitd " cos

make quantitative predictions for the working mechanism of b N ! !

the putative magnetic-sense organ of homing pigeons, that is, . COS¢y

nerve terminals that each contain some 10-20 clusters of SP B arcsmcosd)l

magnetite, arranged in a chainlike disposition at the distal

end of the dendritg23]. This will be reported elsewhere and

magnetic particles and show magnetic field sensitij/2y. x(1) Jx

0

sin ¢(ﬁ):)d")§,
0

N

cos¢(’5\')d'x
0 0
>\ —~ ~

sin (\)dx, (A1)
0

24].
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APPENDIX: EQUILIBRIUM SHAPES

1. Magnetic material distributed over filament (Sec. Il C)

The expressions for the equilibrium shapes are calculated
from The equilibrium shape is given by

2. Magnetic material at the tip, vertical field (Sec. Il D)
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W cosﬂz/'/dpzyf _\C-2a T ¥ —
x(llf)=f COSL//()\)d)\:J ————— and Z(‘/’)‘—[E(_‘_,m>—E(———,m>]
wo\/m @ 4 2 4 2
Z(lﬂ)‘f sinlﬂ()\)d)\-fwM +m%2a[':<g‘%'m>—|:<g—g,mﬂ,
s \C - 2asing

(A2) where m=4a/(2a-C)<0 andE is the incomplete elliptic

integral of the second kind,
For C>2a, the integrals above can be expressed as

¢
X(df)=l(v"C—2asin¢o—v/C—2asin¢), (A3) E(<Z>,m):fO V1-msir? BdB.
(24
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