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We solve the complete tensor fluctuation problem of a long and straight nematic disclination line with a
general winding number in the one elastic constant approximation. Focusing on the eigenmodes growing in
time, we show that the disclination with strength higher than 1/2 is unstable with respect to the splitting and
for integer strength also to the escape—in both cases there is no metastability. Numerically we show that a
moderate elastic anisotropy, e.g., as found in thermotropic liquid crystals like 5CB or MBBA, does not
introduce any metastability either.
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I. INTRODUCTION

It is well known and apprehended that nematic disclina-
tion lines with winding numbers(strengths) higher than 1/2
split into topological 1/2 disclination lines, which can sub-
sequently move apart reducing the free energy. The exact
mechanism of the early stage of this splitting, however, has
not been delivered, despite that one is interested in the nature
of the perturbation leading to it. Moreover, the experimen-
tally relevant question concerning the possible metastability
of the high strength defect core with respect to the splitting
has not been answered either. The situation is similar to the
case of the escape in the third dimension, which is possible
for disclinations with integer strengths. Here the instability
issues were first addressed by Meyer[1] in 1973. As at that
time the tensorial disclination structure had not been pre-
sented yet, a direct answer could not have been given.

In order to study the mechanism of the splitting and es-
cape of the disclination, one must use the nematic tensor
order parameter which provides a regular solution for the
disclination core[2–4]. Even though the core may not be
important macroscopically, e.g., energetically or in terms of
observability, it is crucial for the stability of the defect struc-
ture. Therefore a special relevance of our study is in the
aspect of connecting the macroscopic properties of the dis-
clination to the microscopic, not directly observable proper-
ties of its core.

In this paper, using the one elastic constant approxima-
tion, we determine the exact tensor order parameter fluctua-
tion eigenmodes of the disclination line with a general wind-
ing number. We search for the modes growing in time, which
are responsible for the splitting and the escape. The effect of
the elastic anisotropy on the instability against the splitting is
studied numerically. Our results are particularly important in
the context of the stability of planar radial structure in a
capillary [5].

II. THE FLUCTUATION PROBLEM

We study the dynamics of perturbations of a long and
straight nematic disclination line with a general winding

number. Cylindrical coordinatessr ,f ,zd with corresponding
orthonormal base vectorshêr ,êf ,êzj will be used. The discli-
nation line coincides with thez axis.

In the one elastic constant approximation, the free-energy
density in terms ofQ reads

f =
1

2
A Tr Q2 +

1

3
B Tr Q3 +

1

4
CsTr Q2d2

+
1

2
L Trs=Q · = Qd, s1d

where in the last term the contraction over the gradient com-
ponents is denoted by the dot. In this approximation, the free
energy is invariant upon a homogeneous rotation of theQ
tensor. This implies that theQ eigensystem rotates asc
=c0+ss−1df with respect to the above base vectors when
we encircle a defect of strengths located at the origin;c is
the angle between the director andêr, and c0 is the free
parameter of the defect configuration corresponding to the
angle between the director atf=0 and thex axis(e.g., for +1
defectsc0=0 represents the radial defect, while for the cir-
cular onec0=p /2). There is no dependence onf other than
this rotation, i.e., the scalar invariants ofQ (the degree of
order and biaxiality) are independent off—a “generalized
cylindrical symmetry.” Let us define another orthonormal
triad hê1,ê2,êzj,

Fê1

ê2
G = F cosc sinc

− sinc cosc
GF êr

êf
G . s2d

With this, in the unperturbed configuration theQ tensor
eigensystem coincides with the triad everywhere. We shall
call this configuration the ground state, reminding that it
should not carry the connotation of a state with minimal free
energy. Further we define the five orthonormal symmetric
traceless base tensors[6,7], Fig. 1,

T0 = s3êz ^ êz − Id/Î6,

T1 = sê1 ^ ê1 − ê2 ^ ê2d/Î2,

T−1 = sê1 ^ ê2 + ê2 ^ ê1d/Î2,
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T2 = sêz ^ ê1 + ê1 ^ êzd/Î2,

T−2 = sêz ^ ê2 + ê2 ^ êzd/Î2, s3d

with TrsTiT jd=di j . By virtue of the definition(2), the result-
ing eigenmode equations will be independent off and c0,
but will depend on the winding numbers through spatial
derivatives of the base tensors(3).

Expressing theQ tensor as

Qsr ,td = qisr ,tdTisr d, i = − 2,− 1,0,1,2, s4d

and inserting it into Eq.(1) while being careful with the
gradient== êr] /]r + êf] / r]f+ êz] /]z of the base tensors,f
is expressed in terms of the tensor componentsqi; the bulk
(gradient-independent) part is

fh =
A

2
qi

2 +
C

4
sqi

2d2 +
B

18Î2
h9fq1sq2

2 − q−2
2 d + 2q−1q2q−2g

+ Î3q0f2q0
2 + 3sq2

2 + q−2
2 − 2q1

2 − 2q−1
2 dgj s5d

and the elastic(gradient) part is

fe =
L

2
HS ]qi

]r
D2

+ S ]qi

]z
D2

+
1

r2FS ]q0

]f
D2

+ S ]q1

]f
− 2sq−1D2

+ S ]q−1

]f
+ 2sq1D2

+ S ]q2

]f
− sq−2D2

+ S ]q−2

]f
+ sq2D2GJ .

s6d

We introduce dimensionless quantities:r ← r /j, t← t /t,
sA,B,Cd← sA,B,Cdj2/L, with the correlation length of the
degree of orderS (typically a few nm)

j =Î3

2

L

U d2f

dS2U
S0

, s7d

where TrQ2=3S2/2 (S0 is the bulk equilibrium value ofS),
and the characteristic time(typically tens of ns)

t = m1j2/L, s8d

where m1 is the bare rotational viscosity[8], i.e., g1
=9S2m1/2; g1 is the usual director rotational viscosity. Ne-
glecting the hydrodynamic flow, the order parameter dynam-
ics is governed by the time-dependent Ginzburg-Landau
equation, in the dimensionless form:

q̇i = = ·
]f

] = qi
−

]f

]qi
=

]

]r

]f

]
]qi

]r

+
1

r

]f

]
]qi

]r

+
]

r]f

]f

]
]qi

r]f

+
]

]z

]f

]
]qi

]z

−
]f

]qi
, s9d

where the time derivative vanishes in the ground state.
Owing to the generalized cylindrical symmetry, the

ground state consists solely of the componentsq0 andq1, as
opposed to perturbations where all the components are al-
lowed. According to Eq.(9), the ground state components
q0=a0 andq1=a1 satisfy

]2a0

]r2 +
1

r

]a0

]r
− Aa0 −

1
Î6

Bsa0
2 − a1

2d − Csa0
2 + a1

2da0 = 0,

s10d

]2a1

]r2 +
1

r

]a1

]r
−

4s2

r2 a1 − Aa1 +Î2

3
Ba0a1 − Csa0

2 + a1
2da1 = 0

s11d

and in the vicinity ofr =0 behave as

a0 < c0 + c2r
2, a1 < bru2su, s12d

with c2=c0sA+Bc0/Î6+Cc0
2d /4 andc0, b extracted from the

numerical solution in case they are needed. Asymptotically,
due to the director distortion the ground state components
behave as a power law rather than exponentially:

a0 →
Î3S0

2Î2
F− 1 +

3s2

r2 s1 + 1/g18dG ,

a1 → 3S0

2Î2
F1 −

3s2

r2 s1 − 1/3g18dG , s13d

whereg18=A−BS0+3CS0
2/2. Putting

qisr ,td = Haisr d + xisr ,td, i = 0,1

xisr ,td, i = − 1,2,− 2,
J s14d

wherexi are the perturbations,xi !ah0,1j, and linearizing Eqs.
(9), one obtains two groups of coupled linear equations for
the perturbationsxi:

FIG. 1. Schematic representation of the perturbations described
by the base tensors(3) for a uniaxial distribution with a positive
degree of order(dashed). The Q tensor eigensystem is represented
by the box, the length of the edges corresponds to the eigenvalue
(plus a constant). T0 describes a perturbation of the degree of order,
T1 describes a biaxial perturbation,T−1, T2, T−2 represent rotations
of the eigensystem. The interpretation of the perturbations varies
according to which of the axes has been identified with the director.
Irrespective of this, the perturbations given byT−1, T2, and T−2

possess Goldstone modes, while those given byT0 and T1 are
massive.
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ẋ0 = ¹2x0 − g0srdx0 + g01srdx1, s15d

ẋ1 = ¹2x1 −
4s2

r2 x1 −
4s

r2

]x−1

]f
− g1srdx1 + g01srdx0, s16d

ẋ−1 = ¹2x−1 −
4s2

r2 x−1 +
4s

r2

]x1

]f
− g−1srdx−1, s17d

and

ẋ2 = ¹2x2 −
s2

r2x2 −
2s

r2

]x−2

]f
− g2srdx2, s18d

ẋ−2 = ¹2x−2 −
s2

r2x−2 +
2s

r2

]x2

]f
− g−2srdx−2, s19d

where ¹2x=]2x/]r2+1/r]x/]r +]2x/ r2]f2+]2x/]z2 is the
Laplacian in cylindrical coordinates and

g0srd = A + Î2/3Ba0 + Cs3a0
2 + a1

2d,

g1srd = A − Î2/3Ba0 + Csa0
2 + 3a1

2d,

g−1srd = A − Î2/3Ba0 + Csa0
2 + a1

2d,

g01srd = sÎ2/3B − 2Ca0da1,

g±2srd = A + Bsa0 ± Î3a1d/Î6 + Csa0
2 + a1

2d. s20d

It is worth pointing out that defects with strengthss and −s
are formally equivalent, i.e., changing the sign of the defect
and redefiningT−1→−T−1 and T−2→−T−2 conserves the
equations(15)–(20)—the sign ofs in the equations is not
changed.

III. FLUCTUATION MODES AND STABILITY

The eigensolutions of the systems(15)–(19) are sought by
separation of variables using the ansatz(the global angular
phase and thez phase are arbitrary)

5 x0

x1

x−1
6 = 5R0,msrdcossmfd

R1,msrdcossmfd
R−1,msrdsinsmfd

6sinskzdexps− ltd, s21d

H x2

x−2
J = HR2,nsrdcossnfd

R−2,nsrdsinsnfd Jsinskzdexps− ltd, s22d

wherem is an integer, whereasn is an integer if the strength
s is an integer, and a half integern=1/2,3/2,5/2, . . . ifs is
a half-integer; this is due to the continuity and differentiabil-
ity requirements(spinor symmetry of the base tensors). In
the one elastic constant approximation, the sets of compo-
nents(21) and(22) are not coupled, i.e., in-plane and out-of-
plane fluctuations are independent. Furthermore, thez depen-
dence is fully decoupled, i.e., the eigenfunctionsRisrd do not
depend onk and the cross-sectional structure of the disclina-
tion line is not affected by thez modulation. The eigenvalue

l (the inverse time constant) decomposes into

l = lr + k2, s23d

where lr is the eigenvalue of the radial and angular part.
This time we are not interested in thez dependence and will
omit it from the equations for brevity. In either case, only
eigenvalue systems for the radial functionsRisrd remain,
wherelr =l is the eigenvalue:

¹2R0,m + Sl − g0srd −
m2

r2 DR0,m + g01srdR1,m = 0, s24d

¹2R1,m + Sl − g1srd −
m2 + 4s2

r2 DR1,m −
4sm

r2 R−1,m

+ g01srdR0,m = 0, s25d

¹2R−1,m + Sl − g−1srd −
m2 + 4s2

r2 DR−1,m −
4sm

r2 R1,m = 0,

s26d

and

¹2R2,n + Sl − g2srd −
n2 + s2

r2 DR2,n −
2sn

r2 R−2,n = 0, s27d

¹2R−2,n + Sl − g−2srd −
n2 + s2

r2 DR−2,n −
2sn

r2 R2,n = 0.

s28d

One notices that the function operators(15)–(19) are self-
adjoint, possessing real eigenvalues and orthogonal eigen-
modes. The eigensystems(24)–(28) are solved numerically.
We use a multidimensional Newton relaxation method([9],
p. 588) or in some cases also a shooting method([9], p. 588).

If l.0, the mode is decaying and the ground state is
(meta)stable against the corresponding fluctuation. The most
important family of modes withl.0 is generated from the
Goldstone mode that corresponds to a homogeneous dis-
placement of the disclination line. Modifying the displace-
ment sinusoidally alongz results in the stringlike fluctuations
of the disclination line[10], which are the ones that can be
observed, e.g., by polarization microscopy[11].

In the search for a splitting and/or escape instability, from
now on we will focus our attention to possible growing
modes, i.e., those for whichl,0.

Due to the singularity of the cylindrical coordinates, the
behavior of the ground state and the radial eigenfunctions
near the origin must be determined analytically. In the shoot-
ing procedure, the unknown coefficients of the radial eigen-
function expansion have to be determined together with the
eigenvaluel. For numerical reasons, we restrict the eigen-
modes to vanish at an arbitrary but not too large a value of
r =r0. This presents no problem as the modes concerned are
localized (decaying exponentially withr, see below) and
hence remain unaffected by the restriction if only one makes
r0 large enough compared to the characteristic decay length
of the mode.
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IV. SPLITTING MODES

The modes responsible for the splitting do not involve the
componentsx2 or x−2, since theQ tensor eigensystem does
not get rotated out of thexy plane in this process. Therefore
the system(15)–(17) must be examined. The lowest-order
expansion of the system(24)–(26) around the origin is

R0 < rm, R±1 <H±k1r
um−2su

k2r
um+2su,

J s29d

where the two solutions forR1 andR−1 are independent.
First we study the simplest case, i.e., the splitting of the

±1 defect. Then we make a generalization to defects of other
strengths. In the case of the splitting of the ±1 defect to two
±1/2 defects, the modes in question must exhibit a quadru-
polar symmetry, which setsm=2 in the angular part of Eq.
(21). A single growing modesl=−0.22d is found(Figs. 2 and
3), which is localized to the core within a few correlation
lengths, while all the others(including those withmÞ2) are
decaying and nonlocalized. Due to the localization, the
growing mode cannot be affected by any confinement unless
it comes down to thej scale—it is an intrinsic feature of the

defect structure. It is no sooner than at a confinement ofr0
=3.5j that the mode becomes decaying.

For any winding number, the radial functions are local-
ized if and only if the mode is of the growing type, which
can be seen from their behavior forr @1:

R−1,m ~ KmsÎ− lrd, s30d

Rh0,1j,m ~
4ms

r2 R−1,m, s31d

whereKm is the modified Bessel function of the second kind
with the asymptoticsKmsxd~exps−xd /Îx. The modes with
l,0 have a discrete spectrum, whereas the spectrum of
those withl.0 is continuous for an infinite system.

It is instructive to study the influence of the hydrody-
namic flow generated by the order parameter dynamics(the
backflow) on the growth rate of the mode. This is performed
numerically, where the coupling of the flow andQ tensor
fields is described by the tensorial version of the Ericksen-
Leslie theory[8]. The one elastic constant approximation is
used, the numerical method and the material parameters are
given in [12]. It is important to realize that the velocity field
behaves quasistationary(adiabatic limit), i.e., the character-
istic dynamic time of the velocity field is typically a million-
times smaller than the characteristic dynamic time of theQ
field. Therefore what is actually solved is the stationary
Navier-Stokes equation(in the low-Reynolds-number and in-
compressibility limits). Hence the backflow does not bring in
any inertial effects that would result in oscillatory modes.
Furthermore, as the velocity field is an enslaved variable it
does not represent an independent degree of freedom and as
such does not introduce any new modes.

It is found that the backflow correction to the growth rate
is small, i.e., less than 5%, speeding up the modes. The cor-
rection is expected to be small. In the region where the split-
ting mode is nonzero,Q (i.e., TrQ2) is small, but we know
that the velocity of the backflow decreases with decreasingQ
(that is, decreasing TrQ2), as does its influence onQ. At the
same time one should be quite reserved, since the description
of the flow toQ tensor coupling[8] is not complete and the
missing terms[13] could play a noteworthy role in the dy-
namics of the defect core. Moreover, one must recall that the
applicability of hydrodynamic equations is questionable at
length and time scales that small(1 nm, 10 ns).

In the case of defects with higher strengths, there exists an
increasing number of splitting modes as there are more and
more ways the defect can split. It turns out that for every
decomposition allowed topologically one can find at least
one splitting mode, provided that none of the resulting wind-
ing numbers is too high. Each of these modes exhibits a
distinctive angular symmetry set by its value ofm. Generally,
a defect of strength ±s splits tom symmetrically placed ±1/2
defects surrounding a ±s7m/2 defect, which remains in the
center(Fig. 4). For example, a possible splitting channel of a
defect with strength 2 is 2→−1+631/2, where the −1 de-
fect stays in the middle, surrounded by the 1/2 defects. The
corresponding mode has a sixfold symmetry,m=6. On the
other hand, this defect is stable with respect to the splitting

FIG. 2. Radial eigenfunctions of the splitting fluctuation,s=1,
m=2, l=−0.22. The length unit isj=2.11 nm, the time unit ist
=32.6 ns. For comparison, the eigenvalue of the fastest escape
mode isl=−0.0042.

FIG. 3. (Color online) Cross section through thes=1 radial
disclination line: the ground state(gray/dark) is perturbed by the
splitting mode(red/light), leading to two 1/2 disclinations on thex
axis. Note the two uniaxial regions of the perturbed structure cor-
responding to the centers of the 1/2 disclinations.
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2→−3/2+731/2 and higher. All possible splitting chan-
nels of defects with strengthsø3 are given in Table I, the
growth rates are plotted in Fig. 5. Learning from the results
for sø3, the splitting modes exist for 2ømø2s2s−1d; in
other words, the winding numbers8 of the disclination re-
maining in the center isss−1dùs8ù−ss−1d. The splitting
into ±1/2 defects only is always the fastest.

V. ESCAPE MODES

In an unconfined system, planar defects with integer
strengths can escape to the undeformed configuration with a
zero deformation free energy(escape in the third dimension)
[14,1]. Equipped with the present formalism, we are able to
look for another type of possibly growing modes leading to
the escape. As here theQ tensor eigensystem is rotated out
of the xy plane, the system(18) and (19) must be examined
at this time. In particular, one expects the perturbationx2 to
be crucial, as it corresponds to the out-of-plane rotation of
the director. The lowest-order expansion of the system(27)
and (28) around the origin is

R±2 <H±r un−su

krun+su;
J s32d

k is determined together with the eigenvalue in the shooting
procedure. Forn=0, the equations(27) and (28) are decou-
pled. It is exactly in this case that one findsl,0 and the

FIG. 4. A ninefoldsm=9d splitting of thes=3 defect. The lower
diagram depicts a −3/2 defect in the center and nine 1/2 defects
around it. The shading denotes regions of reduced degree of order.

TABLE I. Fastest splitting modes with a givenm for disclina-
tions with usuø3. For negative winding numbers the situation is
analogous.

Splitting m −l

1→231/2 2 0.22

3/2→1/2+231/2 2 0.13

3/2→331/2 3 0.34

3/2→−1/2+431/2 4 0.12

2→1+231/2 2 0.091

2→1/2+331/2 3 0.25

2→431/2 4 0.40

2→−1/2+531/2 5 0.25

2→−1+631/2 6 0.073

5/2→3/2+231/2 2 0.068

5/2→1+331/2 3 0.19

5/2→1/2+431/2 4 0.32

5/2→531/2 5 0.43

5/2→−1/2+631/2 6 0.32

5/2→−1+731/2 7 0.19

5/2→−3/2+831/2 8 0.044

3→2+231/2 2 0.053

3→3/2+331/2 3 0.16

3→1+431/2 4 0.27

3→1/2+531/2 5 0.37

3→631/2 6 0.45

3→−1/2+731/2 7 0.37

3→−1+831/2 8 0.27

3→−3/2+931/2 9 0.15

3→−2+1031/2 10 0.025

FIG. 5. Growth rates of the fastest splitting modes with the
angular eigenvaluem for different winding numbers. The splitting
into 1/2 defectssm=2sd is always the fastest.
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discrete spectrum for all the modesx2, Figs. 6 and 7. The
modesx−2 are decaying, as are all the other modes withn
Þ0. According to Eq.(22), for half-integer winding numbers
the lowest angular eigenvalue isn=1/2—these defects are
stable with respect to the escape.

Noting thatg2sr @jd→0 andg−2sr @jd→g−2s`d.0, the
asymptotic behavior forn=0 is

R2,0 ~ r−1/2e±Î−lr , s33d

i.e., the functionsR2,0 are localized. It turns out that here the
localized modes are much more extensive than in the case of
the splitting. One may think there is little point in studying
the splitting if the defects are always unstable to the escape.
There exist, however, a large difference in growth rates of
the two types of unstable modes, connected with the large
difference in localization, Eq.(33). In the case of the ±1
defect, in the one elastic constant approximation the splitting
is approximately 53-times faster than the escape. Whence,
provided we prepared the ±1 configuration, it would always
split before it could even start escaping. Of course, it is just
due to the fast splitting that the initial configuration is very
hard to prepare, even numerically.

VI. PERTURBATION ANALYSIS

We are interested in the changes of the ground state and
its stability upon subjecting our system to a small perturba-

tion, e.g., weak external field. We make a first order pertur-
bation analysis, keeping the perturbation general. Let us de-
note the nonlinear time evolution operator(9) by O,

Osqd = q̇, Osad = 0, s34d

wherea is the ground state components. Defining the linear-
ized operatorL,

U ]O
]q
U

a
= L, s35d

whereL=Lsad depends on the ground state, the eigensystem
evolving from the system(15)–(19) can be written as

Lx = ẋ = − lx. s36d

Introducing a perturbation operatorP, nonlinear in general,

O8 = O + eP, s37d

the time evolution ofDq in the vicinity of the ground statea
is

Dq̇ = Osa + Dqd + ePsa + Dqd, s38d

which to the first order ine reads:

Dq̇ = LDq + ePsad. s39d

RequiringDq̇=0, the correctionDq;Da of the ground state
a is obtained, formally:

Da = − eL−1Psad. s40d

Adopting the bracket notation and expressing the functions
Dq andPsad in terms of the normalized eigenstatesuxil of L
[Eq. (36)], Dq=oicistduxil, Psad=oiPiuxil, Eq. (39) becomes

ċi = − lici + ePi, Pi = kxiuPsadl. s41d

The solution for the initial conditioncis0d=0 is

cistd = e
Pi

li
f1 − exps− litdg, s42d

furnishing the time evolution of the ground state when the
perturbationP is turned on att=0. In the case whenli .0
for all i with a nonzeroPi, the time evolution leads to the
corrected ground state(40). For li =0 andPi Þ0 the linear
perturbation analysis cannot be applied. Ifli ,0 (i.e., a is
unstable) and Pi Þ0, however, the system never reaches the
corrected ground state but is driven away from it exponen-
tially as the perturbation triggers a growing mode.

If li .0 for all i with a nonzeroPi, one can determine the
first order correction of the eigenvalue using the unperturbed
eigenmodes. Linearization of the perturbed operator(37)
around the corrected ground statea8=a+Da, whereO8sa8d
=0, gives

O8sa8 + xd = SL + U ]L
]qi
U

a
Dai + eU ]P

]q
U

a
Duxl ; sL + DLduxl,

s43d

whereDa is given by Eq.(40) and is first order ine. The
second term in Eq.(43) is the consequence of the nonlinear-

FIG. 6. Radial eigenfunctions of the first two growing modes
(not normalized), responsible for the escape of the ±1 defectsm
=0d. These modes are quite extensive, yet localized[Eq. (33)]; the
range of the second function is<1000j.

FIG. 7. (Color online) Cross section through thes=1 radial
disclination line: the ground state(gray/dark) is perturbed by the
escape mode(red/light). The mode is quite extensive, only the very
central part is depicted here(before the maximum ofR2,0,1 in Fig.
6) to point out the vanishing perturbation in the center.
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ity of O and represents a perturbation of the linearized op-
erator due to the corrected ground state. It does not appear in
the standard perturbation theory of a linear operator, e.g., the
Hamiltonian in quantum mechanics. Requiring

kxiuL + DLuxil = − li8kxiuxil, s44d

the corrected eigenvalue −li8 is

− li8 = − li + kxiuDLuxil. s45d

In the following, we illustrate the results of the perturba-
tion analysis with three particular examples.

A. Computational grid-reduced symmetry

We address an important point concerning the numerical
simulation of defects with strengths higher than 1/2, e.g.,
when studying the splitting numerically. The discretization
on a square grid(C4 symmetry) standardly used in simula-
tions introduces an artifactual perturbation with theC4 sym-
metry,

P = o
n=0,1,2,3,. . .

P4nsrdcoss4nfd. s46d

If the spectrum contains a growing mode withm=4n, ac-
cording to Eq.(42) it will experience a boost upon “turning
on” the perturbation—the mode will grow at a nonvanishing
rate despite its initial amplitude of zero and will overwhelm
other possibly faster modes. An example of such splitting is
shown in Figs. 8 and 9. Thus on the square grid it is possible
to simulate defects not possessing such modes, i.e., those
with strengths ±1/2 and ±1 only. If the grid were rectangular
(C2 symmetry), only the ±1/2 defect would remain. One
must bear this in mind when trying to study the splitting
numerically.

In an alternate inference one can ask why a mode not
possessing theC4 symmetry experiences no boost. In this
case, the rotations ofC4 generate at least two different
modes, as opposed to the identity representation in the pre-
vious case. These are degenerated with respect to their place-
ment on the grid since the grid is invariant toC4. Therefore
in a pure ground state neither must be favored and hence at
vanishing amplitude their growth rate must vanish.

B. Selecting the splitting channel

Equation (42) suggests that by applying a perturbation
with a particular angular symmetry one could favor the cor-
responding splitting channel. Perhaps the simplest perturba-
tion to realize is a homogeneous electric field applied per-
pendicularly to the disclination line. In the electric fieldE,
the perturbation is(in Cartesian notation)

P =
1

3
sEiEj − E2di j /3d, s47d

where E←E/E0 and E0=ÎL /«0u«au /j is the field with the
coherence length equal toj. Putting E=Eêx and using the
tensorial base(3), one gets

P = 5 Ps0d

Ps1d

Ps−1d 6 =
1

3
E25 − 1/Î6

coss2c0 + 2sfd/Î2

− sins2c0 + 2sfd/Î2
6 . s48d

According to Eq.(42), such a perturbation triggers the mode
with m=2s (besides, it breaks the angular degeneracy), i.e.,
the mode responsible for the splitting into 1/2 defects which
is already the fastest and thus dominating. To favor alterna-
tive splitting channels one should therefore look for pertur-
bations with different symmetry. Staying within electric field
effects, the optical tweezer seems to be a good candidate
[15,16]. In a single beam optical trap polarized in the direc-
tion of the disclination line, for example, the perturbation
would be of the form

FIG. 8. Radial eigenfunctions of the splitting modes withm=4
for the s=2 defect:(a) l=−0.40 and(b) l=−0.059.

FIG. 9. Splitting of thes=2 defect into four 1/2 defects,m=4;
the corresponding radial eigenfunctions are depicted in Fig. 8. The
m=4 modes are numerically boosted due to theC4 symmetry of the
computational grid.
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Ps0d =
1

3
Î2

3
E2o

n

c2nsrdcoss2nfd, s49d

thus coupling to modes withm=2n symmetry. However, it is
fair to emphasize that the angular dependence must be
present in the region where the growing mode is nonzero or
the scalar product in Eq.(41) will vanish, i.e.,c2n for nÞ0
should not vanish all down to the 100 nm scale, which is
hard to achieve by optical means.

The perturbation(48) not only triggers them=2s mode
but also breaks its angular degeneracy, i.e., the splitting “di-
rection” depends on the relative orientation of the electric
field and the defect(given byc0). It is worth mentioning that
in case there exist no splitting modes, i.e., forusu=1/2, the
perturbation(48) removes the angular degeneracy of the
fluctuations and the splitting of the relaxation rate can be
calculated from Eq.(45).

C. Field-suppressed escape

In the case of«a,0, the escape of the disclination can be
suppressed by an(homogeneous) electric field oriented along
the disclination line not triggering the spliting modes. Per-
forming the perturbation analysis, we can make an estimate
of the required field strength. The perturbation is now

Ps0d = −
1

3
Î2

3
E2. s50d

According to Eq. (45), one must provide the corrected
ground stateDa given by Eq.(40) or Eq. (42) and require
l8=0 for the largest in absolute eigenvalue. The ground state
correction involves the tensor components 0 and 1:

uDa l = −
1

3
Î2

3
E2o

n
7*E rdrR0,0,nsrd

ln
*

xn,m=0
s1d

xn,m=0
s0d

8 , s51d

where R0,0,n is the m=0 radial eigenfunction of the zeroth
tensor component corresponding toln. Note that the cor-
rected ground state is well defined, i.e., none of thel’s in Eq.
(51) are zero, and there is also no boost as the growing
modes all havemÞ0. From Eq.(45) we get

l =
1

3
Î2

3
E2 o

i=0,1
FU ]g2

]qi
U

a
kxm=0

s2d uDasidsrduxm=0
s2d lG , s52d

where uxm=0
s2d l~R2,0srdT2 is the growing mode corresponding

to the most negativel. Equation(52) determines the electric
field strengthE required to stabilize the disclination(in an
infinite system) against the escape. As its evaluation inevita-
bly involves numerics, it is perhaps more convenient to de-
termine the field strength by a direct numeric calculation,
yielding E=0.086(corresponding to the coherence length of
12j) in the one elastic constant approximation.

VII. ELASTIC ANISOTROPY

The eigenmode problem was solved semianalytically in
the one elastic constant approximation. Beyond this approxi-

mation, one has to include more elastic terms in the free-
energy density(1): up to the third order inQ, quadratic in the
first derivative, and omitting surface terms these are

f =
1

2
Ls]iQ jkd2 +

1

2
L8s]iQikds] jQ jkd +

1

2
L9Qi js]iQklds] jQkld,

s53d

which is the minimum set of elastic terms to distinguish
between splaysK11d, twist sK22d, and bendsK33d distortions:

K11 =
9S2

4
s2L + L8 − SL9d, s54d

K22 =
9S2

4
s2L − SL9d, s55d

K33 =
9S2

4
s2L + L8 + SL9d. s56d

Including any of the new elastic terms, the generalized cy-
lindrical symmetry of the ground state is lost, making the
eigenmode problem two-dimensional, i.e., the variablesr and
f cannot be separated any longer. It is only in the case of the
+1 disclination with c0=0 or c0=p /2 (radial and circular
disclinations) that the cylindrical symmetry is retained, so
that without the third-order term the separation would still be
possible. The third-order term, however, brings about mixed
derivatives, which inevitably prevent the separation.

Nevertheless, one is interested in whether the elastic an-
isotropy could cause a metastability of the disclination core
with respect to the splitting. For the ±1 disclinations this can
be easily examined numerically using realistic elastic param-
eters. The answer is rather surprising: moderate elastic aniso-
tropy, e.g., in thermotropic liquid crystals like 5CB or
MBBA, gives no metastability. It is only in the extreme cases
that the core could become metastable against the splitting
[17].

VIII. SUMMARY

Resorting to the one elastic constant approximation we
have solved the complete tensor fluctuation problem of the
nematic disclination line with a general winding number. We
found no metastability, i.e., we were able to find growing
fluctuation modes leading to the splitting and decay, respec-
tively. Several splitting modes characterized by their angular
symmetry were found to exist, each yielding a particular
splitting channel. The possibility of selecting these channels
was discussed.

It must be emphasized that the splitting instability is al-
ways there and cannot be affected by any confinement, un-
less it were in the(nonrealistic) nanometer region. Con-
versely, the confinement can stabilize the disclination with
respect to the escape, as in this case the growing modes are
much more extensive, while it is known that also the elastic
anisotropy (in connection with the confinement) favors/
disfavors the escape in the third dimension[14,1].
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Numerically we found, rather surprisingly, that a moder-
ate elastic anisotropy does not introduce any metastability
with respect to the splitting or escape(in the latter case for an
unconfined system). In the case of a severe anisotropy, e.g.,
close to the SmA phase, the situation changes and will be
reported elsewhere.

ACKNOWLEDGMENTS

Many thanks to M. Praprotnik[18], A. Kodre, and G.
Veble. This work was supported by the Slovenian Office of
Science (Program P1-0099) and U.S.-Slovene NSF Joint
Found(Grant No. 9815313).

[1] R. B. Meyer, Philos. Mag.27, 405 (1973).
[2] N. Schopohl and T. J. Sluckin, Phys. Rev. Lett.59, 2582

(1987).
[3] E. Penzenstadler and H.-R. Trebin, J. Phys.(France) 50, 1027

(1989).
[4] A. Sonnet, A. Kilian, and S. Hess, Phys. Rev. E52, 718

(1995).
[5] P. E. Cladis, Philos. Mag.29, 641 (1974).
[6] S. Hess, Z. Naturforsch. A30A, 728 (1975).
[7] V. L. Pokrovskii and E. I. Kats, Zh. Eksp. Teor. Fiz.73, 774

(1977) [Sov. Phys. JETP46, 405 (1977)].
[8] T. Qian and P. Sheng, Phys. Rev. E58, 7475(1998).
[9] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-

terling,Numerical Recipes(Cambridge University Press, Cam-

bridge, England, 1986).
[10] D. Svenšek and S. Žumer, Phys. Rev. E70, 040701(R) (2004).
[11] A. Mertelj and M.Čopič, Phys. Rev. E69, 021711(2004).
[12] D. Svenšek and S. Žumer, Phys. Rev. E66, 021712(2002).
[13] H. Pleiner, M. Liu, and H. R. Brand, Rheol. Acta41, 375

(2002).
[14] P. Cladis and M. Kléman, J. Phys.(France) 33, 591 (1972).
[15] M. Yada, J. Yamamoto, and H. Yokoyama, Phys. Rev. Lett.

92, 185501(2004).
[16] I. Musevic, M. Skarabot, D. Babic, N. Osterman, I. Poberaj, V.

Nazarenko, and A. Nych, Phys. Rev. Lett.93, 187801(2004).
[17] D. Svenšek, P. Ziherl, and S. Žumer(unpublished).
[18] D. Janežič and M. Praprotnik, Int. J. Quantum Chem.84, 15

(2001).

INSTABILITY MODES OF HIGH-STRENGTH… PHYSICAL REVIEW E 70, 061707(2004)

061707-9


