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Quantitative phase-field model of alloy solidification
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We present a detailed derivation and thin interface analysis of a phase-field model that can accurately
simulate microstructural pattern formation for low-speed directional solidification of a dilute binary alloy. This
advance with respect to previous phase-field models is achieved by the addition of a phenomenological
“antitrapping” solute current in the mass conservation relgifarKarma, Phys. Rev. Lett87, 115701(2001)].

This antitrapping current counterbalances the physical, albeit artificially large, solute trapping effect generated
when a mesoscopic interface thickness is used to simulate the interface evolution on experimental length and
time scales. Furthermore, it provides additional freedom in the model to suppress other spurious effects that
scale with this thickness when the diffusivity is unequal in solid and ligidF. Almgren, SIAM J. Appl.

Math. 59, 2086(1999], which include surface diffusion and a curvature correction to the Stefan condition.
This freedom can also be exploited to make the kinetic undercooling of the interface arbitrarily small even for
mesoscopic values of both the interface thickness and the phase-field relaxation time, as for the solidification
of pure melt§A. Karma and W.-J. Rappel, Phys. Rev.33, R3017(1996)]. The performance of the model is
demonstrated by calculating accurately within a phase-field approach the Mullins-Sekerka stability spectrum of
a planar interface and nonlinear cellular shapes for realistic alloy parameters and growth conditions.
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I. INTRODUCTION AND SUMMARY field kinetics are microscopid¥ is a few angstroms anglis
roughly the ratio ofW and the thermal velocity of atoms in

In recent years, the phase-field method has become a staire liquid [4—6]. In contrast, diffusive transport of solute in
dard tool to simulate microsctructure evolution in materialshulk phases occurs on macroscopic length and time scales
[1], a subject of both fundamental and applied inte[8s3],  that are several orders of magnitude larger therand
and more generally to tackle free-boundary problems. Itsespectively. Therefore, resolving both microscopic and mac-
chief advantage is to avoid front tracking by making phase&oscopic length/time scales in phase-field simulations for
boundaries spatially diffuse with the help of order param-typical experimental solidification rates gfm/sec to mm/
eters, termed phase fields, which vary smoothly betweeBec is impractical, even with efficient algorithms.
bulk phases. In view of this, the only possible choice is to carry out

Simulating the evolution of complex morphologies in two simulations withw and = orders of magnitude larger than in
and three dimensions is in principle straightforward with thisg real material. The question becomes then whether the
method. Making quantitative predictions on experimentallyphase-field model is still quantitatively meaningful with such
relevant length and time scales, however, has been a majarchoice. The rest of this section explores the answer to this
challenge. This challenge stems from the fact that phase-fielguestion in the context of previous works and serves both as
simulations are simply not feasible if parameters of thea summary and a guide for the following sections of this
model are chosen to match those of a real physical systemyaper. To conclude this section, we summarize the main re-
With such a choice, both the widilV of the diffuse interface  sults needed to carry out quantitative simulations of the di-
and the characteristic dissipation time scali the phase- rectional solidification of a dilute binary alloy.

A. Capillarity

*Permanent address: Departament de Fisica Aplicada, Universitat In the phase-field model of a pure substaiick say A
Politecnica de Catalunya, Barcelona, Spain. molecule$, the excess free energy of the solid-liquid inter-
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face, y, is determined by the combination of the bulk free- modeling of solidification at low velocity, upon which we

energy density at the melting poimt,, f(¢,T,,), which is a  focus in the present work, consists of formulating the model,
double-well function of the phase field with minima cor-  and knowing how to choose its parameters, in order to avoid
responding to the solid and liquid, and the gradient squarenphysically large nonequilibrium effects at the interface.

term,a|€¢|2. Minimization of the total free energy, which is This is in contrast to rapid solidification, where nonequilib-

the spatial integral of the sum of these two terms, yields thélum effects play a dominant role. In this case, the challenge
standard result thag~ WH, whereH is the barrier height of ~€onsists of describing the correct magnitude of these effects
the double-well potential, an&/~ (o/H)Y2 is the width of ~ With mesoscale phase-field parameters, which requires a dif-

the hyperbolic tangent profile ap in the diffuse interface. [€rént approaciisee Ref[12]).

This result implies that there always exist a pair of values of FOF Pure materials, Karma and Rapp&B] have devel-

o andH for any pair of values oV andy. Thus, the experi- oped a thin interface analysis, which only_assumes\ﬂmﬂ _
mental magnitude of in the classic Gibbs-Thomson condi- small pompared to the scale of the microstructure. This
tion can be reproduced even if a computationally tractabl@nalysis shows that the standard free-boundary problem of

“mesoscopic” interface thicknesse., on a scale comparable solidification—a classic Stefan condition together with a
to the microstructureis used in the, phase-field model. Op- velocity-dependent form of the Gibbs-Thomson relation that

timally, this thickness should be chosen just small enough td'corporates interface kinetics—is recovered even for a me-
resolve accurately the interface curvature. soscopicW. Heat diffusion in the mesoscale interface region

A phase-field model for a dilute alloy can generally be ONly modifies the expression for the interface kinetic coeffi-

constructed by adding to the free-energy density the contri¢i€Nt # This “renormalization” ofuy has the crucial prop-
bution of soluteB molecules. The simplest way to construct erty thatr needs not be microscopic to make this coefficient

this free energy is to interpolate between the known freegrbitrarily Ia}rge(arbitrarily_fas_t kineticg a_nd hence to s_imu-
energy densities in the solid and the liquid with a single'ate the limit of local equilibrium at the interface dominated

function of ¢, as in the original model of Wheelet al.[7]  PY capillarity. _ L

(see also Ref[8]). From a computational standpoint, how- Th|s adyance bridges the gap between the atomistic '_scale
ever, this approach places a stringent constraint on the intef! interfacial phenomena and the mesoscale of the micro-
face thickness. The reason is that there is generally an ext&ructure. In addition, efficient multiscale simulation algo-
contribution toy due to solute addition that depends on in-1thms have been developed to bridge the remaining gap be-
terface thickness, solute concentration at the interface, ari/€en the microstructure and the transport sc@leg1y.
temperature. In Sec. Ill A, we show how this extra contribu- 1 N€ combination of these two advances has led to the first
tion can generally be made to vanish by using two differendiréct quantitative comparison between fully ~three-
functions of ¢, which interpolate separately between thedimensional phase-field 5|mulat|ons of de_:ndntlc growth in
solid and the liquid the enthalpignternal energyand en-  Puré melts at low undercooling and experimefi].

tropic part of the free-energy density. The condition that this Achieving the same success for alloys has turned out to be

contribution vanishes takes the form of an algebraic relatioffonsiderably more difficult. A major source of difficulty is
between these two interpolation functions. If this relation isthat solute diffusion is generally much slower in a solid than

satisfied, the model introduced previously in R is re- @ liquid. When diffusion is asymmetrical, the use of a meso-
covered. The equilibrium phase-field profile decouples fronPCOPICW artificially magnifies several nonequilibrium effects
the equilibrium solute concentration profile aye-WH, as at the interface that are absent whe_n dlffl_Jsmn is symmetrical.
for a pure substance. This removes the constraint on the ifz0nsequently, phase-field models in which one or several of
terface thickness associated with solute addition without th&1€S€ effects are presdfit8,10,17 are not suitable for quan-

need to introduce separate concentration fields in each phadiative simulations at low velocity. _ o
as in Refs[10,11. These nonequilibrium effects were first characterized in

detail by Almgren[18] using a thin interface analysis of a
. o phase-field model of the solidification of pure melts with
B. Interface-thickness-dependent nonequilibrium effects asymmetric diffusion. Directly analogous effects are present

The main conclusion from the preceding paragraphs 4" alloy solidification[19], which include(i) solute diffusion
that the phase-field method provides sufficient freedom t&long the arclength of the interfa¢gurface diffusion (i) a
choosew arbitrarily large to model capillarity. However, mi- _rn0d|f|cat|0n of mass conservation assom_ated Wlth the local
crostructural pattern formation is also generally controlled byincrease of arclength of a moving curved interféceerface
nonequilibrium effects at the interface. For a microscapic stretchlng, arjd(m).a d|scont|nuny of the chemical potential
and low solidification velocities, these effects are negligibly©f the dilute impurity across the interface. _
small. The interface relaxes rapidly to a local thermodynamic  These nonequilibrium effects originate physically from
equilibrium and its nonlinear evolution is driven by slowly Solute transport in the mesoscale interface region that is gov-
evolving gradients of thermodynamic quantities in bulk €med by the standard continuity equation for a dilute alloy,
phases. For a mesoscopic thickness, however, these nonequi- oc  Dug- -
librium effects become artificially magnified, thereby com- — ==V [A(d)cVu], 1)

s ; . & RT,
peting with, or even superseding, capillary effects, and dra-
matically altering the large-scale pattern evolution.whereR is the gas constant, is the molar volume of solute
Therefore, the central challenge of quantitative phase-fieltnoleculesT,, is the melting temperature, is the chemical
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potential, and the produddq(¢) governs how the solute Cs+C ., . Ci—C

diffusivity varies through the diffuse interface, from zero in Co(¢) = >t (¢)T, )

the solid(for a one-sided modgto a constant valub in the

liquid. The best known of these effects is solute trappingwhereg(¢) varies from +1 in the solid wherg=csto —1 in
[20,21, which is associated with the chemical potential jumpthe liquid wherecy=c,.

at the interface. The problem is that the magnitude of all We are left with only two functionsg(¢) andq(¢), to
these effects scales with the interface thickness. Sidde  satisfy the three aforementioned conditions in which surface
phase-field computations is orders of magnitude larger thadiffusion, interface stretching, and the chemical potential
in reality, solute trapping will become important at growth jump at the interface should vanish. The thin-interface analy-
speeds where it is completely negligible in a real materialsis of Sec. IV applied to this variational model shows that
Surface diffusion and interface stretching, in turn, modify thethese three conditions are given, respectively, by

mass conservation condition

0 +00
f drg(e(r))co(4(r)) = f drlc, = a(e(r))co(A(r)],
0 0

J
c,(l—k)Vn:—Da—§+ ) (4)

wherec, is the concentration on the liquid side of the inter-
face,k is the partition coefficienty,, is the normal interface
velocity, and “-" is the sum of a correction~c/(1

0 +00
f drco(e(r)) — ¢l = J drfci—co((r)],  (5)
—o0 0

0
-k)WV,C, corresponding to interface stretching, whéiés J drm

the local interface curvature, a correctiotWDs2c,/ 352, cor- —~ G(p(r))co((r))

responding to surface diffusion along the arclengjif the o0

interface, and a correcti0ﬁkc,(1—k)WV2n/D proportional to :f dr[(l -k) - M] (6)
the chemical potential jump at the interface. All three correc- 0 q(p(r))co((r)

tions, which are proportional to the interface thickness, are h is th dinat lto th ld-liauid interf
negligible in a real material at low velocity. For this reason, WNErer 1S the coordinaté normal to the solid-iquid intertace

they have not been traditionally considered in sharp-interfacl{hat varies from < in solid to 4 in liquid far from the
models (reviewed in Sec. )l For a mesoscopic interface mterfacg, an¢o is given by Eq.(3), W.h'Ch can be assumed
thickness, however, the magnitude of these corrections pd® remain valid for a slowly moving interface.
comes comparable to the magnitude of the normal gradient _A5|mple physical !nterpreta,non of these c_ond|t|on_s is ob-
of solute, thereby modifying/, and the pattern evolution. tained by analogy with Gibbs’ treatment of interfacial phe-

Thus, the phase-field model must be formulated to make affomena where excess quantities are.a.ttnbuted to a math-
three effects vanish. ematical surface with zero volume dividing two phases,

which corresponds here te=0. In this analogy, Eq34)—6)
are the conditions that excess quantities of the interface van-
ish. For example, as illustrated in Fig. 1, the excess of solute
is the integral through the diffuse interface of the difference
The model discussed in Sec. Il A follows the generalbetween the actual smoothly varying solute prafj@nd the
approach of nonequilibrium thermodynamics where the evolmaginary step function profile equal égfor r <0 andc; for
lution equations forqs andc are derived Variationa”y froma ' >0. The condition that this excess vanishes is identical to
Lyapounov functionalF that represents the total free energy EQ. (5). It implies that mass conservation is left unchanged if
of the system. The resulting “gradient dynamics” guarantee#iere is no excess of solute to redistribute along the arclength
thatF decreases monotonously in time in an isolated systen®f the interface. Similarly, surface diffusion vanishigsq.
In addition to the double-well potentié(¢), this variational (4] if there is no excess of the transport coefficigfi)c
model contains three basic interpolation functions: the twdnultiplying the chemical potential gradient in E(). Fi-
functions that interpolate between solid and liquid the enthalnally, the jump of chemical potential vanishes if there is no
pic and entropic part of the free-energy dengiec. Il A),  excess of chemical potential gradi€iig. (6)]. This condi-
which we denote here bg(¢) and(¢), respectively, and tion is simple to derive for a flat interface by rewriting Eq.
the diffusivity functiont(¢) in Eq. (1) that varies from zero (1) in a local frame moving at velocity (i.e., d/dt—
in solid to unity in liquid. =Valgr andV — g/ or). After integrating both sides of Eql)
These functions should in principle be chosen to cancebnce with respect t@, one obtains the expression for the
all spurious interface-thickness-dependent effects. As alreadshemical potential gradient through the diffuse interface
discussed in Sec. | A, a quantitative description of capillaritydu/ dr = -V(co— ) R,/ (Dvgfce), and hence Eq6).
can be obtained by requiring that the solute contributiopto A major pitfall of this variational model is that all three
vanish. This condition is only satisfied if the two functions excess quantities cannot be satisfied simultaneously with
o(¢) andg(¢) are related, and the latter determines the equionly two functionsg(¢) and G(¢). For example, with the
librium solute concentration profile standard quartic form of the double well, which is an even

C. Limitation of variational models
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ciated with the discontinuity of chemical potential in the case
of alloys. However, as Eldeet al, these authors did not
consider the additional constraints associated with surface
diffusion and interface stretching for a nonplanar interface.
While we cannot rule out that it may be possible to formulate
variational models that remove all constraints on the inter-
face thickness, achieving this goal appears extremely diffi-
cult.

D. Nonvariational models and antitrapping

A way out of this impasse is to remove the requirement
that the equations of the phase-field model be strictly varia-
tional. This provides additional freedom to cancel all spuri-
ous corrections produced by a mesoscale interface thickness.
As shown recently in Refl19], a successful approach con-
sists of adding a phenomenological “antitrapping current” in
the continuity relatiorfEq. (1)]. This current produces a net
solute flux from solid to liquid proportional to the interface
velocity that counteracts solute trapping and restores chemi-
cal equilibrium at the interface. By adjusting the magnitude
(?f this current, which modifies Eq6), it is therefore pos-

FIG. 1. lllustration of the definition of surface excess. The ex-
cess of solute is the integral alomgof the actual solute profile
(thick solid line minus its step profile idealizatio¢thick dashed
line) with the Gibbs dividing surface at=0. This excess is negative
in the depicted example. The thin solid line depicts the phase-fiel . .
profile, ¢(r):—tant(r/\e’§W). The standard mass conservation con- sible to satisfy simultaneously Eggl)—(e). .
dition [Eq. (2)] is recovered if all three excess quantities defined by Furthermore, the same functi@i¢) must appear in the

the difference between the left-hand side and the right-hand side gvolution equations forp and the continuity relatiofiEg.
Eqgs. (4)~(6) vanish. (1] in the variational model. The additional freedom to re-

placed(¢) by another functiorh(¢) in the modified conti-

function of ¢, the equilibriumé profile is an odd function of NUity relation with the antitrapping current turns out to be
r. Therefore, Eq(5) can be satisfied by choosifiié) to be _cr|t|cally important to tham the_ same renorr_nahzatlon of the
an odd function ofg. It is then possible to choo# ) to interface kinetic coefficient as in the analysis of Karma and
satisfy Eq.(4). However, this leaves no freedom to make theRaploel for pure meltg13].
jump of chemical potential vanish. More generally, it is pos-
sible to make two of the three excess quantities vanish for
different choices of(¢$) andq(¢), but not the three of them We summarize here the equations of the nonvariational
simultaneously. phase-field model for the directional solidification of a dilute
Elder et al. [22] proposed to make the discontinuity of binary alloy that are needed to carry out quantitative compu-
chemical potential vanish by an appropriate choice of intertations. The lengthy details of the derivation of the model
face position(Gibbs dividing surfacewhich makes the cor- and of the asymptotic analysis are exposed in Secs. Ill and
responding excess quantity vanish. These authors, howevd¥, below. The model uses the standard low-velocity frozen
did not take into account the other two excess quantitie$emperature approximatio,=Ty+G(z-V,t), whereV, is
found by Almgren for asymmetric diffusiofil8]. These the pulling speed an@ is the temperature gradient. The
guantities appear at higher orders in the asymptotic exparbasic equations of the model are
sion used by Eldeet al., which, for the solidification of pure
melts with symmetrical diffusion, yields the same results as ap N, T-To
the thin interface analysis of Karma and Rapfk8]. For T(T)E =WV + - ¢ 1K (d’)(eu_ 1- md )
asymmetrical diffusion, all three excess quantities can gen-

E. Summary of phase-field equations and thin-interface limit

erally not be made to vanish by a redefinition of the interface ()
position.

It might be possible to make all three excess quantities L _5 rhm > >
vanish for nontrivial oscillatory forms of the functioige) at V- [Da(p)evu=jal, (8)

andq(¢). Such forms, if they exist, would require a high

resolution of the interfacial layer that is not computationallyWhere

desired. Also, other variational models than the one dis- Vo 2c

cussed here are in principle possible. McFaddeal. have u= E(M‘ ME) = ln(co[l k- (1 —k)h(qﬁ)]) 9)
formulated a variational phase-field model of the solidifica- m !

tion of pure melts with unequal thermal conductiviti@8].  is a dimensionless measure of the deviation of the chemical

This model provides additional freedom to cancel the disconpotential from its equilibrium valuguz at a reference tem-
tinuity of temperature at the interface, which they interpret agperature T, with corresponding liquidus concentraticuﬁ,
“heat trapping” by analogy with solute trapping that is asso-m<0 is the liquidus slope,
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R i §¢ gram that consists of straight liquidus and solidus lines of
jar=—aWl —k)c?e”—f (10 slopesm and m/k, respectively, wheré is the partition co-
a |V ¢l efficient. The interface is supposed to be in local equilibrium,
. . . that is,
is the antitrapping current,
T-T CS = kC| , (14)
T(T):TO(1+ 0) (12) o .
mgD wherecg andc; are the concentratiori@ molar fraction$ of

- impurities B at the solid and liquid side of the interface,
is a temperature-dependent phase-field relaxation time\ andrespectively.
is a dimensionless coupling constant. For the cholues The interface temperature satisfies the generalized Gibbs-
=¢, G()=(1-9¢)/[1 +I£—(1—k)¢>], G($)=(15/8(p-2¢°/3  Thomson relation,
+¢°/5), and a=1/(2v2), this model reduces in its thin- _
interface limit to the standard one-sided model of alloy so- =T =[mler = TK = Vil (15
lidification. The chemical capillary lengtt, and the inter-  \whereT,,, is the melting temperature of pure
face kinetic coefficieni3 (defined in Sec. )l are related to
the phase-field parameters by r= YT

do = a;WIX, (12) L
is the Gibbs-Thomson constantjs the surface tensiot, is

s (T) 1-a AW the latent heat of fusion per unit volum, is the interface

o\ 2 oD |’ curvature,V, is its normal velocity, ang., is the linear ki-
- _ netic coefficient. Here, the surface tension and the kinetic
where A\=15\/8; a;=5y2/8 anda,=0.6267 are the same coefficient are taken to be isotropic for simplicity; aniso-
numerical constants as in R¢L3]. We note that has been tropic interface properties will be considered below.
defined for convenience in the present paper to avoid carry- Heat is supposed to diffuse much faster than impurities,
ing a numerical factor of 15/8 in the thin-interface analysisso that the temperature field can be taken as fixed by external
of the equations. conditions, in spite of the rejection of latent heat during so-

A previous version of this model for isothermal alloy so- lidification. Then, Eq.(15) yields a boundary condition for
lidification was presented in Ref19] together with bench- the solute concentration at the interface.
mark computations for dendrite growth. The present exten- Of particular interest is thene-sidedmnodel of solidifica-
sion to nonisothermal growth conditions introduces ation that assumes zero diffusivity in the solid. This is often a
temperature-dependent relaxation tin{&). As discussed in  good approximation for alloy solidification, in which the sol-
more details in Sec. IV C, this new feature makes it possibléite diffusivity in the solid may be several orders of magni-
to achieve vanishing interface kinetig., local equilibrium  tude lower than in the liquid.
at the interfacgfor the entire range of interface temperature
that occurs during directional solidification. For simplicity, A. Isothermal solidification
we have written down the equations of the model for isotro- . o i
pic surface tension and interface kinetics. The extension to FOr isothermal solidification at a fixed temperaturg
anisotropic growth is discussed in Sec. IV E. Also, both for< Tm th& concentration obeys the set of sharp-interface
simulating and analyzing the above equations, it is conve€duations

(16)

B (13

nient to rewrite them in terms of a new variablé=(e" 4c =DV (17)
—-1)/(1-k). This avoids numerical computations of exponen-
tial and logarithm functions. In addition, it transforms the o(L-KV,= -Dadl", (18)

equations in a form closely related to the phase-field model
for the solidification of a pure substance whddeis the 0_
direct analog of the temperature field. Details of this change ¢/ =1=(1-KidoK = (1 =K)BVy, (19)

of variable are given in Sec. Il B 1. _ _whereD is the solute diffusivity in the liquidy, is the nor-
Simulations of microstructural pattern formation using g velocity of the interface, d,c|* is the derivative of the

this model are presented in Sec. V, which also contains thg,ncentration field normal to the interface, taken on the lig-
final form of the anisotropic phase-field equati¢t82) and  ;i4 side of the interface,

(133) that are solved numerically. We report a quantitative

phase-field computation of the classic Mullins-Sekerka linear = (Tm— To)/|m| (20
stability spectrum of a planar interfag@4] and nonlinear . o . -
cell shapes for realistic experimental parameters of low-S the equilibrium concentration of the liquid 2,

velocity directional solidification. d r
Il. SHARP-INTERFACE MODELS T AT,

We consider the solidification of a dilute binary alloy is the chemical capillary length, wheteTy=|m|(1-k)c? is
made of substances and B, with an idealized phase dia- the freezing range, an@=1/[,ATy]. Equation(18), the

(21)
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Stefan condition, expresses mass conservation(E.can (¢$=-1). The two-phase system is usually described by a

be directly obtained from Eq15). phenomenological free-energy functional,
B. Directional solidification Fl¢,c,T]= {gﬁ A2+ 1(, To) + Fas(é,C,T) |,
For directional solidification, we use the frozen tempera- v
ture approximation, in which the temperature field for solidi- (29

fication with speedv, in a temperature gradient of magni- \yhere
tude G directed along the axis is taken as ) .
f(¢, T =H(= ¢712 + ¢4 30
T(2)=To+G(z— Vyb). (22 (6/Tw) =H(= ¢ #14) (30
o ) . 0 is the standard form of a double-well potential providing the
Now Ty is given by inverting Eq(20), andcy=c../k, where  siapility of the two phasesh=+1 with a barrier height,
C.=c(z=+») is the gl_obal sample composition. Thg,is fag(¢,c,T) changes their relative stability as a function of
the solute concentration on the liquid side of a steady-statghe position in aT-c phase diagram, and the term anpro-

planar interface. Then, E¢19) is replaced by vides a penalty for phase gradients which ensures a finite
0_ 1 _(1_ 1 1 _ interface thicknesdd has dimensions of energy per unit vol-
G/er =1 =(1=kdok = (1 =K)BVn = (1 k) (Z= Vb)/l, ume, ando of energy per unit length.
(23 In a variational formulation, the equations of motion for
where all fields (here the concentration and phase figldan be
derived from that functional,
m|(1 -k)c?
= MR (24) 9b__ F
G - Kd) ’ (31)
at o
is the thermal length.
ac - - OF
o o . —=V-<M(¢>,C)V—>, (32
C. Formulation in terms of dimensionless supersaturation ot éc

In order to later compare with the sharp—interface limit of where K4(T) is a kinetic constant that can generally be
the phase-field models treated here, we rewrite Ej#),  temperature-dependent. The second equation is a statement

(18), and(23) in terms of the local supersaturation with re- of mass conservation, since it can be rewritten as

spect to the poin(cf’,To), measured in units of the equilib- ;
C

rium concentration gap at that point, v _jC: 0 (33)
0 ot
_ c— C| R R
B c?(l -k’ (29 whereJ,=—MVu is the solute current density,= 5F/ ¢ is
_ the chemical potential, anbll(¢),c) is the mobility of solute
We obtain atoms or molecules, which we choose to be
aU =DV2U (liquid), (26) Vo
M(4.0) = —2-Di(¢)c (34)
m

[1+(1 -k U['IV,= -DgU[* (interface,  (27) - e .
in order to later obtain Fick’s law of diffusion in the liquid.

Here,v, is the molar volume oA, R is the gas constant, and
q(¢) is a dimensionless function that interpolates between 0
Note that, fork=1, we recover the constant miscibility gap in the solid and 1 in the liquid, and hence dictates how the
model. Furthermore, if we reinterprét as a dimensionless solute diffusivity varies through the diffuse interface. Note
temperature and drop the directional solidification tegan  that we have not included an equation of motion for the
-V,t)/l7, we obtain a one-sided version of the pure sub-temperature field, since we consider it fixed by external con-
stance model. straints. Of course, the formalism could be extended to in-
clude an appropriate equation for heat tran$f&.

An important step is the construction of the functifyy
that interpolates between the free-energy densities of the

In this section, we first derive a generic variational modelbulk phasegsolid and liquid. While these bulk free energies
(Sec. Il A), and then we modify it in view of canceling should reduce to the curves that can be obtained from ther-
spurious effectgSec. Il B). modynamic databases, the dependencéd gfon ¢ influ-
ences only the interfacial region, and this freedom can be
used to construct a particularly simple phase-field model.
This will be illustrated here for the case of a dilute binary

In a phase-field model, a continuous scalar fi¢lis in-  alloy. First, we consider the bulk free energies and make sure
troduced to distinguish between solid=+1) and liquid that they reproduce the equilibrium properties of the sharp-

U[" == doK = BV, — (2= Vb1 (interface.  (28)

lll. PHASE-FIELD MODELS

A. Variational formulations
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interface model of Sec. Il. Then, we interpolate betweerent interpolation functions for the entropy and the internal
them. energy terms,

For a dilute alloy, the free energies of solid and liquid
f,(c,T), where the subscript refers to either the solik) or
the liquid (1), can be written as the sum of the free energy of

RT,

fap(,C,T) = ATy = (T-Ts(¢) + —2(cinc—c)
Uo

pureA, fﬁ(T), and contributions due to solute addition,

+e(g)c, (42
A RT
f(c,T)=1'XT)+ v—(cln c-c)+g,c, v=ls. (35  with
0
The second term on the right-hand side is the dilute form of e(¢p) =e+9(p)Ae/2, (43
the mixing entropy, and the term,c is the change of the
internal energy density. We expand this expression to first
order in T-T,, to recover the straight liquidus and solidus s(¢)=—=—— - (¢)— (44)

lines of Sec. Il,

N RTn 3 wheree=(e+¢)/2, and we have again usedT,(S—S) in
FleT) = A(T) = 8,(T = To) + Vo (clnc-c)+e,c, s(¢). 9(x1)=g(x1)=+1, and we further requirdy’(x1)
(36) =g’ (x1)=0 for ¢==+1 to remain bulk equilibrium solutions
for any value ofc andT.
wheres,=—-af 2/JT are the entropy densities of the solid and  This completes the model specification, except for the in-
the liquid atTm, and we have used that both phases haveerpolation functiongj(¢) andg(¢). In order to choose them
equal free energies for purd at T, f&(Tw)=f(T,)  appropriately, it is important to consider the equilibrium
=fA(T,). By using T, instead ofT in the mixing entropy, properties of the model, which follow from the conditions
we have neglected terms of ord€f-T,)c, which are

second-order for dilute alloys. oF
The phase diagram is determined by the standard common 5 Hes (45)
tangent construction, which is equivalent to requiring that the
chemical potential and the grand potentali.e., the ther-
modynamic potential for a varying number of solute par- oF =0 (46)
ticles) be equal in the solid and liquid. The corresponding 5p
equilibrium concentrations¢(T) and¢,(T) are the solutions
of where g is the spatially uniform equilibrium value of the
chemical potential. These two equations uniquely determine
gf(c,T) filcD| ™ (37)  the spatially varying stationary profiles ofand ¢ in the
o oo  oc T HEV diffuse interface regiongy(x) and ¢y(x). Since the phase

C=C;
° ' field interpolates between the two bulk free energies, the
f(CoT) = peCs= f(C,T) = peCy = we(T). (39) I|m|t|n_g values pf the concentrations a_nd the equilibrium
chemical potential are the ones determined by the common
The first equality yields the partition relation E(GL4),  tangent construction above. From K45), we have

cs=kg, with a partition coefficient

RT, — — Ae
bole —Inco+e+gldo), = (47)
k= - , 39 0 0 HME>
exy< RTm> (39 Vg 2
where we have defineds=g,—¢,. Combining this result from which we obtain the expression for the equilibrium
with Eq. (38) yields concentration profile using the solution of E87) and Eq.
(39),
Lvg
4T 2R1-K (Tn=T), (40 In k .
colX) =6, exp<—[1 + §<¢O<x>>1> = g0,
where we have used that the latent heat per unit volume is 2
L=T(s-s). From Eq.(40), we identify the liquidus slope (48
to be
From the equilibrium condition fot, Eq. (46), we obtain
- L ’ 2 = T-T 7
Vo deo | Hdbo— 63 = g'(¢0) m .9 (¢O)Asco.
the van 't Hoff relation for dilute binary alloys. 3 2 Tm 2

In the standard phase-field approach, the two bulk free (49
energies are interpolated with the help of a single function of
the phase fieldp. Here, it is advantageous to use two differ- With the help of Eqs(39)<41), Eq.(49) can be rewritten as
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d2¢0 RT(T-T,) count that both contribute the same amogaquipartition
o2 +H(¢o— $9) = —mzv " (1-KT (o) relatior), we have w(x)-wg=H[1-¢(x)?]?/2, and hence
(O) the surface tension is
O JE—

’(¢o)] (50) y=IWH (55)

with 1=2y2/3. As in the sharp-interface model of Sec.,
is independent of solute concentration and temperature. Let
us stress again that this property is only achieved if condition
51) is satisfied. Otherwise, E@55) is replaced by a more
omplicated expression which contains the impurity concen-
fration, and which needs in general to be calculated numeri-
cally. A drawback of this more complicated expression is that
the dependence of on concentration along the interface

For a generic choice of the functioﬁsandg and in particu-
lar for the “standard” choicg=g, no analytic solution fokp

is known. Furthermore, the equilibrium solution and its prop-
erties, in particular its surface tension, depend on the variou
coefficients that appear on the right-hand side. This can b
avoided if the right-hand side vanishigs,fag(¢o,Co, T)=0].
With the help of Eq.(48), we obtain the condition on the

interpolation functions, cannot be chosen independently of the valug\bfThis fea-
3 ¢) T (é) Ink ture leads to an unphysically large variationpfvith con-
(1- k) +In k exp(—[l +§(¢)]> =0. centration for computationally tractable mesoscopic values
2 2 of W. Equation(55) yields a concentration-independent ex-

(51) pression fory that is free of this limitation. Moreover, the
fact that the equilibrium profile remains a hyperbolic tangent
It can be used to eliminate one of them in terms of the otherfor arbitrary values of the concentration makes the relation-
Taking into account the requiremegt+1)=g(+1)=+1, we  ship between phase-field and sharp-interface parameters ob-
find tained from the thin-interface analysis independent of the
value of the local concentration. This, in turn, avoids spuri-

_ nKk . — ous kinetic corrections that are present otherwise.
- L+k=2 exp( 2 [1 +g(¢)]> 1 +k - 2k1*9(@)])2 Once we have found a convenient relation betwgep)
9(#) = 1-k = 1-k , andg(¢), we come back to the complete dynamical model.

The relations we have found in equilibrium can now be used
(52) to obtain two particularly simple forms of the phase-field
equationout of equilibrium For the first, we remark that Eq.

1+k-(1 —k)§(¢)> 1 (51) implies thatq’(¢o)c(1-K)=-g'(¢g)In ke, and there-

2 (53 fore the functiorig can be eliminated in favor of the phase-
dependent equilibrium concentrati@g(¢,T) and the func-

Using the latter relation, the equilibrium concentration pro-tion g. Dividing Eq. (31) by H, we obtain

file can also be rewritten as

2
ad))—m In(

LW+ -

l+k—(1_k)§(¢) — Cst+C +§(¢)Cs_cl

2 2 2 SR =T { —co(,T)
(54) 2voHmM g'(¢)In c(T)

The physical meaning of the two interpolation functions iswith 7=1/[K,(T)H]; the driving force is the local supersatu-
hence completely transparegtinterpolates the internal en- ration. The temperature dependencerofill be addressed
ergy[Eq. (43)], and as a consequence the chemical potentialkater in Sec. IV C.
[Egs.(47) and(48)], whereag] interpolates the entropy den-  The second possibility is to rewrite the phase-field equa-
sity [Eq. (44)] and, as a consequence of Ef1), the con- tion in terms of the dimensionless variable,
centration[Eq. (54)].

If Eg. (5)) is satisfied, the right-hand side of EO0) u:—(,u e)
vanishes, and the solution for the equilibrium profiledofs RT,
the usual hyperbolic tangenty(x) =—tanix/ (\2wW)], where
W=(o/H)¥? measures the width of the diffuse interface. Fur- =In(c/c?) - —[7¢) +1]
thermore, the surface tension is defined as the excess of the
grand potentialw=f-uc, integrated through the interface, ( 2c )
that is, y=fdx w(X) — wg]. Because conditiofbl) is equiva- = 0 — 1 '
lent to requiring d,fag(¢o,Co,T)=0, under this condition Gl +k=(1-kig(¢)]
fas(®o,Co, T) is independent ok and equals its bulk phase which measures the departure of the chemical potential from
valuesf,(c,,T). Since the latter enter the expression for theits valueug(To) for a flat interface at the equilibrium liquidus
equilibrium grand potentiae as given by Eq.(38), the temperaturd, [and liquid concentration’=c(To)]. Then, it
contribution off,g to w(X)—wg is zero. Thus, only the two is preferable to eliminatg(¢) in favor of §(¢). The result is
other interface terms in E@29) contribute. Taking into ac- the form used in Ref{19],

Co(d) = ¢
} , (56)

(57)
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NP SPN D _T—To>
T S WVt b= ¢ 1_kg(¢)(e 1 )’

(58)
where we have defined the constant
~ RT(1-k32%® LAT
Rl A (59)
2vH 2HT,,

where we recall thaAT,=|m|(1- k)c, is the freezing range.

PHYSICAL REVIEW E 70, 061604(2004)

to cancel the three spurious effects mentioned in the Intro-
duction. To achieve this goal, we add an extra term in the
model equations to specifically cancel one of them. The extra
interpolation function contained in this new term provides

the necessary third degree of freedom to make all three ef-
fects vanish.

We specifically target the solute trapping effect. This oc-
curs when solute atoms or molecules cannot escape the ad-
vancing solidification front fast enough to maintain local
equilibrium at the interface. The characteristic interface ve-

Note that the parametét can be expressed in terms of the locities where solute trapping becomes important can be es-

surface tension=v/(IW). Then, we have

N = ATWI/(2D), (60)
wherel is the Gibbs-Thomson constant of E46). There-

timated by comparing the time of advance by one interface
thicknessW/V, and the time it takes for the solute to diffuse
through the interfaceW?/D. The result isV~D/W, and
hence the critical speed depends on the interface thickness.
Since we ultimately want to simulate solidification with dif-

fore, up to numerical constants,is the dimensionless ratio fuse interfaces that are orders of magnitude larger than the
of interface thickness times freezing range and the Gibbsreal solid-liquid interfaces, solute trapping sets in for much
Thomson constant. It is immediately clear that a variation oflower speeds than in reality.

the interface thickness corresponds to a chan§e in

B. Nonvariational formulations

To eliminate this interface-thickness effect, we introduce
a supplementary current in the equation for the solute con-
centration, theantitrapping current Its purpose is to trans-
port solute atoms from the solid to the liquid. Therefore, it

In spite of the theoretical appeal of a variational formula-has to fulfill a number of properties. First, it must be propor-

tion, relaxing the requirement that both E@31) and (32
derive from a single functiondt yields more flexibility. In

tional to the speed of the interface, and hencé ¢o Next, it
must be directed from the solid to the liquid, that is, along

particular, this extra freedom can then be used to cancel odlie unit normal vecton, which in terms of the phase field

spurious effects.

1. Nonvariational formulation without antitrapping current

In the last form proposed in the previous section, the in-
terpolation functiong(¢) enters the model not only in the

evolution equation for the phase fidlEq. (58)], but also in

that for the impurity, Eq(32), through the change of variable
Eq.(57). Whereas the conditiogl (+1)=0 is necessary in the

equation of motion forp to ensure thath=+1 are the equi-
librium solutions for arbitraryu and T, no such condition is

needed in the equation for the impurity. This suggests replac-

ing 9(¢) in the definition ofu, Eq.(57), by another function
h(¢) which does not necessarily satigfy(+1)=0, but still
has the same limite(+1)=+1,

u:In( 5 2 ) (61)
11 +k=(1-kh(g)]

Thus, the equilibrium properties derived in the precedlng
section are preserved; note, however, that the equilibrium

concentration profile g¢) is modified becauséd(¢) re-
places G(#) in Eq. (54), yielding co(¢)=c[1+k—(1
—-k)h(#)1/2. In practice, this allows the simple choibég)

= ¢, for which the equilibrium concentration profile has the

can be expressed @s=-V¢/|Vé| (up to higher-order cor-
rections in the interface thickngs$-urthermore, it must be
proportional to the interface thickne%¥, and to the local
concentration difference between solid and liquid. In con-
trast, we do not knowa priori the profile of the current
function through the interface. The time derivative of the
phase fieldd,¢ is sensibly different from zero only in the
interface regions and induces a certain antitrapping current
profile. Additional freedom may be gained by allowing for a
shape functiona(¢) that must be appropriately chosen in
order to obtain the correct thin-interface limit. As we shall
see, choosing(¢) constant suffices to eliminate all spurious
effects for the simplest choice of the functiohé®) and

G(e).

In summary, we write

=a(p)W(1 - k)cle—d)ﬁ——a(cﬁ)W(l k)|e 9% ¢
M|V g

(62)

and the equation for the concentration becomes

lowest possible gradients, and convergence of the simula-

tions can hence be achieved for a coarser nj&8h

2. Nonvariational formulation with antitrapping current

%Czﬁ [DE(A)CT U~ fu. 63

Albeit now h(¢) andq(¢) are completely free functions Note that the latter no longer derives from a functioRal
which purely need to interpolate from +1 to —1 and from Oeven if such a functional is allowed to be different from that
to 1, respectively, this does not yet provide enough freedongiving rise to the equation of motion fap.
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3. Formulation in terms of dimensionless supersaturation and

relation with the pure substance model

It turns out to be advantageous for the subsequent
asymptotic analysis to make another change of variables i
order to bring the equations in a form that is close to thos
analyzed in Refs[13,18. To this end, we introduce the
diffuse-interface extensiod(¢) of the dimensionless super-
saturationU in Eq. (25), now defined in the whole system,

e'-1

U= .
1-k

(64)

Furthermore, we fix now the interpolation functigrto be

5
50 =2 0- 2 %) (65)
define new interpolation functions
1+k-(1-kh
) =t N (66
_ 8. 24 cﬁ")
9(¢) = 159(<i>) (¢> e (67)

and transform the equation farinto one forU. Taking into

account that T(2)=Ty+G(z-Vt) and the temperature-

dependent relaxation time=r[1-(1-k)(z-Vyt)/l{] dis-
cussed later in Sec. IV C, the final set of equations is

Z2= Vit |99
[1 (1=K It ]fﬂ

=w2v2¢+¢—¢3—xg'<¢>(u+¥‘£), 69)
T

1+k 1-k U
="

=V. (Dq((b)ﬁu +a()WL + (1 -kU]

i Vb ) 1h(¢)
X——]+[1+(1-kU]=——, (69
ot IV ¢ 2 ot
where
15~
A= E)\. (70)

With these choices, the phase-field equatjiq. (68)] be-
comes identical to the one analyzed in Réf3]. One impor-

PHYSICAL REVIEW E 70, 061604(2004)

IV. THIN-INTERFACE ANALYSIS
A. Introductory remarks

The goal of the matched asymptotic analysis is to relate
e phase-field mod¢Eqgs.(68) and(69)] to a free-boundary
problem. In particular, we would like to recover that of Egs.
(26)—«(28). The principle is to choose the interface width
much smaller than any physically relevant length scale. This
difference in scale can be exploited for a perturbation expan-
sion, in which the solution on theuter scaleof the transport
field is first assumed to be known. For a given point of the
interface, this fixes the local velocity and curvature. The re-
action of the diffuse interface to this “forcing” can then be
calculated on theénner scaleof the interface width, which
yields a boundary condition for the diffusion field on the
outer scale. The matching of both solutions then provides the
link between “outer(physica) and “inner” (phase-fielgl pa-
rameters.

Two different perturbation schemes have been used. The
“classic” one, developed by Langer, Caginalp, and others,
uses the ratio of interface thickness and capillary length,
=W/d,, as an expansion parameter. Later, Karma and Rappel
remarked that the physically relevant length scales for the
outer problem are not the capillary length, but rather the
diffusion lengthD/V or a local radius of curvature. Calcu-
lations performed with the expansion paramete’WV/D
for the symmetric model of solidificatiofDs=D;, or q(¢)
=1] yield, to first order inp, a new expression for the inter-
face kinetic coefficient that contains a finite-interface thick-
ness correction. This has allowed a tremendous gain in cal-
culation power, since much larg®, includinge>1, can be
used. It was also shown that this correction can be obtained
in a second-order expansion éM13,1§.

Here, we will follow the classic scheme and present the
asymptotic analysis for our model up to second ordee.in
While € is not necessarily small, this method yields all im-
portant correction terms at second order, while other schemes
need to include some third-order terms. The reasons for this,
as well as the conditions of convergence of the expansion in
€, can be better appreciated in light of the formal results
given below, and a discussion of these points is therefore
deferred to Sec. IV D.

To perform the analysis, it is advisable to use a dimen-
sionless version of the equations. We will use as unit length
the capillary lengttd, and as unit timei?/D. Without loss of
generality, we set=0 (which amounts to a shift of reference
frame such that the ternVt drops out. Furthermore, we
remark that from the definitions of EgR1), (60), and(70),
we obtain

W
do =a;—

N (71)

tant advantage of this formulation is that the special case oivith a;=1/J, WhereJ g(+1)-g(-1). For our ch0|ces of
a constant concentration jump can be recovered without anfunctions, 1=2y2/3 and J=16/15, such thata; =5y 2/8.
difficulty by settingk=1, whereas in the formulation with the Therefore\ can be eliminated from the equations in favor of
variableu, the limit k— 1 has to be treated with some care. a;e. The result reads

Hence, the model of Refl18] is contained as a special case

of Egs.(68) and(69), for k=1.

a€ap=€EV2p—1'(d) —aeg (H)(U+v2), (72
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1+k 1 _kh(¢) JU concentrations will be satisfied at all orders to whidhis
2 2 t continuous across the interface.
. In the dimensionless equations, the Laplacian of the phase
2 - dp Ve field comes with a prefactoe?, which leads to the two dis-
=V <Q(¢)VU tea(l+(1- k)U]E |§¢|) tinct constantp solutions in the outer region on the two sides

of the interface. In the inner region, the phase field varies
oh(¢) smoothly. Equatiori72) tells one that, fore— 0, this is only

2 (73) possible if such a variation takes place precisely on a scale of
. . . O(e), which rendersV2¢=0(e™? and invalidates the count-
where we have introduced the dimensionless parameters ing of orders used above. To compute the inner solution, we
=do/Iy and a=D7/W?, and defined the double-well func- therefore must rescale the coordinate normal to the interface.
tion f=-¢?/2+¢"/4. We will assume that is the only small e introduce the curvilinear coordinates in the reference
parameter and consider all other parameter©O@f). Note  frame of the interface (signed distance to the level ling
that v=dy/l is a physical parameter that is typically small, =0) and s (arclength along the interfageand define the
but independent of the computational parametemnd there-  rescaled coordinatey=r/e. Standard formulas of differen-
fore v=0(1). The parametex depends on the choice of  tial geometry yield(see, €.9.[26])
we consider it to be o©(1) in order to avoid neglecting any
important terms. Our conclusions remain validdfis of
order € or smaller. Furthermore, for the sake of simplicity,
we will assumer to be a constant, and discuss the inclusion
of its temperature dependence later on. .

For comparison, we also adimensionalize the free-V -(qV)= ‘Zan(qa,,)+e‘1f<q<?,]—;<2q77577+ d4(gdg) + O(e),
boundary problem we would like to recover, E¢&6)—28),

+[1+(1-kU]

&t == E_lvna.'? + dt - Utas + O(E),

V2= e_zr?f] + 6_1K(9,7 - K2 nd,+ a§ +O(e),

using the above rescaling of space and time, z=z+¢elh-2)7y,
aU =V2U (liquid), (74) -
Vo .
- ——=A[1+0(?)] +30(e),
[1+(1-KUJv,= -4a,U[" (interface, (75) |V ¢|
U =-« - Bu, - vz (interface, (76) V.d=elg,(f-d)+ a8 d) + kh-d+O(e),

where k=dok andv,=dgV,/D are the dimensionless inter- Wherea is an arbitrary vector function of the fields,(v,)
face curvature and normal velocity, ase 8D/d, is the di- '€ the dimensionless norm@ngentia) velocity of the in-
mensionless kinetic coefficient. In the following, we will (€rface,z its dimensionlesg position, andd; is the time

show how to recover this model as closely as possible byl€rivative at fixed' ands.

choosing specific forms for the functiong ), h(¢), and Since changes in the arclengilamount to a reparametri-
a(e). zation, we neglect terms i, without loss of generality. We

will also neglect the operatord. This amounts to the as-
B. Matched asymptotic expansions sumption that the interface follows adiabatically the changes
in the forcing. For the phase field, this approximation is

We make a perturbation analysis in powerseoin the always justified, since this field has an approximately station-

INNer region, ary kink shape moving with the interfa¢tis will be explic-
D= o+ epy+ Epyt -, (77) itly checked by computingp at lowest order ine, which

turns out to be a function of only). For the diffusion field

U=Ug+eUy+ €Uy+ -, (78) U, it can be seen from E@76) thatd,U # O originates from

variations with time of the interface curvature, velocity, and
and similarly in the outer regiong= o+ ep,+- -+, D:GO position. The variations of the latter occur generally on the
+601+,_,_ In the outer region, Eq72) and (73) can be slow time scale of .sc_)lute redistribution transem_sﬁ,\/f_,, and
expanded in powers of in a straightforward manner. Since &€ therefore negligibly small. The characteristic time scale

we haveg’(+1)=0, $=+1 are stable solutions for the phase- for variations of the curvature and velocity ®'V,,, where
. €9 =H=0 ¢=2 . P R=1/K is the local radius of curvature, since this is the time
field equations to all orders im for any value ofU andz.

. e the interface needs to move over a distance equal to the local
Therefore, the outer squEon for the phase field is simply &c516 of the pattern. Therefore, the curvature and velocity
step function, and the field obeys the diffusion equation to terms ind,U are of ordervnK(K+Zaun). Sincex andu,, them-

all orders, selves are small quantitied,U is much smaller than other
aU = a(+1) V20 7 terms of ordew,«x which will appear in the calculation be-
U =gV, (79) low, and can hence safely be dropped.

where we recall thati(1)=0 andq(-1)=1 for the one-sided We substitute the above expressions into E§®) and

model. Also, note that the local equilibrium condition for the (73) to obtain
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Fp =1 (p) + el (avy + K)d,b~ arg' ($)(U + v7)] 9,(A(o)9,Ug) = 0, (86)

+ E(Fd - ki, p— (- 219 (¢)] which can be integrated once to yielfl)d,Uo=Ag(S).

-0(&) (80) Taking the »— o0 limit according to Eq.(83), we find
S Ay(s)=0, and therefore

€29,(qa,J) + 5‘1{ {v,(ﬂ( - ﬂh((ﬁ)) + Kq] a,U Uo=Uq(s). (87)

2 2 To fix this constant, in turn, we consider E&O) at ordere,

+vpd, a1 +(1-KU]a,d} - %[1 +(1-K)U]9,h Loy =a19'(¢g)(Ug + vZ) - (av, + k)d, o, (88)

0 5 Whereﬁzﬂfy—f”(%) is a linear differential operator. Since
+ €{05(qdsV) — x“7d,U + avn 1 + (1 ~K)U]3, ¢} the partial derivative with respect tey of Eq. (84) is
=0(e) (82) L3,¢0=0, d,¢, is an eigenfunction ofC with eigenvalue
zero. Therefore, the solvability condition for the existence of
and solve them order by order é& The matching to the outer a nontrivial solutioneg, reads
expansion is trivial for¢ since the outer solution is just a _
step function. FotJ, the matching conditions read a1(Up+vz)J+ (av, + w1 =0, (89)

where  J=[.20'(¢o)d,podn=0(+1)-g(-1) and |
= [72(d,¢0)?dn. Sincel andJ are the same constants that
have been used to defimg=1/J, we obtain

lim [ Ug(7,8) — Ugl*(9)] =0,

=t

lim {U1(7,9) = [ Us[*(8) + 73,Ug[%(9)]} =0, Ug=—- 1z - avn - K, (90)
”:toc
which is identical to the Gibbs-Thomson condition of the

. ~y ~ ~ free-boundary problem, E@76), with ZBEZB =a.
_ + + 2 + 0
,II':TOC{UZ(”’S) [U2*(8) + narUsl*(s) + (#12) FU[*(9)]} This is the “classic” result for the kinetic coefficient in the
sharp-interface limit. To obtain the thin-interface correction,

=0, (82) we repeat the same procedure at next order. Thanks to Eq.

where [* means that the outer field and its derivatives are(%)’rw_e1 tcan b‘:r?ﬁ the terms i, U arising in Eq.(81) at
evaluated at the interface, coming from either théliquid) ordere ~1o obta

or the — (solid) side. As a consequence, 3,10(o)9,U1] = —vnd,{aldo)[1 + (1 = k)Ugld, o}
im 9,Uo(.9) = ii:TﬁUl( 7,9 =0, + %[1 +(1-KUola,h(¢y), (91

and integrate it once with respect pto yield

A(ho)d, U1 =v,[1 +(1 =K Uo][h(o)/2 - alebg) d,,po] + As(S),

(92
W) = li:rpx[ﬁ,,uz(n,s,t) - 7 Ug*(9)]. (83 whereA(s) is an integration constant. The latter can be fixed
h by considering the limityp— —«. In fact, the left-hand side

This matching will provide the boundary conditions on therepresents the diffusion current, which vanishes inside the
interface for the outer concentration. We now proceed tdulk solid. Since the antitrapping current must also vanish

3U[%(9) = lim 9,Uy(7,9),
n=%%

solve the inner equations order by order. andh(1)=1, we findAy(s)=-(v,/2)[1+(1-K)Uy]. Substitut-
ing it back into Eq(92), and integrating the latter once more
1. Gibbs-Thomson relation between 0 andy, we find

Equation(80) at ordere®, — 7
Up=U;+ E[l +(1- k)Uo]f P(po(§)dE, (93
0

oo =1 (o) =0 (84) B
yields, with the boundary conditiong,— -1 for 7— +e  WhereUy is the value ofJ; at the interface »=0), and
and ¢p— 1 for »— — set by the matching to the outer so- h(¢g) — 1 — 2a(chg)d
lution, the zeroth-order solution (o) = b0 ($o)dyfo (94)
(o)
—_ A The profileU; therefore depends on the choice of the func-
bo(7) tanhVE. (85 tions q(¢), h(¢), anda(¢). Note that both the denominator
and the numerator tend to zero whgn»—~. It is important
In turn, Eq.(81) at ordere 2 becomes here to remark that we need to requa(es) — O in this limit,
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since otherwiseJ; diverges, which makes a matching to the Un —

outer solution(U is constant in the solidmpossible. In fact, 5[1 +(1-K)Up]K-JU; =0, (98)

this property makes the standard asymptotic expansion in-

consistent. A careful analysis, carried out in Appendix A,where we have expressélj according to Eq(93), and

shows that in this case a term of ordpiogp (with p oo .

=WV/D the interface Peclet numbeappears in the interface K:f d77f977¢09'(¢0)f p(bo(9)dE. (99)

kinetics, which makes the convergence of the model to the o 0

sharp-interface limit very slow. This term appears, for ex- -

ample, in the standard formulation of the one-sided modeTo obtain the desired result, namely an expressiotforlet

that has been widely usé@,17]. In order to avoid this phe- us first remark that in the limity—o, Eq. (93) yields

nomenon, we will require in the following(¢) —0 for ¢ d,U1=-v,[1+(1-K)Uo], which is just the Stefan condition

— 1, that is, the numerator must vanish more rapidly than th@t lowest order. Using the matching conditions

denominator. - lim,,_...0,U1=d,Uo[* andU,[*=lim,_ ...U;(%) - d,Uo|*, we
Under this condition, we may fix the constdmt by con-  obtain

sidering Eq.(80) at ordere?,

Usf* = ~vnf, (100
_ (o) o , )
Ly = > ¢1 = (avn+ ) 9,1 + 19" (o) Uy ~, JFF+K
Br=-[1+(1-KUe =~ (101)
+0" (o) pr1a1(Ug + 1v2) + K* 1, o
+9'(doarlh-2m, ©9 P = [ ot -6 an (102
0

where we have used@¢,=0. In this expression appears the

first-order correction to the phase field;, which is the so- Note thatU will be continuous across the interface up to

lution of the differential equation obtained by substitution of O(¢) if and only if F*=F"=F (and hencq@{zﬁl). Since

Eqg. (89) into Eq.(88), U=U-+e0. th S L
oteUy, the total kinetic coefficient is

K+JF*
2]

L1 =~ (av,+ k)[@19' (o) + 9,0l (96)

BE=Bo+eBi=a-d1+(1-KUg] (103

with the boundary conditiongh;(7— £©)=0 imposed by
the matching to the outer solution. Clearly; equalsav,
+k times a function only ofy, so that, when substituted into
Eq.(95), it would yield (av,+ x)? contributions taJ,. There
are essentially two ways to avoid this problem. The first As already mentioned before, E(3) together with the

The implications of this finding will be discussed below.

2. Mass conservation

would be to choosg such that matching condition(83) yields 4,Ug|" =0 andd,Ug|*=-v,[1
) ~ +(1-k)Uq], which is just the Stefan condition at lowest or-
9'(¢o) =~ dydoley, (97) der. In order to evaluate eventual corrections, we proceed by

hich mak <h dard i« doubl ] calculating the normal gradients at ordeusing the match-
which makesp, vanish. For our standard quartic double-we in " Ty 2T [+

. : . - 2/ . g condition forg,U,|* in Egs.(83). The quantityd?Uy* can
potential which yieldsy, ¢o=(1-¢)/ 2, the corresponding o o\ ajuated by remarking that the outer problem satisfies a

g function is a third-order polynomial that has been widely gjmpje diffusion equation in a moving curvilinear coordinate
used. However, we have chosen here a different function ~
and many calculations have also been performed with yesll'yftem' and thereforé‘if+(v“+K)‘9f+‘955]U0_0' such that
other interpolation functions, so that this condition is toodUol*=~[(vs+ &)d,+dsUol*. To obtaing,U,(7), Eq.(81) is
restrictive. The second way out is to use the symmetry propevaluated aD(e°) and integrated once from 0 tp,

erties of the involved functions. For any symmetric double- .

well function[that is,f(-¢)=f(¢)], the equilibrium profile is +q' + f

odd in 7, ¢o(-7)=—¢o(7), and its derivative is even. tf is APz * A'(do) 41, U1 + 0 0¢a(do)deUs

chosen to be odd i, g(-¢)=-g(¢), theng’(¢y) is also ” 1+k 1-k

even inz. The_refore, the entire right-hand side of Egp) is + U"f dé(— - —h(¢o))(9§Ul +vpia’ (o)

even. SinceC is also an even operatap; must be even, and 0 2 2

its derivatived, ¢, odd. Given that the solvability condition

is obtained by multiplying the right-hand side of E§5) by X ha[1+(1=K)Uol + albo) (1 ~K)U1}d o + vrd( o)

d,%0, an even function, and integrating frome—to +o, the X[1+(1-KUqgld, i1 + vl 1+ (1 -Kk)Ug]
contribution of all odd terms vanishes. The only remaining - ; -
<r)en:d|ss the term that contait;, and the solvability condition Xfo déa( o) deebo = 3“(1 - k)fo déU;9:h( o)
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7 o
- %[1 +(1-K)UgJh' (o) 1 + f7sJJof0 déa( o) Q= Jo dnla(po(n) —a(e™)]. (111
=Ay(9), (104  The first two terms on the right-hand side of E409) are
. . . . the announced finite interface thickness effects associated
whereA,(s) is an integration constant and we have taken NQyjith interface stretching and surface diffusion; the third is
account thaw,Uy=dspo=0. Fortunately, we can drop many e eynected first-order term that appears on the left-hand
terms of this long equation because we are only interested igge of the Stefan condition, EG75); finally, the last one is
the limits — xee. In this limit, ¢; and d,¢, are exponen- 5 correction associated with a jump dfthrough the inter-
tially small, such that all terms containing them can begyee | total, the mass conservation condition for the outer

dropped, except when they appear under an integral. Th . ~
third term on the left-hand side of E¢L04) [denoted {3)"] f?elds up to first order readsecall thatUy=Uo)

can be rewritten using Eq&93) and(94) as 1+(1 _k)(00+ eol‘J,)]Un

KU K - - -
()= ?n[l +(1- k)Uo]JO dé[h(¢bo) = 1 = 2a(po) ghol =—3(Ug+ eUy|") + 5{%[1 +(1-K)Ug]J(H*-H")
(109 - vk o0
+, Q)+ —[1+(1-KU(F" -F)¢.
and it can be seen that the part proportiona(®,) cancels Q- Q) 2 [+ WWoll )
out with the seventh term on the left-hand side. The remain- (112

ing piece can be rewritten, using the Stefan condition to low-
est order, as

C. Discussion
KUn

. ~ . KU
lim [(3) + (7)]= xkna Uol* + 2n[1 +(1-KUq] 1. Physical interpretation of the corrections

n—txe

” There are three corrections ia to the classic free-
XJ dgh(¢y) —h(F1)]. (106) boundary problem. The term proportional @ -Q~ de-
0 scribes the response of the interface to lateral concentration

o ) gradients, caused by variations of the curvature or the growth
Next, the remaining terms that contaircan be grouped and  gpeed along the interface. For a diffuse interface, the result-

integrated to yield ing mass flow is smaller than in the bulk liquid on the liquid
1+k 1-k side, but larger than in the bulk solid on the solid side. If the
(4) +(8) :vn<— - —h(q§0)>ul(7])_ (1070  two effects do not exactly compensate, a surface diffusion
2 2 term needs to be included in the Stefan condition. The con-

. . i, _ _~ . dition to make this correction vanish @ =Q", which can
Using the matching condition fody, lim,,_..Ui(m)=U1* e shown to be exactly the same as E4y.in the Introduc-
+750,Ug|*, and the fact that lim__.q(¢)d,U,=0, we can tion by taking into account thai(¢)=0(¢)cy(p)/c.

obtain the constarn®, from the limit »— —« of the entire Next, the term proportional téi*—H™ arises from the
Eq. (104, source term in théJ equation. If a positively curved inter-

. face moves forward, the liquid side of the interface is slightly

_ KUn T longer than the solid side. Therefore, the source term on the

A,=—[1+(1-kU dylh -1]+v.kU '

2=, 1142~k O]L h(go) = 1]+ unkUy liquid side is active over a larger area than the one on the

. solid side, and the integral of the source strength multiplied

™ by the area over which it is active is precisely given by the

+ .

&SSUOL dnci(bo) (109 differenceH*—H". If this quantity is nonvanishing, the inter-

face acquires a “net impurity content,” that is, a source term
Next, lim,_..q(¢o)d,U, is evaluated using the above result appears in the mass conservation condition when the length
for A,. Finally, with the help of the matching condition and of the interface changes, which is precisely the case if the
the expression f09r200|+, we obtain productuv,x is nonzero. This is the interface stretching cor-
rection, which vanishes wheid*=H". In terms of the con-
~ ., KU . i ~ centration, this condition is identical to E¢p).
G;Uq|" = - 7[1 (1 =KUoJ(H™ - H7) — d:Jo(Q" - Q") Finally, the last correction involves a macroscopic discon-
_ _ _ tinuity in U that is proportional to the velocity,, and to
—vn(1 =K U4|" —vk(Uq|" = Uq|) (109  F*'-F7, and that appears in the boundary conditions at the
_ interface and in the Stefan condition, E412). This is the
with solute trapping term: since the concentrations on both sides
+o0 of the interface vary with velocity, they do not satisfy the
Hi:f d7[h(¢o(7)) = h(¢h)], (110 partition relation cs=l_<c, out .of equil.ibrium, or, in ot.her
0 words, the solute rejection is velocity-dependent. Sikce
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can be assimilated to a chemical potential, its jump can be 1
interpreted as resulting from a finite interface mobility that a(¢) = E
leads to interface dissipation. Note that both analogies are v B
limited: whereas a “physical” dissipation is necessarily posi-since we can exploit the fact tha?l;7¢0:—(1/\f'2)(l—¢§).
tive, the differencd="—F~ here can have either sign, depend-Then, all the solvability integrals are identical to those cal-
ing on the choice of the interpolation functions. Without theculated in Ref[13] for the symmetric model in the isother-
antitrapping curren{a(¢)=0], the conditionF*=F~ that  mal variational formulation.

(116)

makes this correction vanish is identical to K@) in the Essentially, this “trick” solves the problem because it
Introduction. makes the two condition*=F~ and H*=H" identical, as
for the symmetrical model. The same strategy can be applied
2. Choice of functions to obtain other possible phase-field formulations. For any

“source functionh(¢) and diffusivity q(¢), the equivalence

In order to make all three corrections cited above vanish . . :
to the analogous symmetric model can be obtained by requir-

we need to satisfy simultaneously three conditions, namelying p(4)=h()—1, which yields

F'=F, H'=H", Q'=Q". (113 [h(#) — 1][1 -a()]

For fixed double-well and tilting functionandg, we have AD = D (1179
at our disposal three interpolation functions: the diffusivity
d(¢), the source functiom(¢), and the antitrapping current For example, the functiob; of the symmetric model in the
profile a(¢). The new element here is the antitrapping cur-variational formulation of Ref.[13], which usesh(¢)
rent. If it is absent, only two interpolation functions are =8(¢)=15(¢—2¢°/3+¢°/5)/8, can be recovered fay(¢)
available. It is then, of course, easy to satisfy two out of the=(1—-¢)/2 by
three conditions. For example, choosihgodd in ¢ and 3
q(¢)=1-q(-¢), respectively, will automatically satisfy the a(¢) = [(3¢°- 7¢)(‘£+ D)8+ 1_ (118
interface stretching and surface diffusion conditions. How- 2V2
ever, as already discussed in the Introduction and also b¥ince this model is known to be less efficient, we have not
Almgren for a thermal mod€18], all three of them can be . : . :

" . L - .- investigated this alternative further.
satisfied only for a weak contrast in the bulk diffusivities,
which of course excludes the one-sided case of interest here. 3. Kinetic coefficient
The problem is that, in order to satisfy the integral conditions
shown above, the interpolation functions need to be noNMoyo
notonous or even to change sign, which leads to stronq%

higher-order correction terms or even to the emergence ontributions of opposite signs. Converting EE03) back to

smgu_lar_ltles. . _ dimensional units, we findin the following, we will assume
It is interesting to note here why the corrections to the, t=F-=F)

Stefan condition, namely interface stretching and surface dif-

For low-speed solidification, kinetic effects are usually
gligibly small, and therefore we want to make the kinetic
oefficient vanish. This is possible because it consists of two

fusion, which were not computed in R¢1L3], vanish for the T AW?

symmetric model of solidifigatiorq(g{)) :Ql,:;]a(dﬂ =0. Obvi- B= alWV{l _aZK[l +(1- k)UOJ}’ (119
ously, surface diffusion does not arise for a consta).

But, furthermorep(¢) reduces td(¢)—1, and therefore the K+ JF

two conditionsF*=F~ and H*=H~ become identical, such Q= (120

that the “miraculous” choice df(¢) odd in ¢ which ensured

F*=F~ in Ref.[13] also cancels the interface stretching cor-For k=1 (constant concentration jumpthis is identical to

rection. the expression for the symmetric model, ge0 can be
The more involved one-sided case is cured with the helgichieved by choosiny=(D)/(a,W?). Fork# 1, the kinetic

of the antitrapping current, which offers an additional degreecoefficient depends obJ,, the average value df in the

of freedom to satisfy the third condition. The only place diffuse interface. The physical meaning of this dependence

where the functiora(¢) appears in the final results of the can be understood as follows. The second term in the expres-

matched asymptotics is in the first-order concentration prosion for 8 arises from the additional driving force supplied to

file U;, and more precisely in the functign(¢)=[h(¢)—1  the interface by the redistribution of solute inside the diffuse

—2a(¢)(977¢0]/q(¢). A suitable choice for the functioa(¢) interface. Fork+# 1, the amplitude of this rgdistribution de-

can be obtained by a simple analogy with the symmetrig?ends on the local state of the interface, since the concentra-

model of solidification. For the standard choicasp)=0 tion jump depends on temperature, curvature, and kinetics.

andh(¢)= ¢, we havep(¢)=¢-1. Thesamefunctionp(¢) 10 see this, recall thalo=-z/l7=doK-BoV,, where B,

can be recovered in the one-sided case if we choose =a,7/(\W), according to the dimensional version of Eq.
(90), and furthermore tha¢|/c|°=1+(1—k)U, and the con-
a(¢) =(1-9¢)/2, (114 centration jump from solid to liquid is;(1-k).
As a consequence, the interface kinetics depends on the
h(¢®) = ¢, (115 local geometry and velocity of the interface, and it is not
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possible to makg completely vanish by the same choice as D. Limits of validity and expansion parameters
gﬁfo;%£|mg3?;2e gﬂgf;tggtger;mlcc :r?dbg O\r;nazree :SCL)JL-J'[ the In the numerical calculations presented below, we obtain

y smail, 9 : X . converged quantitative results for values e3fW/d, much
magnitude ofz /1. Two strategies are possible to tackle this

roblem. The first is to choose a temperature-de enderll{flrger than unity, even though we have useds a small
P - L7 P P expansion parameter in the thin interface analysis. This
phase-field relaxation time,

raises the following question: what is the domain of validity
=11 - (1 -KzZl{]. (121 of this expansion? A rigorous answer to this question would
) ) _ in principle require us to carry out the expansioreiat one
This does not change the asymptotic analysis fordteglua-  more order to determine when the additional corrections to
tion since thez-dependent part does not contribute to theyhe poundary conditions are negligible for a given set of
solvability conditions. It is sufficient to replace by 4. growth conditions. This represents a formidable analytical
(121) in Eq. (119. With the usual choice.=(7D)/(82W),  task that is beyond the scope of this work. We can, however,
the residual kinetic coefficient is use dimensional arguments to place bounds on the validity of
_ _ the thin interface analysis. We shall conclude from the fore-
A= Bo(L k) (dok + BoVi, (122 going arguments that need not be small for this analysis to
with By=a; 79/ (\W). The temperature dependence is elimi-be valid, consistent with the numerical findingd/ only

nated, but curvature and velocity correctionsgtoemain. needs to be smaller than a characteristic lefigthd,, which
The second strategy is to introducé&Jadependent phase- depends generally on the growth conditions.
field relaxation time, The expansion defined by Eq3.7) and(78) assumes that
e is small and that the functions, andU,, are of order unity.
T=1[1+(1-KU]. (123 The magnitudes of the functiot,, however, are not known

The idea is to make both terms of E403) contain the same Without specifying the outer problem. For typical growth
prefactor[1+(1-k)Ug] such that the compensation of the conditions, the variation of concentration along the interface
two terms is independent df,. This time, the solvability due to capillarity and interface kinetics is small. In particular,
conditions for¢; and ¢, are modified. The former yields a the velocity-dependent form of the Gibbs-Thomson condi-
new expression fot, tion |mplleithaﬂu+vz| <1 in the diffuse interface region as

long ask+ Bv,<1, and that therefore the right-hand side of

_ V4T aunTK (124) Eqg. (72) contains small terms other than To define a dif-
0 1l+av,(1-K) fusion field that is of order unity in the interface region,
— consistent with the choice af as a small expansion param-
Equation(98), which yieldsU,, becomes eter, one would need to rescale the combinatienz inside

v . the interface by some characteristic mean interfacial value of
a En[l +(1-K)Uo]JK - JU; [ —av(1 -K)[1+(1-K)Uy]  the diffusion field,U, which depends on the outer solution.
This procedure, however, does not change the results of the

— Uy R asymptotic analysis because it amounts to a simple change of
X{Iul_ E[l +(1=K)UolK } =0, (129 ariable. For convenience, we have therefore opted to keep
o the expansion parameterwhich is independent of the outer
where the new solvability integral, solution. It is clear from the above arguments, however, that

this expansion is valid as long as

o 7
K'=—f dv(f?n(ﬁo)zf P(o(£)dE, (126)

B 0 eU<1. (128
equalsK’=0.1869 for the choice of interpolation functions o
given above. A straightforward calculation yields SinceU is typically small,e need not be small for the ex-
pansion to be valid.
U= %[1 +(1 —k)Uo]E To make Eq(128) more transparent, it is useful to reex-
2 J press this constraint in terms of the interface velodifyand
_ _ / the local radius of curvatur®. Up to coefficients of order
{1 +avy(1 =KL+ (1 =W UolK J/(KI)]} unity, which we do not consider, and assuming that the ve-
1+avy(1-K[1+(1-kUqg]

locity is positive, it follows dimensionally thag~|u+vz|
(127)  ~dy/R+pV,+WD/V,, whered,/R and gV, are capillary
and kinetic corrections originating from the velocity-

e dependent form of the Gibbs-Thomson condition, and
refactors of the two terms i originating fromU, andU . e . J
gre indeed the same. Furtr'?erm?)re itgcan be seen that AYD!Va originates from solute diffusion in the diffuse inter-
higher-order corrections are proportional tav,(1-k)  face region. 'zl'he productU is therefore of ordefW/R
:ﬂovn(l_k):[alTO/(VV)\)]Vn(l_k)- As |0ng as this quantity +,BVnW/d0+W Vni(doD) In terms Ofé, the dimensionless
is much smaller than unity, the resulting residual kineticskinetic coefficient, and the Peclet numbex; Eq.(128) can
should be small. be rewritten as

An expansion of this result in,, shows that the leading-order
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~ TABLE |. Parameters for the impure succinonitrf@CN) allo
WR+p(B+e) <1. (129 system of Ref[27] used in the phaie-field simulati(ons’\gnd c);rre-
The same estimation can be obtained directly from the exsponding characteristic length scales for directional solidification.
pressions forU, and U, calculated above. Convergence is The anisotropy of the interfacial free energy is taken to ege
hence limited by two independent conditions, linked to the=0.007(0.7% anisotropy

local curvature and velocity, respectively. The first condition,

W/R<1, states that the _interface thickness must be ml_JCf}n|Cm (shift in melting temperatuje oK
smaller than the local radius of curvature. The interpretatio e - 9,2

fth q giti ~ q q he physical (diffusion coefficient 107 m?/s
of the secon con |t|orp(_,8_+e)<1, epen s on the physica I' (Gibbs-Thompson coefficient 6.48xX 108 Km
value of the kinetic coefficient to be simulated. In the presen(/ ulling speed 32 um/s
work, we focus on the limit of vanishing kinetic effects rel- GP iE gl P dient 140'“K/

L~ . _ ermal gradie cm
evant for small growth velocity3=0), which is achieved by q (ca ilar glen ItI;) 1.3%10°2 um
setting 7~ AW?/D. Therefore, the limiting condition ipe o (capillary leng ' 02’“
<1, which can also be rewritten a¥,/W<1. In practice, T (thermal length 3.33x10° um
we found that the convergence starts to break down folo (diffusion length 60 um
™V, /W~0.2 or W/ R~0.2, although occasionally slightly k (partition coefficient 03

larger values ofrV,,/W could be used.

Defining the diffusion length=D/V,, Eq. (129 can also
be rewritten in the formW/{.<1, where {.=d,/(dy/R ever, since the anisotropy WY itself is small(recall that the
+ BV, +WI/1). This shows that the true small parameaa_f anisotropy of the capillary length is 15 times larger that the

can always be expressed as the ratibdnd some charac- one OfW for fourfold symmgtry, only a smqll error will _be .
teristic length scalef, which is much larger tham, and made if the _actual orlentatlc_m-d_ependent interface width is
which depends on the imposed growth conditions. replaced by its mean value in this term.

Finally, it is in principle possible to use the interface Pe-
clet numbemp=WV/D as a small expansion parameter in the V. NUMERICAL TESTS
thin-interface analysis, as for the solidification of pure melts \ye have simulated the phase-field model of the direc-
with symmetrical diffusior{13]. However, this choice is not sna) solidification of a dilute binary alloy defined by the
optimal for the case of asymmetrical diffusion Cons'deredanisotropic version of Eqg68) and(69) for parameters cor-
here for technical reasons. In particular, the interface St’etd}'esponding to the impure succinonitriSCN) alloy of Ref.
ing and surface diffusion terms appear at second order a 7]. The alloy parameters together with the values of the

third order, respectively, in an expansionpnIn contrast, jiing speed and the temperature gradient are listed in Table
they both appear at second order in thexpansion. There- | the chosen pulling speed is ten times the value for the

fore, the latter is preferable for clarity of exposition, with the jhset of the Mullins-Sekerka instability. For these param-
caveat that it is necessary to consider the outer region f@iers the capillary length is several orders of magnitude
obtain the true condition of validity of this expansion ex- gmajier than the thermal length or the diffusion length. Since
pressed by Eqg128) and(129), or equivalently by the con-  nica| cell widths are~100 um or ~10%d, and computa-
dition W/ €, <1. tions are only feasible if one cell width 107 grid points, we
are forced to use values & much larger thaml,, typically
W/dy=10 to 100. We will see that, with the present phase-
field model, it is possible to obtain well-converged results
To include anisotropy, it is sufficient to proceed in the even with such larg&V/d, ratios.

E. Anisotropy

standard manner, that is, mak&/ and 7 orientation- To choose the phase-field model parameters, we first note
dependent, as in Reffl3,19, that the ratio of the capillary and thermal lengths;dy/I+
ey () +(0) =4x 1075 and the dimensionl_ess pul]ing spwpzvpdollD _
W(n) =Way(n) =W(1 - 3¢,)| 1 + 4 1% 4Y , =4.16X 10 completely specify the interface evolution in
1-3¢ |V the sharp-interface equations. This can be seen by scaling

(1300  length and time in these equations thy and d3/D, respec-
tively. In the phase-field model, we have the additional
— 2 lengthW and converged results should be independent of the
) = m3(n). (133 ratio e=W/d,. Note that for anisotropic surface tension,
This modifies the Gibbs-Thomson condition so tlgin the ~ W(n)=Way(n) with as(n) given by Eq.(130). In a given
free-boundary problem is replaced loly[1-15¢, cog46)],  simulation, we fixe=W/d, and hence\=a,e from Eq.(71).
where @ is the angle between the interface normal andzhe Furthermore, we use a temperature- and orientation-
axis. Here, it is understood thag might be replaced by its dependent relaxation timeas specified in the previous sec-
temperature- ot-dependent version. For the interface kinet-tion together with the relatiomy=a,A\W?/D, which makes
ics, the orientation dependence appears togethersgithall ~ the interface kinetic coefficient vanish for all temperatures
the above results. Finally, note that the interface thicknesand orientations, and we scale lengths/gand time byrg in
also appears as a prefactor in the antitrapping current. Howthe phase-field equations. The scaled phase-field equations
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FIG. 2. Comparison between the linear stability spectrum of a 30
planar steady-state interface computed with the phase-field mode I b )

for different interface thicknessédot-dashed and dotted linesnd
the Mullins-Sekerka theori24] (solid line). Here, x is the growth
rate of a sinusoidal perturbation of wave numtgrandl=2D/V,
is the diffusion length. The parameters are for an impure SCN alloy
system described in the text witfy,=32 um/s andG=140 K/cm.

then only depend or through the dimensionless parameters
D=Dry/We=ayape, V,=V,1o/W=vpaape?, and lt=I/W
=1/(ev). Writing out explicitly all the interpolation func-
tions, and taking into account the contributions of the aniso-
tropic W(n) in the functional derivative, the equations read

0 10 20 30 40

[1 (1- k)%"—]asm)%i’
T

=¥ - [an)2 6]+ 4, (lwlzas( )(M( ¢;)

+a(IV¢|2as( >ﬁf‘s(¢)))+¢—¢3—x<1—¢2>2
x<u+gp—t>, (132)
I
[Lrk ik, (51;%
2 2 ot 2
+_ 9% V¢)
2\2 AV ¢|
1o¢

+[1 +(1—k)U:|2 P (133

where x and z are in units of W andt is in units of 7.
Simulations are repeated with different valuesedb study

FIG. 3. Convergence of the growth ra{€Q) as a function of
W/dq for (a) QI=10.5, and(b) QI=87.3. The dotted lines are the
predictions of the Mullins-Sekerka analysis.

explicit Euler scheme with a time step chosen below the
threshold of numerical instability for the diffusion equation
in two dimensionsAt < (Ax)?/(4D).

A. Stability spectrum

We have numerically calculated the stability spectrum of
a planar steady-state interface. To this end, the system was
initialized with a planar interface at its steady-state position.
The concentration in the liquid was set to the exponential
steady-state solution of the free-boundary problem. A small
sinusoidal perturbation of amplitude<W and wave num-
ber Q was then applied, and its time evolution was followed
by extracting successive interface positions. It follows an
exponential increase or decayet, and the growth ratg(Q)
was extracted by a fit of the perturbation amplitude versus
time.

In Fig. 2, we compare the results from the numerical

the convergence. The equations are discretized on a squas&nulations to the analytical solution for the Mullins-Sekerka
lattice; some details are given in Appendix B. We have usedtability spectrum of the free-boundary problem of Egs.
a grid spacingA\x/W=0.8 in most of the simulations, but we (74)—(76). The convergence is better for smaller wave num-
also used a finer resolutiakx/W=0.4 to study the effect of bers, which is perfectly reasonable since the ratio of pertur-
the discretization. For the time evolution, we have used amation wavelength to interface thickness scales witk®.1/
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For W/dy=9.025, the phase-field model gives a good agree-
ment for almost the whole range of wave numbers, including
the maximum, which is the most important part of the spec-
trum. In Fig. 3, we plot the growth ratg(Q) of two selected
modes versus the ratid//d,, which shows a fast conver-
gence. FoAx/W=0.4, the results are fully converged to the
theoretical value fow/d,=4.51 even for the mode with high
wave number. It can also be seen that the larger grid spacing
- of Ax/W=0.8 introduces slight corrections that are due to the
1 lattice pinning effeci{see Ref[13]).

0

tip

— W/d=18.05
- W/d=36.10
- W/d=72.46
..... W/d,=108.7

(z-z. )/A

B. Cell shapes

| | L "
-1 0 0.2 04 To asses the convergence of the models in the nonlinear
X / A regime, we have computed shapes of steady-state cells for

various values o¥W/d,. The simulation box contains half of

FIG. 4. Convergence of the shape of steady-state deep cells asfaCell, with no-flux boundary conditions along the cell center
function of interface thickness. Lengths are scaled by the cell spacdnd the groove. We have considered narrow cells of spacing
ing A=22.5um, V,=32 um/s, andG=140 K/cm. A=1732.8<dy=22.5um, since we want to test the conver-

gence of the model for small tip radii; in an extended system,
these cells would be unstable to a cell-elimination instability
that leads to a doubling of the cell spacing. As the initial

500 - - 0.45
a | b)
400~ 1 04- .
=)
=
= G
300~ 1 0.35- .
200, .

0 | 50 100
7z

FIG. 5. Convergence as a function of interface thickness of various quantities associated with steady-state cel)dimapediusp, (b)
dimensionless tip undercoolir@, and(c) solid concentration in the center of the cell. The diamogushed lingin (c) correspond to the
values calculated from the Gibbs-Thompson condition using the tip radius of the phase-field shape. The inset shows the relative error of the
phase-field results with respect to the Gibbs-Thomson prediction.
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condition we set,;=c,, c;=kq [which, with the definitions thermal model to yield a quantitative thermosolutal model of
of Egs.(61) and(64) and usingc,ozcw/k, corresponds tdJ solidification[29]. A small solute diffusivity in the solid can
=-1 in the whole systeinand add a small sinusoidal per- also be introduced without appreciable modifications of the
turbation to the interface, with a wavelength equal to the celpresent analysis. Finally, the antitrapping current, which was
spacing and its maximum located on the boundary. After aised here to restore the equilibrium partition relation, can
transient where the interface recaoils, it reaches steady state &iso be used to obtain a nonvanishing, specified trapping.
the form of a half-cell. This is especially important to extend this model to the
The resulting shapes are shown in Fig. 4. For the cellvhole range of solidification velocity relevant for experi-
shapes, the convergence is faster than for the growth ratejents. In addition, the present model should be applicable to
and already simulations wittV/dy,=50 are well converged. model Hele-Shaw flows when the viscosity of one fluid is
To show more clearly the difference in the speed of convermuch smaller than that of the other.
gence, we plot in Fig. 5 the tip radiyg' dy, the tip under- From a broader perspective, this progress revives the hope
coolingQ=1-z,/l+ (wherez=0 corresponds to the position of using the phase-field method as an efficient and fully pre-
of the steady-state interfageand the solute concentration in dictive tool for other free-boundary and interface growth
the solid in the center of the cell. For the latter, we compargroblems where the dynamics of the two media are not nec-
the values that are directly obtained from the simulationsssarily symmetric, even outside the framework of systems
(that is, the value of the fieldJ in the center of the described by a Lyapunov functional. A key element of this
cell) to the value expected from the Gibbs-Thomsonprogress is the use of nonvariational terms which provide
condition and partition relation at the interfaceg‘/c? additional freedom to obtain the correct mapping between a
=k[k+(1-k)(Q2—dy(1-15¢,)/p)], where the values dk and  diffuse interface model and a desired free-boundary problem,
p are obtained from the numerical resu[fSigs. 5a) and  such as the antitrapping current here, and other terms in other
5(b)]. Again, all the quantities are well converged bt d, contexts[26]. It is important to emphasize that the interface
=50, and even for the rati®/d,=72.2 (corresponding to is spatially diffuse and all interpolation functions are smooth
p/W=4), the error in the tip radius for the phase-field modelin the present phase-field model. Hence, this model remains
is only about 15%, while the equilibrium solute concentra-simple to implement numerically, in comparison to other
tion condition at the interface is satisfied within an error of methods that combine sharp and diffuse interface ingredients
about 1%. The error in this latter condition is small, even for[30,31.
the largest values diV/d, used[Fig. 5c)]. Since microseg- Let us conclude with a few remarks on the formulation of
regation is important for metallurgy, the precise calculationthe model itself. The thermodynamic derivation presented
of the solute concentration in the solid is an important newhere, which is an alternative to previous expositions of the
feature of the present model. same mode]9], establishes new connections to other phase-
field models of alloy solidification. As mentioned before,
early phase-field models of alloy solidification were plagued
V1. CONCLUSIONS AND PERSPECTIVES by a dependence of the surface tension on the interface thick-

We have presented a detailed asymptotic analysis of thBesS that arose from the coupling between the phase-field
phase-field model for alloy solidification that was introduced@nd concentration equatiofi,g]. This problem was solved
in Ref.[19], and we have simulated directional solidification later by the introduction of two separate concentration fields,
of a dilute binary alloy. We have found a very good quanti_one_for the solid and_ one for the liquid, and by interpreting
tative agreement with the Mullins-Sekerka stability spectrunrfn€ interface as a mixture of two phagdg)]. The require-
of a planar interface for typical experimental control param-ment of local equilibrium between the two phases then al-
eters. For solidification cells, we found that the solute conJOWs one to eliminate one of the concentration fields].
centration inside the solid agrees self-consistently with thd he resulting model has a surface tension that is independent
prediction of the Gibbs-Thomson condition, in contrast toof the interface thickness and can be used for arbitrary phase
earlier models where the microsegregation was only qualitadiagrams; however, some thin-interface effects remain, in
tively reproduced17]. particular surfacg diffusiofl1]. _ _

This advance relies on a solution of the complete problem In our derivation, we have succeeded in constructing a
of canceling all relevant thin-interface corrections to thequantitative model for an ideal dilute binary alloy with a
original free-boundary problem. This opens the way forsmgl_e concentration fle_ld, but two d|fferen'§ interpolation
quantitative comparisons between experiments and simuldunctions of the phase field for entropy and internal energy
tions both in two and three dimensions, with the concomitanflensity. This is appealing from a thermodynamic viewpoint,
possibility of testing the theories and concepts used to interSiNCe it maintains the interpretation of the concentration as a
pret microstructural pattern formation, as was previouslyocal quantity rather than a two-phase mixture. An interesting
done for dendritic solidification. task would be to generalize this approach to arbitrary phase

The present work can be extended along several lines. Féliagrams and multiphase solidification.
example, it has been demonstrated that the concept of the
antitrapping current can be generalized to two-phase solidi-
fication, which makes it possible to study eutectic or peritec-
tic composite growth with excellent precisi¢28]. Also, the We thank Hermann-Josef Diepers for many interesting
present one-sided model can be combined with a symmetridiscussions. R.F. was supported by the European Community
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(A4)

APPENDIX A: SOLUTE TRAPPING ) . ) .
For the sake of simplicity, let us first discuss the clkse

We give here a more detailed discussion of solute trapping 1, in which the integral on the right-hand side is simply
in a phase-field model without antitrapping current, and withequal toU;(7)—U,(=). It can be seen immediately that this
source and diffusion functions given by ¢$)=¢ andq(¢)  equation admits a solution that has the right lingifJ,; — 0
=(1-¢)/2. We will see that in this model, logarithmic cor- for n— —. We proceed by constructing an approximate so-
rections appear. This occurs whenever in the lighit- 1 the  lution by a matching procedure. First, remark that the left-
ratio (h—1)/q does not vanishi.e., remains finite or di- hand side of Eq(A4) is the product of two functions that
verges. Note that, in physical terms, the two functions de-Vanish in the limit— —c. Hence, it can be neglected in this
scribe the thermodynamic driving force for solute redistribu-limit, and the asymptotic solution is
tion during the phase transformation and the diffusivity, 1+(1-KU,
respectively. If the latter vanishes faster than the former, the Ui(7) = Uy(=o0) +

A . 2€
redistribution cannot be completely accomplished on the
solid side of the interface, and trapping occurs. We will nowlin contrast, in the region of the interface, the newly intro-
analyze this effect in more detail. duced term, being of ordes, is small, which was precisely

Our starting point is Eq(92) for the first-order diffusion the reason to neglect it in the usual calculation. Therefore, in
field in the inner region. Without antitrapping current, its this region the solution of EqA2) applies. Finally, a match-
solution is ing between the two solutions is found by searching the co-

ordinate »* where their slopes are equal, which, using the
7 ho(&) - 1 fact thatg,=—tant(7/2), yields

dé,
o dd] e AL

(¢o—1). (A5)

— v
Up=U+ En[l*'(l—k)uo]

= 1
7' =-2 cosh! ——. (AB)
\V2\2ev,

In the_ limit of small velocity v, this simplifies to »*
=(1/v2)In(ev,/V2). It can be checked that, in the matching
region, the two termgdiffusion and time derivativeare of

This solution, however, is not appropriate since it cannot besimilar magnitude, which justifies the matching procedure.
' ’ pprop We have hence constructed an approximate solution,

matched to the outer solution in the solid, which for a steady, .+, is equal to the one obtained from the standard proce-
state is just a constant. The problem is that we have ney

. . ) dure for > 7*, and becomes a decaying exponential or
glected tgrms in EQ82) that, for t.h's ;olqun, would not be . < x". Evaluating the solvability integrals with this solution,
small, which makes the calculation inconsistent. To see thi

it is sufficient to remark that both the diffusion tepropor- e find, for example,

which for the above choice of functions becomes

Uy =U; = o[1+(1=K)Ugl 7. (A2)

tional to ) and the redistribution terngproportional toh F™=Uy(=) - U4(0)

—-1) become exponentially small inside the solid. In contrast, v _

for the above solution, the time derivative df (equivalent = 5 ?5[1 +(1-KUol[1-2Inev/N2)]. (A7)
AY

to vyd, in the moving framggives a term of ordee in the

equation forJ, and hence becomes larger than the two meng;nijar terms appear also in the integkalUsing the identity
tloneq terms far enough in the solid, wh!ch V|ollates theevn=(W/d0)(Vnd0/D)=p, we find that the kinetic coefficient
counting of orders. In order to get a solution valid every-  ning “in addition to the usual terms linearpincorrec-

where inside the solid, this term has to be included in th‘?ions coming fromeF- that scale ap In p. This constitutes

equation forU,, which becomes for smallp, a logarithmic correction that makes convergence
in p very slow.
_Un _ This calculation is an approximation, but the conclusion
Ol AP0, V1] = 2 [2+(1 =K Uoldybo that there are nonlinear correction terms is general, and can
14Kk 1-k be easily interpreted: the anomaloqs kinetips occurs because
- a)n<_ - —¢0>¢9,7U1. (A3) §olute can escape o.nly from a region of.sviebehlnd the
2 2 interface, and this size scales logarithmically with (and
hencep) in the limit of small p. In this limit, the case of
By integrating once and using the boundary condition ofarbitraryk can be easily treated and yields corrections of the
vanishing current in the solif(¢o)d,U;— 0 for »——-=],  form pIn(kp). Note also that for a more realistic model in
we find which the diffusivity becomes small but finite in the solid,
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the anomalous dependence of the kineticsvgrstops for For the diffusion fieldU, we proceed by first calculating
v, <q(+1). the current in each link, and then summing up all links

around a site. On each link, the diffusion pzi[;t;—qSVU, is
calculated with the average of the phase field according to
APPENDIX B: DISCRETIZATION fu=—(¢i+1,j+¢i,j)(ui+1,j—ui,j)/(2Ax) for the x direction and
an analogous expression for thiedirection. The most deli-
The phase-field and diffusion equations are discretized ofate part is the antitrapping currenfg=a(¢)W1+(1
a square grid of spacing\x. We use standard finite- —-k)U]nd,¢p, wheren=-V¢/|V¢| is the unit normal vector
difference formulas, but a few details are worth mentioning.pointing into the liquid. We first evaluate the components of
For the Laplacian of the phase field, we use the maxi¥ 4. The computation of the component parallel to the link is
mally isotropic discretization, straightforward. As for the component perpendicular to a
link, for a link along thex direction between site§,j) and
(i+1,j) we use

V= §[¢i+1,j + g+ it Dijort 1(Bierjert Piogjer dyp = Pirijr1 = ¢i+l’£A1; Pijna d)i’j_l, (B2)
+ rarjor * biorj-) — 5y J(A%)?, (B1)

and similarly fordy¢ on links alongy. From the components

of §¢, we obtaini. The product(¢)[1+(1-k)U]d,¢ is then
evaluated at the two end points of the link, and its average
which avoids the grid corrections to the anisotropy that aresalue multiplied with the appropriate componentiofo ob-

discussed in Ref13]. tain the current.
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