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We use the Helmholtz free energy balance and the Mayer-Stowe-Princen method to derive general expres-
sions governing multiphase pistonlike displacements in noncircular capillary elements with arbitrary wettabil-
ity. We take into account hysteresis in oil/water, gas/water, and gas/oil contact angles. We study both two- and
three-phase systems. We find threshold capillary pressures for gas invasion into oil, oil invasion into gas, and
water invasion into oil for capillaries with an irregular triangular cross section. Finally we study the effects of
shape factor, oil/water capillary pressure, and oil/water and gas/oil contact angles on the threshold capillary
pressure for gas invasion into oil for spreading and nonspreading systems. In many cases the threshold
pressures of the three-phase displacements are not the same as those of the equivalent pseudo-two-phase
displacements. It is possible that gas invasion can occur resulting in a configuration without oil layers, even if
oil layers are geometrically possible. This emphasizes the distinction between geometric and thermodynamic
stability—it is the latter that controls threshold pressures.
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I. INTRODUCTION

Understanding multiphase flow in porous media is impor-
tant in many areas of science and technology including pe-
troleum reservoir and environmental engineering. One ap-
pealing approach to calculate macroscopic multiphase flow
properties, such as relative permeability and capillary pres-
sure, is physically based pore-scale network modeling where
the pore space is described as a network of pores connected
by throats with some idealized geometry. Then a series of
displacement steps in each pore or throat(element) are com-
bined to simulate multiphase flow. Recent advances in pore-
scale modeling have been reviewed by Celiaet al. [1], Blunt
[2], and Bluntet al. [3].

Individual pores and throats are often considered to have
angular cross sections; see, for instance,[4–7]. This makes it
possible to have more than one phase residing in one ele-
ment; the wetting phase occupies the corners when the non-
wetting phase fills the center. As well as triangular cross-
sectional elements[4–7], authors have used geometries with
circular [8], square[9–11], star-shaped[12,13], and lenticu-
lar [14] cross sections to represent pores and throats.

Displacements of one phase by another in capillaries with
different cross-sectional shapes, wettability, and inscribed ra-
dius are distinguished from each other by their threshold
capillary pressures. There are different types of displace-
ment: pistonlike, pore-body filling, snap-off, and layer for-
mation and collapse[6,15–17]. Here we consider only pis-
tonlike displacement, which refers to the displacement of one
phase by another in the center of a throat by a fluid residing
in the center of a neighboring pore. The threshold capillary
pressures are found using the Mayer-Stowe-Princen(MSP)
method[18–21]; see Sec. IV for details.

The MSP method has been applied by several authors to
compute threshold capillary pressures for pistonlike dis-
placement in elements with circular and different angular
cross sections[5,15,22–24]. Øren et al. [6] and Patzek[7]
have studied two-phase displacements in irregular triangles
with arbitrary contact angles. Lago and Araujo[25,26] ex-
tended this work to consider two-phase flow in capillaries
with polygonal cross sections and curved sides. Van Dijke
et al. [27–29] found three-phase threshold capillary pressures
in elements with noncircular cross sections and different wet-
tability but ignored wettability alteration and contact angle
hysteresis.

In this paper we compute threshold capillary pressures for
three-phase pistonlike displacements in polygonal cross-
sectional elements. The difference between this and other
work is that we study three-phase flow with altered wettabil-
ity surfaces taking into account hysteresis in oil/water, gas/
water, and gas/oil contact angles.

We first give an introduction to pistonlike displacement,
wettability alteration, and contact angle hysteresis. Then a
brief description of the MSP method is presented which is
followed by developing a Helmholtz free energy balance in
closed systems where phases are separated by spherical in-
terfaces. The free energy balance equation is used to derive
the general threshold capillary pressure equations for three-
phase pistonlike drainage and imbibition in noncircular
cross-section capillaries withn corners of arbitrary wettabil-
ity. A special case where capillaries are irregular triangles in
cross section is considered to find threshold capillary pres-
sures for gas invasion into oil, oil invasion into gas, and
water invasion into oil in strongly oil-wet systems taking into
account contact angle hysteresis. The sensitivity of threshold
capillary pressures to shape factor and other capillary pres-
sures is also studied.

II. PRESSURE DIFFERENCE ACROSS AN INTERFACE

To find the pressure difference across an interface, we use
the Young-Laplace equation[30,31]
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Pi − Pj = si jS 1

r1
+

1
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D s1d

wherer1 and r2 are the principal radii of curvature, andPi
and Pj are pressures of the phases on either sides of the
interface.

There are two types of interface, Fig. 1. The first is the
main terminal meniscus(MTM ) [5], which is the invading
meniscus at the pore/throat junction separating wetting and
nonwetting fluids in the center of the pore and throat. The
shape of such a meniscus is usually assumed to be spherical,
meaning that the two radii of curvature are the samesr1

=r2=rd. The second type are thearc menisci(AMs), which
are the interfaces at corners of a noncircular element usually
left by a pistonlike displacement(see Sec. III). It is assumed
that the curvature of the interface is negligible in the plane
perpendicular to that of the paper meaning that the principal
radii of curvature would ber1=r andr2=` [5,30]. The pres-
sure difference across such an interface is given by

Pi − Pj =
si j

r
. s2d

The capillary pressurePcij is simply the pressure differ-
ence across the interface:

Pcij = Pi − Pj . s3d

III. PISTONLIKE DISPLACEMENT

Pistonlike displacement refers to the displacement of one
phase by another in the center of a throat by a fluid residing
in the center of a neighboring pore. In other words, once the
threshold capillary pressure is reached the MTM that has
access to the entrance of the element moves into the capillary
with a fixed curvature filling the center of the element by the
invading phase. While the MTM displaces the defending
phasek from the center of the element—innoncircular
elements—the residual of the displaced phase may remain in
the corners, creating new AMs. This happens only if

uk
* ,

p

2
− a s4d

whereuk
* is the angle that the new AMs make with the solid

surface toward the apex of the corner which may or may not
be the contact angle that is traditionally measured through

the denser phase, anda is the corner half angle[see Fig.
1(b)]. If the effects of gravity are ignored then the curvature
of the AMs will be exactly the same as that of the invading
MTM [5].

Every displacement is either drainage or imbibition.
Drainage in a capillary element refers to an event where a
wetting phase is displaced by a nonwetting phase. An event
in which a nonwetting phase is displaced by a wetting phase
is called imbibition. Pistonlike displacement can take place
in both cases. The prevailing contact angles during pistonlike
drainage and imbibition events are receding and advancing
values, respectively(see Sec. III A). If there is no contact
angle hysteresis then the threshold capillary pressure of pis-
tonlike imbibition is the same as that of drainage; otherwise
during imbibition the relevant capillary pressure is reduced
and each interface starts hinging from its furthest value to-
ward the advancing contact angle. It stays pinned as long as
the hinging value is smaller than the advancing contact
angle. The wetting phase will enter the element when the
advancing contact angle is reached. The threshold capillary
pressures are found using the Mayer-Stowe-Princen method
described in Sec. IV.

A. Wettability alteration and contact angle hysteresis

While most clean rock surfaces in contact with refined
oils are water wet, few, if any, oil reservoirs are completely
water wet. This is because of direct contact of crude oil with
the solid surface which changes its wettability by adsorption
of polar components of the crude oil or the presence of natu-
rally oil-wet minerals within the rock. This makes any values
of oil/water and consequently gas/water and gas/oil contact
angles possible[32–36]. Kovscek et al. [34] developed a
model where the wettability of the rock surface is assumed to
be altered by the direct contact of oil. Before a porous me-
dium is invaded by oil it is assumed to be full of water and
water wet. Once it is invaded by oil a thin film of water
prevents oil touching the solid surface directly. But at a
threshold capillary pressure this film can rupture and allows
oil to contact the solid surface and change its wettability.
Regions of the pore space not contacted by oil remain water
wet.

The contact angle also depends on the direction of dis-
placement. This difference betweenadvancing, i.e., a wetting
phase displacing the nonwetting one, andreceding, i.e., a
nonwetting phase displacing the wetting one, contact angles

FIG. 1. Different types of in-
terface(a) main terminal meniscus
(MTM ), and (b) arc menisci
(AMs) in the corners of a capillary
element of triangular cross sec-
tion. a is the corner half angle[5].
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may be as large as 50°–90°[30,37,38] depending on surface
roughness, surface heterogeneity, swelling, rearrangement, or
alteration of the surface by solvent[30].

Different oil/water, gas/water, and gas/oil contact angles
and interfacial tensions make it theoretically possible to ac-
commodate fluids in the corners of the pore space with dif-
ferent configurations. Figure 2 illustrates possible generic
configurations of one, two, or three fluids in a single corner
of an angular pore or throat[17]. Altered wettability surfaces
are shown by thicker lines.

IV. MAYER-STOWE-PRINCEN METHOD

The MSP method is based on equating the pressure dif-
ference across the AMs left at the corners of the capillary
tube by pistonlike displacement, which is given by Eq.(2)
for elements with straight walls, to that of the MTM which is
found by writing an energy balance for MTM invasion(see
Sec. IV A).

A. Helmholtz free energy balance

Imagine a closed system where two strictly homogeneous
phasesi and j are precisely separated by a flexible spherical
dividing surface with zero thickness, radiusr, and areaA
[39,40]. Since the interface is not plane the uniform pressure
of bulk phasei, Pi, is different from that ofj , Pj. If the
volumes of the two phases,Vi andVj, in mechanical equilib-
rium are changed by variation in state variables of the system
by dV=dVi =−dVj, causing a reversible change inA, dA, the
work dW carried out by the system to do such a change is
given by

dW= PidVi + PjdVj − si jdAij s5d

wheresi j is the interfacial tension for the Gibbs surface of
tension and is the work done per unit increase in interfacial
area[39,40].

If the radius of the surface of tension is much larger than
thickness of the interface then interfacial tension can be con-
sidered independent of the radius of the dividing surface[39]
and is uniform in all directions. Knowing that, the pressure
difference across the interface is related to the interfacial
tension by

Pi − Pj =
2si j

r
s6d

which is the famous Laplace-Kelvin equation for a spherical
interface.

The change in the area of the interface changes the inter-
nal energy of the system,dU, which is related todW using
the first law of thermodynamics:

dU = dQ− PidVi − PjdVj + si jdAij s7d

wheredQ is the heat given to the system. If the system is in
thermodynamic equilibrium then using the second law of
thermodynamics Eq.(7) can be rewritten as

dU = TdS− PidVi − PjdVj + si jdAij s8d

whereT is the temperature of the system andS is the en-
tropy. Then the change in Helmholtz free energy,dF, is
given by

dF = − SdT− PidVi − PjdVj + si jdAij . s9d

One should note that we consider only closed systems,
meaning that the composition of the system is fixed. Also
there is no exchange of molecules between the phases—we
consider completely immiscible systems.

The total Helmholtz free energy of the system can be
considered as the summation of Helmholtz free energy of the
two bulk phasesi and j , and the interface

F = Fi + Fj + Finterface. s10d

FIG. 2. One-, two-, and three-
phase configurations for a single
corner. The bold solid line indi-
cates regions of the surface with
altered wettability. All the multi-
phase contact points may be
pinned which means that, as the
capillary pressure changes, the
curvature of the interface changes
but that the location of the
interface/solid contact is fixed. It
can move only when the hinging
contact angle becomes equal to
the pertinent contact angle. A
phase may be present in the center
of the pore space or as a spreading
or wetting layer, sandwiched be-
tween other phases. Water is al-
ways present in the corner.
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Equation (9) for bulk phasesi and j in a system with
constant temperature becomes

dFi = − PidVi , s11d

dFj = − PjdVj . s12d

From Eqs.(9)–(12) we obtain

dFinterface= si jdAij . s13d

Extension of the above analysis for ann-phase system
with the same conditions gives

dF = − o
i=1

j=n

PidVi + o
i j =12,13,. . .,23,24,. . .

n!/2sn−2d!

si jdAij . s14d

A system with constant temperature and constant total
volume is at equilibrium when the Helmholtz free energyF
is minimum [41] or

dF = 0. s15d

B. Capillary systems with three fluid phases

Consider a noncircular capillary element withn corners
filled with defending phase in the center and invading phase
having access at one end of it where it forms a MTM. An
increase in the pressure of the invading phase to the thresh-
old value when the pressure of the defending phase is fixed
results in the MTM entering the capillary with a fixed cur-
vature and changing fluid configurations(old to new) at the
corners. Assuming that the system is closed, at equilibrium,
the MTM spherical, the solidssd a rigid phasesdVs=0d, and
the solid walls straight, for a small movementdx of a MTM
in the capillary where three fluids, i.e., oilsod, waterswd, and
gassgd, may be present, the Helmholtz free energy balance
can be written using Eqs.(14) and (15):

dF = − o
i=o,w,g

PidVi + o
i j =ow,os,go,gs,gw,ws

si jdAij = 0, s16d

where

dVi = hfAi,tdignc − fAi,tdigocjdx

=Ho
k=1

n

fAi,\k
di,\k

gnc − fAi,\k
di,\k

gocJdx, s17d

dAij = hfLij ,tdi jgnc − fLij ,tdi jgocjdx

=Ho
k=1

n

fLij ,\k
di j ,\k

gnc − fLij ,\k
di j ,\k

gocJdx, s18d

where the subscriptsnc and oc stand for new and old con-
figurations, respectively,Ai,t is the total area occupied by
phasei in the cross section,Lij ,t is the total length of contact
between phasesi and j in the cross section,n is the number
of corners in the cross section, and\k is the cornerk (see
Fig. 3 for an example). If phasei is present in a cross section
then di is 1; otherwise it is zero. Also when phasesi and j
have an interface together thendi j is 1; otherwise it is zero.
The same analogy applies in a corner fordi,\k

anddi j ,\k
.

The total area of the cross sectionAt and the perimeterLt
of the capillary are constant and given by

At = o
i=o,w,g

Ai,tdi , s19d

Lt = o
i=o,g,w

Lis,tdis. s20d

From Eqs.(16)–(18) the comprehensive form of Helm-
holtz free energy balance is

− o
i=o,w,g

Pio
k=1

n

hfAi,\k
di,\k

gnc − fAi,\k
di,\k

gocj

+ o
i j =ow,os,go,gs,gw,ws

si jo
k=1

n

hfLij ,\k
di j ,\k

gnc

− fLij ,\k
di j ,\k

gocj = 0. s21d

When two fluidsi and j come in contact on a solid surface
s, where the solid is continuous at the line of contact, then
according to Young, Laplace[31], and Gibbs[40] the force
balance parallel to the surface at equilibrium becomes

si j cosui j = sis − s js s22d

where ui j is the angle measured through phasej which is
traditionally taken to be the denser phase.

In a three-phase system Eq.(22) can be written for each
of the three pairs of fluids, i.e., oil-water, gas-water, and
gas-oil, residing on a solid surface

sos− sws= sow cosuow, s23d

FIG. 3. Different areas and contact lengths in an equilateral
triangle with a two-phase configuration:Aj ,\1

=AABC, Aj ,\2
=ADEF,

Aj ,\3
=AGHI, Lij ,\1

=BC, Lij ,\2
=EF, Lij ,\3

=HI, Ljs,\1
=2AB,

Ljs,\2
=2DE, Ljs,\3

=2GH, Ljs,t=ok=1
3 Ljs,\k

, Lis,t=L−Ljs,t, Aj ,t

=ok=1
3 Aj ,\k

, andAi,t=A−Aj ,t.
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sgs− sws= sgw cosugw, s24d

sgs− sos= sgo cosugo. s25d

A constraint on the three-phase contact angles and interfacial
tensions in mutual equilibrium can be derived by manipula-
tion of Eqs.(23)–(25) [42,43]:

sgw
eq cosugw = sgo

eq cosugo + sow
eq cosuow. s26d

Equation(26) means that in three-phase systems only two
of the contact angles need to be defined independently. Gen-
eralization of this analysis to a system withn fluid phases
was shown by Blunt[44] where there arensn−1d /2 contact
angles,sn−1dsn−2d /2 constraints, andsn−1d independent
contact angles.

In this work we use Eq.(26) to find the dependent contact
angle. We first decide on the values of two of the contact
angles and then calculate the third one using Eq.(26). We
useuow

r andugo
r to calculate augw. We also useuow

a andugo
a to

find another value ofugw. The smaller of the two values of
ugw is considered as the receding and the larger one as the
advancing value.

In three-phase systems the three capillary pressures be-
tween three pairs of fluids are related as

Pcgw= Pcgo+ Pcow. s27d

Equations(21) and(23)–(27) are used to find the pressure
difference across the MTM which is then set equal to the
pressure difference across the appropriate AM to find thresh-
old capillary pressures for any pistonlike displacement in
two- and three-phase systems. Next we present some ex-
amples.

V. EXAMPLE: IRREGULAR TRIANGLES

Other authors have used the general energy balance Eq.
(16) to derive threshold capillary pressures[25–28]. In this
work we will apply it to study two- and three-phase displace-
ments for the configurations in Fig. 2 that have not been
studied before.

Here as an example we use capillaries with irregular tri-
angular cross sections to find threshold capillary pressures
for different two- and three-phase pistonlike displacements.
Appendix A presents useful geometrical relationships for ir-
regular triangles.

A. Gas invasion into oil

Imagine an irregular triangle with configurationB (old
configuration), Fig. 2, in all three corners. Displacement of
oil in the center of the capillary by gas will form either
configurationF and/orC (new configurations) at each corner
depending on whether the oil layer is stable. Using Eqs.(2),
(19), (20), (24), (25), and(27), Eq. (21) can be written as

Pcgo=
sgo

rgo
=

Pcowok=1

3
fsAw,\k

dw,\k
dnc − sAw,\k

dw,\k
docg + sowzow + sgozgo + sgwzgw

fsAg,tdgdnc − sAg,tdgdocg
s28d

where

zow = o
k=1

3

fsLow,\k
dow,\k

dnc − sLow,\k
dow,\k

docg, s29d

zgo = o
k=1

3

hfsLgo,\k
dgo,\k

dnc − sLgo,\k
dgo,\k

docg − fsLos,\k
dos,\k

dnc − sLos,\k
dos,\k

docgcosugo
r j, s30d

zgw = o
k=1

3

hfsLgw,\k
dgw,\k

dnc − sLgw,\k
dgw,\k

docg − fsLws,\k
dws,\k

dnc − sLws,\k
dws,\k

docgcosugw
r j, s31d

where for this set of configuration changessdgdoc=0, sdgdnc

=1, sdw,\k
dncsocd=1, sdow,\k

doc=1, sdgo,\k
doc=0, sdos,\k

doc=1,
sdgw,\k

doc=0, andsdws,\k
dncsocd=1 for k=1,2,3.

Whether the pistonlike displacement leaves an oil layer in
a corner depends on if Eq.(4) holds foruk

* =ugo
r and if it does,

then whether the layer is stable. For a givenPcow an oil layer
in cornerk is stable only if the inequality given by Eq.(C24)
(see Appendix C) holds with i j =go, jk=ow, uk

* =uw
* , andu j

*

=ugo
r .

Different areas and lengths in Eqs.(28)–(31) are given by

sAg,tdnc =H R2

4G
− o

k=1

3

fsAo,\k
+ Aw,\k

ddo,\k
gnc

− o
k=1

3

fAw,\k
s1 − do,\k

dgncJ s32d

whereR is the inscribed radius,G is the shape factor(see

THREE-PHASE THRESHOLD CAPILLARY PRESSURES… PHYSICAL REVIEW E 70, 061603(2004)

061603-5



Appendix A), andfAo,\k
+Aw,\k

gnc is given by Eq.(B9) (see
Appendix B), with r jk=rgo anduk

* =ugo
r . If water in the corner

is in contact with the gas in the centersAw,\k
dnc is found

using the same equation withrgw andugw
r , otherwise, to find

sAw,\k
dncsocdrow anduw

* are used instead.
sLow,\k

dncsocd is computed from Eq.(B10) (see Appendix
B), with r jk=row and uk

* =uw
* . Using the same equation we

find sLgo,\k
dnc with rgo and ugo

r and sLgw,\k
dnc with rgw and

ugw
r .

The differences between the lengths of solid in contact
with oil and water inoc andnc are as follows:

o
k=1

3

fsLos,\k
dos,\k

dnc − sLos,\k
docg

=H2o
k=1

3

fsbo,\k
− bw,\k

ddo,\k
gncJ

−H R

2G
− 2o

k=1

3

sbw,\k
docJ , s33d

o
k=1

3

fsLws,\k
dnc − sLws,\k

docg = 2o
k=1

3

fsbw,\k
dnc − sbw,\k

docg

s34d

where in the corners with oil layer, configurationF, bo is
given by Eq.(B3) (see Appendix B), with r jk=rgo and uk

*

=ugo
r . Also bw of the oil/water interface is calculated using

the same equation withrow
ext and uw

* , whererow
ext is the extre-

mum oil/water radius of curvature reached during the process
by which this interface was moved last time. If there is any
corner where gas in the center is in direct contact with water
thenbw is found usingrgw andugw

r instead.
In order to find the threshold capillary pressure of the

displacement for a givenPcow an iterative procedure is used.
First a Pcgo is guessed, then, using Eq.(4) and the layer
stability analysis given in Appendix C, we can find if the oil
layers are stable in the corners; then a newPcgo is calculated
using Eq.(28). If this is not close enough to the one we
guessed then it is used for the next round of calculations by
checking the stability of the oil layers with this newPcgo.

Iteration continues until the difference between two consecu-
tive values ofPcgo becomes less than a predefined small
value.

If oil layers are stable in all corners separating water from
gas, thensAw,tdnc−sAw,tdoc=0, zow=0, zgw=0, and −sLgs,tdnc

=fsLos,tdnc−sLos,tdocg which reduces Eq.(28) to

Pcgo=
sgo

rgo
=

sgofLgo,t + Lgs,t cosugo
r gnc

sAg,tdnc s35d

which represents the well-known expression for threshold
capillary pressure of two-phase pistonlike displacement
[6,25] which indicates that, in this case, the threshold gas/oil
capillary pressure is independent of the oil/water capillary
pressure. This is similar to the work by van Dijke and
Sorbie[27].

One should note that in this work water, if Eq.(4) holds
for uk

* =uw
* , is present in the corner as a wetting layer regard-

less of the oil/water contact angle of the altered wettability
surfaces. This is not the case, for instance, in the three-phase
work by van Dijke and Sorbie[27].

In the above calculations we have allowed oil layers to
form in the corners if they are stable; see Eq.(4) and Appen-
dix C. But one may argue(see, for instance, van Dijkeet al.
[28,29]), that this may not be a sufficient criterion for allow-
ing the oil layers to form, meaning that not allowing the oil
layers to form even if they are stable may give lower thresh-
old gas/oil capillary pressures. In order to make sure the
threshold gas/oil capillary pressure that we present in each
case is the lowest possible, we also calculate the threshold
gas/oil capillary pressure of gas invasion into oil without
allowing oil layers to form, even if they are stable. Then we
compare it with the one we calculated allowing oil layers.
The one which is smaller is favored; see Sec. IV for
examples.

B. Oil invasion into gas

Invasion of oil into gas in a triangle with configurationsC
and/orF at the corners will result in the formation of con-
figurationsB and/or G depending on gas/oil and oil/water
contact angles and capillary pressures. We consider this pro-
cess immediately after gas invasion into oil. Similar to the
previous section using Eqs.(2), (19), (20), (23), (25), and
(27). Eq. (21) can be written as

Pcgo=
sgo

rgo
=

− Pcgwok=1

3
fsAw,\k

dw,\k
dnc − sAw,\k

dw,\k
docg − sowzow − sgozgo − sgwzgw

fsAo,tdodnc − sAo,tdodocg
, s36d

zow = o
k=1

3

hfsLow,\k
dow,\k

dnc − sLow,\k
dow,\k

docg − fsLws,\k
dws,\k

dnc − sLws,\k
dws,\k

docgcosuow
r j, s37d

zgo = o
k=1

3

hfsLgo,\k
dgo,\k

dnc − sLgo,\k
dgo,\k

docg + fsLgs,\k
dgs,\k

dnc − sLgs,\k
dgs,\k

docgcosugo
a j, s38d
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zgw = o
k=1

3

fsLgw,\k
dgw,\k

dnc − sLgw,\k
dgw,\k

docg, s39d

where for this set of configuration changessdodnc=1,
sdgs,\k

doc=1, sdw,\k
dncsocd=1, and sdws,\k

dncsocd=1 for k
=1,2,3.

If Eq. (4) holds foruk
* =p−ugo

a then after oil invasion it is
possible to have gas layers sandwiched between water in the
corners and oil in the center but only if they are stable. For a
known Pcgw a gas layer in cornerk is stable only if the
inequality given by Eq.(C23) (see Appendix C) holds with
i j =go, jk=gw, uk

* =uw
* , andu j

* =p−ugo
a .

For this set of configuration changes, i.e., displacement,
different areas and lengths used in Eqs.(36)–(39) are given
by

sAo,tdnc =
R2

4G
−Ho

k=1

3

fsAg,\k
+ Aw,\k

ddg,\k
gnc

+ fAw,\k
s1 − dg,\k

dgncJ , s40d

sAo,tdoc = o
k=1

3

hfsAo,\k
+ Aw,\k

ddo,\k
goc − sAw,\k

do,\k
docj,

s41d

wheresAg,\k
+Aw,\k

dnc is calculated using Eq.(B9) with r jk

=rgo anduk
* =p−ugo

a . sAw,\k
dnc in the corners with a gas layer,

configurationG, is found using the same equation withrgw
anduw

* . But if the water in the corner is in contact with the
oil in the center then the water area is calculated usingrow
and uow

r instead. Calculation of areas in the old configura-
tions has been discussed in the previous section, configura-
tions F andC.

In the new configurations, i.e.,B and G, sLow,\k
dnc is

found using Eq.(B10) with r jk=row anduk
* =uow

r . Similarly in
the corners where there is a gas layer we findsLgo,\k

dnc with
rgo and p−ugo

a and sLgw,\k
dnc with rgw and uw

* . The calcula-
tion of lengths for different interfaces in the old configura-
tions has been discussed in the previous section, configura-
tions F andC,

o
k=1

3

fsLgs,\k
dgs,\k

dnc − sLgs,\k
docg

= 2o
k=1

3

fsbg,\k
− bw,\k

ddg,\k
gnc

−H R

2G
− 2o

k=1

3

hsbo,\k
do,\k

doc + fbw,\k
s1 − do,\k

dgocjJ
s42d

where in the corners with a gas layer,bg is given by Eq.(B3)
with r jk=rgo anduk

* =p−ugo
a . Also bw of the gas/water inter-

face in the new configuration is calculated using the same
equation withrgw

ext and uw
* , where rgw

ext is the extremum gas/

water radius of curvature reached during the process by
which the interface was moved last time. If there is any
corner where water is in direct contact with the oil in the
center thenbw is found using the same equation withrow and
uow

r . Calculation of the meniscus-apex distance for the differ-
ent interfaces in the old configurations has been discussed in
the previous section. Also the difference between the lengths
of solid in contact with water innc and oc is given by
Eq. (34).

The threshold gas/oil capillary pressure is found using an
iterative procedure. At a givenPcgw, a gas/oil capillary pres-
sure is guessed, wherergo=sgo/Pcgo, and a newPcgo is cal-
culated using Eq.(27). Then if there is any corner with con-
figuration F, the hinging gas/oil contact angle for gas/oil
interface is calculated from

ugo,\k

h = cos−1F rgo
ext

rgo
cossugo

r + a\k
dG − a\k

s43d

where rgo
ext is the radius of curvature by which the interface

moved last time. Since we are considering oil invasion into
oil after gas invasion into gas, this is the minimum radius of
curvature reached during the gas invasion. Ifugo,\k

h .ugo
a

thenugo,\k

h =ugo
a otherwise we useugo,\k

h itself for the calcu-
lations. Thenbo,\k

is calculated using Eq.(B3) with r jk

=rgo
ext andu* = ugo

r , if ugo,\k

h ,ugo
a ; otherwise withrgo andugo

a .
One should note that when it comes to calculating the

length of a gas/oil interface in a corner with an oil layer,
configurationF, Eq. (B10) (see Appendix B) is used with
r jk=rgo and u* = ugo

a , if ugo,\k

h .ugo
a ; otherwise with w\k

=sin−1fsbo,\k
sina\k

d / rgog.
Now we find if a gas layer can form in any of the corners

using the procedure discussed earlier in this section. Then
using Eqs.(28)–(39) a newPcgo is calculated. This iterative
process continues until the difference between two consecu-
tive values ofPcgo is less than a predefined small value.

Again, to make sure that the threshold gas/oil capillary
pressure calculated is the highest possible, a threshold gas/oil
capillary pressure is calculated without the gas layers being
allowed to form even if they are stable. Then it is compared
with the one that is calculated allowing the gas layers to
form, if they are stable, and then the one that is greater is
favored.

C. Water invasion into oil in a strongly oil-wet element

Here we present a set of equations to find the threshold
capillary pressure for water invasion into oil in a strongly
oil-wet capillary element changing configurationB in each
corner to eitherD (if the oil layer is stable) or A2 (other-
wise); see Fig. 2. It is a two-phase pistonlike displacement so
Eq. (21) reduces to

TABLE I. Interfacial tensions and spreading coefficient(mN/m)
used in this work[45,46].

Set no. Fluids sow sgo sgw Cs

I Hexane-water-air 48 19 67 0

II Dodecane-water-air 52.3 25.35 72 −5.65
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Pcow=
sow

row
=

sowhfsLow
co + Low

lcednc − sLow
co docg + fsLws

co + Lws
cednc − sLws

codocg cosu ow
a j

sAw
co + Aw

cednc − sAw
codoc s44d

where the superscriptslce, ce, andco stand for layer center,
center, and corner, andsLow

lcednc is the total length of the con-
tact line between oil in the layer(s) and water in the center
and is found using Eq.(B10) with r jk=row and uk

* =p−uow
a .

sLws
cednc is the total length of contact between water in the

center and solid walls and is given by

sLws
cednc =

R

2G
− 2o

k=1

3

sbo,\k
do,\k

dnc s45d

where sbo,\k
dnc is given by Eq.(B3) using r jk=row and uk

*

=p−uow
a .

sAw
cednc is the area of water in the center which is found

from

sAw
cednc =

R2

4G
− o

k=1

3

fsAo,\k
+ Aw,\k

co ddo,\k
gnc s46d

wherefAo,\k
+Aw,\k

co gnc is computed from Eq.(B9) using r jk

=row anduk
* =p−uow

a .
In this displacement, an oil layer can be left in cornerk

only if uow
a ùp /2+a\k

; see Eq.(4) with uk
* =p−uow

a . If this
condition holds then an oil layer will form only if it is stable.
Stability of a layer sandwiched between two identical fluids
has been analyzed in Appendix C 1.

Similar to the procedure used in Sec. V A, aPcow is
guessed then using Eq.(C21) with jk=ow, j =o, andk=w we
calculate the threshold capillary pressure of oil layer collapse
in each corner. If the threshold capillary pressure of oil layer
collapse is larger than the guessedPcow then it will not form.
Then a newPcow is computed from Eq.(44) knowing the
configuration of each corner. If the difference between com-
puted and guessedPcow is smaller than a predefined small
value then that is the final threshold capillary pressure oth-
erwise it is used as a new guess forPcow and iteration con-
tinues.

Similar to two previous sections, threshold oil/water cap-
illary pressure without letting the oil layers to form, even if
they are stable, is also calculated and compared with the

threshold capillary pressure that was calculated allowing the
oil layers to form if they are stable. The one that is greater is
favored.

VI. SENSITIVITY ANALYSIS

Here we study the sensitivity of threshold capillary pres-
sures for the case discussed in Sec. V A(gas invasion into
oil) to the shape factor of an irregular triangleG, oil/water
capillary pressurePcow, advancing oil/water contact angle
uow

a , and receding gas/oil contact angleugo
r .

An irregular triangle is considered with an inscribed ra-
dius of 13.6mm, which is the average inscribed radius of the
network used by Piri and Blunt[17] as representative of
Berea sandstone. The pore is assumed to be full of water and
water-wet initially. Then oil invades into water by an in-
crease in oil/water capillary pressure to some threshold value
[6,7,17,47]. The prevailing contact angle during this process,
primary drainageuow

PD, is considered to be zero. The oil/water
capillary pressure is then increased to 105 Pa. Oil now is in
contact with the solid walls and may change the wettability.
Knowing the interfacial tensions(see Table I), and using the
procedure described in Sec. IV B, five sets of receding and
advancing contact angles are assigned to the pore(see
Table II).

Then water flooding is modeled by decreasing oil/water
capillary pressure during which the oil/water contact angle
starts hinging fromuow

PD toward uow
a . The hinging contact

angleuow,\k

h is calculated using Eq.(43) with row
ext, row, and

uow
r . The reduction in oil/water capillary pressure is contin-

ued only to values larger than the threshold oil/water capil-
lary pressure for water invasion into oil which ranges from
6200 to −6800 Pa for the different systems tabulated in
Table II [6,7,17]. This is because we do not want to invade
the pore by water. As will be shown later, we decrease the
oil/water capillary pressure only to enable us to study the
effects of oil/water capillary pressure and hinging oil/water
contact angles on the threshold gas/oil capillary pressure of
tertiary gas invasion into oil.

The shape factor is varied between 0.005 andÎ3/36. For
each triangle the corner half angles are found using the

TABLE II. Contact angles(deg) used in the sensitivity analysis.

System IFT set uow
PD uow

r uow
a ugo

r ugo
a ugw

r ugw
a

A I 0 10 30 0 0 8.46 25.31

B I 0 160 180 0 0 112.93 115.65

C II 0 10 30 40 60 9.91 36.38

D II 0 10 30 60 80 26.95 46.35

E II 0 160 180 60 80 120.43 131.70
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method described in Appendix A. Table III tabulates the cor-
ner half angles used in this work.

Now gas invasion into oil is carried out by increasing the
gas/oil capillary pressure. The iterative procedure described
in Sec. V A is used to find threshold gas/oil capillary pres-
sures for pistonlike displacement of oil by gas. For each
system given in Table II the sensitivity of the threshold gas/
oil capillary pressure is examined to the shape factor and
oil/water capillary pressure.

Figures 4 and 5 show the variation of threshold gas/oil
capillary pressure with shape factor for systemsA andB (see
Table II), respectively. The threshold gas/oil capillary pres-
sures for two scenarios, with and without oil layers, are
shown. For the range of shape factor and oil/water capillary
pressure used the scenario with oil layers is strictly favored,
lower threshold gas/oil capillary pressure, which is similar
for both systems and not sensitive to the variation in oil/
water capillary pressure since oil layers are present in all
three corners(see Fig. 9 below). This is purely a two-phase
displacement since there is no gas/water interface in the
cross sections. The oil layers are present since the gas/oil
capillary pressures required to collapse the layers are greater

than the threshold gas/oil capillary pressure of the pistonlike
displacement.

Figures 6 and 7 illustrate the behavior of the threshold
gas/oil capillary pressure for two scenarios, with and without
oil layers, due to variations in oil/water capillary pressure
and shape factor for systemsC andD, respectively. The sce-
nario without oil layers is favored only for low oil/water
capillary pressures and large shape factors where it gives
lower threshold gas/oil capillary pressures than those of the
scenario with oil layers. The scenario with oil layers pro-
duces threshold gas/oil capillary pressures that are relatively
insensitive toPcow except for very low oil/water capillary
pressures in large shape factor triangles, where layers in
some or all of the corners do not form. For instance, the
sharp drop in threshold gas/oil capillary pressure for a tri-
angle with G=0.04 can be seen in Fig. 7 forPcow
=10 000 Pa is due to the fact that there are no oil layers in
any of the corners separating gas and water. The other tri-
angles have at least, for this particular system and oil/water
capillary pressure, one oil layer. For both systemsC andD
the route for high oil/water capillary pressure presents, ap-
proximately, the two-phase threshold capillary pressure as
most of the corners have oil layers separating gas in the
center from the water in the corner.

Figure 8 indicates the sensitivity of threshold gas/oil cap-
illary pressure to oil/water capillary pressure and shape fac-
tor for systemE for both scenarios, with and without oil
layers. The scenario with oil layers is strictly favored since it
gives lower threshold gas/oil capillary pressures. As it is
tabulated in Table II, the gas/water contact angle for this
system is larger than 90°, making cosugw, in Eq. (31), nega-
tive in comparison to systemD where it was positive.
Threshold gas/oil capillary pressures for this system are sen-
sitive to both oil/water capillary pressure and shape factor.
Similar to systemD, zow [see Eq.(29)] is more negative for
fewer corner configurations with oil layers but all the other
terms in the numerator of Eq.(28) are larger for lower oil/
water capillary pressure giving larger threshold gas/oil cap-
illary pressures with a greater sensitivity toPcow. This was

TABLE III. Corner half angles(deg) for irregular triangles with
different shape factors

G a\1
a\2

a\3

0.005 1.215 24.643 64.141

0.01 2.565 25.388 62.047

0.015 4.096 26.094 59.811

0.02 5.794 26.793 57.412

0.025 7.739 27.469 54.792

0.03 10.034 28.116 51.850

0.035 12.756 28.749 48.495

0.04 16.199 29.341 44.46

0.0481 30 30 30

FIG. 4. Threshold gas/oil cap-
illary pressures for systemA.
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not the case in systemD, for instance(Fig. 7). The lower
limit of the envelope, high oil/water capillary pressures and
low shape factors, approximately presents the two-phase
threshold capillary pressures as the oil layers are present in
most of the corners.

As mentioned earlier, during gas invasion into oil, con-
figurationF may form in all or some of the corners depend-
ing on the pertinent capillary pressures and contact angles.
Figures 9–11 show the variation of the ratiosowPcgo/sgoPcow
with changes in corner half angle and gas/oil and oil/water
contact angles(see Appendix C 2) for the equations used to
produce the figures. One can use these figures to find if the
oil layers are stable in different corners of a triangle in the
systems discussed above. For a given gas/oil contact angle,
oil/water contact angle, and corner half angle, one can find
the ratiosowPcgo/sgoPcow. Then knowing the interfacial ten-
sions and oil/water capillary pressure, a gas/oil capillary
pressure can be obtained which, if is less than the threshold

gas/oil capillary pressure shows that the oil layer in that par-
ticular corner does not exist.

VII. DISCUSSION AND CONCLUSIONS

We used the Helmholtz free energy balance and the MSP
method to derive a general expression to calculate the thresh-
old capillary pressures of two- and three-phase pistonlike
displacements. Each displacement was modeled as a con-
figuration change in the corners of a capillary with angular
cross section. Using different two- and three-phase generic
configurations we were able to study any piston-like dis-
placement. Adopting the wettablity alteration scenario devel-
oped by Kovsceket al. [34] enabled us to take into account
contact angle hysteresis in threshold capillary pressure cal-
culations. This scenario also allowed us to leave water at the
corners regardless of the oil/water contact angle of the al-
tered wettability surface, which was not the case in previous

FIG. 5. Threshold gas/oil cap-
illary pressures for systemB.

FIG. 6. Threshold gas/oil cap-
illary pressures for systemC.
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work, for instance, by van Dijke and Sorbie[27,28].
The procedure of using the general expression to find the

threshold capillary pressures of three different displace-
ments, i.e., gas invasion into oil, oil invasion into gas, and
water invasion into oil in strongly oil-wet systems, was pre-
sented. Then we studied the sensitivity of the threshold gas/
oil capillary pressure for tertiary gas invasion into oil on the
shape factor for capillaries with irregular triangular cross
sections for different oil/water capillary pressures. We car-
ried out the sensitivity analysis for spreading and nonspread-
ing oils in five systems with different wettabilities. In each
case in order to make sure that the calculated threshold cap-
illary pressure of the pistonlike displacement presents the
lowest threshold pressure of the invading phase, we did the
calculations for two scenarios:(I) layers of the displaced
phase were allowed to form in the corners if they were
stable; and(II ) layers were not allowed to form even if they

were stable. The one with the lower pressure of the invading
phase was favored. Scenario I was strictly favored in systems
A andB where oil was spreading. But this was not necessar-
ily the case in systems with nonspreading oil,C andD, ex-
cept in the strongly oil-wet caseE.

We found that the threshold gas/oil capillary pressure is
sensitive to the shape factor so that the lower the shape factor
the lower the threshold gas/oil capillary pressure. But this
was not necessarily the case for the oil/water capillary pres-
sure. Threshold capillary pressures for scenario II were al-
ways sensitive to oil/water capillary pressure since gas and
water were in contact in all the corners. But for scenario I, if
oil remains in all the corners as layers to separate gas in the
center from the water in the corners, then the threshold gas/
oil capillary pressure is insensitive to oil/water capillary
pressure, similar to the case of van Dijke and Sorbie[27],
which is likely to be the case in the spreading systemsA and

FIG. 7. Threshold gas/oil cap-
illary pressures for systemD.

FIG. 8. Threshold gas/oil cap-
illary pressures for systemE.
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B. In these circumstances the displacement is purely a two-
phase one. But if the gas in the center contacts the water in
the corners then the threshold gas/oil capillary pressure be-
comes sensitive to oil/water capillary pressure, systemsC, D,
andE, and is not the same as the two-phase threshold capil-
lary pressure anymore. This, for instance, may happen in
nonspreading systems where the oil layers either do not form
or are less stable.

We also showed how to take into account contact angle
hysteresis, for instance, the gas/oil contact angle during oil
invasion into gas.

The majority of the three-phase pore-scale network mod-
els [8,10,17,47–52] use two-phase threshold capillary pres-
sures for three-phase displacements. But as mentioned earlier
this is not a correct assumption in all circumstances and can
introduce significant errors in the ranking of the displace-
ments in network modeling. Network models carry out a

series of displacements in order of threshold capillary pres-
sure, and any change in these values translates into a change
in the rank of the displacements, which in turn may affect the
fluid arrangements in the porous medium.
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FIG. 9. Effects of corner half
angle and oil/water contact angle
on oil layer stability forugo=0.

FIG. 10. Effects of corner half
angle and oil/water contact angle
on oil layer stability for ugo

=40 deg.
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APPENDIX A: USEFUL GEOMETRICAL RELATIONSHIPS
FOR TRIANGLES

An irregular triangle with the corner half anglesa1, a2,
and a3 and the convention of 0øa1øa2øa3øp /2 (see
Fig. 12) is considered.a1 anda2 are two corner half angles
associated with the base of the triangle andR is the inscribed
radius which is related to the areaA and perimeterL of the
element through[5]

R=
2A

L
= 2LG sA1d

whereG is the shape factor, which is the area divided by the
perimeter squared,A/L2.

Since the cross section is a composition of six triangles
with equal size ofR (see Fig. 12), from elementary geometry
A is given by[53]

A =
R2

4G
= R2o

i=1

3

cotai . sA2d

Sincea3=p /2−a1−a2,

G =
1

4Fo
i=1

3

cotaiG−1

=
1

4
tana1 tana2 cotsa1 + a2d.

sA3d

The shape factor for irregular triangles ranges from zero
corresponding to a slitlike element toÎ3/36<0.0481 be-
longing to equilateral triangles. A given value ofG corre-
sponds to a range of triangles where the limits of the range
are denoted bya2,min anda2,max, which in turn correspond to
the triangles wherea2,min=a1=a and a2,max=p /4−a1/2.
The shape factor is related toa2,min anda2,max by [5,6]

G =
1

4
F 2

tana2,min
+ tans2a2,mindG−1

, sA4d

G =
sins2a1d

2
F2 +

sins2a1d
sins2a2,maxd

G−2

=
sins2a2,maxdcoss2a2,maxd

4f1 + coss2a2,maxdg2 . sA5d

In a triangle, for a givenG the value ofa2 is selected
randomlysa2,minøa2øa2,maxd. Then Eq.(A3) is used to find

FIG. 11. Effects of corner half
angle and oil/water contact angle
on oil layer stability for ugo

=60 deg.

FIG. 12. An element with irregular triangular cross section. FIG. 13. An interface in a corner separating phasesk and j .
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the corresponding value ofa1. And finally a3=p /2−a1
−a2.

APPENDIX B: AREA AND MENISCUS-APEX DISTANCE
OF AN INTERFACE IN A CORNER

Figure 13 shows a single corner of a capillary element
where the wetting fluid resides in the corner and the nonwet-
ting phase in the center. Here we derive the expressions to
calculate the area occupied by the fluid in the corner,Ak,\,
and also the meniscus-apex distance of the interface,bk.
Consider the triangleOEB:

r jk

sina
=

bk

sinw
, sB1d

w = p − Suk
* +

p

2
D − a,

w =
p

2
− suk

* + ad. sB2d

From Eqs.(B1) and (B2),

bk = r jk

cossuk
* + ad

sina
. sB3d

Now we derive an expression for the area occupied by
phasek in the corner,Ak,\. Consider triangleOEB:

AOEB=
bk

2
OBsina, sB4d

r jk

sina
=

OB

sinfp − suk
* + p/2dg

, sB5d

OB=
r jk

sina
cosuk

* , sB6d

AOEB=
r jk

2 cossa + uk
*d

2 sina
cosuk

* . sB7d

Then from elementary geometry

ABEF = r jk
2 w = r jk

2 Fp

2
− suk

* + adG , sB8d

Ak,\ = AOEF

= 2AOEB− ABEF

= r jk
2 Hcossa + uk

*d
sina

cosuk
* − Fp

2
− suk

* + adGJ .

sB9d

Also the length of the contact line between phasesj andk
is given by

Ljk = 2r jkw = 2r jkFp

2
− suk

* + adG . sB10d

It is also possible to have one or even two layers residing
in the corner(see Fig. 2). In Fig. 14 the area occupied by
fluid j in layer, Aj ,\, and the meniscus-apex distance of the
interface creating the layer,bj, are found in a similar way:

bj = r ij

cossu j
* + ad

sina
,

Aj ,\ = AEFHG = r ij
2Hcossa + u j

*d
sina

cosu j
* − Fp

2
− su j

* + adGJ
− Ak,\ sB11d

whereAk,\ is given by Eq.(B9).

APPENDIX C: LAYER COLLAPSE

Pistonlike displacements—if the pertinent contact angles,
capillary pressures, and corner half angles permit—allow the
displaced phase to remain as layer(s) sandwiched between
fluids in the corner(s) and center of the element. The layers
may spontaneously collapse by an increase in pressure of the
fluids on either side of the layer. When a layer collapse event
takes place, one of the two AMs bounding the layer will
hinge and/or move toward the other one. However, there are
cases where both AMs contribute to the layer collapse event,
e.g., oil layer collapse by water in a strongly oil-wet element
(see configurationD in Fig. 2).

Based on whether the fluids residing on the two sides of
the layer are the same, layers may be categorized into two
main groups:(I) identical fluids;(II ) different fluids. Here,
the stability of the layers, i.e., the threshold capillary pres-
sure for layer collapse and formation events, in each category
is discussed[10,45,46].

1. Identical fluids on two sides of a layer

Figure 15 illustrates this case. Since fluids residing on
both sides of the layer are identical, when the capillary pres-
sure of the fluid pair changes both bounding AMs contribute

FIG. 14. A corner with phasesk, j , and i residing in corner,
layer, and center, respectively.
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to the stability of the layer. The layer stays stable until two
AMs touch each other at pointC when the layer collapses
immediately and the corner is filled completely by phasek.
This is the concept that is used here to derive an expression
for threshold capillary pressure of collapse of such a layer
(note: the expression given by Hui and Blunt[45] for this
capillary event is incorrect).

Using Eq.(B6) we obtain

OC= OB− r jk = r jkFcosu j
*

sina
− 1G . sC1d

Consider triangleAOE:

r jk

sinsp − ad
=

bk

sinb
, sC2d

sinsp − ad = sina;

therefore

sinb =
bk

r jk
sina, sC3d

g = p − sp − ad − b = a − b. sC4d

Also,

AO

sing
=

bk

sinb
. sC5d

From Eqs.(C3), (C4) and (C5),

AO

sinsa − bd
=

r jk

sina
, sC6d

AO=
r jk

sina
sinsa − bd =

r jk

sina
ssina cosb − cosa sinbd.

sC7d

From Eqs.(C3) and (C7),

AO= r jk cosb − bk cosa, sC8d

FIG. 15. A layer sandwiched between identi-
cal fluids residing in the corner and center.

FIG. 16. A layer sandwiched between different fluids residing in
the corner and center. Position of the AMs at the moment of col-
lapse when(a) uk

* ,u j
* ; (b) uk

* .u j
* .
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OC= r jk − AO, sC9d

OC= r jk − r jk cosb + bk cosa. sC10d

From equating Eqs.(C1) and (C10):

r jkS2 −
cosu j

*

sina
D + bk cosa = r jk cosb, sC11d

r jk
2 S4 − 4

cosu j
*

sina
+

cos2 u j
*

sin2 a
D + bk

2 cos2 a

+ 2bkr jk cosaS2 −
cosu j

*

sina
D = r jk

2 cos2 b, sC12d

r jk
2 cos2 b = r jk

2 s1 − sin2 bd

= r jk
2 S1 −

bk
2

r jk
2 sin2 aD

= r jk
2 − bk

2 sin2 a, sC13d

r jk
2 S3 − 4

cosu j
*

sina
+

cos2 u j
*

sin2 a
D + 2bkr jk cosaS2 −

cosu j
*

sina
D + bk

2

= 0, sC14d

r jk =
− 2bk cosaf2 − scosu j

* /sinadg ± M

f6 − 8scosu j
* /sinad + 2scos2 u j

* /sin2 adg
, sC15d

M = F4bk
2 cos2 aS4 − 4

cosu j
*

sina
+

cos2 u j
*

sin2 a
D − 12bk

2

+ 16bk
2cosu j

*

sina
− 4bk

2cos2 u j
*

sin2 a
G1/2

, sC16d

r jk

bk
=

− 2 sin2 a cosa + cosa sina cosu j
* ± N

3 sin2 a − 4 sina cosu j
* + cos2 u j

* ,

sC17d

N = f4 cos2 a sin4 a − 4 sin3 a cosu j
* cos2 a

+ cos2 a sin2 a cos2 u j
* − 3 sin4 a + 4 cosu j

* sin3 a

− cos2 u j
* sin2 ag1/2, sC18d

r jk

bk
=

− cosa sinas2 sina − cosu j
*d ± sin2 af4 sina cosu j

* − 3 + 4 cos2 a − cos2 u j
*g1/2

3 sin2 a − 4 sina cosu j
* + cos2 u j

* , sC19d

Pcjk = −
s jk

r jk
. sC20d

Using Eq.(B3) we obtain

Pcjk =
Pcjk

exts3 sin2 a + 4 sina cosu j
* + cos2 u j

*d

cossuk
* + adfcosas2 sina − cosu j

*d + sinaÎ4 cos2 a − 3 − cos2 u j
* + 4 sina cosu j

*g
sC21d

wherePcjk
ext anduk

* are the capillary pressure and the angle of
the last move of the interface between phasek in the corner
and phasej in the layer.

2. Different fluids on two sides of a layer

Since the layer is surrounded by two different fluids, a
change in the pressure of either fluids can result in layer
collapse. Depending on the magnitude of the angle that each
AM makes with the wall, two main groups of collapse sce-
nario are possible.

a. uk
* Ïuj

*

Figure 16(a) illustrates the case. The stability of the layer
depends on the ratio of the curvature of the two AMs bound-
ing the layer

r jk

r ij
=

s jkPcij

si j Pcjk
sC22d

wheres jk andsi j are the interfacial tensions of the bounding
interfaces of the layer andPcjk and Pcij are pertinent capil-
lary pressures. The layer is stable until three-phase contact
points meet each other[see Fig. 16(a)]. This means that the
layer collapses when the meniscus-apex distancesb for two
AMs become equal. The layer is stable if

r jk

r ij
ø

cossu j
* + ad

cossuk
* + ad

. sC23d

b. uk
* .uj

*

Figure 16(b) illustrates this case. The layer is stable until
two AMs meet at their centers. The ratio of curvature of two
AMs at the collapsing point is found by equating the center-
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apex distance of one of the AMs to that of the other one. The
layer is stable if

r jk

r ij
ø

sina − cosu j
*

sina − cosuk
* . sC24d

One should note that if the curvature of any of the AMs is
negative(see Fig. 2), the threshold capillary pressures for
layer collapse are found using the same procedure as above.
It is also possible to have a second layer sandwiched between
the fluids residing in the center of the element and the first
layer (see Fig. 2). The stability analysis for the second layer
is also the same as that of the first layer.
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