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Instability modes of high-strength disclinations in nematics
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We solve the complete tensor fluctuation problem of a long and straight nematic disclination line with a
general winding number in the one elastic constant approximation. Focusing on the eigenmodes growing in
time, we show that the disclination with strength higher than 1/2 is unstable with respect to the splitting and
for integer strength also to the escape—in both cases there is no metastability. Numerically we show that a
moderate elastic anisotropy, e.g., as found in thermotropic liquid crystals like 5CB or MBBA, does not
introduce any metastability either.
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I. INTRODUCTION number. Cylindrical coordinates, ¢,z) with corresponding

It is well known and apprehended that nematic disclina-0rthonormal base vecto(s;,&,,&,} will be used. The discli-
tion lines with winding numbergstrengths higher than 1/2  hation line coincides with the axis.
split into topological 1/2 disclination lines, which can sub-  In the one elastic constant approximation, the free-energy
sequently move apart reducing the free energy. The exactensity in terms of reads
mechanism of the early stage of this splitting, however, has 1 1 1
not been delivered, despite that one is interested in the nature _= 2, = 3, = 2\2
of the perturbation leading to it. Moreover, the experimen- F=oATrQ™+ 3BTr Q™+ 4C(TrQ )
tally relevant question concerning the possible metastability
of the high strength defec_t core with respect to t'he' splitting T }L TH(VQ - VQ), (1)
has not been answered either. The situation is similar to the 2
case of the escape in the third dimension, which is possible ) ) )
for disclinations with integer strengths. Here the instabilityWhere in the last term the contraction over the gradient com-

issues were first addressed by Mey&rin 1973. As at that ~ Ponents is denoted by the dot. In this approximation, the free
time the tensorial disclination structure had not been pre€nergy is invariant upon a homogeneous rotation of@he
sented yet, a direct answer could not have been given. ~ tensor. This implies that th€@ eigensystem rotates ag

In order to study the mechanism of the splitting and es=¥o*(s—1)¢ with respect to the above base vectors when
cape of the disclination, one must use the nematic tensoke encircle a defect of strengthlocated at the originy is
order parameter which provides a regular solution for théhe angle between the director agd and ¢y is the free
disclination core[2—4]. Even though the core may not be parameter of the defect configuration corresponding to the
important macroscopically, e.g., energetically or in terms ofangle between the director 4t=0 and thex axis(e.g., for +1
observability, it is crucial for the stability of the defect struc- defectsy,=0 represents the radial defect, while for the cir-
ture. Therefore a special relevance of our study is in the&ular onegy=m/2). There is no dependence gnother than
aspect of connecting the macroscopic properties of the dighis rotation, i.e., the scalar invariants Qf (the degree of
clination to the microscopic, not directly observable proper-order and biaxiality are independent ofp—a “generalized

ties of its core. cylindrical symmetry.” Let us define another orthonormal
In this paper, using the one elastic constant approximatriad {€;,&,,&},

tion, we determine the exact tensor order parameter fluctua- ~ ) .

tion eigenmodes of the disclination line with a general wind- [el} - { cosy  siny } [ & ] 2

ing number. We search for the modes growing in time, which & —sinyg cosy ]| &,

are responsible for the splitting and the escape. The effect of o ] )
the elastic anisotropy on the instability against the splitting isWith this, in the unperturbed configuration tt@ tensor
studied numerically. Our results are particularly important in€igensystem coincides with the triad everywhere. We shall

the context of the stability of planar radial structure in acall this configuration the ground state, reminding that it
capillary [5]. should not carry the connotation of a state with minimal free

energy. Further we define the five orthonormal symmetric
Il. THE FLUCTUATION PROBLEM traceless base tensdi® 7], Fig. 1,

We study the dynamics of perturbations of a long and

straight nematic disclination line with a general winding To=(36,® &~ DN6,

T,=(&,®8 -8 8&)2,
*Corresponding author. FAX+386 1 2517281. Email address:
daniel.svensek@fmf.uni-lj.si T =8, 08+8,® él)/\“E:
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FIG. 1. Schematic representation of the perturbations described

by the base tensor®) for a uniaxial distribution with a positive

degree of ordefdashegl The Q tensor eigensystem is represented
by the box, the length of the edges corresponds to the eigenval
(plus a constant Ty describes a perturbation of the degree of order,
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where TrQ?=3%/2 (S, is the bulk equilibrium value 0§),
and the characteristic timgypically tens of n

T= /"Ll§2/L 1 (8)

where u, is the bare rotational viscosity8], i.e., y;
=9S%u,/2; vy, is the usual director rotational viscosity. Ne-
glecting the hydrodynamic flow, the order parameter dynam-
ics is governed by the time-dependent Ginzburg-Landau

Jequation, in the dimensionless form:

of af o9 of 1 of g of

T, describes a biaxial perturbatiof,, T, T_, represent rotations gi= o . T = - +—
of the eigensystem. The interpretation of the perturbations varies Iva g or aﬂ r&ﬂ rag &ﬂ
according to which of the axes has been identified with the director. ar or ri¢
Irrespective of this, the perturbations given By;, T,, and T_, PR of
possess Goldstone modes, while those givenThyand T, are _—— (9)
massive. Iz aﬂ Jq;

0z

T,=(8,®8&+8 ®&)\2,

T,=(@,08+808)N2, (3
with Tr(T;T;)=&;. By virtue of the definition(2), the result-
ing eigenmode equations will be independentdoaind i,
but will depend on the winding numbes through spatial
derivatives of the base tensdi®.

Expressing th&) tensor as

Q(r,t) =qi(r,vTi(r), 1=-2,-1,0,1,2, (4)
and inserting it into Eq(1) while being careful with the
gradientV=&.d/dr +&,0/rd¢p+&,0/ oz of the base tensord,
is expressed in terms of the tensor componegitshe bulk

(gradient-independenpart is

A C B
fh - quz + Z(qlz)z + @{9[ql(q§ - qu) + 2q—lq2q—2]

+\300[202 + 3(R + 07, — 207 — 242 ]} ®)

+

and the elasti¢gradieny part is
1\ 2 -\ 2 2 2
(R
2(\or oz r dd dd
R RERNRE
+<¢9¢ +25q1> + o SQ.,| + o0 +s .
(6)

We introduce dimensionless quantities—r/¢, t<t/r,
(A,B,C)—(A,B,C)&/L, with the correlation length of the
degree of ordeb6 (typically a few nm)

where the time derivative vanishes in the ground state.

Owing to the generalized cylindrical symmetry, the
ground state consists solely of the componegtandq;, as
opposed to perturbations where all the components are al-
lowed. According to Eq(9), the ground state components
OJo=ag andq;=a; satisfy

FPag  1dag 1

— +-— —Aay—- =B(aj - a)) - C(aj+ad)a, =0,

P N (ag—ap) - C(ag +apap

(10

_(92a1 + 1@ 4_Sza Aa +
a2 ra 2t !

2
\/;Baoal— Clag +a)a; =0
(11)
and in the vicinity ofr=0 behave as
(12

with c,=cy(A+Bcy/ \%+Cc§)/4 andcy, b extracted from the
numerical solution in case they are needed. Asymptotically,
due to the director distortion the ground state components
behave as a power law rather than exponentially:

ag=~Cy+Cr2 a;~br,

_
8§ . 3¢ }
o~ 2\’5{ 1+ r2 (1+1/gy) |,
3 352
whereg;=A-B$+3CS/2. Putting
_Ja(r) +x(r,b), i=0,1
arO=1 why, i=-12-2,

wherex; are the perturbationg; <ay 1, and linearizing Egs.

(9), one obtains two groups of coupled linear equations for
the perturbations;:
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Xo = V%o = Go(r)Xo + Jox(F) Xy, (15
X = Vxg = A;_ngxl - ‘:—jd;(_; = 91(r)Xy + goa(r)Xo, (16)
X 1=V - 4:_822)(_1 + ‘:_ji_); = g-1(r)Xq, (17)
and
Xo = Vxp = f_zxz - %% = 02(NXz, (18)
Xp= VX - f_zx—z + f_j% —g-o(Nx_y, (19

where V2x=x/dr?+1/r gx/ dr + Px1 %0+ #x/ dz° is the
Laplacian in cylindrical coordinates and

9o(r) = A+12/3Bay + C(3a3+al),

04(r) = A= \2/3Bay + C(a3 + 389),

g-1(r) = A- \2/3Ba+ C(aj + af),
Joa(r) = (V2/3B - 2Cap)ay,

(20)

It is worth pointing out that defects with strengtisnd s

0un(r) = A+ B(ag * \3ay)/\6 + C(al + &).
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\ (the inverse time constgndecomposes into

A=A\ + K2, (23)

where \, is the eigenvalue of the radial and angular part.
This time we are not interested in taa@ependence and will
omit it from the equations for brevity. In either case, only
eigenvalue systems for the radial functioRgr) remain,
where\, =\ is the eigenvalue:

n?
V2I:\)O,m+ ()\ - gO(r) - ?)ROm + 901(r)R1,m: 0, (24)

m? + 4s? 4sm
V2R + (7\ —0y(r) - 2 Rim— 7R1,m
+Joa(NRym=0, (25)
) m? + 45° 4sm
\Y R—l,m+ A= g—l(r) - r2 Rim— 7R1,m: 0,
(26)
and
5 n?+ <2 2sn
VR, + 7\_92(”‘7 2n_7R—2,n:0: (27)
5 n’+s? 2sn
VR—2,n+ )\_g—z(r)_T 2n_7R2,n:O-

(28)

are formally equivalent, i.e., changing the sign of the defecOne notices that the function operatqfs)—(19) are self-

and redefiningT_;—-T_; and T_,—-T_, conserves the
equations(15—20)—the sign ofs in the equations is not
changed.

Ill. FLUCTUATION MODES AND STABILITY

The eigensolutions of the systeifi)—(19) are sought by
separation of variables using the ans@te global angular
phase and the phase are arbitrayy

Xo Rom(r)cogme)

X1 (=) Rym(r)codme) (sin(kzgexp(-At), (21
X1 R_1 m(r)sin(me)

X2 | _ ] Ryp(r)cosng) | ~

{X—Z} —{Rzyn(r)sin(n(b)}sm(kz)exp( A, (22

wherem is an integer, whereasis an integer if the strength

sis an integer, and a half intega=1/2,3/2,5/2,... ifsis

adjoint, possessing real eigenvalues and orthogonal eigen-
modes. The eigensysteni®4)—(28) are solved numerically.
We use a multidimensional Newton relaxation methfs],

p. 588 or in some cases also a shooting metfi&g, p. 588.

If A>0, the mode is decaying and the ground state is
(metgstable against the corresponding fluctuation. The most
important family of modes withh> 0 is generated from the
Goldstone mode that corresponds to a homogeneous dis-
placement of the disclination line. Modifying the displace-
ment sinusoidally along results in the stringlike fluctuations
of the disclination ling[10], which are the ones that can be
observed, e.g., by polarization microscopy].

In the search for a splitting and/or escape instability, from
now on we will focus our attention to possible growing
modes, i.e., those for which<0.

Due to the singularity of the cylindrical coordinates, the
behavior of the ground state and the radial eigenfunctions
near the origin must be determined analytically. In the shoot-
ing procedure, the unknown coefficients of the radial eigen-

a half-integer; this is due to the continuity and differentiabil- function expansion have to be determined together with the

ity requirementgspinor symmetry of the base tensprin

eigenvalue\. For numerical reasons, we restrict the eigen-

the one elastic constant approximation, the sets of companodes to vanish at an arbitrary but not too large a value of
nents(21) and(22) are not coupled, i.e., in-plane and out-of- r=r,. This presents no problem as the modes concerned are

plane fluctuations are independent. Furthermorez thepen-
dence is fully decoupled, i.e., the eigenfunctiéts) do not

localized (decaying exponentially withr, see below and
hence remain unaffected by the restriction if only one makes

depend ork and the cross-sectional structure of the disclina+, large enough compared to the characteristic decay length
tion line is not affected by the modulation. The eigenvalue of the mode.
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1.0+« defect structure. It is no sooner than at a confinemenmt, of
\ —R, =3.5¢ that the mode becomes decaying.
0.5 \\\ ---- R, For any winding number, the radial functions are local-
N R ized if and only if the mode is of the growing type, which
~.. can be seen from their behavior fior- 1:
e : 10 15
e r Ry K (A1), (30)
-0.51 V4
4ms
1.0 R{O,l},m x 7R—1,ma (31

FIG. 2. Radial eigenfunctions of the splitting fluctuatie®1,  \yhereK,, is the modified Bessel function of the second kind
m=2, A=-0.22. The Ie_ngth unit |gf_=2.11 nm, the time unit is with the asymptotic,(x) = exa(-x)/\x. The modes with
=32.6 ns. For comparison, the eigenvalue of the fastest eSCaRe_ y have a discrete spectrum. whereas the spectrum of
mode is\ =-0.0042. . ; SP » WheETe: P
those withA >0 is continuous for an infinite system.

It is instructive to study the influence of the hydrody-

IV. SPLITTING MODES namic flow generated by the order parameter dynarties
The modes responsible for the splitting do not involve thebackflow on the growth rate of the mode. This is performed
componentsc, or X_,, since theQ tensor eigensystem does numerically, where the coupling of the flow ai@l tensor
not get rotated out of they plane in this process. Therefore fields is described by the tensorial version of the Ericksen-
the system(15—«17) must be examined. The lowest-order Leslie theory[8]. The one elastic constant approximation is
expansion of the systexi24)—26) around the origin is used, the numerical method and the material parameters are

im-29 given in[12]. It is important to realize that the velocity field
Ro=~I" Ry~ tkyr (29) behaves quasistationa(gdiabatic limiy, i.e., the character-
COE | rimees istic dynamic time of the velocity field is typically a million-

_ ) times smaller than the characteristic dynamic time of@he
where the two solutions far; andR_, are independent. field. Therefore what is actually solved is the stationary
First we study the simplest case, i.e., the splitting of theyavier-Stokes equatiofin the low-Reynolds-number and in-

*1 defect. Then we make a generalization to defects of othegompressibility limitg. Hence the backflow does not bring in
strengths. In the case of the splitting of the +1 defect to W,y inertial effects that would result in oscillatory modes.
+1/2 defects, the modes in question must exhibit a quadrug rthermore, as the velocity field is an enslaved variable it
polar symmetry, which seti=2 in the angular part of EQ. goes not represent an independent degree of freedom and as
(22). A.smgle growing modeé)\:—O.ZZ).ls found(Flgs. 2 anq such does not introduce any new modes.
3), which is localized to the core within a few correlation |t js found that the backflow correction to the growth rate
lengths, while all the othersncluding those wittm+2) are s gmall, i.e., less than 5%, speeding up the modes. The cor-
decaying and nonlocalized. Due to the localization, theection is expected to be small. In the region where the split-
growing mode cannot be affected by any confinement unles§ng mode is nonzerdQ (i.e., TrQ?) is small, but we know
it comes down to th& scale—it is an intrinsic feature of the 5t the velocity of the backflow decreases with decrea®ing
(that is, decreasing T@?), as does its influence dR. At the
same time one should be quite reserved, since the description
\ \ I , , of the flow toQ tensor coupling8] is not complete and the
missing termg13] could play a noteworthy role in the dy-
y \ namics of the defect core. Moreover, one must recall that the
\ ‘ . ' ’ applicability of hydrodynamic equations is questionable at
length and time scales that sméll nm, 10 n%.
. , In the case of defects with higher strengths, there exists an
— increasing number of splitting modes as there are more and
more ways the defect can split. It turns out that for every
’ '/ . ‘ \ decomposition allowed topologically one can find at least
one splitting mode, provided that none of the resulting wind-
ing numbers is too high. Each of these modes exhibits a
I distinctive angular symmetry set by its valuenafGenerally,
a defect of strengthgsplits tom symmetrically placed £1/2
defects surrounding as& m/2 defect, which remains in the
FIG. 3. (Color onling Cross section through the=1 radial ~ center(Fig. 4). For example, a possible splitting channel of a

disclination line: the ground staigray/dar is perturbed by the —defect with strength 2 is 2:-1+6X 1/2, where the —1 de-
splitting mode(red/light, leading to two 1/2 disclinations on the  fect stays in the middle, surrounded by the 1/2 defects. The

axis. Note the two uniaxial regions of the perturbed structure corcorresponding mode has a sixfold symmetnz6. On the
responding to the centers of the 1/2 disclinations. other hand, this defect is stable with respect to the splitting
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f////%;

TABLE I. Fastest splitting modes with a given for disclina-
tions with |s|<3. For negative winding numbers the situation is

_

zZZ

117:
//,//” N analogous.
W i
MR ! &RV I 147 Splitting m A
AR M 177
§\§\\\\ {//4%4%; 1-2X1/2 2 0.22
SRR S
= 3/2—1/2+2x1/2 2 0.13
= 7 =
f///@%% N 3/2-53%1/2 3 0.34
T = 3/2—-1/2+4x1/2 4 0.12
= &
i N N 2.1+2Xx1/2 2 0.091
§i\\\ = §§§:\\ 21/2+3x1/2 3 0.25
= N 2—-4x1/2 4 0.40
N i\ -
2—-1/2+5x1/2 5 0.25
\\g&\\% %%W///if 2—-1+6X1/2 6 0.073
”//’//-—«\ 5/2—3/2+2x1/2 2 0.068
W// - X :
. 5/2—1+3x1/2 3 0.19
i 5/2—1/2+4x1/2 4 0.32
/4
5/2—5%X1/2 5 0.43
5/2—-1/2+6X1/2 6 0.32
5/2—-1+7Xx1/2 7 0.19
ey 5/2—-3/2+8%x1/2 8 0.044
3—2+2%x1/2 2 0.053
3—-3/2+3X1/2 3 0.16
3—-1+4%x1/2 4 0.27
3—1/2+5%1/2 5 0.37
3—6X%x1/2 6 0.45
FIG. 4. A ninefold(m=9) splitting of thes=3 defect. The lower 3—-1/2+7x1/2 7 0.37
diagram depicts a —3/2 defect in the center and nine 1/2 defects_, _1.gx1/2 8 0.27
around it. The shading denotes regions of reduced degree of ordes;._) 3/249%1/2 9 015
3—-2+10x1/2 10 0.025
2—-3/2+7X1/2 and higher. All possible splitting chan-
nels of defects with strengths3 are given in Table |, the in-
growth rates are plotted in Fig. 5. Learning from the results ) £ (32)
for s<3, the splitting modes exist for2m=2(2s-1); in * krlmsl:

other words, the winding numbex of the disclination re-
maining in the center i$s—1)=s'=—(s—1). The splitting
into £1/2 defects only is always the fastest.

k is determined together with the eigenvalue in the shooting
procedure. Fon=0, the equation$27) and(28) are decou-
pled. It is exactly in this case that one finds<0 and the

V. ESCAPE MODES 007
0.1
In an unconfined system, planar defects with integer
strengths can escape to the undeformed configuration with a )\'0'2
zero deformation free energgscape in the third dimensipn 031
[14,1. Equipped with the present formalism, we are able to
look for another type of possibly growing modes leading to -0.41
the escape. As here tl@@ tensor eigensystem is rotated out 05

of the xy plane, the systeril8) and(19) must be examined
at this time. In particular, one expects the perturbatigio
be crucial, as it corresponds to the out-of-plane rotation of FIG. 5. Growth rates of the fastest splitting modes with the
the director. The lowest-order expansion of the sys(8M  angular eigenvaluen for different winding numbers. The splitting
and(28) around the origin is into 1/2 defectym=2s) is always the fastest.
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tion, e.g., weak external field. We make a first order pertur-
Ry, bation analysis, keeping the perturbation general. Let us de-
note the nonlinear time evolution operat®j by O,

0@ =49, O(a)=0, (34)
wherea is the ground state components. Defining the linear-
ized operator’,

a0
—| =L, (39
FIG. 6. Radial eigenfunctions of the first two growing modes 9 | a

(not normalizegl responsible for the escape of the +1 defeut where£ =£(a) depends on the ground state, the eigensystem

=0). These modes are quite extensive, yet localigegl (33)]; the evolving from the systenil5)<19) can be written as
range of the second function is100C¢.
LX=X=—\X. (36)

discrete spectrum for all the modes, Figs. 6 and 7. The
modesx_, are decaying, as are all the other modes with
# 0. According to Eq(22), for half-integer winding numbers O'=0+¢€P, (37)
the lowest angular eigenvalue is=1/2—these defects are
stable with respect to the escape.

Introducing a perturbation operat®; nonlinear in general,

the time evolution ofAq in the vicinity of the ground stata

Noting thatg,(r> ¢ —0 andg_,(r > £ — g_,() >0, the IS
asymptotic behavior fon=0 is Aq=0(a+Aq) + eP(a+AQ), (39
Ry oo r Y28\, (33)  which to the first order ire reads:
i.e., the functionsR; ; are localized. It turns out that here the AQ=LAq+ eP(a). (39

localized modes are much more extensive than in the case of ) )

the splitting. One may think there is little point in studying R€AuiringAq=0, the correction\q = Aa of the ground state
the splitting if the defects are always unstable to the escap@& IS obtained, formally:

There exist, however, a large difference in growth rates of Aa=-eL7YP(a). (40)

the two types of unstable modes, connected with the large

difference in localization, Eq(33). In the case of the +1 Adopting the bracket notation and expressing the functions
defect, in the one elastic constant approximation the splittingdq andP(a) in terms of the normalized eigenstates of £

is approximately 53-times faster than the escape. WhencgEq. (36)], Ag=Zci(t)|x;), P(a)==;P;|x;), Eq. (39) becomes
provided we prepared the +1 configuration, it would always . _

split before it could even start escaping. Of course, it is just G=-Nci+ePy,  Pi=(x[P(@). (42)
due to the fast splitting that the initial configuration is very The solution for the initial conditiort;(0)=0 is

hard to prepare, even numerically.

P.
VI. PERTURBATION ANALYSIS c(t) = 6;'[1 —exgd- A, (42
I

We are interested in the changes of the ground state ar}ﬂrnishing the time evolution of the ground state when the

its stability upon subjecting our system to a small perturba’perturbationp is turned on at=0. In the case whe, >0

for all i with a nonzeroP;, the time evolution leads to the

\ , corrected ground stat@0). For \;=0 andP;# 0 the linear

\ I ’ perturbation analysis cannot be appliedAJ& O (i.e., a is
unstablg and P; # 0, however, the system never reaches the

* \ - ’ y corrected ground state but is driven away from it exponen-
tially as the perturbation triggers a growing mode.

— — - If \;>0 for all i with a nonzerd;, one can determine the

first order correction of the eigenvalue using the unperturbed

’ ’ : \‘ N eigenmodes. Linearization of the perturbed operdB8¥)
around the corrected ground state=a+Aa, whereO’(a’)
, J N \ & =0, gives
- ac apP
. . . O'@+x)=({L+ —| Aa+e —| |[x)y=(L+AL)|x),
FIG. 7. (Color online Cross section through the=1 radial JGi | 4 aq | 4

disclination line: the ground stat@ray/dark is perturbed by the (43)
escape modg@ed/light). The mode is quite extensive, only the very

central part is depicted he(before the maximum oR, 1 in Fig.  where Aa is given by Eq.(40) and is first order ine. The

6) to point out the vanishing perturbation in the center. second term in Eq43) is the consequence of the nonlinear-
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1.0~
AN
N _Ro \
051 N ---- R, = /
\ R >/ 7

\ - i i

s W //’%

&6 == T T % Z
5 -~ 10 15 20 Y //%éz/é/éé

& T e
Vs r e T
TR ey

e e

/ = ey
B SEREEE
~

1.0+ N\\\ \\§§
ﬁ\\\\w\\
1.0 AN
\\ —_ Ro )
\ ---- R, - /I

0.51 \ L’p\\ R.1 SS= / /ﬁfli

\

\
o6 = T v FIG. 9. Splitting of thes=2 defect into four 1/2 defectsn=4;

N /46 15 20 the corresponding radial eigenfunctions are depicted in Fig. 8. The
0.5 b T m=4 modes are numerically boosted due to@eymmetry of the
' computational grid.

-1.0

In an alternate inference one can ask why a mode not

FIG. 8. Radial eigenfunctions of the splitting modes witk4 ~ P0SSessing th€, symmetry experiences no boost. In this
for the s=2 defect:(a) A=—0.40 and(b) \=-0.059. case, the rotations o€, generate at least two different

modes, as opposed to the identity representation in the pre-

ity of © and represents a perturbation of the linearized o vious case. These are degenerated with respect to their place-
y P P Piment on the grid since the grid is invariant@. Therefore
erator due to the corrected ground state. It does not appear in

. ) in a pure ground state neither must be favored and hence at
the standard perturbation theory of a linear operator, e.g., th\?anishin amplitude their arowth rate must vanish
Hamiltonian in quantum mechanics. Requiring g amp 9 '

(il£ + ALy = = N (xi[x7), (44) B. Selecting the splitting channel
the corrected eigenvalue\f-is Equation (42) suggests that by applying a perturbation
, with a particular angular symmetry one could favor the cor-
=N ==+ ([ ALX). (45) P guiar symmetry

responding splitting channel. Perhaps the simplest perturba-

In the following, we illustrate the results of the perturba- tion to realize is a homogeneous electric field applied per-
tion analysis with three particular examples. pendicularly to the disclination line. In the electric fidig
the perturbation igin Cartesian notation
A. Computational grid-reduced symmetry

1
We address an important point concerning the numerical P= é(EiEj - E?5;/3), (47)
simulation of defects with strengths higher than 1/2, e.g.,
when studying the splitting numerically. The discretizationwhere E«— E/E, and Ey=\L/ggle,|/ & is the field with the
on a square gridC, symmetry standardly used in simula- coherence length equal % Putting E=E&, and using the
tions introduces an artifactual perturbation with besym-  tensorial bas€3), one gets
metry,

PO - 116
P= 2 Pulrcoddng). (46) p=1 PV b =Le2l coqoyr sz | (48)
o P — Sin(24p + 254)/\2

If the spectrum contains a growing mode witi=4n, ac-
cording to Eq.(42) it will experience a boost upon “turning According to Eq(42), such a perturbation triggers the mode
on” the perturbation—the mode will grow at a nonvanishingwith m=2s (besides, it breaks the angular degeneyaiy.,

rate despite its initial amplitude of zero and will overwhelm the mode responsible for the splitting into 1/2 defects which
other possibly faster modes. An example of such splitting igs already the fastest and thus dominating. To favor alterna-
shown in Figs. 8 and 9. Thus on the square grid it is possibléive splitting channels one should therefore look for pertur-
to simulate defects not possessing such modes, i.e., thobations with different symmetry. Staying within electric field
with strengths £1/2 and +1 only. If the grid were rectangulareffects, the optical tweezer seems to be a good candidate
(C, symmetry, only the +1/2 defect would remain. One [15,16. In a single beam optical trap polarized in the direc-
must bear this in mind when trying to study the splitting tion of the disclination line, for example, the perturbation
numerically. would be of the form
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o 1 [2_, mation, one has to include more elastic terms in the free-
“3V3 2n ) energy densityl): up to the third order ifQ, quadratic in the
PO E2Y) Cyn(r)cog2ne) (49) density1) he third order iQ, quadratic in th
n first derivative, and omitting surface terms these are
thus coupling to modes witim=2n symmetry. However, it is

. . 1 1
fair to emphasize that the angular dependence must bef = -L([;ink)2+ ~L"(3Qi)(3Qj) + =L"Qij (4 Qi) (9,Qu),
present in the region where the growing mode is nonzero or 2 2 2

the scalar product in Eq41) will vanish, i.e.,c,, for n#0 (53)
should not vanish all down to the 100 nm scale, which is
hard to achieve by optical means. which is the minimum set of elastic terms to distinguish

The perturbation48) not only triggers then=2s mode  between splayKy,), twist (K;,), and bendKs,) distortions:
but also breaks its angular degeneracy, i.e., the splitting “di-
rection” depends on the relative orientation of the electric K., = §(2L+ L' -SL") (54)
. . . . . 11 ’
field and the defedigiven by ). It is worth mentioning that 4
in case there exist no splitting modes, i.e., fg=1/2, the
perturbation(48) removes the angular degeneracy of the )
fluctuations and the splitting of the relaxation rate can be Kor= T(ZL—SL”), (55)
calculated from Eq(45).

C. Field-suppressed escape K e = g(ZL +L'+SL) (56)
337 .
In the case o&, <0, the escape of the disclination can be 4
suppressed by amomogeneoyslectric field oriented along ey ding any of the new elastic terms, the generalized cy-

the disclination line not triggering the spliting modes. Per-i.yrical symmetry of the ground state is lost, making the
forming the perturbation analysis, we can make an esumat@igenmode problem two-dimensional, i.e., the variablasd
of the required field strength. The perturbation is now ¢ cannot be separated any longer. It is only in the case of the
1 2 +1 disclination with ¢4=0 or yp=/2 (radial and circular
PO =- —\/iEZ. (50)  disclinations that the cylindrical symmetry is retained, so
3 V3 that without the third-order term the separation would still be

According to Eq.(45), one must provide the corrected Possible. The third-order term, however, brings about mixed
ground stateAa given by Eq.(40) or Eq. (42) and require  derivatives, which ineyitably prevent the separation. .
N’ =0 for the largest in absolute eigenvalue. The ground state Nevertheless, one is interested in whether the elastic an-

correction involves the tensor components 0 and 1: isotropy could cause a metastability of the disclination core
with respect to the splitting. For the +1 disclinations this can

*nm=0 be easily examined numerically using realistic elastic param-
12 f rdrRg on(r) eters. The answer is rather surprising: moderate elastic aniso-
|Aa) =-= \/iEZZ —_— , (51) tropy, e.g., in thermotropic liquid crystals like 5CB or
3V3 4 An XD o MBBA, gives no metastability. It is only in the extreme cases
that the core could become metastable against the splitting

[17].

where Ry o, is the m=0 radial eigenfunction of the zeroth
tensor component corresponding Xq. Note that the cor-
rected ground state is well defined, i.e., none ofiisan Eq.

(51) are zero, and there is also no boost as the growing VIIl. SUMMARY

modes all haven+ 0. From Eq.(45) we get
A= l EEZ E @ <X(2) |Aa(i)(r)|x(2) > (52) . - . . . L.
“3V3" “ P m=0 m=0/ | nematic d|scl|nat|on. I_me .Wlth a general winding .number. We
=0.1L T Ta found no metastability, i.e., we were able to find growing
Wherelxﬁ())ochyo(r)Tz is the growing mode corresponding f!uctuatlon mode; Igadlng to the sphttmg and deca_y, respec-
to the most negative. Equation(52) determines the electric tively. Several splitting modes characterized by their angular

field strengthE required to stabilize the disclinatiain an ~ SYMmetry were found to exist, each yielding a particular

infinite systen against the escape. As its evaluation inevita-SPlitting channel. The possibility of selecting these channels

bly involves numerics, it is perhaps more convenient to de¥as discussed. _ L o
It must be emphasized that the splitting instability is al-

termine the field strength by a direct numeric calculation, ’
yielding E=0.086(corresponding to the coherence length of Ways there and cannot be affected by any confinement, un-

12¢) in the one elastic constant approximation. less it were in the(nonrealistip hanometer region. Con-
versely, the confinement can stabilize the disclination with

respect to the escape, as in this case the growing modes are

much more extensive, while it is known that also the elastic
The eigenmode problem was solved semianalytically imanisotropy (in connection with the confinementavors/

the one elastic constant approximation. Beyond this approxidisfavors the escape in the third dimens[a#,1].

Resorting to the one elastic constant approximation we
have solved the complete tensor fluctuation problem of the

VIl. ELASTIC ANISOTROPY
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