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Tagged-particle dynamics in a hard-sphere system: Mode-coupling theory analysis
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The predictions of the mode-coupling theory of the glass trans{tid@T) for the tagged-particle density-
correlation functions and the mean-squared displacement curves are compared quantitatively and in detail to
results from Newtonian- and Brownian-dynamics simulations of a polydisperse quasi-hard-sphere system close
to the glass transition. After correcting for a 17% error in the dynamical length scale and for a smaller error in
the transition density, good agreement is found over a wide range of wave numbers and up to five orders of
magnitude in time. Deviations are found at the highest densities studied, and for small wave vectors and the
mean-squared displacement. Possible error sources not related to MCT are discussed in detail, thereby identi-
fying more clearly the issues arising from the MCT approximation itself. The range of applicability of MCT for
the different types of short-time dynamics is established through asymptotic analyses of the relaxation curves,
examining the wave-number and density-dependent characteristic parameters. Approximations made in the
description of the equilibrium static structure are shown to have a remarkable effect on the predicted numerical
value for the glass-transition density. Effects of small polydispersity are also investigated, and shown to be
negligible.
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I. INTRODUCTION tion to various degrees of detail recently, a coherent picture

Understanding the slow dynamical processes that occPr @ single prototglpi;_:ﬁl_l sys;;[_em hasb not ye_td_emergotled. _':'h(ijs
when one cools or compresses a liquid is a great challenge 8P aims towards filling t ISI gap by prlow ing a detal'e
condensed matter physics. In particular in the time windowfomparison of computer-simulation results for a system of

accessible to scattering experiments or molecuIar-dynamic%u"’lSihard sphgres with the corresponding f‘full" MCT solu-
(MD) computer simulations, one observes in equilibrium gtions, to establish the performance of MCT in describing the

precursor of the liquid-glass transition that is commonlydynamics of ﬁ prototypical glass-forming system as a fully
termed structural relaxation. From these experiments, a larg®CT0Scopic theory.

amount of detailed information about the equilibrium fluc- Witﬁl:ﬁg grSt;;F:arrlgr?cpele; C%Tvg?fﬂfws Qi?r:/l?la?i?)%%r?gr Fs)?n?lSIlzle
tuations in such systems is availalplg. PP P P

Manv of the recent experiments on structural relaxatio model systems. Simulation data has been used to success-
y P ) nfuIIy test the MCT predictions for the frozen glassy structure
were stimulated by the mode-coupling theory of the gla

L . . : S?the long-time limit of the dynamical correlation functions
transition (MCT). This theory attempts to provide a first- ¢, 4 mixture of Lennard-Jones particlp8), a liquid of di-

principles description of the slow structural relaxation pro-5iomic moleculeg5,6], and for simulation models of water
cesses, requiring as input titaverageyl equilibrium static 17 g of a silica melt[9], and of the molecular glass former
structure of the system under study. Unfortunately, for manyyrthoterpheny[10]. In these cases, the equilibrium-structure
commonly studied glass formers, the latter is not available tonput to MCT was determined from the simulations them-
the extent required. Thus comparisons of MCT with experi-selves. The dynamical information has not been compared to
ment usually proceed by referring to asymptotic predictionsMiICT in these cases. This comparison has been tackled for
or schematic simplifications of the theory that can be evaluthe Lennard-Jones mixturgll] and for two binary hard-
ated without restriction to a specific system, and by fittingsphere mixture$12], but there the discussion had to be re-
the remaining parameters of the theory. One has to be carefatricted to the slowest decay process, while qualitative devia-
when interpreting these results, since it is known that mostions from MCT at intermediate and short times could not be
experimental data is hardly inside the regime of applicabilityresolved. This is in contrast to a full-MCT analysis of experi-
of the asymptotic formulaf2,3]. Still, this way, many stud- mental light-scattering data from a quasibinary hard-sphere-
ies of the predicted MCT scenario have been perfor(sed like colloidal mixture[13], where agreement over the full
Ref. [1] for a review. accessible time window was found as far as MCT was con-

Having established the general scenario, important queserned, including short and intermediate times. It is unclear
tions arising are what are its ranges of validity, and what ig0 what extent the different system types and the different
the effect of the approximations made in the course of derivforms of short-time dynamics between the MD simulations
ing the theory. These questions can be addressed by compamnd the colloidal system give rise to the differing results.
ing the “full” solutions of the theory to experimental results Thus it seems appropriate to perform this comparison for an
for one and the same system for which the static structure isven more fundamental, paradigmatic glass former, viz., the
known in detail. While work has been done along this direc-hard-sphere systeSS).
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Simulations for this system close to the glass transitiorsimulation,I” is varied by changing the density and keeping
have been performed by Doliwa and Hel#&#4,15 using a the temperature fixed. In the following, we denote the num-
Monte Carlo procedure and a slight polydispersity. There, afer density in terms of a packirfgr volume fraction, which
emphasis was put on the analysis of cooperative motion ofor a monodisperse system reags (7/6)od>. To suppress
the single-particle level, and no quantitative connection tacrystallization, the diameters of the particles in the simula-
MCT was reported. Instead we focus on the analysis of théion are distributed according to a flat distribution centered
self-intermediate scattering functions, which can be directlyaroundd and a half-width ofd5/2=0.1d. Thus the volume
compared to theory and experiment. We chose to perfornfraction readsp=(/6)d*[1+(5/2)%]o.
molecular dynamicgMD) simulations instead of MC, in or-  Note that, due to polydispersity and finite-size effects, it is
der to be able to also study the influence of different realisti;ot trivial to ensure that the volume fraction remains con-
types of short-time dynamics, i.e., “atomistic’ Newtonian stant among different runs, i.e., different realizations of the
dynamics(ND) and “colloidal” Brownian dynamic§BD).  polydispersity distribution. If one randomly draws par-
Such a study has been performed earlier for the Lennardicles with radii according to the polydispersity distribution
Jones mixture mentioned abo{/&6], however no ful-MCT  at a fixed number density, the resulting packing fraction will
analysis was included there. vary from run to run, by up to about 1% in the cases we have

For an observation of the equilibrium glassy dynamics, itinvestigated. This is not acceptable, since the slow dynamics
is, in general, necessary to avoid crystallization by someo be discussed depends sensitively on the packing fraction.
means. For the HSS, this can be accomplished by introdudn order to eliminate such fluctuations of we instead
ing a small amount of polydispersity that drastically reducesshoose a fixed realization of the radius distributidf®00
crystallization rate$17]. This is inherently the case in stud- equally spaced radii from 0.9 to 2,land randomly assign
ies of colloidal suspensions. In the MD simulation, we areeach radius to one of the particles in the initial configuration.
able to fully control the distribution of particle radii in the Both Newtonian and Brownian dynamics simulations
system. In colloidal suspensions, solvent-mediated hydrodywere performed, to analyze the effect of the microscopic
namic interactiongHl) are inevitable. It is an as yet not dynamics on the structural relaxation. Newtonian dynamics
settled question to what extent HI influence the dynamics atND) was simulated by integrating the Newton’s equations
high densities. In the present simulations, HI are not presenbf motion in the canonical ensemble at constant volume. In
Thus our study also serves to complement previous MCBrownian dynamics(BD), or more precisely, strongly
analyses of colloidal hard-sphere suspens|d®s-27, dem-  damped Newtonian dynamics, each particle experiences a
onstrating that HI are not an important ingredient for a quanGaussian distributed white noise force with zero meg),

titative description of structural relaxation. and a damping force proportional to the velociy, apart

S Thﬁ t?]aperl IS or?anlze?t_as ;ollci\r/]vs.dl_zlrst, we m;\roduce f[nfrom the deterministic forces from the interactions. Hence
ec. e relevant quantities for the discussion. An investiy, equation of motion for particlgis

gation of some asymptotic properties of the simulation data
is performed in Sec. lll, whereas Sec. IV is devoted to a S NE o ar oz
comparison of the time-dependent data with MCT results for M ; Fij= =21+ 90 @
the one-component HSS. In Sec. V, the effects of polydisper-
sity will be discussed within the framework of this MCT where y is a damping constant. The stochastic and friction
analysis. We summarize our findings in the conclusions, Sedorces  fulfill  the  fluctuation-dissipation  theorem,
VI, (m()7(t"))=6kg Tyd(t-t')&;. The value ofy was set to
(30/\5§)kT/(dvth); this “overdamped limit” ensures that the
results presented here no longer show a dependence on the
Il. SIMULATION AND THEORY DETAILS valuey. Such a form of the dynamics has been introduced in
A. Molecular dynamics simulations the study of glassy relaxation by Gleiet al. [16]. Let us
We perform standard molecular-dynamics simulations 0pote.that the short-time dy_namics visible. ir_1 the cor_relators
and in the mean-squared displacement still is not strictly dif-

N=1000 particles in the canonical ensemble in a p°|yd's.'fusive, but rather strongly damped ballistic. Since it is not

Egsvi;rilsgzg]iclo;sq:\ta:Z?sr?arslgélegﬁ\?érmf/ core-core repulsnaﬂr aim to inv_estigate_ the_very short—_time dyna_mical features
of the simulations, this will not be discussed in the follow-
r \~36 |ng
Ve(r) = kBT<d_> : (1) Equilibration runs were done with ND in all cases, since
the damping not only introduces a change in the overall time
where d,, is the center-to-center distancg,,=(d;+d,)/2,  scale but also slows down the equilibration process. Lengths
with d; andd, the diameters of the particles. This potential is are measured in units of the diameter, the unit of time is fixed
tailored to be a continuous approximation to the hard-sphersetting the thermal velocity to,= kg T/m=1/4y3, and the
potential considered in the theoretical part of the work, asemperature is fixed tég T=1/3. In ND, theequations of
this facilitates the simulation of Brownian dynamics. The motion were integrated using the velocity-Verlet algorithm
control parameters of this soft-sphere system are the numbg24], with a time stepst=0.0025. The thermostat was ap-
densityp and temperatur@; they appear however only as a plied by rescaling the particle velocity to ensure constant
single effective coupling parametdr,=0T*? [23]. In the temperature every,=100 time steps. For well equilibrated
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samples, no effect of, was detected. The equations for mented by the initial conditiongs(q,t=0)=1 and d,¢(q,t
Brownian motion were integrated following a Heun algo- =0)=0. All many-body interaction effects are contained in
rithm [25] with a time of 5t=0.0005. In this case, no external the memory kernein(q,t), the description of which is the
thermostat was used, since the samples were already equiiim of the MCT approximations. One splits off from this
brated when running BD simulations. kernel a mode-coupling contributiomV<T(q,t), while the

The orientational order parametQg [26,27 was used t0  remainder is assumed to describe regular liquid-state dynam-

check that the system was not crystalline. For amorphougs, Let us approximate this latter part by an instantaneous
liquidlike structuresQg is close to zero, whereas it takes a contribution,

finite value for an ordered phase. The polydispersity distri-

bution used here is still too narrow to avoid crystallization m(q,t) = [1(q)/Q(q)?]&(t) + m"T(q,t). (3b)
completely, but it allows us to simulate the structural relax-
ation dynamics with sufficient statistics. Those samples hav
e e e i this work age 10 1 he overcamped imit o match tat one o
=0.50, 0.53, 0.55, 0.57, 0.58, 0.585, and 0.59. At each volSMU1ation. cf. Eq(2): one gets

The damping term/(q) is chosen as/=(30/\3)vy/d inde-
Eendent ofg; a choice that ensures the short-time expansion

ume fraction, we extracted as statistical information on the d(q,) =1 -[g%S(q) (kg T/p)t + O(t?)
slow dynamics the self part of the intermediate scattering B ) )
function for several wave vectos ¢°(q,t)=(exd-iq(ryt) =1-[Q@Tv]t+O(t).

-r{0))]), formed with the Fourier-transformed fluctuating Note that theg-independent choice of destroys momentum
density of a single “tagged” particle at positiogt). Here,  conservation for the hard-sphere particles; this is appropriate
angular bracketg-) denote canoncial averaging. A related for a model of a colloidal system.

quantity which we also extracted from the simulations is the The MCT contribution to the memory kernel is given by
mean-squared displaceme(¥SD) of a tagged particle, MYCT(q,t)=F[4(t)], where

r2(t)={(ry(t)—r40))?. The correlators and the MSD were 3
averaged over typically 50 runs, except for the BD simula- ]:[f] = %f d k3
tions at ¢=0.585 and 0.59, where 20 runs have been per- 29" ) 2w
formed originally. For¢=0.59 we have also performed ad-
ditional runs for both ND and BD in order to investigate
some phenomena found there; see Sec. Il B below.

S[@SKSPV(G.k PP (30)

and the abbreviatiofp=G-k has been used. The vertices
V(G,k,p) are the coupling constants of the theory, through
which all crucial control-parameter dependence enters. They
are given entirely in terms of static two- and three-point cor-
B. Mode-coupling theory relation functions describing the equilibrium structure of the
system’s liquid state. The latter are approximated using a

In a system ofN structureless classical particles, i'e"convolution approximation. so that the vertex reads
without any internal degrees of freedom, the statistical infor- PP ’

mation on the structural dynamics is encoded in the density =AY =[(Al a2 2
correlation function®(q,t)={e(G,t)"(q)), formed with the Viakp) = [{gkjc(k) + (Gp)e(p)]” (39
fluctuating number densitie@(d,t):EjN:l exp(id-r”j(t))/\s‘“ﬁ Here,c(q) i_s the direct correlation functio(DCF) connected
for wave vectorg. d(q,1) is a real function that depends on t0 the static structure factor §(q)=1/[1-ec(a)].
G only throughg=|d], since it is the Fourier transform of a The long-time limit of the correlation functiond,(q)
real, translational-invariant and isotropic functigire., the ~ =limi_..¢(q,1), is used to discriminate between liquid and
van Hove functioin The slow dynamics of the dense liquid glassy states. In the liquid(q) =0, while the glass is char-
given by @(q,t) is probed by the mean-squared displace-acterized by somé(q) # 0. From Eqs(3), one findsf(q) as
ment, &r3(t), and the self-part of the intermediate scatteringthe largest real and positive solution of the implicit equations
function (also called tagged-particle correlation function [29]
¢%(q,t), extracted from our simulations. Note that the latter f(q)
is linked to the MSD in the limitg—0, via ¢%q,t)=1 — =
- (1/6)g2ar?(t) +O(qr). 1-f@
The mode-coupling theory of the glass transittddCT)  In particular, there exist critical points in the control-
[28] builds upon an exact equation of motion for the normal-parameter space, identified as ideal glass transition points,

Folfl. (4)

ized density autocorrelation functiog(q,t)=®(q,t)/S(q), where a new permissible solution of E@) appears. Typi-
1 " cally, f(g) jumps discontinuously from zero to nonzero val-
—Zafd)(q,t) + (1) +f m(q,t —t")dy ¢(q,t’)dt’ = 0. ues there. Close to such a critical point on the liquid side, the
Q(q) 0 correlation functions exhibit a two-step relaxation scenario,

(3a) composed by a relaxation towards a plateau value, and by a
later relaxation from this plateau value to zero termed
Here,Q(q)?=0%3/S(q) is a characteristic squared frequency relaxation. On approaching the transition, the characteristic
of the short-time motion, an8(q) is the static structure fac- time scale for thex relaxation diverges, and an increasingly
tor, S(q)=®P(q,t=0). The equation of motion is supple- large window opens where the correlation functions stay
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close to their plateau. The plateau values on the liquid sidéhe same as in a previous discussion of MCT results for the
are in leading order given by the critical solutions of E4), HSS[31]. Once theg¢(q,t) have been determined, a similar
f¢(q), i.e., by the maximal solutions of E(4) evaluated at a numerical scheme allows to evaluate E@.for the ¢%(q,1),
critical point. The time window for whichb(q,t) is close to  and from this, one getér?(t) from Eq. (7).

f¢(q) is called theB-relaxation regime, and is the object of  For the solution of Eqs(4), a straightforward iteration
asymptotic predictions of MCT2,28,3Q. These include scheme guarantees a numerically stable determination of the
scaling laws for the correlators, whose power-law exponentsorrect solutionsf(q)=¢(q,t—«) [29] and, once thef(q)

a andb, called the critical and the von Schweidler exponent,are calculated, of 5(q)=¢%q,t— ). From the distinction
are given by an exponent paramelerThe latter is calcu- between states witlfi(q) # 0 andf(q) =0, the critical point
lated within MCT and depends on the static equilibrium ¢ can be found by iteration ig. For the solution of these
structure of the system. We will test some of the predictionsquations, we have used a discretization Witk 100, A,
connected withg relaxation in Sec. Il D. =0.4, andg,=0.2. This is sufficient to ensure that errors in

Let us also recollect the MCT equations of motion for thethe f(q), 5(q), and ¢° resulting from the different discretiza-
tagged-particle correlation functio$®(q,t) of a tagged par- tions used are small.

ticle that is of the same species as the host fluid, since this A few results shall also be discussed concerning the
will be the quantity we shall analyze below. For it, an ex- polydispersity-induced effects. MCT for continuous polydis-
pression similar to that of Eq$3) holds, persity distributions is not available, but we try to estimate
1 t the influence of the polydispersity by calculating MCT re-
S—Zatz¢s(q,t) + (1) +J m*(q,t —t")d, ¢%(q,t')dt’ =0,  sults for Scomponent mixtures with the species’ diameters
Q%q) 0 chosen to mimic the simulated polydisperse distribution. We
(59) have used ar5=3 model with diametersl, e{1-w,1,1
o 22 ) +w}, ande,=¢/3, wherea labels the species of the mixture,
where we have()%(q)°=q<y, The tagged-particle memory anqo s the partial number density of each species. Here,

kernel is given in MCT approximation bym®(q,t) we setW:l/\s’Z_OO in order to match the second moment of

=~ (1) Q(@)?) (1) + F L#5(1), ¢(0)], with the discrete distribution to that of the one used in the simu-
.1 a3k R lation. We have also calculated results for &5 model,
FIf5,f]= —4f —— VG, f(Kf(p), (5b)  with d,€{0.9,0.95,1.0,1.05,1}1and ¢,=¢/5, chosen to
a’) (2m contain particles within the same size range as in the simu-
and with vertices lation. The MCT equations, Eq63), generalize to mixtures
e in an obvious way, leading to equations of motion for the
V(G,k) = (ak)“c(k)*, (500 matrix of partial density correlator?,,4(q,t) [32,33. Simi-

where we sety(q)=v in the following. The qualitative fea- lar to Egs.(5), the_ correlators for a tagged particle of eit_her
tures of%(q,t) close to an ideal glass transition are the saméne Of the species¢;(q,t), are calculated, together with
as those of4(q,t), as long as it couples strongly enough to their long-time limits,f 3(q). We can now define “averaged”
via Eq. (5b). In this generic case, als¢%(q,t) develops a t@gged-particle quantities as

two-step relaxation pattern, with plateaus given by the criti-

S
; S,C _ ; 1
cal solutionf ¢(q) of the tagged-particle analog of E@L), de(Q) - §Elf s(g), ®)
f S o~ a=
A (6) . y
1-f¥%0q) and similarly for¢;d(q,t). These quantities are analogous to

the quantities extracted from the polydisperse MD simula-
tions.

To calculate results from the MCT equations, we require
as the only input expressions for the direct correlation func-

The mean-squared displacemédiSD) or?(t) can be cal-
culated from theyj— 0 limit of the tagged-particle correlation
function. One gets

t tion c(q) entering the vertices, Eq¢3d) and (5¢). For the
2 2 Sit _ 41 2(+1 ’— 2 ’
(1) +Uthj mg(t — ") or(t")dt’ = Guit, @) multicomponent analog of these expressions, one requires
0 ; X . )
knowledge of the full matrix of direct correlation functions,
where we have sem'g(t):lim,hO g?m3(q, t). C.5(0). The DCF could be either determined from simula-

Equationg3) can be solved numerically for the functions tions, or taken from well-known results of liquid structure
¢(q,t), once the vertices/(q,k,p) have been calculated theory. For hard spheres, the Percus-Yeyiek) closure to
from liquid-state theory. To this end, the wave vectors arghe Ornstein-Zernike equation provides a fairly accurate
discretized on a regular grid ®f wave numbers with spac- parameter-free descriptid23]. Using the PY-DCF as input
ing Ag: gid=iAq+qo. We have used1=300,A,=0.4/3, and to MCT, we thus obtain results for the dynamics of the HSS
00=0.2/3, implying a cutoff wave vectony'd=39.93. This that are independent on any empirical parameters or any
discretization is enough to ensure that the long-time part ofusually not readily availab)esimulation input. These pre-
the dynamics does not show significant numerical artifactslictions are the best we can currently achieve from within
[2], the biggest error being a few percent cutoff dependenc®!CT as a completely parameter-free theory. Furthermore,
of an overall shift in time scales. The discretization we use ishe wealth of asymptotic predictions of MCT has been
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FIG. 1. Comparison of the static structure fac&n) for the
simulated polydisperse soft-sphere systemeat0.58 (symbolg
with the Percus-Yevick approximation to the hard-spt&cp at the
same densitysolid line). The dashed line shows the Percus-Yevick
result for ¢=0.505. The region around the first diffraction peak is
enlarged in the inset.

FIG. 2. MCT results for the critical nonergodicity parameters
f%(q), using as input the static structure fact) from Percus-
Yevick theory for hard spherggashed ling The crosses connected
by the solid line show the results usigq) as obtained from the
polydisperse nearly-hard-sphere simulation.

) ) ) termine to which extent such an underestimation can stem
worked out in great detail for this modg,30]. Note that the  from deviations of PY from the simulated(q), which are
PY approximation to the DCF itself introduces errors that arejsjple in Fig. 1, we have calculated MCT results fofcr
independent from those introduced by the MCT approximayng the critical plateau valugs(q) both using the PY ap-
tion. It has been pointed out recently that these PY"”duceBroximation and using our simulation results ®(g) as in-

errors can be quite pronounced in the MCT-calculated quarg s 15 the theory. We have evaluated the structure factor from
tities, even if they appear small at t18q) level [12]. TO 0 gimylation atp=0.50 ande=0.58, where we could get

disentangle these two error sources, we have also performegdagonaple statistics for this quantity. The MCT calculations
some calculations within MCT witt&(q) obtained from our e proceed by a linear interpolation between these two

simulation, as will be discussed below. cases to approximat®q) at nearby values af. The critical
nonergodicity parameters®(q) thus obtained are shown in
Il DATA ANALYSIS Fig. 2. They agree well fogd= 6, lending confidence to the

PY-based discussion of the correlation functions. Smajler

Let us start the discussion of the data by a comparison dfiave been omitted from the figure. There, numerical prob-
the structure factoB(q) obtained from the simulation with lems in the MCT calculation arise which are related to the
the PY approximation, since this is the crucial input to allnoise in the simulated(q). The results for the exponent
MCT calculations below. Figure 1 shows this quantity for parametein also do not differ significantly between the two
¢=0.58. While PY reproduces the oscillation periodiiq), calculations. We gext = 0.735 in the PY-based ca$2], and
i.e., the typical length scale, correctly, it overestimates thé.727<\<0.773 based on the simulatefig), the latter
peak heights, i.e., the strength of ordering in the sy§@3h  value depending somewhat on the discretization used. The
Since the strength of the coupling constants in MCT is di-values for the critical packing fraction, however, differ be-
rectly connected to the peak heightsS(m), the MCT calcu-  tween the two calculations: instead @f,-;=~0.516, we get
lation based on the P%(q) will overestimate the tendency to ¢ycr=0.585 when using the simulated data to obt&iq).
glass formation. One can try to adjust the peak heights byNote that this makes this MCT result almost coincide with
setting a lower packing fraction in the PY calculation. This iswhat has been reported for colloidal realizations of a hard-
demonstrated by the dashed line in Fig. 1, where0.505 sphere systenfl8]. Such agreement is accidental, particu-
has been taken. This value has in fact been determined by ttierly because the valug;,, extracted from our simulations is
MCT fits presented in Sec. IV, and is chosen such that theven higher, but it demonstrates that the approximations used
final relaxation time in the MCT calculations at that densityfor S(g) need critical assessment. Let us also note that the
matches the one of the simulations @+0.58. As Fig. 1  findings described here do not completely agree with similar
demonstrates, this introduces a small error in the oscillatiomesults reported in Ref[12]. There, the same qualitative
period inS(q). trend for g5, was found for a hard-sphere system, and as

It is well known that MCT, based on the PY structure well for two binary hard-sphere mixtures. But in this case,
factor for hard spheres, under-estimates the glass-transitidghe values forf ¢(q) based on the simulated structure-factor
packing fraction of that system. One get§.;=~0.516[2],  input differed notably from those calculated within the PY
instead of the value reported from experiments on colloidabpproximation, while we find no significant difference in this
hard-sphere-like suspensions,~0.58[18]. In order to de- quantity. In principle, our simulation-based results f&tq)
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two-step relaxation pattern is usually referred to as structural
relaxation and is a precursor of the approach to a glass tran-
sition at somep°®. The scenario has been observed repeatedly
in similar systems. In our simulations, we are able to follow
the structural relaxation scenario for up to about five orders
of increase in the relaxation time.

MCT predicts that the structural relaxation becomes, up to
a common time scalg, independent on the type of micro-
scopic motion that governs the relaxation at short times. To
demonstrate that this is the case, Fig. 3 shows as thin lines
the simulation results using Newtonian short-time dynamics.
The data have been scaledtiim order to match the BD data
at corresponding packing fractions and at long times. Indeed,
then the relaxation curves match within our error bars at
times t>10, indicated by the diamond symbols in Fig. 3.
Only at shorter times, the regime of nonstructural relaxation
can be identified by the different shapes of the BD and ND
curves. According to MCT, the scale factor=tE°/t)° used
fo match the BD and ND data at long times should be a

multiplied by factorg. given in the inset. The dotted line is the BD SImOOth fu?Ctlon Ofe, gilver|1 b.y a ConTtamhm Iee:dmg order
result fore=0.01, indicating the dilute limit of the correlation func- close to¢". For our simulation results, the values are as

tion. The solid diamonds indicate the points where Newtonian an®NOWn in the inset of Fig. 3; they are compatible with a
Brownian dynamics results start to agree at a 2% level. constant shift. =~ 4.25 within error bars. Only at=0.58 and

¢=0.585 do we note a stronger deviation, the reason of
which is unclear. The overall variancetirip) is comparable
f the one found in a similar study of a binary Lennard-Jones
mixture [16].
t We conclude that the time windotw~ 10 deals with struc-
5(?Jral relaxation and thus comprises the regime where MCT
jredictions can be tested. At shorter times, deviations from
ose predictions must be expected. As can be seen in Fig. 3,
this bound is approximately independent@fAccording to
MCT, the structural relaxation regime commences with a
critical relaxation that is asymptotically independent @f
34]. Since the “microscopic dynamics” at shorter times de-

0’(g.0)

FIG. 3. Simulation results fop=0.50, 0.53, 0.55, 0.57, 0.58,
0.585, 0.59from left to right) at wave vectogqd=7.8. Heavy solid
lines are the results using Brownian dynamics, thin lines the result
for Newtonian dynamics. For the latter curves, timtdsave been

have no reason to be closer to the PY results than th
simulation-based results from Refl2], since we use a
slightly polydisperse soft-sphere system, while in R&g],
strictly monodisperse hard spheres have been simulated,
the cost of having to extrapolate to the desired high densitie
The results shown in Fig. 2 suggest that we may procee
in the following discussion by basing all MCT results on the
Percus-Yevick approximation f@&(q). While this will make
an adjustment of packing fractios,ct necessary, it has the
advantage of giving a first-principles theory to compare th
simulation data to. In particular, the results presented abov . : :
pends smoothly onp, it changes little over the relatively

point out that neither the shape and strength ofd¢helax- L
1 . : narrow range observed here. Hence the result seen in Fig. 3
ation, nor the asymptotic shape of the correlators in the

p-scaling regime will change much between the PY—base('jS in accordance with MCT. Fig. 3 indicates, in agreement
9 reg 9 . with theoretical studief34,35 and previous ND simulations
results and those based on the simulated structure factor.

: . .~ [11], that the “microscopic” influences are larger in ND. We
Before we embark on the comparison of the intermediat hus orimarily discuss the BD data. which prove to be sim-
scattering functions with the “full” MCT solutions, let us first b Y ' b

analyze the simulation data according to the asymptotic preF—)Ier to understand within an MCT description.
dictions of MCT, in order to identify the time window where
MCT should certainly be applicable. B. a-process analysis

The second step of the two-step relaxation process, i.e.,
the decay of the correlators from their plateau value, is re-
In Fig. 3, results of the simulations are shown for differentferred to as thex process. A prediction of MCT is that the

packing fractionsp. A wave vectorqd=7.8 close to the first shape of thisx relaxation becomes independent grin the
peak in the static structure factor has been chosen. Differefimit ¢— ¢°—0. Thus, scaling the correlation functions for
values ofg show qualitatively similar scenarios. The thick givenq and differenty to agree at long times should collapse
solid lines in the figure are the simulation results forthe data onto a master curve. Figure 4 demonstrates the va-
“Brownian” dynamics simulations. Upon increasigg one  lidity of « scaling for the BD data at several wave vectors
observes the emergence of a two-step relaxation process la¢tweeng=4.0 and 19.8. The scaling works as expected
times long compared with typical liquid time scales. A typi- from the MCT discussion of the HSR] for ¢<0.58. The

cal relaxation curve for the dilute case, is exemplified by thecloser a state is t@°, the larger is the window where the
dotted line in the figure, showing the BD simulation resultcorrelator follows thex-master function. The increase of the
for ¢=0.01. From this, we read off a “microscopic” relax- ¢(q,t) above the master functions at shorter times is con-
ation time for the short-time relaxation ¢f<1. The slow nected to theB process, discussed below. Fe=0.59, «

A. Identification of structural dynamics
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FIG. 4. Comparison of the BD data fgr=0.58 (plus symbol$ FIG. 5. Demonstration of the variability between different simu-

at wave vectorgid=4.0, 7.8, 13.8, and 19.@rom top to botton). lation runs for the ND and BD simulations &t=0.59. Data is
The long-time part of the data fop=0.55 (I symbolg, 0.57  shown forqd=7.8, with open(filled) symbols denoting BOOND)
(crossey 0.585(circles, and 0.59(star symbols is also shown, results. Triangles indicate averages over a small subset of the data
scaled int to match the long-time part of the=0.58 data. Solid (8 out of 30 sets for BD; 25 out of 70 for NDonly; inverted
lines are the MCT master curves for shiftegct (see text for triangles are the averages over the remaining data sets. The solid
details. lines without symbols are the total averages. Dotted lines indicate

. . the time-scaled MCTa-master functions.
scaling breaks down at long timetsz 500. The reason for

this is unclear, and cannot be understood within MCT. As We have tried to analyze this finding further by looking at
observed by the orientational order param@&grthe system the distribution of squared displacements exhibited by all the
did not show appreciable trends to crystallization in any ofparticles,Pysp,, (%), and its correlation with particle size.
the analyzed simulation runs. Also fpr=0.585, some devia- Here,t. is a fixed time, and the distribution is defined such
tions fromea scaling can be seen, particularlycgt 7.8 and at  that fPMSD,t*(éTZ)er:éTZ(t*). We have fixedt. such that
aroundt=1000, which are not in agreement with the preas-or?(t.)=1.25 The distribution Pysp develops a non-
ymptotic corrections to MCx scaling. But in this case, the Gaussian peak centered around its average value, whose
deviations are less pronounced than those=0.59. width increases upon increasing the packing fraction. In
The behavior of the long-time dynamics at these two densome cases, we did observe a two-peaked distributign at
sities, ¢=0.585 and 0.59, is not fully understood. We have=0.59, signifying that a certain amount of particles is dis-
tried to improve the statistical averaging by increasing theplaced significantly less than average, i.e., that populations
number of simulation runs. However, there appear to be twaf “fast” and “slow” particles develop. This might be con-
subsets among the runs: one wheredhgcaling violation is  nected to the “rare events” mentioned above, but we point
very pronounced, and one where the correlators instead fobut that this finding is unstable against improving the aver-
low the scaling behavior much closer. This happens in bottage over an increased number of simulation runs.
the ND and the BD simulations, although the effect is more From the a-scaling plot, Fig. 4, we infer the regime of
clearly seen in the ND case. Out of the 30 data sets we have-relaxation dynamics. Note that fap=0.58, deviations
averaged in the BD case f@=0.59, only 8 show the scaling from the a-master curve due t8 relaxation are seen almost
violation; in the ND case we have averaged over 70 seta)p tot=100. Those will be analyzed later. Also shown in
with 25 of them deviating from scaling. While Fig. 4 shows Fig. 4 are the MCTa-master functions. If evaluated at the
the data averaged over all simulation runs, Fig. 5 demonsameq as the simulation data, the description of the long-
strates the variation in-time scale between the two types of time dynamics is unsatisfactory, because the calculated
data sets, obtained by restricting the averaging to the numbeatretching of the relaxation is too small. If we account for
of data sets specified above. While we havearriori jus-  this error by shiftinggyct used in the calculations to higher
tification to modify the averaging procedure in any way, itvalues, we get good agreement, cf. the solid lines in Fig. 4.
allows us to point out that possibly some “rare” events takeNote that the deviations from the-master curve set in at a
place in the system at these high densities, which we cannéime later than that where the ND and BD simulation results
classify as crystallization events on the basis@j but  begin to overlap: e.g., thg=7.8 curve follows thex-master
which modify the dynamical long-time behavior in a distinct curve only for times= 100, as can be inferred from Fig. 4.
way. For the ND data, the-time scale varies by a factor of Still, the BD and ND curves for that state collapse within our
2.5 between the two cases. In the BD data, the effect is lessrror bars already for= 20, cf. Fig. 3. This underlines that
pronounced, but still gives a factor of about 1.6. As the dotthe regime of structural relaxation identified in Fig. 3 is
ted lines in Fig. 5 demonstrate, the majority of the data settarger than that of ther-decay regime observed in Fig. 4,
follows the predicted scaling rather closely, whereas the reke., that both simulation data sets show some extent of the
maining ones show significantly slower decay. MCT pB-relaxation window.
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The values ofgycr used in the fits of Fig. 4 argycr 1
=5.0 (9.13,10.3,15.13,18.3,20.87  for g=4.0
(7.8,9.0,13.8,17.0,19)8These fit values are suggested by the
analysis of the full curves pursued below, cf. Sec. IV. Com-
paring the fitted wave-vector valueg,ctto those of the
simulations, deviations ig are in the range 10% to 17%, 0.6
except forq=4.0, where a 25% deviation is needed to de-
scribe thea-master function. The way we have adjusted “e
OvcT ensures that the stretching of the correlators is de-
scribed correctly. In contrast, a fit of the plateau values with
the a-master functions is difficult, since the latter are still not 02
clearly visible in the simulation data even @t=0.59. This
will become more apparent in Sec. IV.

In all cases, the fitted wave-vector values are larger thar ?O.z' ' 101 e
the actual valuesyyct=q. Since thef 3¢(q) giving the pla-
teau values decrease monotonically from unitygatO to
zero atq— e, this fit result is equivalent to stating that the  FIG. 6. Example for Kohlrausch fits to the simulation data at
MCT-calculated plateau values appear too high. Furthere=0.58 (symbols: Brownian dynamics; dots: Newtonian dynam-
more, the half-width of thé $°(q) distribution is an estimate ics), qd=4.0, 7.8, 9.0, 13.8, 17.0, and 19.8. The fit range was
for the inverse localization length of a tagged particle. Hence” 55.

the fit suggests that l\/_ICT_underestlmates_ the localization the fit have a systematic dependence on the fit range. In
length of a tagged particle in the system slightly. There argyarticular, one has to restrict the fitting to such latgbat

two obvious reasons for such a mismatch in length scalegnly « relaxation is fitted. For the fits shown, this range was
first, the softness of the particles in the simulation might,chosen to bé=55. The data deviate from the fitted Kohl-
especially at high densities, give rise to some amount ofausch functions significantly only at shorter times; but there
particle overlap not possible in the HSS, rendering the effecis a trend that these deviations set in just about the boundary
tive localization of the particles slightly larger. According to of the fit range. This still holds if the fit is restricted to larger
Heyes[36], the soft-sphere system used in our simulationg only, and judging from the fit quality for the remaining
can be well described within the hard-sphere limit and arrelaxation alone, one cannot determine the optimal choice of
effective hard-sphere diametelgs=[¢(1-exg-BVc(r)])dr  the fit range. It is thus particularly difficult to extract the
~d(1+v,/36)=1.016 (where y,~0.577 is Euler's con- regime ofa relaxation from thg Kohlraus_ch fi_ts alone. On the
stany, which differs fromd=1 by less than 2%. But one has Other hand, from the MCT fits shown in Fig. 4 we expect
to keep in mind that the convergence of increasingly steeOrections due i@ relaxation to set in at abotit=100. This
soft-sphere potentials towards the hard-sphere limit can b Principle gives an indication of the maximum fit range to
quite slow for the transport properties of the systEs]. choose. _Yet, Kohlrausch flts rest_rlctedtib 100 did lead to
Second, a difference in packing fractions between the simi @ Unsatisfactory scatter in the fit paramet®fg) and 5(q).
lation and the MCT calculation might become important in ' NUS an analysis of the relaxation using Kohlrausch fits
this respect. This arises because, within the PY approximaill €rroneously include parts of thg relaxation. ,
tion for the DCF, the MCT master curve is evaluated at the 1S trend can be also identified comparing the obtained
corresponding value for the critical packing fractiope ~ <ohlrausch amplitudea(q) with the plateau values®>%(q).
~0.516< ¢Z, . As was pointed out in connection with Fig. 1, This comparison is shown in Fig. 7, where the MCT results
such a mismatch irp will affect the average particle dis- for f*“(q) are included. They have again been determined
tances, and thus an overall length scale. But sinfg,  USing the PY approximation t8(q), but in agreement with

< ¢° one would expect this to lead to an overestimation ofFig. 2, the values fof 5“(q) determined from MCT calcula-
the critical localization length, contrary to what we observe tions based on the simulat&q) are indistinguishable from

0.8

(g.9)

0.4

Traditionally, stretched-exponentiéohlrausch laws, the ones shown on the scale of Fig. 7. For Kohlrausch fits to
the a-master function, and more generally to the
#%(q,t) = A(Q)exrd - (t/7(q))P 9], (9)  a-relaxation regime of the correlators onlgyq)=<f $%q)

should hold. Recalling the wave-number adjustment used in
are known to give a good empirical description of the Fig. 4, we should even hav&(q) < f S qucr(q)]. This latter
relaxation. HereA(q) is an amplitude factorr(q) the Kohl-  curve is included in Fig. 7 as the dash-dotted line, where the
rausch time scale of the relaxation, ang3(q) <1 is called  mappingg— qycr Was extended from the set gfanalyzed
the stretching exponent. These parameters in general depeindthis text to allq via a quadratic interpolation. The relation
on the observable under study, and in particular on the wavA(q) <f 5(q) is clearly violated for the fits here, especially
vectorq. Figure 6 demonstrates that the Kohlrausch laws camt highg. It shows that the distinction between theand 8
also be used to fit thex-relaxation part of our simulation regimes from the simulation data is difficult; increasingly so
data. The figure shows as an example the sgat@.58 for  with increasing wave number.
various wave vectors. One problem of the stretched- It is reassuring that the Kohlrausch fits to BD and ND
exponential analysis of the data is that the three parametetiata yield values quite close to each other, apart from an
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" o . FIG. 8. Stretching exponeni8(q) from fits to the BD simula-
FIG. 7. Critical nonergodicity parametéf“(q) calculated from  tion data ate=0.58 using Kohlrausch laws, E@9). Error bars

MCT for the one-component hard-sphere system with PY approXijngicate deviations estimated from fits to ND data andpte0.57.
mation (solid line), and for a five-component polydisperse systemthe gashed horizontal line indicates thevalue calculated from

(dashed ling Symbols are the amplitude®(g) from Kohlrausch T using the Percus-Yevick approximation fstg), b~ 0.583,
fits to the data, where error bars estimate deviations dependiggg On g the dash-dotted line ib as determined from MCT with

and BD/ND. The dash-dotted line indicate$(q), but transformed g ulation-data input fos(q), b~ 0.521.
with the wave-number shift applied in the discussion of the dynami-
cal data(see text for details C. Analysis of a-relaxation times

overall shift in#(q). This holds, as long as the fit ranges are  1hed-dependence of the-relaxation times at fixegp can
chosen such as to fit approximately the same part of thEest be analyzed from the(q) extracted from Kohlrausch
relaxation. In Fig. 6, the ND curves have been added, agaifits. In Fig. 9, we report values for(q) for such fits to the
shifted by a scaling factor ih given in the inset of Fig. 3. BD data at¢=0.58 as the diamond symbols. If one instead
Note that, while in the ND curves one can identify a plateaufits the ND data, or data atp=0.585 or 0.57, the
from the data better than from the BD ones, still theg-dependence is the same up to a prefactor and up to small
Kohlrausch-Williams-WattsKWW) fits have a trend to give deviations. These deviations are indicated by the size of the
too high values ofA(q). Thus one has to be careful when error bars in Fig. 9. The data closely follow acf/depen-
extracting plateau values from the simulation data by such adence for smallg, indicated by the dotted line. This is in
analysis, even if the data seem to give a clear indication oagreement with earlier MCT predictions for the hard-sphere
the plateau. system[38]. For q— o, one expects from MCTH(q) ~ q *".

The stretching exponentg(q) from the KWW fits are  But sinceb is close to 1/2, we cannot distinguish this behav-
shown in Fig. 8. Again, we have included error bars indicat-or reliably from a 142 law due to the noise of the data at
ing the deviations arising from fits to differegtor to ND as  largeq.
opposed to BD simulation datg(q) increases with decreas- Fits to the BD data ap=0.59 reveal significant deviations
ing g, and this increase is compatible wig{g)—1 for g  from the behavior atp<0.585 at smally. This can be de-

— 0, as expected from theof@8]. According to MCT,3(q)

should approach the von Schweidler exponkerdas q— o

[39]. The value ofb is calculated from the MCT exponent 1200
parameterh, and for the HSS using the PY-DCF is

~0.583, shown as a dashed line in Fig. 8. We observe that

the fitted B(q) fall below this value for largeay, even if the 200
fits are less reliable there, due to the low amplitudéy) at
high g. To estimate the error of the theory prediction fpr
we have also calculated this exponent from MCT using the
simulated data as input f&(q). According to the values of
reported in connection with Fig. 2, we gbt=0.56+0.04.
The lower bound fob thus obtained is indicated in Fig. 8 as

the dash-dotted line. Taking into account this uncertainty, the 0; : o : 0 R e 20
behavior of the fitteg3(q) agrees well with what is expected qd

from theory. In the further discussion, we will fix to its

value derived from the PY approximation=0.735. Since FIG. 9. 7(q) from Kohlrausch fits, Eq(9), to the BD data at
the shape of the correlation functions in tBeegime is in ¢=0.58 (diamond$ and ate=0.59 (squares; scaled by a factor of
the asymptotic limit fixed by\, some deviations in the fits 0.02J). Error bars estimate the uncertainty from the fits; see text for
described below are to be expected in this time window. details. The dotted line shows ad/law.

q)

400
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o N ' ' ' the shift in the overall time scale, cf. inset of Fig. 3. Fits to
Cor N | straight lines givee® values that are consistent with each
0.5 7 other forg=7.8 and both microscopic dynamics, if one re-
A stricts the fit range to high enoughand omits the highest

0.4 “u 1 densities, where alpha scaling breaks down, 6.54<0.58
R : 1 in our case. From this, one get§~0.594+0.001, where the
0.3 B 7 error is understood for fixed fit range. The data fpr4.0
I u 1 give a somewhat higher value®~0.598+0.001, again the
02 @ ﬁ ® 7 same for Newtonian and Brownian dynamics. This differ-
I S 1 ence is outside the error bars of the analysis and thus not in
0.1 W“\\\&::\V\v 7 accord with MCT. Since the discrepancy is the same for both
- \3\_3\ 7 types of short-time dynamics, we conclude that indeed the
05 052 05T 056 oS 06 structural relaxation deviates from the MCT prediction sys-
¢ tematically at smalb.

The range of distancesto the critical point, in which we

FIG. 10. Plots ofr,'” for wave vectorgid=4.0(diamond$, 7.8 can fit the time scales consistently with a power law, is
(squarey 9.0 (up triangle;, and_ 13.8(d0wn trianglex_ using y . roughly|qo—qoc| / ¢°<0.07. This agrees with what is expected
=2.46.(a) Results for the S|mulat|on dz?lta.usmg Brownian dynamlcsfrom a discussion of the asymptotic MCT results for the
(open symbolsand Newtonian dynamiaSilled symbolg. The val- — narq_sphere systerf]: For the time scales extracted from
Bisshogg lficr’];;h;e'altits;;i\i’t‘: tt;efr?erg‘#g\',s:]'?n t:jy :;1 Ifgsr ;Z'tsa l?rlmoih the numerical MCT results, we have to restrict the linear fit
range 0.54 ¢=0.58 y %o ¢mcT = 0.48, where .the crmgal .pomt |$‘,§,,0Tz0.51§. Be_—

' . low ¢ycr=0.48, one finds deviations from the straight lines
duced from the square symbols in Fig. 9. They have beefi the rectification plot; typically the results fall below the
scaled by a constant factor in order to match the value obasymptotic straight line in such a plot. If one tries to fit a
tained from thee=0.58 fit atq=7.8, since there the MCT larger range ingyct, the thus estimate@® will be higher
analysis works best, as will be shown below. At smatijer than the correct one. For example, we get°
the increase of(q) with decreasingy is suppressed for the =~0.519+0.0015 when fitting in the rangg,cr=0.4. It is
¢=0.59 data in comparison to the variationsm) observed reassuring that the deviations from the linear behavior seen
for smaller¢; we will come back to this decoupling of time in Fig. 10 for the simulation results occur in the same direc-
scales when discussing the lapdata in Sec. IV. tion as found for the MCT results.

For a discussion of the density dependence of the Atlargeq and atthe highest packing fractions studied, the
a-relaxation time, ther(q) from the stretched-exponential 7, from the simulations are systematically smaller than what
fits are less reliable, since the Kohlrausch fits suffer fromis expected from the power-law extrapolation. This suggests
larger uncertainties at lowes, where thea and 8 regimes  that the local relaxation dynamics of the system very close to
are even less well separated. But we can operationally defiribe transition would be faster than expected within the
a time scaler, for the decay of the correlation functions as theory. However, the full theory analysis presented below
the point where the correlators have decayed to 10% of theuggests the opposite, indicating that at these ljgthe
initial value, ¢%q,7,)=0.1. For small enoughy where operational definition of, we have chosen for simplicity no
f S¢(q) is still much larger than 0.1, is a useful measure for longer works.
the a-process time scale. In the asymptotic regime, where
scaling holds, it follows thex-scaling time defined within D. B-process analysis
MCT up to a constant. Thus MCT predicts a power-law di-
vergence ofr, close tog® of the form|e— ¢~ for not too
largeq, q=<15, say. To test this prediction, we plot in Fig. 10
the quantityr;l’y, which should yield a straight line crossing
zero at¢®. Since the region of validity of this asymptotic
result is not knowra priori, a determination of the correct
value of the exponeny on the basis of such rectification plot
suffers from large errors. Therefore, let us fix=2.46, the
value calculated by MCT using the PY approximation. Due oc=C-g, e=(p—-¢/¢", (10)
to the uncertainty in determiningmentioned above, slightly _ _ ) _ _ )
different values ofy cannot be ruled out. One gefs~2.66 N leading order is the Im_eanzed distance in control-_
as an upper bound when using the upper bound\fgiven ~ Parameter space. The Ieadlng-order asympt(_mc result is
above for the MCT result based on the simulagéq). This ~ called facto.nzatlon theorem, and it can be written for the
value ofy is also quite close to what one gé88] using the ~ t2gged-particle correlator as
VerIet—Wels.—g:orr'ected PY structure fact@40]. Figure 10_ #%(q,t) = 5°(q) + h%(q)G(t). (11)
shows rectification plots for both Brownian and Newtonian
dynamics simulation data for 40q<13.8. For the latter, Here, G(t) is a universal function depending only on the
the values ofr, have been multiplied by 4.5, consistent with parameters, o, and a fixed “microscopic” time scatg The

We now test some of the predictions MCT makes for the
B-relaxation regime, where the correlators remain close to
their plateau values. The time window where the asymptotic
solution holds, extends in upon control parameters ap-
proaching the transition point, i.eq— ¢°. The leading de-
viation from the plateau value is of ordefo|, whereo is
called the distance parameter, and
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expansion is valid on a time scalg=to|o| 12 that diverges 4
upon approaching the transition point. On this time scale, all |
wave-vector dependence is factorized off from the time de-
pendence, and contained in the critical amplituld¥g) and

the plateau value$5°(q). All parameters can be calculated
within MCT, but as we have seen above, extracting them
from the simulation data is not straightforward. Fortunately, |
it is possible to test the factorization property without fitting
any of the g-dependent quantities to the data. Following
Signoriniet al.[41] one can extract the critical amplitude by
plotting ¢%(q,t)— ¢%(q,t’) for fixedt’ and varioug inside the  ~
B regime; following Kobet al.[42], we consider the function

¢s(q!t) - ¢S(q1t,) “r 4
$%q.t") - ¢a,t") S AN

If fixed timest’ andt” are chosen inside thg regime, the
factorization theorem giveX(q,t)=X(t) =x;G(t)—x, for t 2
inside theB regime, with constantg; andx, not depending
on g. Therefore, if the factorization theorem holds, plotting
X(q,t) for variousq collapses the curves in the window, o N
without the need for fitting wave-vector dependent ampli- | o 3o-m
tudes and plateau values.
We have performed this test for our simulation data for _,|
both BD and ND. Figure 1(h) shows the results for the BD
simulation ate=0.58, witht’=8.234 andt”=20.8075. One "
observes that the data nicely collapse foe5<40. Addi- () a
tionally, the figure shows th¥(t) constructed from the MCT e T I—
B correlator as a dashed line. Here, two constaptndx,, 10 10 19 10 10
and the time scalé¢, have been fitted. The value af has
been taken from the theory as explained above(.735. FIG. 11. (a) B8 analysis of the BD simulation data at0.58: the
The same analysis is carried out for the ND data in Figcurves marked by symbols  show X(q,t)=[#%q,t)
11(b). Here, we have fixedty,=2.31=t'/3.5 and t\,  ~¢%a.t)]/[¢Xa,t")~4%q,t")] with t'=8.234 andt”=20.8075.
=5.845~1"/3.5, since atp=0.58 the shift in time scales be- Wave vectors argd=4.0 (diamonds, qd=7.8 (squares qd=9.0
tween BD and ND is a factor of about 3.5; cf. inset of Fig. 3.(up triangleg, qd=13.8 (down triangle and qd=17.0 (circles.
Again the data collapse in an intermediate window 2 The dashed line is the equivalent of the M@Tcorrelator; see text
<15. The upper end of this window is consistent with thefor details. The dash-dotted line indicates the plateau value esti-
one found for the BD analysis, i.e., #40/3.5. The lower me_lted from the root of th@ correlator.(b) Same for the ND simu-
end of the window wherg scaling holds for the ND data is '2fion datat’=2.31 andt"=5.845.

higher than what would correspond to the BDwindow.  gpje fit parameters. At shorter times, one finds that, e.g., the
Thus preasymptotic corrections are stronger in the ND casey=7.8 andq=9.0 curves rise above th@correlator curve, in
The fit using the MCTp3 correlator is not as good as it is for viplation of the ordering rule. We thus conclude that at this
the BD case. Since the distance to the critical point does ngjoint, microscopic rather than preasymptotic deviations set
change between BD and ND, we have usedtffi&, deter- in for the ND simulations. These microscopic influences are
mined from the above fit to the BD data also here. Furtherstronger than the ones in the BD data, as already pointed out
more, since we have chosg, andty, in accordance with above. The pointg, where the corrections t@ scaling
the values ot’ andt” for the BD analysis, the constarmtg  change sign can be inferred from Fig. 11 todge=9/d. It is
andx, should be the same; this is roughly fulfilled by our fit. independent on the type of short-time dynamics, in excellent
The fits to both data sets have been performed such as smreement with the predicted universality of structural relax-
obey the “ordering rule” for the corrections g®scaling[2]: ation, and in particular the correction-to-scaling amplitudes.
a curve that falls below another one for times smaller tharThe numerical value difj, also agrees well with that found in
the B window will also do so for time larger than th8  an analysis of the MCT results for the tagged-particle cor-
regime, since the corrections both at small and at large timelator in a hard-sphere systgB80], where the change occurs
are determined by the santedependent correction ampli- at ¢y ycr=9.3/d.
tudes. Thus the ordering of wave vectors on both sides of the The B correlator for short times approaches the critical
scaling regime is preserved. We are able to perform a fit tpower law, G(t) ~t™2. Comparing this asymptote with the
the BD simulation data that fulfills this prediction of MCT, fitted 8 correlator in Fig. 11, one finds that the® law al-
as can be seen in Fig. (. For the ND data, we cannot ready deviates from thg correlator at~ 1 for the BD data,
fulfill this ordering at both short and long times with reason-and att~ 0.3 for the ND data. Thus the critical decay cannot

2_

X(g,t) =
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FIG. 12. MCT(solid lineg and simulation resultssymbolg for FIG. 13. MCT and simulation data f@%(q,t) with symbols and

¢%(q,t). For the simulation data, packing fractions ape0.50,  packing fractions as in Fig. 12, but fqd=9.0, adjusted in the MCT
0.53, 0.55, 0.57, 0.58, 0.585, and 0.8&m left to right), andqd calculations togyc1d=10.3.

=7.8. For the MCT results, packing fractions have been adjusted to . . .

¢mcr=0.445, 0.47, 0.484, 0.499, 0.505, 0.508, and 0.5135, and the 1 "€ fit shown in Fig. 12 demonstrates that the theory can,
wave number has been adjustedyig-rd=9.13; see text for details. with these modifications aIIo_vved, account for the dynamics
of the hard-sphere system in a time window of over four
decades on a 10%br bettej error level. Only at larger times,

t~ 10" in our units, i.e., at the highest packing fraction stud-
ied, systematic deviations are observed. The simulation for
this packing fraction shows slower dynamics than expected

ation. from the theory. Also the shape of the final decay is different,

Let us from now on restrict the discussion to the BD data, ¢ |, sted above in connection withscaling. On the short-
set. For the ND data, deviations from the MCT predictionsyj .« side the MCT description works dowln to a tifve 1

occur in the early part of the regime, and thus the theory At shorter times, it is still almost quantitative, but one ob-

can explain a larger part of the BD curves than it can do folge o5 5 gifferent curve shape. The simulation data appears
the ND ones. For the analysis of the long-time universality of, o sirongly damped than the MCT curves. This is to be
the dynamics outlined above, we conclude that these dev'ae'xpected, since neglecting the regular part of the memory

tions are not a feature of the glassy dynamics. It is knoerernel in Eq.(3b) will lead to such deviations at short times.

that MCT treats .the short-time dyf‘amics insufficien], e could have accounted for this partly by choosing a higher
and that Brownian dynamics typically stays closer to the ;e of, jn Eq. (3b), but we have not done so since we are

MCT scenario for a larger time window than the Correspond-not concerned with the short-time dynamics in this work.

ing Newtonian dynamic$34,39. Once the fit forq=7.8 was completed to fix the empirical
relation ¢ycr(¢), we have analyzed data for other wave
numbers up toq=30, hereby fixing the relatiomyc7(q).

We now turn to a full data analysis, i.e., a comparison ofTypical results forq=<17 are exhibited in Figs. 13-15. Note
the complete simulation data with the solutions of the fullthat the only parameter that was adjusted for these fits is the
MCT equations for a hard-sphere system. wave numbergyct. This way, Figs. 13—15 demonstrate how

In the MCT picture, the glassy dynamics of the hard-MCT is able to reproduce the wave-vector dependent
sphere system is mainly driven by density fluctuations ovechanges in the structural-relaxation window. At even higher
the length scale of the mean nearest-neighbour distance, i.@,, it becomes too difficult to judge the fit quality, since the
with wave numbers close to that of the first sharp diffractionf(q) are close to zero there. Connected with this is the grow-
peak inS(q). We therefore begin the analysis by focusing oning influence of the microscopic regimes 1, on the main
the data forg=7.8. The results of our full-MCT fits to the part of the decay of the correlators with increasmd-or q
BD simulation data are shown in Fig. 12. To achieve this and=17 and the highest packing fractions, already about 60% of
the following fits, we have adjustegl,cr for each curve and the decay of$%(q,t) from unity to zero are made up of such
allowed the wave numbergyct to vary slightly with respect microscopic dynamics. Consequently, the errors made in its
to the correct valua. No other parameters have been ad-description are to be seen more explicitly in Fig. 15 than in
justed. As noted above, theeshift to some extent accounts Fig. 12.
for a mismatch in length scales between the simulation and Apart from this, also the fits &> 7.8 using the full-MCT
the theory predictions. The adjustmentg@ficr on the other  results are quite satisfactory in the time window fi< 10°,
hand accounts for the known error . We will discuss the save the highest simulated density, for which errors are larg-
relation of the fittedeyct to the correct packing fractiop  est and extend down te= 10 forq=13.8 and 17; cf. Figs. 14
below. and 15. One notices a trend that theelaxation dynamics

be identified from the simulation data. This is typical for
most experimental dafd]. One thus has to be careful when
extracting the exponerd from an analysis of the8 relax-

IV. FULL MCT ANALYSIS

061506-12



TAGGED-PARTICLE DYNAMICS IN A HARD-SPHERE...

PHYSICAL REVIEW E 70, 061506(2004)

! - 0.52 : :
o
gd=13.8 &
o
0.8 - L 7000 -
0.5 o
0O
0.6 - 5
= £0.48( & 4
= =S ,
0.4 4 7 wa
% o, 0.46|- o 4
NM“\...
0.2- 2R ., T .
NN \\ © .
R 044F & -
X \M\’ T | ! ! I
‘1)0.2 e S 0.5 0.52 0.54 0.56 0.58 0.6
P ¢

FIG. 16. Plot ofeyct Vs ¢ for the fits shown in Figs. 12-15, 17,
and 18(diamonds$. The dashed line is a linear figyct=0.81p
+0.037. The circles are for the independent fit of the MSD, Fig. 19.

becomes slower in the simulation data than expected fromhe dotted horizontal line indicates the calculated critical point,
the MCT fits, i.e., the local dynamics is slower than one? ~0-516.
estimates in the theory. The finding can probably not fully be
attributed to the incorrect structure-factor input used, since analysis of the data, cf. Fig. 10, and also from an earlier
recent study of binary hard-sphere mixtures reported a simianalysis of the simulationgt3]. Note that it differs from the
lar discrepancy for thej-dependence of the-relaxation result obtained from MCT based on the simulagd), ¢°
times even when basing MCT on the “correct” simulated= 0.585 by less than 2%. The slope of the linear fit in Fig. 16
S(g) as input[12]. The same trend is also apparent in theis not equal to unity, and its zero is shifted. If one considers
full-MCT analysis of a binary Lennard-Jones mixtude]. the connection of the distance paramedeof MCT to the
Having established the overall quality of the MCT de- control-parameter distaneg this translates into an error of
scription for the structural dynamics on length scales smallethe leading-order constant of proportional®yin Eq. (10).
and comparable to the typical particle-particle distance, let usrom Fig. 16 we conclude that the value calculated from
now investigate the adjustment ip,cr needed to achieve MCT, Cycr=~1.54[2], is in error by about 20%C~1.2.
this level of agreement. A plot a1 VS ¢ is shown in Fig. For smallg, the MCT description of the data shows larger
16 (diamond symbols The figure reveals that the relation is quantitative errors, while it remains qualitatively correct.
close to linear, and thus the nontrivial variation of the relax-This is exhibited by the fits done fay=4.0, Fig. 17. Again,
ation curves close to the singulariyf has not been put in only gycr was allowed to vary, while theycr have been
“by hand” through the fitting parametes,ct. We can esti- determined from thej=7.8 fit shown in Fig. 12. While for
mate the correct value of the glass-transition packing fractiothis latter fit, the MCT fits reproduce therelaxation times
by a linear fit to thegpycr-versuse curve. Using the calcu- rather well, this is not the case for tlye=4.0 fit at=0.57.
lated valuegycr=~0.516, we getp®~0.594. This value is Instead, one observes a systematic trend for the simulation
nicely consistent with the one obtained from thescale data to decay increasingly faster than the MCT curves with

FIG. 14. MCT and simulation data fa#%(q,t) with symbols and
packing fractions as in Fig. 12, but fod=13.8qyc7d=15.1).
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FIG. 15. MCT and simulation data fa#%(q,t) with symbols and
packing fractions as in Fig. 12, but fod=17.0qyc7d=18.3.

FIG. 17. MCT and simulation data fa$(q,t) with symbols and
packing fractions as in Fig. 12, but fod=4.0 (gqyctd=5.0.
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FIG. 18. Comparison of the mean-squared displacem@&ats) FIG. 19. Comparison of the mean-squared displacem@Ats
from simulation and MCT calculations; all fit parameters have been,q, simulation and MCT calculations. In this plot, valuggcr
taken from Fig. 12. In addition, the MCT curves have been multi- ;5o for the MCT calculations have been adjusted to fit the long-
plied by 1.1 to account for an error in localization length; see teXt; o diffusion regime of the simulated2(t); the values arepycr
for details. =0.438, 0.46, 0.478, 0.494, 0.502, 0.503, and 0.511¢f00.50,

. . o _ . 0.53, 0.55, 0.57, 0.58, 0.585, and 0.59, respectively.
increasing¢. In addition, the deviations observed in the P Y

B-relaxation window, while still within a 10% level, are
larger forg=4.0 than they are fog=7.8. Even more, it was
necessary to allow for a 25% deviation betwegp andq,
whereas this deviation was less than 17% for all other fits
This last finding suggests that tié&¢(q)-versusg curve cal-
culated within MCT is too broad. It is common to express
deviations of theg >%(q,t)-versusg curve at fixedt from a

justed a global length scale in this plot, in order to better fit
the localization plateau visible in the data. The MCT curves
have been scaled up by a factor of 1.1, which accounts for a
5% underestimation of the localization length by the theory.
Note that at short timeg,<1, the description of the data
using MCT is of similar quality as discussed above. In par-
ticular, the MSD plot reveals that the BD simulation still

Gaussian at smad in terms of the r}On-Gaussian parameter, resembles a Newtonian short-time dynamics, though strongly
a,(t). These non-Gaussian corrections are reproduced qua amped: the MSD roughly follows ar?~t? law for 1072

tatively correct by MCT, but with an error in magnitude. One 1 ~ 151 and not asr2~t law as would be expected for

finds a(t) < 0.3 in the theory30], while for our simulation,  ghorttime diffusion in a strictly Brownian system. Theory
a(t) reaches values up to 2.5 in both BD and ND, which isgng simulation do not match at short times because of the
in agreement with similar simulation results for other sys-gcale factor applied. For long times, a qualitatively similar
tems[44]. But note that for times wherg(q,t) is close to  pjicture emerges as far=4.0, regarding the variation of the
its plateau value *“(q), both the MCT and the simulation q-relaxation times withp, now showing through a displace-
value ofas,(t) are positive. Thus the underestimationagfin - ment of the long-time diffusive straight lines in th#2(t)
the theory would let the 5¢(q)-versusg curve appear too plot. As forq=4.0, the quality of the MCT description of the
narrow, opposite to what is observed from our fits. We thusg-relaxation regime similarly is worse than fqe7.8. But
conclude that non-Gaussian corrections as expressed throufgdy the MSD, all deviations are larger than fgr 4.0, espe-
a,(t) and the quantitative error MCT makes in expressingcially in the a-relaxation regime.
them cannot be alluded to to explain the deviations observed Before investigating the:-relaxation regime in more de-
at q=4.0. Let us point out that the deviations discussedalil, let us note that, all deviations taken aside, the shapes of
above do not depend significantly on the fact that we havehe MSD curves as predicted by MCT are qualitatively cor-
based the MCT calculation on the PY-DCF. Using the simu+ect. To substantiate this statement, Fig. 19 shows an inde-
lated structure factor with MCT gives correlation functions pendent fit of the MSD using MCT. Instead of fixing the
¢%(q,t) that behave qualitatively as the ones shown here. ¢,,cr-versuse relation from the data aj=7.8, as was done

It is instructive to extend this analysis towards the meanabove, in this case this relation was determined from the
squared displacement data. Since the MSD is given througklSD alone. It is noteworthy that by correcting the error in
a memory kernel that basically isgg— 0 limit of the tagged- the a-relaxation time scale observed before, also the descrip-
particle-correlator memory kernel, &), its analysis can be tion of the g-relaxation window improves. In particular, we
viewed as th&— 0 extension of the above fitting procedure. did not scale the MCT results as we have done in Fig. 18.

We report the BD simulation data for the MSD, togetherThe valuespyct(¢) used in Fig. 19 are reported in Fig. 16 as
with the MCT curves according to the correlation functionsthe circle symbols. They also lie on a straight line, which is
shown above, in Fig. 18. For the MSD, no wave number is tashifted downward somewhat with respect to the original re-
be adjusted, and in this sense, the MCT results of Fig. 18 aration deduced from the above fits. In turn, an estimation of
not fitting results, but rather consequences of the analysig® from the mean-squared displacement, i.e., from the diffu-
done forg=7.8, shown in Fig. 12. We have, however, ad-sivities, yields a value that is too high, viz.g°
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FIG. 20. Self-diffusion coefficient® as a function of the pack-
ing fraction¢, as obtained from the Brownian dynamics simulation
(diamonds, with connecting lines to guide the egad from MCT
calculationg(solid line). The dashed line indicates the MCT asymp-
tote, Do (@ ¢)?.

FIG. 21. ProductD-7(q) at wave vectorqd=7.8 for the BD
simulation (crosses, connected by lines to guide the)egad for
the MCT curvegsolid line). The latter curve has been transformed
along the horizontal axis according to Fig. 16. The inset shows a
magnification of the MCT result versusycr-

~0.598+0.003. This is a typical result also found in other . . i i ,
simulations[12], but not in accord with MCT. But note that Simulation and experiment is that an independent determina-
the estimations fok* are quite close to each other, so thetion of y from the dl_ffusmn coefficient y|e_lds a dlfferent_
deviations can be regarded as indications of error margind/@lue than that obtained from the analysis of the density
As a side remark, let us note that the parameters from thgorrelators[45]. From the comparison of the MCT results
independent fit to the MSD presented in Fig. 19 could beVith the asymptotic prediction in Fig. 20, it is, however,
used to improve the description of the 4.0 case somewhat, cléar that the asymptotic law only holds for< 107, i.e., for
but not completely. One concludes that the MCT descriptior=0-58 for our simulations. Thus a large part of the fitted
of the single-particle structural relaxation smoothly deterio-Simulation data is outside the asymptotic regime for this
rates for decreasing. power law, and the fit yields an effective exponent rather
The deviations in thex-relaxation regime, i.e., the long- than the truey. o " _
time diffusive regime, that arise for the MSD can be ana- _The above results indicate that wighincreasing close to
lyzed more clearly by looking at the long-time self-diffusion ¢°: @ decoupling of the diffusion time scale, as seen from the
coefficientD(¢) itself. Here,D has been determined from Mean-squared displacement, from the density-fluctuation-
the simulations by the Einstein relatiofr2~ 6Dt for larget, rglaxatlon time spale, as seen in the dgnsny correl.at|on func-
at timest where &2 is of the order of 10 squared particle t!ons, sets in. This can be illustrated WI'.[hOU.'[ referrmg _to any
radii. The results for the BD simulations are shown in Fig. 20fits by plotting the producb{(q) of the diffusion coefficient
as the diamond symbols. In contrast, the MCT calculationD and thea-relaxation time scalg46]. For the latter, let us
plotted in the figure as a solid line, shifted according to thechoose the value obtained fq=7.8, as a typical represen-
relation gycr(¢) used in the above discussion, systemati-tat'Ve of the local-order length sc_ale. F_lgure 21 sh_ows as
cally falls below these values. The relative erroDiris less ~ SYmbols the results from the BD simulation. One notices an
than 20% up tap~0.55, increases to 80% at=0.58, and ncrease irD7 by a factqr of 2 to 3 within the density range .
reaches a factor of 4 a8=0.59. The two curves could be covered_ b_y the simulations. We have also checked thgt this
matched within the error bars by further shifting the MCT Nolds similarly forg=4.0 andg=9.0. The corresponding
results along the axis by less than 1%, which is basically MCT result is shown as the solid line in Fig. 21, which is
what has been done in Fig. 19. But let us stress that there [§agnified in the inset of the figure. Here, the prodbetalso
no theoretical justification for doing so. increases with increasing close toe°, but. only on the order
MCT predicts a power-law asymptote Drwith the same Qf 1_0%. One t_hus qoncludeg that there is a rather Iarge.quan—
exponenty that applies for the divergence of therelaxation ~ titative error in this quantity, although not necessarily a
times, D =|a]”. This asymptote is included in Fig. 20 for the dualitative one. MCT predicts thdd7 approaches a finite
MCT results as a dashed line. It is also possible to fit the/@lue asp— ¢° As to whetheiDr diverges or stays finite at
simulation data with such a power law. We have restricted?” N the simulation, our data remain inconclusive. Note that
these fits t0@=0.55 and have omitted the value at the v_alues forthe.hlghest two packing .fra_ct|ons simulated are
=0.585. If we fix the exponent to the theoretical valye, relatively uncertain, as the scatter indicates.
~2.46, we get reasonable agreement with a fitied
~0.599, in agreement with the above observation. If we, on
the other hand, also determinefrom the fit to D(¢), the Up to now, we have neglected the fact that the simulated
result ise®~0.597 withy=~2.24. A typical observation from system is not strictly a single-component system. Instead,

V. POLYDISPERSITY EFFECTS
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4 - - i - - ] ply to describe the density correlation functions with the one-
component system. Comparing with the Kohlrausch ampli-
tudesA(q) also shown in Fig. 7, we note that the intrinsic
error in determining the plateau values from the data is larger
than the differences between the two MCT curves.

The values of¢® obtained from the MCT calculations
with one, three, and five components show only minor dif-
ferences. While the one-component resulpis=0.5159, we
getpg;~0.5153, andpg_ s~ 0.5154. Similarly, the exponent
parameter only changes slightly between these systems: from
A=0.735 in the one-component systemNgs~0.737 for
the five-component case. These changes®iandX\ are sig-
nificantly smaller than the uncertainty in these quantities
coming from the approximation used for the static structure
factor. Note that the value of® decreases slightly in the
multi-component systems mentioned. This is consistent with

FIG. 22. Averaged static structure factsfg) for a monodis-  racent MCT predictions for a two-component systg38],
perse systerm_lashed lingsand the polydisper_se system sFudi_ed in where it was found that for size fati(ﬂi%man/dmge? 0.8 the
this work (solid lineg at the same state point. The main figure .itical point ¢¢ slightly decreases compared with the one-

f{ho‘.’vi the SiTtﬂaﬂon res‘:.lts ﬁl\t; g'T54'.tThe| inselz.ShofWS i.he Percus- component system. Only when the size ratio became more
foervgotk?(?geamoﬁggiszfsgizshed-ggc;C: fﬁ/aec-cgg r;)ancelr?tmgCsTt,em extreme, Osmay/ Glarge < 0-6, say, did the MCT calculations
P P Y show a notable effect op®. In this latter case, the values of

(solid lines. ¢° were found to be larger in the mixture than in the one-
some size polydispersity was needed in order to avoid cryssomponent system. This increase is commonly expected for
tallization. In this section, we give a brief account of how polydisperse systems. But from our calculations we conclude
much we expect this small polydispersity to affect the resultshat such polydispersity-induced fluidization does not occur
discussed above. for the present polydisperse size distribution, which in par-
We first examine the influence of polydispersity on theticular lacks any large- or small-radius “tails”.
equilibrium fluid structure. To this end, we have simulated a A further comparison to the predictions of the multicom-
monodisperse system of the same soft spheres as used in fhenent MCT can be made by binning the particles of the
polydisperse simulations. We found such simulations possimulation according to their size into a different number of
sible for packing fractions up te=0.54, above which crys- bins. Let us demonstrate this for the case of three hins,
tallization as monitored byQg sets in rather quickly. The =small (radii 0.9<dgy,,<0.9666F, medium (0.96667
static structure factoB(q) at this state point is compared t0 < dyeqiym< 1.03333, and large(1.03333< djgge<1.1). The
the one from the polydisperse system at the same density #hus obtained three tagged-particle correlation functions
Fig. 22. As expected, the polydisperse system exhibits lesg®(q,t) can be compared to the three tagged-particle corre-
pronounced ordering, visible in reduced oscillation ampli-Jation functions amenable to the MCT calculation in the
tudes inS(g). The effect is well explained by the PY approxi- three-component system. Figure(83shows as symbols the
mation, as the inset of Fig. 22 demonstrates. There, theesults from a three-bin analysis of the BD simulation data at
(total-density structure factor for the one-component hard-»=0.58 andq=7.8. One notices that the largest particles
sphere system is compared with that obtained from the fiveshow the slowest decay, while the smallest particles decay
component mixture introduced in Sec. Il B. One might ex-fastest, as is intuitively expected. In tigrelaxation win-
pect the visible differences in the monodisperse and théow, one finds an ordering of the plateau values from small
polydisperseS(q), however small, to affect the MCT results to large particles, where the smallest particles show the
for ¢° This would be true if both systems were treated asmallest plateau. Again this follows the expectation that the
one-component systems. But it is not necessarily true for @articles are localized more tightly the larger they are. These
full calculation of multicomponent MCT, using the full ma- qualitative features are in agreement with the MCT results
trix of partial structure factors instead of only the averagedor the three-component mixture, as can be inferred from the
S(qg), as we will discuss now. symbols in Fig. 28). The ordering of the plateau values is
Let us compare the results obtained fot°(q) for the indicated by the horizontal solid lines which represent the
one-component system with those of the five-component sysesults forf $°(q). Note that the differences in the relaxation
tem mentioned above. This comparison is included in Fig. 7curves for the three components are more pronounced than in
where the dashed line shows the averagggjq) according the binned analysis of the polydisperse simulation, which
to Eqg.(8). The thus obtained curve is slightly narrower thanmight be related to the fact that the particle size distribution
the solid curve, representing the result of the one-componeriit the simulation is continuous. In the MCT calculation, the
calculation. Accordingly, the average localization length in-alpha-relaxation time of the large particles, measured by
creases slightly, by about 4%. From the above discussion wej,,dd,7)=0.1, is at the wave number chosen slower by a
conclude that this is a change in the right direction, but nofactor of about 1.48 compared to that of the small particles.
enough to account for the wave-number shift we had to apThis change is slightly higher than in the simulation, where

S(q)
Y
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parameters quantifying the slow relaxation features apart
from ¢° do not change significantly between the monodis-
perse and the three-component system, as was mentioned
above. At lowerp, however, small differences become more
apparent. This can be seen in the three-compogerd.4
correlator shown in Fig. 2B) as a solid line. It compares
well with the result from a monodisperse calculatifihe
dashed line in Fig. 2B)], but at ¢=0.42; and one notices
somewhat different curve shapes. Again, these polydispersity
effects are even smaller in the simulations. The solid line in
Fig. 23a shows the simulation result for the polydisperse
system atp=0.54, which is compared to the result from the
monodisperse simulation at the same density, shown as a
dashed line. Here, the agreement between the two systems is
even better; and note that we did not have to adjust the pack-
ing fractions in this comparison.

08 Thus it appears that this way of representing the polydis-
perse system as a three-component mixture leads to a sys-
=~ 06 tematic overestimation of polydispersity effects. For the bi-
= nary mixtures studied in Ref12], it was found that MCT
"o 04 even underestimates the size of the observed mixing effects.
’ If this applies also to our case, the overestimation of poly-
dispersity effects by the three-component approach would be
0.2 even stronger.

801 i VI. CONCLUSION
We have performed NewtoniaiiND) and strongly

FIG. 23. (a) Correlation functionsg?(q,t) for the BD simula- damped Newtonian dynami¢BD) simulations of a polydis-
tion, binned into three particle sizes=small(diamonds, medium  Perse quasi-hard-sphere system close to the glass transition.
(plus symboly and large(circles; see text for details. The data The wave-vector dependent tagged-particle correlation func-
refer to packing fractionp=0.58 andqd=7.8. The averaged quan- tions and the mean-squared displacement curves have been
tity ¢54(q,t) analyzed in the discussion in detail is plotted as a solidanalyzed using the mode-coupling theory of ideal glass tran-
line but coincides with thex=medium curve on the scale of the sitions (MCT), in order to provide a stringent test of the
figure. The solid and dashed lines decaying at shorter times are tlomplete theory for a reference case.
results fore=0.54 from the simulation of the polydisperse and the  To test that the simulation data show all the qualitative
monodisperse system, respectively) As in (a), but results from  features predicted by MCT close to the glass transition, we
the MCT calculations for a three-component mixture at packinghave analyzed both the ND and BD data in terms@nd 3
fraction ¢=0.505 andqd=7.8. Again, the averaged;4(q.,t) is in-  scaling; cf. Figs. 4 and 11. This allows us to identify the time
cluded as a solid line and is hidden by themedium curve. The  domain, where one can expect MCT to give a quantitative
solid line decaying at shorter times is the averaged result from th%lescription of the datd;> 10 in our units. In particular, both
three-component mixture - atp=0.4. For comparison, one- Np and BD agree at long times up to a trivial time scale.
component results a=0.42 andp=0.507 are included as dashed ;g niversality of the structural relaxation is predicted by
I_'%eg’oéhe Ialtter being obscured by the polydisperse-averaged w,q heory, and fulfilled in great detail by our simulation data.
e result. In particular, thes-scaling parameters and those qualitative

the same trend applies with a factor of about 1.25. features of the correction-to-scaling amplitudes we could
The unbinned correlation function from tlge=0.58 simu-  test, are independent on the type of short-time dynamics.
lation, averaged over all particles, is included for in Fig.Similarly, an analysis of ther relaxation with stretched-
23(a), but on the scale of the plot, it coincides with the cor- exponential fits demonstrates that the wave-number depen-
relation function for thew=medium bin. Thus, in a sense, dent shape of this relaxation is in agreement with what one
polydispersity effects “average out” in this quantity. A simi- expects from MCT. Other parameters, as for example the
lar effect applies for the MCT results, but here, the smallcritical-decay power law predicted as an asymptotic MCT
difference in the critical packing fraction induced by the feature, cannot be extracted from the simulation data. The
polydispersity leads to a shift in the relaxation time scalesanalysis reveals that the highest density studied in our work,
close to the glass transition. Still, the one-component core=0.59, shows systematic deviations from the MCT predic-
relator calculated at a slightly higher packing fractigm, tions, and can thus not be explained by the theory.
=0.507, agrees with theve=medium correlator from the The main purpose of this paper is to compare the simula-
three-component mixture at=0.505 on the scale of the fig- tion data to the full solution of the MCT equations. Leaving
ure. This agreement is not too surprising, because the MC@&side the small difference between the simulated polydis-
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perse soft spheres and a true hard sphere system, this cosftape of thef (q)-versusg distribution, or the asymptotic
parison is, in principle, free from any parameters. Sinceshape of the correlation functions. This finding to some ex-
MCT is an approximate theory, one expects, however, certaitent justifies our approach of adjusting the packing fraction
deviations. We find that many of them can be accounted foin the PY-based MCT calculations. In principle, a further
by allowing some of the physical parameters of the theory t@rror source connected with the static-structure input is the
vary. This procedure allows us to better identify the cause fofactorization of three-point static correlations in the MCT
such deviations. vertices, Eqs(3d) and(5c). But we expect this purely tech-
We are able to achieve very good agreement betweenical approximation to have small influence for our system,
theory and simulations if we allow for a smooth mapping ofas simulation studies of a binary Lennard-Jones mixfQte
packing fractionsg— ¢ycr, and a similar mapping of wave suggest for systems dominated by hard-core repulsion.
numbersg— guct. The reasons for the needed adjustments The remaining discrepancies between the simulation re-
are well understood. First, the critical point for tideal)  sults and the MCT predictions for the hard-sphere system are
glass transition calculated within is too low. This is compen-likely to be the ones giving information about the quality of
sated by mappinge. The mapping turns out to be almost the MCT approximation itself. These are as follows.
linear, and hence inessential in order to understand the slow (i) The wave-vector variation of relaxation times. This is
relaxation close to the glass transition as a function of théess pronounced in MCT than it is in the simulations. For
distance to this transition. Second, we observe a small midarge wave numbers, the BD simulation shows slower relax-
match in length scales between the simulation and the MChtion than expected from the theory, while at sntlithe
results. This can be accounted for by mappinghe differ-  relaxation is faster than predicted by MCT. This indicates an
ence in length scales is typically of the order of 15%, anderror of the theory in capturing the length-scale dependence
only about 5% for the localization length estimated from theof the dynamics. The error at smajlmight be more severe,
mean-squared displacement. It is possible that these discreprd is most dramatic when one considers the mean-squared
ancies are to some extent due to the slight softness of thdisplacement, i.e., the diffusion coefficient. The theory pre-
simulated system. dicts that all structural relaxation time scales are coupled
Given these parameter mappings, MCT is able to describelose to the glass transition. This implies that the product of
the BD-simulation data over most of the density range studthe diffusion coefficient and a typical intermediate-length-
ied quantitatively on a 15% level, as demonstrated in Figsscale relaxation timeD - 7, should approach a constant when
12-15. This extends down even to relatively short tintes, ¢ approaches®. For finite ¢°—¢, MCT predicts a smooth
~1, and over a large range of length scales, from thevariation that is in qualitative agreement with the simulation
nearest-neighbor distance downdd=20. At larger length  results; cf. Fig. 21. But the magnitude of this variation is
scales(smaller wave numbeysstronger deviations set in, underestimated by a factor of 2.5. This can be viewed as a
which are most pronounced in the long-time diffusive regimequantitative error that has, however, a large impact on the
of the mean-squared displacement, but also in thelescription ofD or the relaxation times at smajl We could
B-relaxation regime; cf. Figs. 17 and 18. not test whether the simulation behaves qualitatively differ-
One has to keep in mind that the kind of comparison weent to the MCT prediction ag— ¢° due to obvious con-
have performed here is influenced by three conceptually disstraints. In general, our results show that the improper treat-
tinct error sources(i) deviations due to the comparison of a ment of time-scale decoupling within MCT is not peculiar to
slightly polydisperse system in the simulations to a strictlythe diffusion coefficient itself, but rather sets in smoothly at
monodisperse one in the theolyi;) deviations due to incor- smallq in the ¢%(q,t).
rect structure-factor input to MCT; andi ) deviations inher- (i) At short times the description of the relaxation curves
ent to the MCT approximation. In order to shed more lightwith MCT is insufficient. This is long since known, but it
on the quality of the MCT approximation itself, we have remains an important question at how large times deviations
tried to disentangle these three error sources. can still be seen. In our comparison of strongly damped
The influence of polydispersity in the studied system isNewtonian dynamics, it appears that the tagged-particle cor-
negligible, as we have pointed out in Sec. V by comparing taelators can be fitted quite well even downtte 1, i.e., al-
a three-component and a five-component system mimickingnost “microscopic” time scales. But a comparison with un-
the polydispersity distribution imposed in the simulations. damped Newtonian dynamics simulations reveals that there,
On the other hand, the second error source, due to apshort-time corrections can occur even for relatively large
proximations made in describing the static equilibrium structimes, up tot= 10 in our case. This can provide an explana-
ture, has to be considered carefully. We have chosen to basen for recent observations stating that for a binary mixture
most of our discussion on MCT results calculated from theobeying strongly damped colloidal dynamics, the MCT de-
Percus-Yevick structure factor for the hard-sphere systenscription extended quantitatively down to surprisingly short
because this is closest to a first-principles calculation. Howtimes[13], whereas a similar comparison of Newtonian MD
ever, if one bases MCT on the structure factor obtained frondlata was satisfactory only in therelaxation regimg12].
the simulation, one can improve the description of the data. (iii) At the highest packing fraction analyzed in the
Most prominently, this influences the prediction of the criti- present work, more dramatic deviations between the simula-
cal point, which shifts frompy,cr=0.516 to¢c1~0.585, tion results and MCT occur. They are most easily observed
and thus surprisingly close to the experimentally determine@s a violation ofa scaling, and a different scale behavior of
value. At the same time, many of the predictions based othe corresponding relaxation time. Our simulations hint to-
the PY structure factor remain quantitatively true, such as thevards possibly rare events that induce this behavior. But we

061506-18



TAGGED-PARTICLE DYNAMICS IN A HARD-SPHERE... PHYSICAL REVIEW E 70, 061506(2004)

have not been able to establish this within reasonable statissrant GR/S10377/01, for partial financial support from the
tics. Dr.-Ing. Leonhard-Lorenz-Stiftung of the Technische Univer-
sitat Minchen and of the SFB 563, and the Universitat Kon-
stanz for its hospitality during an earlier stage of the project.
ACKNOWLEDGMENTS The financial support for A.M.P. is provided by the CICYT
We thank W. Gotze and R. Schilling for valuable com- under project MAT 2003-03051-C03-01, and for M.F. by
ments on the draft. Th.V. thanks for funding through EPSRCDeutsche Forschungsgemeinschatft, grant Fu 309/3.

[1] W. Gotze, J. Phys.: Condens. Mattét, Al (1999. [25] W. Paul and D. Y. Yoon, Phys. Rev. B2, 2076(1995.

[2] T. Franosch, M. Fuchs, W. Goétze, M. R. Mayr, and A. P. [26] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B
Singh, Phys. Rev. B55, 7153(1997). 28, 784(1983.

[3] W. Goétze and Th. Voigtmann, Phys. Rev.@, 4133(2000. [27] P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem.

[4] M. Nauroth and W. Kob, Phys. Rev. B5, 657 (1997. Phys. 104, 9932(1996.

[5] C. Theis and R. Schilling, J. Non-Cryst. Soli@35-237 106 [28] W. Gétze, inLiquids, Freezing and Glass Transitipaedited by
(1998. J. P. Hansen, D. Levesque, and J. Zinn-Justin, Session LI

[6] A. Winkler, A. Latz, R. Schilling, and C. Theis, Phys. Rev. E (1989 of Les Houches Summer Schools of Theoretical Phys-
62, 8004(2000. ics, (North-Holland, Amsterdam, 1991pp. 287-503.

[7] L. Fabbian, A. Latz, R. Schilling, F. Sciortino, P. Tartaglia, and [29] W. G6tze and L. Sjogren, J. Math. Anal. Appll95 230
C. Theis, Phys. Rev. B0, 5768(1999. (1995.

[8] C. Theis, F. Sciortino, A. Latz, R. Schilling, and P. Tartaglia, [30] M. Fuchs, W. Goétze, and M. R. Mayr, Phys. Rev.58, 3384
Phys. Rev. E62, 1856(2000. (1998.

[9] F. Sciortino and W. Kob, Phys. Rev. Let®6, 648(2001). [31] W. Gotze and M. R. Mayr, Phys. Rev. &1, 587 (2000.

[10] S.-H. Chong and F. Sciortino, Europhys. Lefg, 197 (2003. [32] W. Gotze, inAmorphous and Liquid Materialsedited by E.
[11] W. Kob, M. Nauroth, and F. Sciortino, J. Non-Cryst. Solids Luscher, G. Fritsch, and G. Jacucci, Vol. 118 of NATO Ad-

307-31Q 181 (2002. vanced Study Institute, Series @lijhoff Publishers, Dor-
[12] G. Foffi, W. Gotze, F. Sciortino, P. Tartaglia, and Th. Voigt- drecht, 198Y, pp. 34-81.
mann, Phys. Rev. 69, 011505(2004). [33] W. Gotze and Th. Voigtmann, Phys. Rev. &7, 021502
[13] Th. Voigtmann, Phys. Rev. B8, 051401(2003. (2003.
[14] B. Doliwa and A. Heuer, Phys. Rev. Let80, 4915(1998. [34] T. Franosch, W. Gétze, M. R. Mayr, and A. P. Singh, J. Non-
[15] B. Doliwa and A. Heuer, Phys. Rev. E1, 6898(2000. Cryst. Solids235-237 71 (1998.
[16] T. Gleim, W. Kob, and K. Binder, Phys. Rev. Le#1, 4404  [35] M. Fuchs and Th. Voigtmann, Philos. Mag. B, 1799(1999.
(1998. [36] D. M. Heyes, J. Chem. Phy4.07, 1963(1997).
[17] S. R. Williams, I. K. Snook, and W. van Megen, Phys. Rev. E[37] D. M. Heyes and J. G. Powles, Mol. Phy85, 259 (1998).
64, 021506(2001). [38] M. Fuchs, I. Hofacker, and A. Latz, Phys. Rev. 45, 898
[18] W. van Megen and S. M. Underwood, Phys. Rev. L&, (1992.
2766(1993. [39] M. Fuchs, J. Non-Cryst. Solidd72-174 241 (1994).
[19] W. van Megen and S. M. Underwood, Phys. Rev4€& 4206 [40] L. Verlet and J.-J. Weis, Phys. Rev. B, 939(1972.
(1994). [41] G. F. Signorini, J.-L. Barrat, and M. L. Klein, J. Chem. Phys.
[20] C. Beck, W. Hartl, and R. Hempelmann, J. Chem. PHyHl, 92, 1294(1990.
8209(1999. [42] T. Gleim and W. Kob, Eur. Phys. J. B3, 83 (2000.
[21] E. Bartsch, T. Eckert, C. Pies, and H. Sillescu, J. Non-Cryst[43] A. M. Puertas, M. Fuchs, and M. E. Cates, Phys. Rev. L88}.
Solids 307-31Q 802 (2002. 098301(2002.
[22] T. Eckert and E. Bartsch, Faraday Discug&3 51 (2003. [44] W. Kob and H. C. Andersen, Phys. Rev.H, 4626(1995.
[23] J.-P. Hansen and I. R. McDonal@iheory of Simple Liquids [45] W. Kob and H. C. Andersen, Phys. Rev. LetB, 1376(1994).
2nd ed.(Academic, London, 1986 [46] W. Kob, in Slow Relaxations and Nonequilibrium Dynamics in
[24] D. Frenkel and B. Smitnderstanding Molecular Simulation: Condensed Matteredited by J.-L. Barrat, M. Feigelman, and
From Algorithms to Application2nd ed.(Academic, London, J. Kurchan, Session LXXVI{2002 of Les Houches Summer
2001). Schools of Theoretical Physi¢Springer, Berlin, 2008

061506-19



