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We present a detailed derivation and thin interface analysis of a phase-field model that can accurately
simulate microstructural pattern formation for low-speed directional solidification of a dilute binary alloy. This
advance with respect to previous phase-field models is achieved by the addition of a phenomenological
“antitrapping” solute current in the mass conservation relation[A. Karma, Phys. Rev. Lett.87, 115701(2001)].
This antitrapping current counterbalances the physical, albeit artificially large, solute trapping effect generated
when a mesoscopic interface thickness is used to simulate the interface evolution on experimental length and
time scales. Furthermore, it provides additional freedom in the model to suppress other spurious effects that
scale with this thickness when the diffusivity is unequal in solid and liquid[R. F. Almgren, SIAM J. Appl.
Math. 59, 2086 (1999)], which include surface diffusion and a curvature correction to the Stefan condition.
This freedom can also be exploited to make the kinetic undercooling of the interface arbitrarily small even for
mesoscopic values of both the interface thickness and the phase-field relaxation time, as for the solidification
of pure melts[A. Karma and W.-J. Rappel, Phys. Rev. E53, R3017(1996)]. The performance of the model is
demonstrated by calculating accurately within a phase-field approach the Mullins-Sekerka stability spectrum of
a planar interface and nonlinear cellular shapes for realistic alloy parameters and growth conditions.
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I. INTRODUCTION AND SUMMARY

In recent years, the phase-field method has become a stan-
dard tool to simulate microsctructure evolution in materials
[1], a subject of both fundamental and applied interest[2,3],
and more generally to tackle free-boundary problems. Its
chief advantage is to avoid front tracking by making phase
boundaries spatially diffuse with the help of order param-
eters, termed phase fields, which vary smoothly between
bulk phases.

Simulating the evolution of complex morphologies in two
and three dimensions is in principle straightforward with this
method. Making quantitative predictions on experimentally
relevant length and time scales, however, has been a major
challenge. This challenge stems from the fact that phase-field
simulations are simply not feasible if parameters of the
model are chosen to match those of a real physical system.
With such a choice, both the widthW of the diffuse interface
and the characteristic dissipation time scalet in the phase-

field kinetics are microscopic:W is a few angstroms andt is
roughly the ratio ofW and the thermal velocity of atoms in
the liquid [4–6]. In contrast, diffusive transport of solute in
bulk phases occurs on macroscopic length and time scales
that are several orders of magnitude larger thanW and t,
respectively. Therefore, resolving both microscopic and mac-
roscopic length/time scales in phase-field simulations for
typical experimental solidification rates ofmm/sec to mm/
sec is impractical, even with efficient algorithms.

In view of this, the only possible choice is to carry out
simulations withW andt orders of magnitude larger than in
a real material. The question becomes then whether the
phase-field model is still quantitatively meaningful with such
a choice. The rest of this section explores the answer to this
question in the context of previous works and serves both as
a summary and a guide for the following sections of this
paper. To conclude this section, we summarize the main re-
sults needed to carry out quantitative simulations of the di-
rectional solidification of a dilute binary alloy.

A. Capillarity

In the phase-field model of a pure substance(of say A
molecules), the excess free energy of the solid-liquid inter-
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face,g, is determined by the combination of the bulk free-
energy density at the melting pointTm, fsf ,Tmd, which is a
double-well function of the phase fieldf with minima cor-
responding to the solid and liquid, and the gradient square

term,su¹W fu2. Minimization of the total free energy, which is
the spatial integral of the sum of these two terms, yields the
standard result thatg,WH, whereH is the barrier height of
the double-well potential, andW,ss /Hd1/2 is the width of
the hyperbolic tangent profile off in the diffuse interface.
This result implies that there always exist a pair of values of
s andH for any pair of values ofW andg. Thus, the experi-
mental magnitude ofg in the classic Gibbs-Thomson condi-
tion can be reproduced even if a computationally tractable
“mesoscopic” interface thickness(i.e., on a scale comparable
to the microstructure) is used in the phase-field model. Op-
timally, this thickness should be chosen just small enough to
resolve accurately the interface curvature.

A phase-field model for a dilute alloy can generally be
constructed by adding to the free-energy density the contri-
bution of soluteB molecules. The simplest way to construct
this free energy is to interpolate between the known free-
energy densities in the solid and the liquid with a single
function of f, as in the original model of Wheeleret al. [7]
(see also Ref.[8]). From a computational standpoint, how-
ever, this approach places a stringent constraint on the inter-
face thickness. The reason is that there is generally an extra
contribution tog due to solute addition that depends on in-
terface thickness, solute concentration at the interface, and
temperature. In Sec. III A, we show how this extra contribu-
tion can generally be made to vanish by using two different
functions of f, which interpolate separately between the
solid and the liquid the enthalpic(internal energy) and en-
tropic part of the free-energy density. The condition that this
contribution vanishes takes the form of an algebraic relation
between these two interpolation functions. If this relation is
satisfied, the model introduced previously in Ref.[9] is re-
covered. The equilibrium phase-field profile decouples from
the equilibrium solute concentration profile andg,WH, as
for a pure substance. This removes the constraint on the in-
terface thickness associated with solute addition without the
need to introduce separate concentration fields in each phase,
as in Refs.[10,11].

B. Interface-thickness-dependent nonequilibrium effects

The main conclusion from the preceding paragraphs is
that the phase-field method provides sufficient freedom to
chooseW arbitrarily large to model capillarity. However, mi-
crostructural pattern formation is also generally controlled by
nonequilibrium effects at the interface. For a microscopicW
and low solidification velocities, these effects are negligibly
small. The interface relaxes rapidly to a local thermodynamic
equilibrium and its nonlinear evolution is driven by slowly
evolving gradients of thermodynamic quantities in bulk
phases. For a mesoscopic thickness, however, these nonequi-
librium effects become artificially magnified, thereby com-
peting with, or even superseding, capillary effects, and dra-
matically altering the large-scale pattern evolution.
Therefore, the central challenge of quantitative phase-field

modeling of solidification at low velocity, upon which we
focus in the present work, consists of formulating the model,
and knowing how to choose its parameters, in order to avoid
unphysically large nonequilibrium effects at the interface.
This is in contrast to rapid solidification, where nonequilib-
rium effects play a dominant role. In this case, the challenge
consists of describing the correct magnitude of these effects
with mesoscale phase-field parameters, which requires a dif-
ferent approach(see Ref.[12]).

For pure materials, Karma and Rappel[13] have devel-
oped a thin interface analysis, which only assumes thatW is
small compared to the scale of the microstructure. This
analysis shows that the standard free-boundary problem of
solidification—a classic Stefan condition together with a
velocity-dependent form of the Gibbs-Thomson relation that
incorporates interface kinetics—is recovered even for a me-
soscopicW. Heat diffusion in the mesoscale interface region
only modifies the expression for the interface kinetic coeffi-
cient,mk. This “renormalization” ofmk has the crucial prop-
erty thatt needs not be microscopic to make this coefficient
arbitrarily large(arbitrarily fast kinetics), and hence to simu-
late the limit of local equilibrium at the interface dominated
by capillarity.

This advance bridges the gap between the atomistic scale
of interfacial phenomena and the mesoscale of the micro-
structure. In addition, efficient multiscale simulation algo-
rithms have been developed to bridge the remaining gap be-
tween the microstructure and the transport scales[14,15].
The combination of these two advances has led to the first
direct quantitative comparison between fully three-
dimensional phase-field simulations of dendritic growth in
pure melts at low undercooling and experiments[16].

Achieving the same success for alloys has turned out to be
considerably more difficult. A major source of difficulty is
that solute diffusion is generally much slower in a solid than
a liquid. When diffusion is asymmetrical, the use of a meso-
scopicW artificially magnifies several nonequilibrium effects
at the interface that are absent when diffusion is symmetrical.
Consequently, phase-field models in which one or several of
these effects are present[7,8,10,17] are not suitable for quan-
titative simulations at low velocity.

These nonequilibrium effects were first characterized in
detail by Almgren[18] using a thin interface analysis of a
phase-field model of the solidification of pure melts with
asymmetric diffusion. Directly analogous effects are present
in alloy solidification[19], which include(i) solute diffusion
along the arclength of the interface(surface diffusion), (ii ) a
modification of mass conservation associated with the local
increase of arclength of a moving curved interface(interface
stretching), and(iii ) a discontinuity of the chemical potential
of the dilute impurity across the interface.

These nonequilibrium effects originate physically from
solute transport in the mesoscale interface region that is gov-
erned by the standard continuity equation for a dilute alloy,

]c

]t
=

Dv0

RTm
¹W · fq̃sfdc¹W mg, s1d

whereR is the gas constant,v0 is the molar volume of solute
molecules,Tm is the melting temperature,m is the chemical
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potential, and the productDq̃sfd governs how the solute
diffusivity varies through the diffuse interface, from zero in
the solid(for a one-sided model) to a constant valueD in the
liquid. The best known of these effects is solute trapping
[20,21], which is associated with the chemical potential jump
at the interface. The problem is that the magnitude of all
these effects scales with the interface thickness. SinceW in
phase-field computations is orders of magnitude larger than
in reality, solute trapping will become important at growth
speeds where it is completely negligible in a real material.
Surface diffusion and interface stretching, in turn, modify the
mass conservation condition

cls1 − kdVn = − D
]c

]n
+ ¯ , s2d

wherecl is the concentration on the liquid side of the inter-
face,k is the partition coefficient,Vn is the normal interface
velocity, and “̄ ” is the sum of a correction,cls1
−kdWVnK, corresponding to interface stretching, whereK is
the local interface curvature, a correction,WD]2cl /]s2, cor-
responding to surface diffusion along the arclengths of the
interface, and a correction,kcls1−kdWVn

2/D proportional to
the chemical potential jump at the interface. All three correc-
tions, which are proportional to the interface thickness, are
negligible in a real material at low velocity. For this reason,
they have not been traditionally considered in sharp-interface
models (reviewed in Sec. II). For a mesoscopic interface
thickness, however, the magnitude of these corrections be-
comes comparable to the magnitude of the normal gradient
of solute, thereby modifyingVn and the pattern evolution.
Thus, the phase-field model must be formulated to make all
three effects vanish.

C. Limitation of variational models

The model discussed in Sec. III A follows the general
approach of nonequilibrium thermodynamics where the evo-
lution equations forf andc are derived variationally from a
Lyapounov functionalF that represents the total free energy
of the system. The resulting “gradient dynamics” guarantees
thatF decreases monotonously in time in an isolated system.
In addition to the double-well potentialfsfd, this variational
model contains three basic interpolation functions: the two
functions that interpolate between solid and liquid the enthal-
pic and entropic part of the free-energy density(Sec. III A),
which we denote here byḡsfd and g̃sfd, respectively, and
the diffusivity functionq̃sfd in Eq. (1) that varies from zero
in solid to unity in liquid.

These functions should in principle be chosen to cancel
all spurious interface-thickness-dependent effects. As already
discussed in Sec. I A, a quantitative description of capillarity
can be obtained by requiring that the solute contribution tog
vanish. This condition is only satisfied if the two functions
ḡsfd andg̃sfd are related, and the latter determines the equi-
librium solute concentration profile

c0sfd =
cs + cl

2
+ g̃sfd

cs − cl

2
, s3d

whereg̃sfd varies from +1 in the solid wherec0=cs to −1 in
the liquid wherec0=cl.

We are left with only two functions,g̃sfd and q̃sfd, to
satisfy the three aforementioned conditions in which surface
diffusion, interface stretching, and the chemical potential
jump at the interface should vanish. The thin-interface analy-
sis of Sec. IV applied to this variational model shows that
these three conditions are given, respectively, by

E
−`

0

drq̃„fsrd…c0„fsrd… =E
0

+`

drfcl − q̃„fsrd…c0„fsrd…g,

s4d

E
−`

0

drfc0„fsrd… − csg =E
0

+`

drfcl − c0„fsrd…g, s5d

E
−`

0

dr
c0„fsrd… − cs

q̃„fsrd…c0„fsrd…

=E
0

+`

drFs1 − kd −
c0„fsrd… − cs

q̃„fsrd…c0„fsrd…G , s6d

wherer is the coordinate normal to the solid-liquid interface
that varies from −̀ in solid to +̀ in liquid far from the
interface, andc0 is given by Eq.(3), which can be assumed
to remain valid for a slowly moving interface.

A simple physical interpretation of these conditions is ob-
tained by analogy with Gibbs’ treatment of interfacial phe-
nomena where “excess quantities” are attributed to a math-
ematical surface with zero volume dividing two phases,
which corresponds here tor =0. In this analogy, Eqs.(4)–(6)
are the conditions that excess quantities of the interface van-
ish. For example, as illustrated in Fig. 1, the excess of solute
is the integral through the diffuse interface of the difference
between the actual smoothly varying solute profilec0 and the
imaginary step function profile equal tocs for r ,0 andcl for
r .0. The condition that this excess vanishes is identical to
Eq. (5). It implies that mass conservation is left unchanged if
there is no excess of solute to redistribute along the arclength
of the interface. Similarly, surface diffusion vanishes[Eq.
(4)] if there is no excess of the transport coefficientq̃sfdc
multiplying the chemical potential gradient in Eq.(1). Fi-
nally, the jump of chemical potential vanishes if there is no
excess of chemical potential gradient[Eq. (6)]. This condi-
tion is simple to derive for a flat interface by rewriting Eq.
(1) in a local frame moving at velocityV (i.e., ] /]t→
−V] /]r and¹W →] /]r). After integrating both sides of Eq.(1)
once with respect tor, one obtains the expression for the
chemical potential gradient through the diffuse interface
]m /]r <−Vsc0−csdRTm/ sDv0q̃c0d, and hence Eq.(6).

A major pitfall of this variational model is that all three
excess quantities cannot be satisfied simultaneously with
only two functionsg̃sfd and q̃sfd. For example, with the
standard quartic form of the double well, which is an even

QUANTITATIVE PHASE-FIELD MODEL OF ALLOY … PHYSICAL REVIEW E 70, 061604(2004)

061604-3



function off, the equilibriumf profile is an odd function of
r. Therefore, Eq.(5) can be satisfied by choosingg̃sfd to be
an odd function off. It is then possible to chooseq̃sfd to
satisfy Eq.(4). However, this leaves no freedom to make the
jump of chemical potential vanish. More generally, it is pos-
sible to make two of the three excess quantities vanish for
different choices ofg̃sfd andq̃sfd, but not the three of them
simultaneously.

Elder et al. [22] proposed to make the discontinuity of
chemical potential vanish by an appropriate choice of inter-
face position(Gibbs dividing surface) which makes the cor-
responding excess quantity vanish. These authors, however,
did not take into account the other two excess quantities
found by Almgren for asymmetric diffusion[18]. These
quantities appear at higher orders in the asymptotic expan-
sion used by Elderet al., which, for the solidification of pure
melts with symmetrical diffusion, yields the same results as
the thin interface analysis of Karma and Rappel[13]. For
asymmetrical diffusion, all three excess quantities can gen-
erally not be made to vanish by a redefinition of the interface
position.

It might be possible to make all three excess quantities
vanish for nontrivial oscillatory forms of the functionsg̃sfd
and q̃sfd. Such forms, if they exist, would require a high
resolution of the interfacial layer that is not computationally
desired. Also, other variational models than the one dis-
cussed here are in principle possible. McFaddenet al. have
formulated a variational phase-field model of the solidifica-
tion of pure melts with unequal thermal conductivities[23].
This model provides additional freedom to cancel the discon-
tinuity of temperature at the interface, which they interpret as
“heat trapping” by analogy with solute trapping that is asso-

ciated with the discontinuity of chemical potential in the case
of alloys. However, as Elderet al., these authors did not
consider the additional constraints associated with surface
diffusion and interface stretching for a nonplanar interface.
While we cannot rule out that it may be possible to formulate
variational models that remove all constraints on the inter-
face thickness, achieving this goal appears extremely diffi-
cult.

D. Nonvariational models and antitrapping

A way out of this impasse is to remove the requirement
that the equations of the phase-field model be strictly varia-
tional. This provides additional freedom to cancel all spuri-
ous corrections produced by a mesoscale interface thickness.
As shown recently in Ref.[19], a successful approach con-
sists of adding a phenomenological “antitrapping current” in
the continuity relation[Eq. (1)]. This current produces a net
solute flux from solid to liquid proportional to the interface
velocity that counteracts solute trapping and restores chemi-
cal equilibrium at the interface. By adjusting the magnitude
of this current, which modifies Eq.(6), it is therefore pos-
sible to satisfy simultaneously Eqs.(4)–(6).

Furthermore, the same functiong̃sfd must appear in the
evolution equations forf and the continuity relation[Eq.
(1)] in the variational model. The additional freedom to re-
place g̃sfd by another functionhsfd in the modified conti-
nuity relation with the antitrapping current turns out to be
critically important to obtain the same renormalization of the
interface kinetic coefficient as in the analysis of Karma and
Rappel for pure melts[13].

E. Summary of phase-field equations and thin-interface limit

We summarize here the equations of the nonvariational
phase-field model for the directional solidification of a dilute
binary alloy that are needed to carry out quantitative compu-
tations. The lengthy details of the derivation of the model
and of the asymptotic analysis are exposed in Secs. III and
IV below. The model uses the standard low-velocity frozen
temperature approximation,T=T0+Gsz−Vptd, where Vp is
the pulling speed andG is the temperature gradient. The
basic equations of the model are

tsTd
]f

]t
= W2¹2f + f − f3 −

l̃

1 − k
g̃8sfdSeu − 1 −

T − T0

mcl
0 D ,

s7d

]c

]t
= ¹W · fDq̃sfdc¹W u − jWatg, s8d

where

u =
v0

RTm
sm − mEd = lnS 2c

cl
0f1 + k − s1 − kdhsfdgD s9d

is a dimensionless measure of the deviation of the chemical
potential from its equilibrium valuemE at a reference tem-
peratureT0 with corresponding liquidus concentrationcl

0,
m,0 is the liquidus slope,

FIG. 1. Illustration of the definition of surface excess. The ex-
cess of solute is the integral alongr of the actual solute profile
(thick solid line) minus its step profile idealization(thick dashed
line) with the Gibbs dividing surface atr =0. This excess is negative
in the depicted example. The thin solid line depicts the phase-field
profile, fsrd=−tanhsr /Î2Wd. The standard mass conservation con-
dition [Eq. (2)] is recovered if all three excess quantities defined by
the difference between the left-hand side and the right-hand side of
Eqs.(4)–(6) vanish.
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jWat = − aWs1 − kdcl
0eu]f

]t

¹W f

u¹W fu
s10d

is the antitrapping current,

tsTd = t0S1 +
T − T0

mcl
0 D s11d

is a temperature-dependent phase-field relaxation time, andl̃
is a dimensionless coupling constant. For the choiceshsfd
=f, q̃sfd=s1−fd / f1+k−s1−kdfg, g̃sfd=s15/8dsf−2f3/3
+f5/5d, and a=1/s2Î2d, this model reduces in its thin-
interface limit to the standard one-sided model of alloy so-
lidification. The chemical capillary lengthd0 and the inter-
face kinetic coefficientb (defined in Sec. II) are related to
the phase-field parameters by

d0 = a1W/l, s12d

b = a1
tsTd
lW

F1 − a2
lW2

t0D
G , s13d

where l=15l̃ /8; a1=5Î2/8 and a2=0.6267 are the same

numerical constants as in Ref.[13]. We note thatl̃ has been
defined for convenience in the present paper to avoid carry-
ing a numerical factor of 15/8 in the thin-interface analysis
of the equations.

A previous version of this model for isothermal alloy so-
lidification was presented in Ref.[19] together with bench-
mark computations for dendrite growth. The present exten-
sion to nonisothermal growth conditions introduces a
temperature-dependent relaxation timetsTd. As discussed in
more details in Sec. IV C, this new feature makes it possible
to achieve vanishing interface kinetics(i.e., local equilibrium
at the interface) for the entire range of interface temperature
that occurs during directional solidification. For simplicity,
we have written down the equations of the model for isotro-
pic surface tension and interface kinetics. The extension to
anisotropic growth is discussed in Sec. IV E. Also, both for
simulating and analyzing the above equations, it is conve-
nient to rewrite them in terms of a new variableU=seu

−1d / s1−kd. This avoids numerical computations of exponen-
tial and logarithm functions. In addition, it transforms the
equations in a form closely related to the phase-field model
for the solidification of a pure substance whereU is the
direct analog of the temperature field. Details of this change
of variable are given in Sec. III B 1.

Simulations of microstructural pattern formation using
this model are presented in Sec. V, which also contains the
final form of the anisotropic phase-field equations(132) and
(133) that are solved numerically. We report a quantitative
phase-field computation of the classic Mullins-Sekerka linear
stability spectrum of a planar interface[24] and nonlinear
cell shapes for realistic experimental parameters of low-
velocity directional solidification.

II. SHARP-INTERFACE MODELS

We consider the solidification of a dilute binary alloy
made of substancesA and B, with an idealized phase dia-

gram that consists of straight liquidus and solidus lines of
slopesm andm/k, respectively, wherek is the partition co-
efficient. The interface is supposed to be in local equilibrium,
that is,

cs = kcl , s14d

wherecs andcl are the concentrations(in molar fractions) of
impurities B at the solid and liquid side of the interface,
respectively.

The interface temperature satisfies the generalized Gibbs-
Thomson relation,

T = Tm − umucl − GK − Vn/mk, s15d

whereTm is the melting temperature of pureA,

G =
gTm

L
s16d

is the Gibbs-Thomson constant,g is the surface tension,L is
the latent heat of fusion per unit volume,K is the interface
curvature,Vn is its normal velocity, andmk is the linear ki-
netic coefficient. Here, the surface tension and the kinetic
coefficient are taken to be isotropic for simplicity; aniso-
tropic interface properties will be considered below.

Heat is supposed to diffuse much faster than impurities,
so that the temperature field can be taken as fixed by external
conditions, in spite of the rejection of latent heat during so-
lidification. Then, Eq.(15) yields a boundary condition for
the solute concentration at the interface.

Of particular interest is theone-sidedmodel of solidifica-
tion that assumes zero diffusivity in the solid. This is often a
good approximation for alloy solidification, in which the sol-
ute diffusivity in the solid may be several orders of magni-
tude lower than in the liquid.

A. Isothermal solidification

For isothermal solidification at a fixed temperatureT0
,Tm, the concentration obeys the set of sharp-interface
equations

]tc = D¹2c, s17d

cls1 − kdVn = u − D]ncu+, s18d

cl/cl
0 = 1 − s1 − kdd0K − s1 − kdbVn, s19d

whereD is the solute diffusivity in the liquid,Vn is the nor-
mal velocity of the interface,u]ncu+ is the derivative of the
concentration field normal to the interface, taken on the liq-
uid side of the interface,

cl
0 = sTm − T0d/umu s20d

is the equilibrium concentration of the liquid atT0,

d0 =
G

DT0
s21d

is the chemical capillary length, whereDT0= umus1−kdcl
0 is

the freezing range, andb=1/fmkDT0g. Equation (18), the
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Stefan condition, expresses mass conservation; Eq.(19) can
be directly obtained from Eq.(15).

B. Directional solidification

For directional solidification, we use the frozen tempera-
ture approximation, in which the temperature field for solidi-
fication with speedVp in a temperature gradient of magni-
tudeG directed along thez axis is taken as

Tszd = T0 + Gsz− Vptd. s22d

Now T0 is given by inverting Eq.(20), andcl
0=c` /k, where

c`;csz= +`d is the global sample composition. Thus,cl
0 is

the solute concentration on the liquid side of a steady-state
planar interface. Then, Eq.(19) is replaced by

cl/cl
0 = 1 − s1 − kdd0K − s1 − kdbVn − s1 − kdsz− Vptd/lT,

s23d

where

lT =
umus1 − kdcl

0

G
s24d

is the thermal length.

C. Formulation in terms of dimensionless supersaturation

In order to later compare with the sharp-interface limit of
the phase-field models treated here, we rewrite Eqs.(17),
(18), and (23) in terms of the local supersaturation with re-
spect to the pointscl

0,T0d, measured in units of the equilib-
rium concentration gap at that point,

U =
c − cl

0

cl
0s1 − kd

. s25d

We obtain

]tU = D¹2U sliquidd, s26d

f1 + s1 − kduUu+gVn = u − D]nUu+ sinterfaced, s27d

uUu+ = − d0K − bVn − sz− Vptd/lT sinterfaced. s28d

Note that, fork=1, we recover the constant miscibility gap
model. Furthermore, if we reinterpretU as a dimensionless
temperature and drop the directional solidification termsz
−Vptd / lT, we obtain a one-sided version of the pure sub-
stance model.

III. PHASE-FIELD MODELS

In this section, we first derive a generic variational model
(Sec. III A), and then we modify it in view of canceling
spurious effects(Sec. III B).

A. Variational formulations

In a phase-field model, a continuous scalar fieldf is in-
troduced to distinguish between solidsf= +1d and liquid

sf=−1d. The two-phase system is usually described by a
phenomenological free-energy functional,

Fff,c,Tg =E
dV
Fs

2
u¹W fu2 + fsf,Tmd + fABsf,c,TdG ,

s29d

where

fsf,Tmd = Hs− f2/2 + f4/4d s30d

is the standard form of a double-well potential providing the
stability of the two phasesf= ±1 with a barrier heightH,
fABsf ,c,Td changes their relative stability as a function of
the position in aT-c phase diagram, and the term ins pro-
vides a penalty for phase gradients which ensures a finite
interface thickness.H has dimensions of energy per unit vol-
ume, ands of energy per unit length.

In a variational formulation, the equations of motion for
all fields (here the concentration and phase fields) can be
derived from that functional,

]f

]t
= − Kf

dF

df
, s31d

]c

]t
= ¹W ·SMsf,cd¹W

dF

dc
D , s32d

where KfsTd is a kinetic constant that can generally be
temperature-dependent. The second equation is a statement
of mass conservation, since it can be rewritten as

]c

]t
+ ¹W ·JWc = 0, s33d

whereJWc=−M¹W m is the solute current density,m;dF /dc is
the chemical potential, andMsf ,cd is the mobility of solute
atoms or molecules, which we choose to be

Msf,cd =
v0

RTm
Dq̃sfdc s34d

in order to later obtain Fick’s law of diffusion in the liquid.
Here,v0 is the molar volume ofA, R is the gas constant, and
q̃sfd is a dimensionless function that interpolates between 0
in the solid and 1 in the liquid, and hence dictates how the
solute diffusivity varies through the diffuse interface. Note
that we have not included an equation of motion for the
temperature field, since we consider it fixed by external con-
straints. Of course, the formalism could be extended to in-
clude an appropriate equation for heat transfer[25].

An important step is the construction of the functionfAB
that interpolates between the free-energy densities of the
bulk phases(solid and liquid). While these bulk free energies
should reduce to the curves that can be obtained from ther-
modynamic databases, the dependence offAB on f influ-
ences only the interfacial region, and this freedom can be
used to construct a particularly simple phase-field model.
This will be illustrated here for the case of a dilute binary
alloy. First, we consider the bulk free energies and make sure
that they reproduce the equilibrium properties of the sharp-
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interface model of Sec. II. Then, we interpolate between
them.

For a dilute alloy, the free energies of solid and liquid
fnsc,Td, where the subscriptn refers to either the solidssd or
the liquid sld, can be written as the sum of the free energy of
pureA, f n

AsTd, and contributions due to solute addition,

fnsc,Td = f n
AsTd +

RT

v0
sc ln c − cd + «nc, n = l,s. s35d

The second term on the right-hand side is the dilute form of
the mixing entropy, and the term«nc is the change of the
internal energy density. We expand this expression to first
order in T−Tm to recover the straight liquidus and solidus
lines of Sec. II,

fnsc,Td = f AsTmd − snsT − Tmd +
RTm

v0
sc ln c − cd + «nc,

s36d

wheresn=−]f n
A/]T are the entropy densities of the solid and

the liquid at Tm, and we have used that both phases have
equal free energies for pureA at Tm, f s

AsTmd= f l
AsTmd

; f AsTmd. By usingTm instead ofT in the mixing entropy,
we have neglected terms of ordersT−Tmdc, which are
second-order for dilute alloys.

The phase diagram is determined by the standard common
tangent construction, which is equivalent to requiring that the
chemical potential and the grand potentialv (i.e., the ther-
modynamic potential for a varying number of solute par-
ticles) be equal in the solid and liquid. The corresponding
equilibrium concentrationscssTd and clsTd are the solutions
of

U ]fssc,Td
]c

U
c=cs

= U ]f lsc,Td
]c

U
c=cl

= mEsTd, s37d

fsscs,Td − mEcs = f lscl,Td − mEcl = vEsTd. s38d

The first equality yields the partition relation Eq.(14),
cs=kcl, with a partition coefficient

k = expS−
v0D«

RTm
D , s39d

where we have definedD«=«s−«l. Combining this result
with Eq. (38) yields

cl =
Lv0

Tm
2 Rs1 − kd

sTm − Td, s40d

where we have used that the latent heat per unit volume is
L=Tmssl −ssd. From Eq.(40), we identify the liquidus slope
to be

m= −
Tm

2 Rs1 − kd
v0L

, s41d

the van ’t Hoff relation for dilute binary alloys.
In the standard phase-field approach, the two bulk free

energies are interpolated with the help of a single function of
the phase fieldf. Here, it is advantageous to use two differ-

ent interpolation functions for the entropy and the internal
energy terms,

fABsf,c,Td = fAsTmd − sT − Tmdssfd +
RTm

v0
sc ln c − cd

+ «sfdc, s42d

with

«sfd = «̄ + ḡsfdD«/2, s43d

ssfd =
ss + sl

2
− g̃sfd

L

2Tm
, s44d

where«̄=s«s+«ld /2, and we have again usedL=Tmssl −ssd in
ssfd. g̃s±1d= ḡs±1d= ±1, and we further requireg̃8s±1d
= ḡ8s±1d=0 for f= ±1 to remain bulk equilibrium solutions
for any value ofc andT.

This completes the model specification, except for the in-
terpolation functionsg̃sfd andḡsfd. In order to choose them
appropriately, it is important to consider the equilibrium
properties of the model, which follow from the conditions

dF

dc
= mE, s45d

dF

df
= 0, s46d

wheremE is the spatially uniform equilibrium value of the
chemical potential. These two equations uniquely determine
the spatially varying stationary profiles ofc and f in the
diffuse interface region,c0sxd and f0sxd. Since the phase
field interpolates between the two bulk free energies, the
limiting values of the concentrations and the equilibrium
chemical potential are the ones determined by the common
tangent construction above. From Eq.(45), we have

RTm

v0
ln c0 + «̄ + ḡsf0d

D«

2
= mE, s47d

from which we obtain the expression for the equilibrium
concentration profile using the solution of Eq.(37) and Eq.
(39),

c0sxd = cl expS ln k

2
f1 + ḡ„f0sxd…gD = clk

f1+ḡ„f0sxd…g/2.

s48d

From the equilibrium condition forf, Eq. (46), we obtain

s
d2f0

dx2 + Hsf0 − f0
3d =

g̃8sf0d
2

T − Tm

Tm
L +

ḡ8sf0d
2

D«c0.

s49d

With the help of Eqs.(39)–(41), Eq. (49) can be rewritten as
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s
d2f0

dx2 + Hsf0 − f0
3d = −

RTmsT − Tmd
2v0m

Fs1 − kdg̃8sf0d

+ ln k
c0sxd

cl
ḡ8sf0dG . s50d

For a generic choice of the functionsg̃ andḡ, and in particu-
lar for the “standard” choiceg̃= ḡ, no analytic solution forf
is known. Furthermore, the equilibrium solution and its prop-
erties, in particular its surface tension, depend on the various
coefficients that appear on the right-hand side. This can be
avoided if the right-hand side vanishesf]ffABsf0,c0,Td=0g.
With the help of Eq.(48), we obtain the condition on the
interpolation functions,

s1 − kd
g̃8sfd

2
+ ln k

ḡ8sfd
2

expS ln k

2
f1 + ḡsfdgD = 0.

s51d

It can be used to eliminate one of them in terms of the other.
Taking into account the requirementg̃s±1d= ḡs±1d= ±1, we
find

g̃sfd =

1 + k − 2 expS ln k

2
f1 + ḡsfdgD

1 − k
=

1 + k − 2kf1+ḡsfdg/2

1 − k
,

s52d

ḡsfd =
2

ln k
lnS1 + k − s1 − kdg̃sfd

2
D − 1. s53d

Using the latter relation, the equilibrium concentration pro-
file can also be rewritten as

c0sfd = cl
1 + k − s1 − kdg̃sfd

2
=

cs + cl

2
+ g̃sfd

cs − cl

2
.

s54d

The physical meaning of the two interpolation functions is
hence completely transparent:ḡ interpolates the internal en-
ergy[Eq. (43)], and as a consequence the chemical potentials
[Eqs.(47) and(48)], whereasg̃ interpolates the entropy den-
sity [Eq. (44)] and, as a consequence of Eq.(51), the con-
centration[Eq. (54)].

If Eq. (51) is satisfied, the right-hand side of Eq.(50)
vanishes, and the solution for the equilibrium profile off is
the usual hyperbolic tangent,f0sxd=−tanhfx/ sÎ2Wdg, where
W=ss /Hd1/2 measures the width of the diffuse interface. Fur-
thermore, the surface tension is defined as the excess of the
grand potentialv= f −mc, integrated through the interface,
that is,g=edxfvsxd−vEg. Because condition(51) is equiva-
lent to requiring ]ffABsf0,c0,Td=0, under this condition
fABsf0,c0,Td is independent ofx and equals its bulk phase
valuesfnscn ,Td. Since the latter enter the expression for the
equilibrium grand potentialvE as given by Eq.(38), the
contribution of fAB to vsxd−vE is zero. Thus, only the two
other interface terms in Eq.(29) contribute. Taking into ac-

count that both contribute the same amount(equipartition
relation), we havevsxd−vE=Hf1−f0sxd2g2/2, and hence
the surface tension is

g = IWH s55d

with I =2Î2/3. As in the sharp-interface model of Sec. II,g
is independent of solute concentration and temperature. Let
us stress again that this property is only achieved if condition
(51) is satisfied. Otherwise, Eq.(55) is replaced by a more
complicated expression which contains the impurity concen-
tration, and which needs in general to be calculated numeri-
cally. A drawback of this more complicated expression is that
the dependence ofg on concentration along the interface
cannot be chosen independently of the value ofW. This fea-
ture leads to an unphysically large variation ofg with con-
centration for computationally tractable mesoscopic values
of W. Equation(55) yields a concentration-independent ex-
pression forg that is free of this limitation. Moreover, the
fact that the equilibrium profile remains a hyperbolic tangent
for arbitrary values of the concentration makes the relation-
ship between phase-field and sharp-interface parameters ob-
tained from the thin-interface analysis independent of the
value of the local concentration. This, in turn, avoids spuri-
ous kinetic corrections that are present otherwise.

Once we have found a convenient relation betweeng̃sfd
and ḡsfd, we come back to the complete dynamical model.
The relations we have found in equilibrium can now be used
to obtain two particularly simple forms of the phase-field
equationout of equilibrium. For the first, we remark that Eq.
(51) implies that g̃8sf0dcls1−kd=−ḡ8sf0dln kc0, and there-
fore the functiong̃ can be eliminated in favor of the phase-
dependent equilibrium concentrationc0sf ,Td and the func-
tion ḡ. Dividing Eq. (31) by H, we obtain

t
]f

]t
= W2¹2f + f − f3

+
RTmsT − Tmd

2v0Hm
ḡ8sfd ln kFc − c0sf,Td

clsTd G , s56d

with t=1/fKfsTdHg; the driving force is the local supersatu-
ration. The temperature dependence oft will be addressed
later in Sec. IV C.

The second possibility is to rewrite the phase-field equa-
tion in terms of the dimensionless variable,

u =
v0

RTm
sm − mEd

= lnsc/cl
0d −

ln k

2
fḡsfd + 1g

= lnS 2c

cl
0f1 + k − s1 − kdg̃sfdg

D , s57d

which measures the departure of the chemical potential from
its valuemEsT0d for a flat interface at the equilibrium liquidus
temperatureT0 [and liquid concentrationcl

0=clsT0d]. Then, it
is preferable to eliminateḡsfd in favor of g̃sfd. The result is
the form used in Ref.[19],
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t
]f

]t
= W2¹2f + f − f3 −

l̃

1 − k
g̃8sfdSeu − 1 −

T − T0

mcl
0 D ,

s58d

where we have defined the constant

l̃ =
RTms1 − kd2cl

0

2v0H
=

LDT0

2HTm
, s59d

where we recall thatDT0= umus1−kdcl
0 is the freezing range.

Note that the parameterH can be expressed in terms of the
surface tension,H=g / sIWd. Then, we have

l̃ = IDT0W/s2Gd, s60d

whereG is the Gibbs-Thomson constant of Eq.(16). There-

fore, up to numerical constants,l̃ is the dimensionless ratio
of interface thickness times freezing range and the Gibbs-
Thomson constant. It is immediately clear that a variation of

the interface thickness corresponds to a change inl̃.

B. Nonvariational formulations

In spite of the theoretical appeal of a variational formula-
tion, relaxing the requirement that both Eqs.(31) and (32)
derive from a single functionalF yields more flexibility. In
particular, this extra freedom can then be used to cancel out
spurious effects.

1. Nonvariational formulation without antitrapping current

In the last form proposed in the previous section, the in-
terpolation functiong̃sfd enters the model not only in the
evolution equation for the phase field[Eq. (58)], but also in
that for the impurity, Eq.(32), through the change of variable
Eq. (57). Whereas the conditiong̃8s±1d=0 is necessary in the
equation of motion forf to ensure thatf= ±1 are the equi-
librium solutions for arbitraryu andT, no such condition is
needed in the equation for the impurity. This suggests replac-
ing g̃sfd in the definition ofu, Eq. (57), by another function
hsfd which does not necessarily satisfyh8s±1d=0, but still
has the same limitshs±1d= ±1,

u = lnS 2c

cl
0f1 + k − s1 − kdhsfdgD . s61d

Thus, the equilibrium properties derived in the preceding
section are preserved; note, however, that the equilibrium
concentration profile c0sfd is modified becausehsfd re-
places g̃sfd in Eq. (54), yielding c0sfd=cl

0f1+k−s1
−kdhsfdg /2. In practice, this allows the simple choicehsfd
=f, for which the equilibrium concentration profile has the
lowest possible gradients, and convergence of the simula-
tions can hence be achieved for a coarser mesh[13].

2. Nonvariational formulation with antitrapping current

Albeit now hsfd and q̃sfd are completely free functions
which purely need to interpolate from +1 to −1 and from 0
to 1, respectively, this does not yet provide enough freedom

to cancel the three spurious effects mentioned in the Intro-
duction. To achieve this goal, we add an extra term in the
model equations to specifically cancel one of them. The extra
interpolation function contained in this new term provides
the necessary third degree of freedom to make all three ef-
fects vanish.

We specifically target the solute trapping effect. This oc-
curs when solute atoms or molecules cannot escape the ad-
vancing solidification front fast enough to maintain local
equilibrium at the interface. The characteristic interface ve-
locities where solute trapping becomes important can be es-
timated by comparing the time of advance by one interface
thickness,W/V, and the time it takes for the solute to diffuse
through the interface,W2/D. The result isV,D /W, and
hence the critical speed depends on the interface thickness.
Since we ultimately want to simulate solidification with dif-
fuse interfaces that are orders of magnitude larger than the
real solid-liquid interfaces, solute trapping sets in for much
lower speeds than in reality.

To eliminate this interface-thickness effect, we introduce
a supplementary current in the equation for the solute con-
centration, theantitrapping current. Its purpose is to trans-
port solute atoms from the solid to the liquid. Therefore, it
has to fulfill a number of properties. First, it must be propor-
tional to the speed of the interface, and hence to]tf. Next, it
must be directed from the solid to the liquid, that is, along
the unit normal vectorn̂, which in terms of the phase field

can be expressed asn̂=−¹W f / u¹W fu (up to higher-order cor-
rections in the interface thickness). Furthermore, it must be
proportional to the interface thicknessW, and to the local
concentration difference between solid and liquid. In con-
trast, we do not knowa priori the profile of the current
function through the interface. The time derivative of the
phase field]tf is sensibly different from zero only in the
interface regions and induces a certain antitrapping current
profile. Additional freedom may be gained by allowing for a
shape functionasfd that must be appropriately chosen in
order to obtain the correct thin-interface limit. As we shall
see, choosingasfd constant suffices to eliminate all spurious
effects for the simplest choice of the functionshsfd and
q̃sfd.

In summary, we write

jWat = asfdWs1 − kdcl
0eu]f

]t
n̂ = − asfdWs1 − kdcl

0eu]f

]t

¹W f

u¹W fu
,

s62d

and the equation for the concentration becomes

]c

]t
= ¹W · fDq̃sfdc¹W u − jWatg. s63d

Note that the latter no longer derives from a functionalF,
even if such a functional is allowed to be different from that
giving rise to the equation of motion forf.
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3. Formulation in terms of dimensionless supersaturation and
relation with the pure substance model

It turns out to be advantageous for the subsequent
asymptotic analysis to make another change of variables in
order to bring the equations in a form that is close to those
analyzed in Refs.[13,18]. To this end, we introduce the
diffuse-interface extensionUsfd of the dimensionless super-
saturationU in Eq. (25), now defined in the whole system,

U =
eu − 1

1 − k
. s64d

Furthermore, we fix now the interpolation functiong̃ to be

g̃sfd =
15

8
Sf −

2f3

3
+

f5

5
D , s65d

define new interpolation functions

qsfd = q̃sfd
1 + k − s1 − kdhsfd

2
, s66d

gsfd =
8

15
g̃sfd = Sf −

2f3

3
+

f5

5
D , s67d

and transform the equation forc into one forU. Taking into
account that Tszd=T0+Gsz−Vptd and the temperature-
dependent relaxation timet=t0f1−s1−kdsz−Vptd / lTg dis-
cussed later in Sec. IV C, the final set of equations is

t0F1 − s1 − kd
z− Vpt

lT
G ]f

]t

= W2¹2f + f − f3 − lg8sfdSU +
z− Vpt

lT
D , s68d

S1 + k

2
−

1 − k

2
hsfdD ]U

]t

= ¹W ·SDqsfd¹W U + asfdWf1 + s1 − kdUg

3
]f

]t

¹W f

u¹W fu
D + f1 + s1 − kdUg

1

2

]hsfd
]t

, s69d

where

l =
15

8
l̃. s70d

With these choices, the phase-field equation[Eq. (68)] be-
comes identical to the one analyzed in Ref.[13]. One impor-
tant advantage of this formulation is that the special case of
a constant concentration jump can be recovered without any
difficulty by settingk=1, whereas in the formulation with the
variableu, the limit k→1 has to be treated with some care.
Hence, the model of Ref.[18] is contained as a special case
of Eqs.(68) and (69), for k=1.

IV. THIN-INTERFACE ANALYSIS

A. Introductory remarks

The goal of the matched asymptotic analysis is to relate
the phase-field model[Eqs.(68) and(69)] to a free-boundary
problem. In particular, we would like to recover that of Eqs.
(26)–(28). The principle is to choose the interface width
much smaller than any physically relevant length scale. This
difference in scale can be exploited for a perturbation expan-
sion, in which the solution on theouter scaleof the transport
field is first assumed to be known. For a given point of the
interface, this fixes the local velocity and curvature. The re-
action of the diffuse interface to this “forcing” can then be
calculated on theinner scaleof the interface width, which
yields a boundary condition for the diffusion field on the
outer scale. The matching of both solutions then provides the
link between “outer”(physical) and “inner” (phase-field) pa-
rameters.

Two different perturbation schemes have been used. The
“classic” one, developed by Langer, Caginalp, and others,
uses the ratio of interface thickness and capillary length,e
=W/d0, as an expansion parameter. Later, Karma and Rappel
remarked that the physically relevant length scales for the
outer problem are not the capillary length, but rather the
diffusion lengthD /V or a local radius of curvaturer. Calcu-
lations performed with the expansion parameterp=WV/D
for the symmetric model of solidification[Ds=Dl, or qsfd
=1] yield, to first order inp, a new expression for the inter-
face kinetic coefficient that contains a finite-interface thick-
ness correction. This has allowed a tremendous gain in cal-
culation power, since much largerW, includinge@1, can be
used. It was also shown that this correction can be obtained
in a second-order expansion ine [13,18].

Here, we will follow the classic scheme and present the
asymptotic analysis for our model up to second order ine.
While e is not necessarily small, this method yields all im-
portant correction terms at second order, while other schemes
need to include some third-order terms. The reasons for this,
as well as the conditions of convergence of the expansion in
e, can be better appreciated in light of the formal results
given below, and a discussion of these points is therefore
deferred to Sec. IV D.

To perform the analysis, it is advisable to use a dimen-
sionless version of the equations. We will use as unit length
the capillary lengthd0 and as unit timed0

2/D. Without loss of
generality, we sett=0 (which amounts to a shift of reference
frame) such that the termVpt drops out. Furthermore, we
remark that from the definitions of Eqs.(21), (60), and(70),
we obtain

d0 = a1
W

l
s71d

with a1= I /J, where J=gs+1d−gs−1d. For our choices of
functions, I =2Î2/3 and J=16/15, such thata1=5Î2/8.
Therefore,l can be eliminated from the equations in favor of
a1e. The result reads

ae2]tf = e2¹2f − f8sfd − a1eg8sfdsU + nzd, s72d
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S1 + k

2
−

1 − k

2
hsfdD]tU

= ¹W ·Sqsfd¹W U + easfdf1 + s1 − kdUg
]f

]t

¹W f

u¹W fu
D

+ f1 + s1 − kdUg
]thsfd

2
, s73d

where we have introduced the dimensionless parametersn
;d0/ lT and a;Dt /W2, and defined the double-well func-
tion f =−f2/2+f4/4. We will assume thate is the only small
parameter and consider all other parameters ofOs1d. Note
that n=d0/ lT is a physical parameter that is typically small,
but independent of the computational parametere, and there-
fore n=Os1d. The parametera depends on the choice oft;
we consider it to be ofOs1d in order to avoid neglecting any
important terms. Our conclusions remain valid ifa is of
order e or smaller. Furthermore, for the sake of simplicity,
we will assumet to be a constant, and discuss the inclusion
of its temperature dependence later on.

For comparison, we also adimensionalize the free-
boundary problem we would like to recover, Eqs.(26)–(28),
using the above rescaling of space and time,

]tU = ¹2U sliquidd, s74d

f1 + s1 − kdUgvn = u − ]nUu+ sinterfaced, s75d

U = − k − b̃vn − nz sinterfaced, s76d

wherek=d0K and vn=d0Vn/D are the dimensionless inter-

face curvature and normal velocity, andb̃=bD /d0 is the di-
mensionless kinetic coefficient. In the following, we will
show how to recover this model as closely as possible by
choosing specific forms for the functionsqsfd, hsfd, and
asfd.

B. Matched asymptotic expansions

We make a perturbation analysis in powers ofe in the
inner region,

f = f0 + ef1 + e2f2 + ¯ , s77d

U = U0 + eU1 + e2U2 + ¯ , s78d

and similarly in the outer region,f̃=f̃0+ef̃1+¯, Ũ=Ũ0

+eŨ1+¯. In the outer region, Eqs.(72) and (73) can be
expanded in powers ofe in a straightforward manner. Since
we haveg8s±1d=0, f̃= ±1 are stable solutions for the phase-
field equations to all orders ine for any value ofU and z.
Therefore, the outer solution for the phase field is simply a

step function, and the fieldŨ obeys the diffusion equation to
all orders,

]tŨ = qs±1d¹2Ũ, s79d

where we recall thatqs1d=0 andqs−1d=1 for the one-sided
model. Also, note that the local equilibrium condition for the

concentrations will be satisfied at all orders to whichŨ is
continuous across the interface.

In the dimensionless equations, the Laplacian of the phase
field comes with a prefactore2, which leads to the two dis-
tinct constantf solutions in the outer region on the two sides
of the interface. In the inner region, the phase field varies
smoothly. Equation(72) tells one that, fore→0, this is only
possible if such a variation takes place precisely on a scale of
Osed, which renders¹2f=Ose−2d and invalidates the count-
ing of orders used above. To compute the inner solution, we
therefore must rescale the coordinate normal to the interface.
We introduce the curvilinear coordinates in the reference
frame of the interfacer (signed distance to the level linef
=0) and s (arclength along the interface), and define the
rescaled coordinateh; r /e. Standard formulas of differen-
tial geometry yield(see, e.g.,[26])

]t = − e−1vn]h + dt − vt]s + Osed,

¹2 = e−2]h
2 + e−1k]h − k2h]h + ]s

2 + Osed,

¹W · sq¹W d = e−2]hsq]hd + e−1kq]h − k2qh]h + ]ssq]sd + Osed,

z= zi + esn̂ · ẑdh,

−
¹W f

u¹W fu
= n̂f1 + Ose2dg + ŝOsed,

¹W ·aW = e−1]hsn̂ ·aWd + ]ssŝ ·aWd + kn̂ ·aW + Osed,

whereaW is an arbitrary vector function of the fields,vnsvtd
are the dimensionless normal(tangential) velocity of the in-
terface,zi its dimensionlessz position, anddt is the time
derivative at fixedr ands.

Since changes in the arclengths amount to a reparametri-
zation, we neglect terms invt without loss of generality. We
will also neglect the operatorsdt. This amounts to the as-
sumption that the interface follows adiabatically the changes
in the forcing. For the phase fieldf, this approximation is
always justified, since this field has an approximately station-
ary kink shape moving with the interface(this will be explic-
itly checked by computingf at lowest order ine, which
turns out to be a function ofh only). For the diffusion field
U, it can be seen from Eq.(76) that dtUÞ0 originates from
variations with time of the interface curvature, velocity, and
position. The variations of the latter occur generally on the
slow time scale of solute redistribution transients,D /Vp

2, and
are therefore negligibly small. The characteristic time scale
for variations of the curvature and velocity isR/Vn, where
R=1/K is the local radius of curvature, since this is the time
the interface needs to move over a distance equal to the local
scale of the pattern. Therefore, the curvature and velocity

terms indtU are of ordervnksk+b̃vnd. Sincek andvn them-
selves are small quantities,dtU is much smaller than other
terms of ordervnk which will appear in the calculation be-
low, and can hence safely be dropped.

We substitute the above expressions into Eqs.(72) and
(73) to obtain
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]h
2f − f8sfd + efsavn + kd]hf − a1g8sfdsU + nzidg

+ e2f]s
2f − k2h]hf − a1nsn̂ · ẑdhg8sfdg

= Ose3d, s80d

e−2]hsq]hUd + e−1HFvnS1 + k

2
−

1 − k

2
hsfdD + kqG]hU

+ vn]hhaf1 + s1 − kdUg]hfj −
vn

2
f1 + s1 − kdUg]hhJ

+ e0h]ssq]sUd − k2hq]hU + avnkf1 + s1 − kdUg]hfj

= Osed s81d

and solve them order by order ine. The matching to the outer
expansion is trivial forf since the outer solution is just a
step function. ForU, the matching conditions read

lim
h=±`

fuU0sh,sd − Ũ0u±ssdg = 0,

lim
h=±`

hU1sh,sd − fuŨ1u±ssd + uh]rŨ0u±ssdgj = 0,

lim
h=±`

hU2sh,sd − fuŨ2u±ssd + uh]rŨ1u±ssd + sh2/2du]r
2Ũ0u±ssdgj

= 0, s82d

where u± means that the outer field and its derivatives are
evaluated at the interface, coming from either the1 (liquid)
or the2 (solid) side. As a consequence,

lim
h=±`

]hU0sh,sd = lim
h=±`

]h
2U1sh,sd = 0,

u]rŨ0u±ssd = lim
h=±`

]hU1sh,sd,

u]rŨ1u±ssd = lim
h=±`

f]hU2sh,s,td − uh]r
2Ũ0u±ssdg. s83d

This matching will provide the boundary conditions on the
interface for the outer concentration. We now proceed to
solve the inner equations order by order.

1. Gibbs-Thomson relation

Equation(80) at ordere0,

]h
2f0 − f8sf0d = 0 s84d

yields, with the boundary conditionsf0→−1 for h→ +`
andf0→1 for h→−` set by the matching to the outer so-
lution, the zeroth-order solution

f0shd = − tanh
h

Î2
. s85d

In turn, Eq.(81) at ordere−2 becomes

]h„qsf0d]hU0… = 0, s86d

which can be integrated once to yieldqsf0d]hU0=A0ssd.
Taking the h→ ±` limit according to Eq.(83), we find
A0ssd=0, and therefore

U0 = Ū0ssd. s87d

To fix this constant, in turn, we consider Eq.(80) at ordere,

Lf1 = a1g8sf0dsU0 + nzid − savn + kd]hf0, s88d

whereL;]h
2 − f9sf0d is a linear differential operator. Since

the partial derivative with respect toh of Eq. (84) is
L]hf0=0, ]hf0 is an eigenfunction ofL with eigenvalue
zero. Therefore, the solvability condition for the existence of
a nontrivial solutionf1 reads

a1sŪ0 + nzidJ + savn + kdI = 0, s89d

where J;e+`
−`g8sf0d]hf0dh=gs+1d−gs−1d and I

;e−`
+`s]hf0d2dh. Since I and J are the same constants that

have been used to definea1= I /J, we obtain

Ū0 = − nzi − avn − k, s90d

which is identical to the Gibbs-Thomson condition of the

free-boundary problem, Eq.(76), with b̃; b̃0=a.
This is the “classic” result for the kinetic coefficient in the

sharp-interface limit. To obtain the thin-interface correction,
we repeat the same procedure at next order. Thanks to Eq.
(87), we can drop the terms in]hU0 arising in Eq.(81) at
ordere−1 to obtain

]hfqsf0d]hU1g = − vn]hhasf0df1 + s1 − kdU0g]hf0j

+
vn

2
f1 + s1 − kdU0g]hhsf0d, s91d

and integrate it once with respect toh to yield

qsf0d]hU1 = vnf1 + s1 − kdU0gfhsf0d/2 − asf0d]hf0g + A1ssd,

s92d

whereA1ssd is an integration constant. The latter can be fixed
by considering the limith→−`. In fact, the left-hand side
represents the diffusion current, which vanishes inside the
bulk solid. Since the antitrapping current must also vanish
andhs1d=1, we findA1ssd=−svn/2df1+s1−kdU0g. Substitut-
ing it back into Eq.(92), and integrating the latter once more
between 0 andh, we find

U1 = Ū1 +
vn

2
f1 + s1 − kdU0gE

0

h

p„f0sjd…dj, s93d

whereŪ1 is the value ofU1 at the interfacesh=0d, and

psf0d =
hsf0d − 1 − 2asf0d]hf0

qsf0d
. s94d

The profileU1 therefore depends on the choice of the func-
tions qsfd, hsfd, andasfd. Note that both the denominator
and the numerator tend to zero whenh→−`. It is important
here to remark that we need to requirepsfd→0 in this limit,
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since otherwiseU1 diverges, which makes a matching to the
outer solution(U is constant in the solid) impossible. In fact,
this property makes the standard asymptotic expansion in-
consistent. A careful analysis, carried out in Appendix A,
shows that in this case a term of orderp log p (with p
=WV/D the interface Peclet number) appears in the interface
kinetics, which makes the convergence of the model to the
sharp-interface limit very slow. This term appears, for ex-
ample, in the standard formulation of the one-sided model
that has been widely used[7,17]. In order to avoid this phe-
nomenon, we will require in the followingpsfd→0 for f
→1, that is, the numerator must vanish more rapidly than the
denominator.

Under this condition, we may fix the constantŪ1 by con-
sidering Eq.(80) at ordere2,

Lf2 =
f-sf0d

2
f1

2 − savn + kd]hf1 + a1g8sf0dU1

+ g9sf0df1a1sU0 + nzid + k2h]hf0

+ g8sf0da1nsn̂ · ẑdh, s95d

where we have used]sf0=0. In this expression appears the
first-order correction to the phase field,f1, which is the so-
lution of the differential equation obtained by substitution of
Eq. (89) into Eq. (88),

Lf1 = − savn + kdfa1g8sf0d + ]hf0g, s96d

with the boundary conditionsf1sh→ ±`d=0 imposed by
the matching to the outer solution. Clearly,f1 equalsavn
+k times a function only ofh, so that, when substituted into

Eq. (95), it would yield savn+kd2 contributions toŪ1. There
are essentially two ways to avoid this problem. The first
would be to chooseg such that

g8sf0d = − ]hf0/a1, s97d

which makesf1 vanish. For our standard quartic double-well
potential which yields]hf0=s1−f0

2d /Î2, the corresponding
g function is a third-order polynomial that has been widely
used. However, we have chosen here a different function,
and many calculations have also been performed with yet
other interpolation functions, so that this condition is too
restrictive. The second way out is to use the symmetry prop-
erties of the involved functions. For any symmetric double-
well function[that is,fs−fd= fsfd], the equilibrium profile is
odd in h, f0s−hd=−f0shd, and its derivative is even. Ifg is
chosen to be odd inf, gs−fd=−gsfd, then g8sf0d is also
even inh. Therefore, the entire right-hand side of Eq.(96) is
even. SinceL is also an even operator,f1 must be even, and
its derivative]hf1 odd. Given that the solvability condition
is obtained by multiplying the right-hand side of Eq.(95) by
]hf0, an even function, and integrating from −` to +`, the
contribution of all odd terms vanishes. The only remaining
one is the term that containsU1, and the solvability condition
reads

vn

2
f1 + s1 − kdU0gK − JŪ1 = 0, s98d

where we have expressedU1 according to Eq.(93), and

K =E
−`

+`

dh]hf0g8sf0dE
0

h

p„f0sjd…dj. s99d

To obtain the desired result, namely an expression forŨ1, let
us first remark that in the limith→`, Eq. (93) yields
]hU1=−vnf1+s1−kdU0g, which is just the Stefan condition
at lowest order. Using the matching conditions

limh→±`]hU1=]rŨ0u± andŨ1u±= limh→±`U1shd−h]rŨ0u±, we
obtain

uŨ1u± = − vnb̃1
±, s100d

b̃1
± = − f1 + s1 − kdU0g

JF± + K

2J
, s101d

F± ; E
0

±`

fpsf0d − psf±dgdh. s102d

Note thatU will be continuous across the interface up to

Osed if and only if F+=F−;F (and henceb̃1
+=b̃1

−). Since

Ũ=Ũ0+«Ũ1, the total kinetic coefficient is

b̃± = b̃0 + eb̃1
± = a − ef1 + s1 − kdU0g

K + JF±

2J
. s103d

The implications of this finding will be discussed below.

2. Mass conservation

As already mentioned before, Eq.(93) together with the

matching condition(83) yields ]rŨ0u−=0 and]rŨ0u+=−vnf1
+s1−kdŨ0g, which is just the Stefan condition at lowest or-
der. In order to evaluate eventual corrections, we proceed by
calculating the normal gradients at ordere using the match-

ing condition for]rŨ1u± in Eqs.(83). The quantity]r
2Ũ0u± can

be evaluated by remarking that the outer problem satisfies a
simple diffusion equation in a moving curvilinear coordinate

system, and thereforef]rr +svn+kd]r +]ssgŨ0=0, such that

]r
2Ũ0u±=−fsvn+kd]r +]ssgŨ0u±. To obtain]hU2shd, Eq. (81) is

evaluated atOse0d and integrated once from 0 toh,

qsf0d]hU2 + q8sf0df1]hU1 + kE
0

h

djqsf0d]jU1

+ vnE
0

h

djS1 + k

2
−

1 − k

2
hsf0dD]jU1 + vnha8sf0d

3f1f1 + s1 − kdU0g + asf0ds1 − kdU1j]hf0 + vnasf0d

3f1 + s1 − kdU0g]hf1 + vnkf1 + s1 − kdU0g

3E
0

h

djasf0d]jf0 −
vn

2
s1 − kdE

0

h

djU1]jhsf0d
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−
vn

2
f1 + s1 − kdU0gh8sf0df1 + ]ssŨ0E

0

h

djqsf0d

= A2ssd, s104d

whereA2ssd is an integration constant and we have taken into
account that]hU0=]sf0=0. Fortunately, we can drop many
terms of this long equation because we are only interested in
the limits h→ ±`. In this limit, f1 and ]hf0 are exponen-
tially small, such that all terms containing them can be
dropped, except when they appear under an integral. The
third term on the left-hand side of Eq.(104) [denoted “(3)” ]
can be rewritten using Eqs.(93) and (94) as

s3d =
kvn

2
f1 + s1 − kdU0gE

0

h

djfhsf0d − 1 − 2asf0d]jf0g,

s105d

and it can be seen that the part proportional toasf0d cancels
out with the seventh term on the left-hand side. The remain-
ing piece can be rewritten, using the Stefan condition to low-
est order, as

lim
h→±`

fs3d + s7dg = ukh]rŨ0u± +
kvn

2
f1 + s1 − kdU0g

3E
0

h

djfhsf0d − hs71dg. s106d

Next, the remaining terms that containh can be grouped and
integrated to yield

s4d + s8d = vnS1 + k

2
−

1 − k

2
hsf0dDU1shd. s107d

Using the matching condition forU1, limh→±`U1shd=Ũ1u±

+h]rŨ0u±, and the fact that limh→−`qsf0d]hU2=0, we can
obtain the constantA2 from the limit h→−` of the entire
Eq. (104),

A2 =
kvn

2
f1 + s1 − kdU0gE

0

−`

dhfhsf0d − 1g + vnkŨ1u−

+ ]ssŨ0E
0

−`

dhqsf0d. s108d

Next, limh→`qsf0d]hU2 is evaluated using the above result
for A2. Finally, with the help of the matching condition and

the expression for]r
2Ũ0u+, we obtain

u]rŨ1u+ = −
kvn

2
f1 + s1 − kdU0gsH+ − H−d − ]ssŨ0sQ+ − Q−d

− vns1 − kdŨ1u+ − vnksŨ1u+ − Ũ1u−d s109d

with

H± =E
0

±`

dhfh„f0shd… − hsf±dg, s110d

Q± =E
0

±`

dhfq„f0shd… − qsf±dg. s111d

The first two terms on the right-hand side of Eq.(109) are
the announced finite interface thickness effects associated
with interface stretching and surface diffusion; the third is
the expected first-order term that appears on the left-hand
side of the Stefan condition, Eq.(75); finally, the last one is
a correction associated with a jump ofU through the inter-
face. In total, the mass conservation condition for the outer

fields up to first order reads(recall thatŨ0=U0)

f1 + s1 − kdsŨ0 + eŨ1u+dgvn

= − ]rsŨ0 + eŨ1u+d + eHkvn

2
f1 + s1 − kdŨ0gsH+ − H−d

+ ]ssŨ0sQ+ − Q−d +
vn

2k

2
f1 + s1 − kdŨ0gsF+ − F−dJ .

s112d

C. Discussion

1. Physical interpretation of the corrections

There are three corrections ine to the classic free-
boundary problem. The term proportional toQ+−Q− de-
scribes the response of the interface to lateral concentration
gradients, caused by variations of the curvature or the growth
speed along the interface. For a diffuse interface, the result-
ing mass flow is smaller than in the bulk liquid on the liquid
side, but larger than in the bulk solid on the solid side. If the
two effects do not exactly compensate, a surface diffusion
term needs to be included in the Stefan condition. The con-
dition to make this correction vanish isQ+=Q−, which can
be shown to be exactly the same as Eq.(4) in the Introduc-
tion by taking into account thatqsfd= q̃sfdc0sfd /cl.

Next, the term proportional toH+−H− arises from the
source term in theU equation. If a positively curved inter-
face moves forward, the liquid side of the interface is slightly
longer than the solid side. Therefore, the source term on the
liquid side is active over a larger area than the one on the
solid side, and the integral of the source strength multiplied
by the area over which it is active is precisely given by the
differenceH+−H−. If this quantity is nonvanishing, the inter-
face acquires a “net impurity content,” that is, a source term
appears in the mass conservation condition when the length
of the interface changes, which is precisely the case if the
productvnk is nonzero. This is the interface stretching cor-
rection, which vanishes whenH+=H−. In terms of the con-
centration, this condition is identical to Eq.(5).

Finally, the last correction involves a macroscopic discon-
tinuity in U that is proportional to the velocityvn and to
F+−F−, and that appears in the boundary conditions at the
interface and in the Stefan condition, Eq.(112). This is the
solute trapping term: since the concentrations on both sides
of the interface vary with velocity, they do not satisfy the
partition relation cs=kcl out of equilibrium, or, in other
words, the solute rejection is velocity-dependent. SinceU
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can be assimilated to a chemical potential, its jump can be
interpreted as resulting from a finite interface mobility that
leads to interface dissipation. Note that both analogies are
limited: whereas a “physical” dissipation is necessarily posi-
tive, the differenceF+−F− here can have either sign, depend-
ing on the choice of the interpolation functions. Without the
antitrapping currentfasfd;0g, the conditionF+=F− that
makes this correction vanish is identical to Eq.(6) in the
Introduction.

2. Choice of functions

In order to make all three corrections cited above vanish,
we need to satisfy simultaneously three conditions, namely

F+ = F−, H+ = H−, Q+ = Q−. s113d

For fixed double-well and tilting functionsf andg, we have
at our disposal three interpolation functions: the diffusivity
qsfd, the source functionhsfd, and the antitrapping current
profile asfd. The new element here is the antitrapping cur-
rent. If it is absent, only two interpolation functions are
available. It is then, of course, easy to satisfy two out of the
three conditions. For example, choosingh odd in f and
qsfd=1−qs−fd, respectively, will automatically satisfy the
interface stretching and surface diffusion conditions. How-
ever, as already discussed in the Introduction and also by
Almgren for a thermal model[18], all three of them can be
satisfied only for a weak contrast in the bulk diffusivities,
which of course excludes the one-sided case of interest here.
The problem is that, in order to satisfy the integral conditions
shown above, the interpolation functions need to be nonmo-
notonous or even to change sign, which leads to strong
higher-order correction terms or even to the emergence of
singularities.

It is interesting to note here why the corrections to the
Stefan condition, namely interface stretching and surface dif-
fusion, which were not computed in Ref.[13], vanish for the
symmetric model of solidification,qsfd=1, asfd;0. Obvi-
ously, surface diffusion does not arise for a constantqsfd.
But, furthermore,psfd reduces tohsfd−1, and therefore the
two conditionsF+=F− and H+=H− become identical, such
that the “miraculous” choice ofhsfd odd inf which ensured
F+=F− in Ref. [13] also cancels the interface stretching cor-
rection.

The more involved one-sided case is cured with the help
of the antitrapping current, which offers an additional degree
of freedom to satisfy the third condition. The only place
where the functionasfd appears in the final results of the
matched asymptotics is in the first-order concentration pro-
file U1, and more precisely in the functionpsfd=fhsfd−1
−2asfd]hf0g /qsfd. A suitable choice for the functionasf0d
can be obtained by a simple analogy with the symmetric
model of solidification. For the standard choicesasfd;0
andhsfd=f, we havepsfd=f−1. Thesamefunction psfd
can be recovered in the one-sided case if we choose

qsfd = s1 − fd/2, s114d

hsfd = f, s115d

asfd =
1

2Î2
, s116d

since we can exploit the fact that]hf0=−s1/Î2ds1−f0
2d.

Then, all the solvability integrals are identical to those cal-
culated in Ref.[13] for the symmetric model in the isother-
mal variational formulation.

Essentially, this “trick” solves the problem because it
makes the two conditionsF+=F− and H+=H− identical, as
for the symmetrical model. The same strategy can be applied
to obtain other possible phase-field formulations. For any
“source function”hsfd and diffusivityqsfd, the equivalence
to the analogous symmetric model can be obtained by requir-
ing psfd=hsfd−1, which yields

asfd =
fhsfd − 1gf1 − qsfdg

Î2sf2 − 1d
. s117d

For example, the functionU1 of the symmetric model in the
variational formulation of Ref.[13], which uses hsfd
= g̃sfd=15sf−2f3/3+f5/5d /8, can be recovered forqsfd
=s1−fd /2 by

asfd =
fs3f3 − 7fdsf + 1dg/8 + 1

2Î2
. s118d

Since this model is known to be less efficient, we have not
investigated this alternative further.

3. Kinetic coefficient

For low-speed solidification, kinetic effects are usually
negligibly small, and therefore we want to make the kinetic
coefficient vanish. This is possible because it consists of two
contributions of opposite signs. Converting Eq.(103) back to
dimensional units, we find(in the following, we will assume
F+=F−;F)

b = a1
t

lW
H1 − a2

lW2

tD
f1 + s1 − kdU0gJ , s119d

a2 =
K + JF

2I
. s120d

For k=1 (constant concentration jump), this is identical to
the expression for the symmetric model, andb=0 can be
achieved by choosingl=stDd / sa2W

2d. For kÞ1, the kinetic
coefficient depends onU0, the average value ofU in the
diffuse interface. The physical meaning of this dependence
can be understood as follows. The second term in the expres-
sion forb arises from the additional driving force supplied to
the interface by the redistribution of solute inside the diffuse
interface. ForkÞ1, the amplitude of this redistribution de-
pends on the local state of the interface, since the concentra-
tion jump depends on temperature, curvature, and kinetics.
To see this, recall thatU0=−zi / lT−d0K−b0Vn, where b0
=a1t / slWd, according to the dimensional version of Eq.
(90), and furthermore thatcl /cl

0=1+s1−kdU, and the con-
centration jump from solid to liquid iscls1−kd.

As a consequence, the interface kinetics depends on the
local geometry and velocity of the interface, and it is not
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possible to makeb completely vanish by the same choice as
before. Among the correction terms,d0K andb0Vn are usu-
ally small, but no general statement can be made about the
magnitude ofzi / lT. Two strategies are possible to tackle this
problem. The first is to choose a temperature-dependent
phase-field relaxation time,

t = t0f1 − s1 − kdz/lTg. s121d

This does not change the asymptotic analysis for thef equa-
tion since thez-dependent part does not contribute to the
solvability conditions. It is sufficient to replacet by Eq.
(121) in Eq. (119). With the usual choicel=st0Dd / sa2W

2d,
the residual kinetic coefficient is

b = b0s1 − kdsd0K + b0Vnd, s122d

with b0=a1t0/ slWd. The temperature dependence is elimi-
nated, but curvature and velocity corrections tob remain.

The second strategy is to introduce aU-dependent phase-
field relaxation time,

t = t0f1 + s1 − kdUg. s123d

The idea is to make both terms of Eq.(103) contain the same
prefactor f1+s1−kdU0g such that the compensation of the
two terms is independent ofU0. This time, the solvability
conditions forf1 and f2 are modified. The former yields a
new expression forU0,

U0 =
− nzi − avn − k

1 + avns1 − kd
. s124d

Equation(98), which yieldsŪ1, becomes

a1Hvn

2
f1 + s1 − kdU0gK − JŪ1J − avns1 − kdf1 + s1 − kdU0g

3HIŪ1 −
vn

2
f1 + s1 − kdU0gK8J = 0, s125d

where the new solvability integral,

K8 = −E
−`

`

dhs]hf0d2E
0

h

p„f0sjd…dj, s126d

equalsK8=0.1869 for the choice of interpolation functions
given above. A straightforward calculation yields

Ū1 =
vn

2
f1 + s1 − kdU0g

K

J

3H1 + avns1 − kdf1 + s1 − kdU0gfK8J/sKIdg
1 + avns1 − kdf1 + s1 − kdU0g J .

s127d

An expansion of this result invn shows that the leading-order
prefactors of the two terms inb originating fromU0 andU1
are indeed the same. Furthermore, it can be seen that all
higher-order corrections are proportional toavns1−kd
=b0Vns1−kd=fa1t0/ sWldgVns1−kd. As long as this quantity
is much smaller than unity, the resulting residual kinetics
should be small.

D. Limits of validity and expansion parameters

In the numerical calculations presented below, we obtain
converged quantitative results for values ofe=W/d0 much
larger than unity, even though we have usede as a small
expansion parameter in the thin interface analysis. This
raises the following question: what is the domain of validity
of this expansion? A rigorous answer to this question would
in principle require us to carry out the expansion ine at one
more order to determine when the additional corrections to
the boundary conditions are negligible for a given set of
growth conditions. This represents a formidable analytical
task that is beyond the scope of this work. We can, however,
use dimensional arguments to place bounds on the validity of
the thin interface analysis. We shall conclude from the fore-
going arguments thate need not be small for this analysis to
be valid, consistent with the numerical findings;W only
needs to be smaller than a characteristic lengthlc@d0, which
depends generally on the growth conditions.

The expansion defined by Eqs.(77) and(78) assumes that
e is small and that the functionsfn andUn are of order unity.
The magnitudes of the functionsUn, however, are not known
without specifying the outer problem. For typical growth
conditions, the variation of concentration along the interface
due to capillarity and interface kinetics is small. In particular,
the velocity-dependent form of the Gibbs-Thomson condi-
tion implies thatuU+nzu!1 in the diffuse interface region as

long ask+b̃vn!1, and that therefore the right-hand side of
Eq. (72) contains small terms other thane. To define a dif-
fusion field that is of order unity in the interface region,
consistent with the choice ofe as a small expansion param-
eter, one would need to rescale the combinationU+nz inside
the interface by some characteristic mean interfacial value of

the diffusion field,Ū, which depends on the outer solution.
This procedure, however, does not change the results of the
asymptotic analysis because it amounts to a simple change of
variable. For convenience, we have therefore opted to keep
the expansion parametere, which is independent of the outer
solution. It is clear from the above arguments, however, that
this expansion is valid as long as

eŪ ! 1. s128d

SinceŪ is typically small,e need not be small for the ex-
pansion to be valid.

To make Eq.(128) more transparent, it is useful to reex-
press this constraint in terms of the interface velocityVn and
the local radius of curvatureR. Up to coefficients of order
unity, which we do not consider, and assuming that the ve-

locity is positive, it follows dimensionally thatŪ,uU+nzu
,d0/R+bVn+WD/Vn, where d0/R and bVn are capillary
and kinetic corrections originating from the velocity-
dependent form of the Gibbs-Thomson condition, and
WD/Vn originates from solute diffusion in the diffuse inter-

face region. The producteŪ is therefore of orderW/R
+bVnW/d0+W2Vn/ sd0Dd. In terms ofe, the dimensionless

kinetic coefficientb̃, and the Peclet numberp, Eq. (128) can
be rewritten as
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W/R+ psb̃ + ed ! 1. s129d

The same estimation can be obtained directly from the ex-
pressions forU0 and U1 calculated above. Convergence is
hence limited by two independent conditions, linked to the
local curvature and velocity, respectively. The first condition,
W/R!1, states that the interface thickness must be much
smaller than the local radius of curvature. The interpretation

of the second condition,psb̃+ed!1, depends on the physical
value of the kinetic coefficient to be simulated. In the present
work, we focus on the limit of vanishing kinetic effects rel-

evant for small growth velocitysb̃=0d, which is achieved by
setting t,lW2/D. Therefore, the limiting condition ispe
!1, which can also be rewritten astVn/W!1. In practice,
we found that the convergence starts to break down for
tVn/W,0.2 or W/R,0.2, although occasionally slightly
larger values oftVn/W could be used.

Defining the diffusion lengthl =D /Vn, Eq. (129) can also
be rewritten in the formW/,c!1, where ,c;d0/ sd0/R

+bVn+W/ ld. This shows that the true small parametereŪ
can always be expressed as the ratio ofW and some charac-
teristic length scale,c which is much larger thand0 and
which depends on the imposed growth conditions.

Finally, it is in principle possible to use the interface Pe-
clet numberp=WV/D as a small expansion parameter in the
thin-interface analysis, as for the solidification of pure melts
with symmetrical diffusion[13]. However, this choice is not
optimal for the case of asymmetrical diffusion considered
here for technical reasons. In particular, the interface stretch-
ing and surface diffusion terms appear at second order and
third order, respectively, in an expansion inp. In contrast,
they both appear at second order in thee expansion. There-
fore, the latter is preferable for clarity of exposition, with the
caveat that it is necessary to consider the outer region to
obtain the true condition of validity of this expansion ex-
pressed by Eqs.(128) and(129), or equivalently by the con-
dition W/,c!1.

E. Anisotropy

To include anisotropy, it is sufficient to proceed in the
standard manner, that is, makeW and t orientation-
dependent, as in Refs.[13,19],

Wsnd = Wassnd = Ws1 − 3e4dF1 +
4e4

1 − 3e4

s]xfd4 + s]yfd4

u ¹ fu4 G ,

s130d

tsnd = t0as
2snd. s131d

This modifies the Gibbs-Thomson condition so thatd0 in the
free-boundary problem is replaced byd0f1−15e4 coss4udg,
whereu is the angle between the interface normal and thez
axis. Here, it is understood thatt0 might be replaced by its
temperature- orU-dependent version. For the interface kinet-
ics, the orientation dependence appears together witht0 in all
the above results. Finally, note that the interface thickness
also appears as a prefactor in the antitrapping current. How-

ever, since the anisotropy ofW itself is small(recall that the
anisotropy of the capillary length is 15 times larger that the
one ofW for fourfold symmetry), only a small error will be
made if the actual orientation-dependent interface width is
replaced by its mean value in this term.

V. NUMERICAL TESTS

We have simulated the phase-field model of the direc-
tional solidification of a dilute binary alloy defined by the
anisotropic version of Eqs.(68) and(69) for parameters cor-
responding to the impure succinonitrile(SCN) alloy of Ref.
[27]. The alloy parameters together with the values of the
pulling speed and the temperature gradient are listed in Table
I. The chosen pulling speed is ten times the value for the
onset of the Mullins-Sekerka instability. For these param-
eters, the capillary length is several orders of magnitude
smaller than the thermal length or the diffusion length. Since
typical cell widths are,100 mm or ,104d0 and computa-
tions are only feasible if one cell width,102 grid points, we
are forced to use values ofW much larger thand0, typically
W/d0.10 to 100. We will see that, with the present phase-
field model, it is possible to obtain well-converged results
even with such largeW/d0 ratios.

To choose the phase-field model parameters, we first note
that the ratio of the capillary and thermal lengths,n=d0/ lT
=4310−5, and the dimensionless pulling speedvp=Vpd0/D
=4.16310−4 completely specify the interface evolution in
the sharp-interface equations. This can be seen by scaling
length and time in these equations byd0 and d0

2/D, respec-
tively. In the phase-field model, we have the additional
lengthW and converged results should be independent of the
ratio e=W/d0. Note that for anisotropic surface tension,
Wsnd=Wassnd with assnd given by Eq. (130). In a given
simulation, we fixe=W/d0 and hencel=a1e from Eq. (71).
Furthermore, we use a temperature- and orientation-
dependent relaxation timet as specified in the previous sec-
tion together with the relationt0=a2lW2/D, which makes
the interface kinetic coefficient vanish for all temperatures
and orientations, and we scale lengths byW and time byt0 in
the phase-field equations. The scaled phase-field equations

TABLE I. Parameters for the impure succinonitrile(SCN) alloy
system of Ref.[27] used in the phase-field simulations and corre-
sponding characteristic length scales for directional solidification.
The anisotropy of the interfacial free energy is taken to bee4

=0.007(0.7% anisotropy).

umuc` (shift in melting temperature) 2 K

D (diffusion coefficient) 10−9 m2/s

G (Gibbs-Thompson coefficient) 6.48310−8 K m

Vp (pulling speed) 32 mm/s

G (thermal gradient) 140 K/cm

d0 (capillary length) 1.3310−2 mm

lT (thermal length) 3.333102 mm

lD (diffusion length) 60 mm

k (partition coefficient) 0.3
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then only depend one through the dimensionless parameters

D̃=Dt0/W2=a1a2e, Ṽp=Vpt0/W=vpa1a2e2, and l̃T= lT/W
=1/send. Writing out explicitly all the interpolation func-
tions, and taking into account the contributions of the aniso-
tropic Wsnd in the functional derivative, the equations read

F1 − s1 − kd
z− Ṽpt

l̃T
Gassnd2]f

]t

= ¹W · fassnd2¹W fg + ]xSu¹W fu2assnd
]assnd
]s]xfd

D
+ ]ySu¹W fu2assnd

]assnd
]s]yfd

D + f − f3 − ls1 − f2d2

3SU +
z− Ṽpt

l̃T
D , s132d

S1 + k

2
−

1 − k

2
fD ]U

]t
= ¹W ·SD̃

1 − f

2
¹W U

+
1

2Î2
f1 + s1 − kdUg

]f

]t

¹W f

u¹W fu
D

+ f1 + s1 − kdUg
1

2

]f

]t
, s133d

where x and z are in units ofW and t is in units of t0.
Simulations are repeated with different values ofe to study
the convergence. The equations are discretized on a square
lattice; some details are given in Appendix B. We have used
a grid spacingDx/W=0.8 in most of the simulations, but we
also used a finer resolutionDx/W=0.4 to study the effect of
the discretization. For the time evolution, we have used an

explicit Euler scheme with a time step chosen below the
threshold of numerical instability for the diffusion equation
in two dimensions,Dt, sDxd2/ s4Dd.

A. Stability spectrum

We have numerically calculated the stability spectrum of
a planar steady-state interface. To this end, the system was
initialized with a planar interface at its steady-state position.
The concentration in the liquid was set to the exponential
steady-state solution of the free-boundary problem. A small
sinusoidal perturbation of amplitudeA!W and wave num-
berQ was then applied, and its time evolution was followed
by extracting successive interface positions. It follows an
exponential increase or decay,ext, and the growth ratexsQd
was extracted by a fit of the perturbation amplitude versus
time.

In Fig. 2, we compare the results from the numerical
simulations to the analytical solution for the Mullins-Sekerka
stability spectrum of the free-boundary problem of Eqs.
(74)–(76). The convergence is better for smaller wave num-
bers, which is perfectly reasonable since the ratio of pertur-
bation wavelength to interface thickness scales with 1/Q.

FIG. 2. Comparison between the linear stability spectrum of a
planar steady-state interface computed with the phase-field model
for different interface thicknesses(dot-dashed and dotted lines) and
the Mullins-Sekerka theory[24] (solid line). Here,x is the growth
rate of a sinusoidal perturbation of wave numberQ, and l =2D /Vp

is the diffusion length. The parameters are for an impure SCN alloy
system described in the text withVp=32 mm/s andG=140 K/cm.

FIG. 3. Convergence of the growth ratexsQd as a function of
W/d0 for (a) Ql=10.5, and(b) Ql=87.3. The dotted lines are the
predictions of the Mullins-Sekerka analysis.
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For W/d0=9.025, the phase-field model gives a good agree-
ment for almost the whole range of wave numbers, including
the maximum, which is the most important part of the spec-
trum. In Fig. 3, we plot the growth ratexsQd of two selected
modes versus the ratioW/d0, which shows a fast conver-
gence. ForDx/W=0.4, the results are fully converged to the
theoretical value forW/d0=4.51 even for the mode with high
wave number. It can also be seen that the larger grid spacing
of Dx/W=0.8 introduces slight corrections that are due to the
lattice pinning effect(see Ref.[13]).

B. Cell shapes

To asses the convergence of the models in the nonlinear
regime, we have computed shapes of steady-state cells for
various values ofW/d0. The simulation box contains half of
a cell, with no-flux boundary conditions along the cell center
and the groove. We have considered narrow cells of spacing
L=1732.83d0=22.5mm, since we want to test the conver-
gence of the model for small tip radii; in an extended system,
these cells would be unstable to a cell-elimination instability
that leads to a doubling of the cell spacing. As the initial

FIG. 4. Convergence of the shape of steady-state deep cells as a
function of interface thickness. Lengths are scaled by the cell spac-
ing L=22.5mm, Vp=32 mm/s, andG=140 K/cm.

FIG. 5. Convergence as a function of interface thickness of various quantities associated with steady-state cell shapes:(a) tip radiusr, (b)
dimensionless tip undercoolingV, and(c) solid concentration in the center of the cell. The diamonds(dashed line) in (c) correspond to the
values calculated from the Gibbs-Thompson condition using the tip radius of the phase-field shape. The inset shows the relative error of the
phase-field results with respect to the Gibbs-Thomson prediction.
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condition we setcl =c`, cs=kcl [which, with the definitions
of Eqs. (61) and (64) and usingcl

0=c` /k, corresponds toU
;−1 in the whole system], and add a small sinusoidal per-
turbation to the interface, with a wavelength equal to the cell
spacing and its maximum located on the boundary. After a
transient where the interface recoils, it reaches steady state in
the form of a half-cell.

The resulting shapes are shown in Fig. 4. For the cell
shapes, the convergence is faster than for the growth rate,
and already simulations withW/d0.50 are well converged.
To show more clearly the difference in the speed of conver-
gence, we plot in Fig. 5 the tip radiusr /d0, the tip under-
coolingV=1−ztip / lT (wherez=0 corresponds to the position
of the steady-state interface), and the solute concentration in
the solid in the center of the cell. For the latter, we compare
the values that are directly obtained from the simulations
(that is, the value of the fieldU in the center of the
cell) to the value expected from the Gibbs-Thomson
condition and partition relation at the interface,cs

th/cl
0

=kfk+s1−kdsV−d0s1−15e4d /rdg, where the values ofV and
r are obtained from the numerical results[Figs. 5(a) and
5(b)]. Again, all the quantities are well converged forW/d0
.50, and even for the ratioW/d0=72.2 (corresponding to
r /W.4), the error in the tip radius for the phase-field model
is only about 15%, while the equilibrium solute concentra-
tion condition at the interface is satisfied within an error of
about 1%. The error in this latter condition is small, even for
the largest values ofW/d0 used[Fig. 5(c)]. Since microseg-
regation is important for metallurgy, the precise calculation
of the solute concentration in the solid is an important new
feature of the present model.

VI. CONCLUSIONS AND PERSPECTIVES

We have presented a detailed asymptotic analysis of the
phase-field model for alloy solidification that was introduced
in Ref. [19], and we have simulated directional solidification
of a dilute binary alloy. We have found a very good quanti-
tative agreement with the Mullins-Sekerka stability spectrum
of a planar interface for typical experimental control param-
eters. For solidification cells, we found that the solute con-
centration inside the solid agrees self-consistently with the
prediction of the Gibbs-Thomson condition, in contrast to
earlier models where the microsegregation was only qualita-
tively reproduced[17].

This advance relies on a solution of the complete problem
of canceling all relevant thin-interface corrections to the
original free-boundary problem. This opens the way for
quantitative comparisons between experiments and simula-
tions both in two and three dimensions, with the concomitant
possibility of testing the theories and concepts used to inter-
pret microstructural pattern formation, as was previously
done for dendritic solidification.

The present work can be extended along several lines. For
example, it has been demonstrated that the concept of the
antitrapping current can be generalized to two-phase solidi-
fication, which makes it possible to study eutectic or peritec-
tic composite growth with excellent precision[28]. Also, the
present one-sided model can be combined with a symmetric

thermal model to yield a quantitative thermosolutal model of
solidification[29]. A small solute diffusivity in the solid can
also be introduced without appreciable modifications of the
present analysis. Finally, the antitrapping current, which was
used here to restore the equilibrium partition relation, can
also be used to obtain a nonvanishing, specified trapping.
This is especially important to extend this model to the
whole range of solidification velocity relevant for experi-
ments. In addition, the present model should be applicable to
model Hele-Shaw flows when the viscosity of one fluid is
much smaller than that of the other.

From a broader perspective, this progress revives the hope
of using the phase-field method as an efficient and fully pre-
dictive tool for other free-boundary and interface growth
problems where the dynamics of the two media are not nec-
essarily symmetric, even outside the framework of systems
described by a Lyapunov functional. A key element of this
progress is the use of nonvariational terms which provide
additional freedom to obtain the correct mapping between a
diffuse interface model and a desired free-boundary problem,
such as the antitrapping current here, and other terms in other
contexts[26]. It is important to emphasize that the interface
is spatially diffuse and all interpolation functions are smooth
in the present phase-field model. Hence, this model remains
simple to implement numerically, in comparison to other
methods that combine sharp and diffuse interface ingredients
[30,31].

Let us conclude with a few remarks on the formulation of
the model itself. The thermodynamic derivation presented
here, which is an alternative to previous expositions of the
same model[9], establishes new connections to other phase-
field models of alloy solidification. As mentioned before,
early phase-field models of alloy solidification were plagued
by a dependence of the surface tension on the interface thick-
ness that arose from the coupling between the phase-field
and concentration equations[7,8]. This problem was solved
later by the introduction of two separate concentration fields,
one for the solid and one for the liquid, and by interpreting
the interface as a mixture of two phases[10]. The require-
ment of local equilibrium between the two phases then al-
lows one to eliminate one of the concentration fields[11].
The resulting model has a surface tension that is independent
of the interface thickness and can be used for arbitrary phase
diagrams; however, some thin-interface effects remain, in
particular surface diffusion[11].

In our derivation, we have succeeded in constructing a
quantitative model for an ideal dilute binary alloy with a
single concentration field, but two different interpolation
functions of the phase field for entropy and internal energy
density. This is appealing from a thermodynamic viewpoint,
since it maintains the interpretation of the concentration as a
local quantity rather than a two-phase mixture. An interesting
task would be to generalize this approach to arbitrary phase
diagrams and multiphase solidification.
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APPENDIX A: SOLUTE TRAPPING

We give here a more detailed discussion of solute trapping
in a phase-field model without antitrapping current, and with
source and diffusion functions given byhsfd=f and qsfd
=s1−fd /2. We will see that in this model, logarithmic cor-
rections appear. This occurs whenever in the limitf→1 the
ratio sh−1d /q does not vanish(i.e., remains finite or di-
verges). Note that, in physical terms, the two functions de-
scribe the thermodynamic driving force for solute redistribu-
tion during the phase transformation and the diffusivity,
respectively. If the latter vanishes faster than the former, the
redistribution cannot be completely accomplished on the
solid side of the interface, and trapping occurs. We will now
analyze this effect in more detail.

Our starting point is Eq.(92) for the first-order diffusion
field in the inner region. Without antitrapping current, its
solution is

U1 = Ū1 +
vn

2
f1 + s1 − kdU0gE

0

h f0sjd − 1

qff0sjdg
dj, sA1d

which for the above choice of functions becomes

U1 = Ū1 − vnf1 + s1 − kdU0gh. sA2d

This solution, however, is not appropriate since it cannot be
matched to the outer solution in the solid, which for a steady
state is just a constant. The problem is that we have ne-
glected terms in Eq.(92) that, for this solution, would not be
small, which makes the calculation inconsistent. To see this,
it is sufficient to remark that both the diffusion term(propor-
tional to q) and the redistribution term(proportional toh
−1) become exponentially small inside the solid. In contrast,
for the above solution, the time derivative ofU1 (equivalent
to vn]h in the moving frame) gives a term of ordere in the
equation forU, and hence becomes larger than the two men-
tioned terms far enough in the solid, which violates the
counting of orders. In order to get a solution valid every-
where inside the solid, this term has to be included in the
equation forU1, which becomes

]hfqsf0d]hU1g =
vn

2
f1 + s1 − kdU0g]hf0

− evnS1 + k

2
−

1 − k

2
f0D]hU1. sA3d

By integrating once and using the boundary condition of
vanishing current in the solid[qsf0d]hU1→0 for h→−`],
we find

qsf0d]hU1 =
vn

2
f1 + s1 − kdU0gsf0 − 1d

− evnE
−`

h S1 + k

2
−

1 − k

2
f0sjdD]jU1sjddj.

sA4d

For the sake of simplicity, let us first discuss the casek
=1, in which the integral on the right-hand side is simply
equal toU1shd−U1s−`d. It can be seen immediately that this
equation admits a solution that has the right limit,]hU1→0
for h→−`. We proceed by constructing an approximate so-
lution by a matching procedure. First, remark that the left-
hand side of Eq.(A4) is the product of two functions that
vanish in the limith→−`. Hence, it can be neglected in this
limit, and the asymptotic solution is

U1shd = U1s− `d +
1 + s1 − kdU0

2e
sf0 − 1d. sA5d

In contrast, in the region of the interface, the newly intro-
duced term, being of ordere, is small, which was precisely
the reason to neglect it in the usual calculation. Therefore, in
this region the solution of Eq.(A2) applies. Finally, a match-
ing between the two solutions is found by searching the co-
ordinateh! where their slopes are equal, which, using the
fact thatf0=−tanhsh /Î2d, yields

h! = − Î2 cosh−1 1

Î2Î2evn

. sA6d

In the limit of small velocity vn, this simplifies to h!

=s1/Î2dlnsevn/Î2d. It can be checked that, in the matching
region, the two terms(diffusion and time derivative) are of
similar magnitude, which justifies the matching procedure.

We have hence constructed an approximate solution,
which is equal to the one obtained from the standard proce-
dure for h.h!, and becomes a decaying exponential forh
,h!. Evaluating the solvability integrals with this solution,
we find, for example,

F− = U1s− `d − U1s0d

=
vn

2Î2
f1 + s1 − kdU0gf1 − 2 lnsevn/Î2dg. sA7d

Similar terms appear also in the integralK. Using the identity
evn=sW/d0dsVnd0/Dd=p, we find that the kinetic coefficient
contains, in addition to the usual terms linear inp, correc-
tions coming fromeF− that scale asp ln p. This constitutes,
for smallp, a logarithmic correction that makes convergence
in p very slow.

This calculation is an approximation, but the conclusion
that there are nonlinear correction terms is general, and can
be easily interpreted: the anomalous kinetics occurs because
solute can escape only from a region of sizeh! behind the
interface, and this size scales logarithmically withVn (and
hencep) in the limit of small p. In this limit, the case of
arbitraryk can be easily treated and yields corrections of the
form p lnskpd. Note also that for a more realistic model in
which the diffusivity becomes small but finite in the solid,

QUANTITATIVE PHASE-FIELD MODEL OF ALLOY … PHYSICAL REVIEW E 70, 061604(2004)

061604-21



the anomalous dependence of the kinetics onvn stops for
vn,qs+1d.

APPENDIX B: DISCRETIZATION

The phase-field and diffusion equations are discretized on
a square grid of spacingDx. We use standard finite-
difference formulas, but a few details are worth mentioning.

For the Laplacian of the phase field, we use the maxi-
mally isotropic discretization,

¹2fi,j = 2
3ffi+1,j + fi−1,j + fi,j+1 + fi,j−1 + 1

4sfi+1,j+1 + fi−1,j+1

+ fi+1,j−1 + fi−1,j−1d − 5fi,jg/sDxd2, sB1d

which avoids the grid corrections to the anisotropy that are
discussed in Ref.[13].

For the diffusion fieldU, we proceed by first calculating
the current in each link, and then summing up all links
around a site. On each link, the diffusion part,jWu=−f¹U, is
calculated with the average of the phase field according to
jWu=−sfi+1,j +fi,jdsui+1,j −ui,jd / s2Dxd for the x direction and
an analogous expression for they direction. The most deli-
cate part is the antitrapping current,jWat=asfdWf1+s1
−kdUgn̂]tf, where n̂=−¹W f / u¹W fu is the unit normal vector
pointing into the liquid. We first evaluate the components of

¹W f. The computation of the component parallel to the link is
straightforward. As for the component perpendicular to a
link, for a link along thex direction between sitessi , jd and
si +1,jd we use

]yf =
fi+1,j+1 − fi+1,j−1 + fi,j+1 − fi,j−1

4Dx
, sB2d

and similarly for]xf on links alongy. From the components

of ¹W f, we obtainn̂. The productasfdf1+s1−kdUg]tf is then
evaluated at the two end points of the link, and its average
value multiplied with the appropriate component ofn̂ to ob-
tain the current.
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