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Macroscopic dynamics of uniaxial magnetic gels

S. Bohlius H. R. Brand® and H. Pleinet
Theoretische Physik 111, Universitat Bayreuth, 95440 Bayreuth, Germany
Max Planck Institute for Polymer Research, 55021 Mainz, Germany
(Received 19 August 2004; published 27 December 2004

We present the derivation of the macroscopic equations for uniaxial ferrogels. In addition to the usual
hydrodynamic variables for gels we introduce the magnetization and the relative rotations between the mag-
netization and the network as macroscopic variables. The relative rotations introduced here for a system with
magnetic degrees of freedom are the analog of the relative rotations introduced by de Gennes in nematic
elastomers for rotations of the director with respect to the elastomeric network. These variables give rise to a
large number of static as well as dynamic effects due to their coupling to the magnetization, the strain field, and
the density of linear momentum. A few of them are discussed for specific geometries, for example, the case of
a shear-induced magnetization perpendicular to the preferred direction.
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I. INTRODUCTION To derive the equations describing the macroscopic dy-

In recent decades gels and especially ferrogels becamen@Mmics of these uniaxial ferrogels we will use the hydrody-
promising class of materials for applications in many fields.n@mic method. In this method we obtain the hydrodynamic
Ferrogels are chemically cross-linked polymer networks thagquations by using symmetry and thermodynamic argu-
are generated using a ferrofluid as a component. As waents. These equations hold in the long wavelength limit and
shown in many publicationgl—3], there exists a coupling for sufficiently low frequencies. We use this method because
between the elastic and magnetic degrees of freedom allowef its generality and its applicability to many different sys-
ing one to control the mechanical behavior by applying extems in the hydrodynamic regime. But one has to introduce
ternal magnetic fields. This might lead to many different ap-some phenomenological parameters and transport coeffi-
plications from soft actuators or micromanipulators incients that cannot be derived by this method. These param-
technical fields to applications in medicine where they mighteters have to be determined by microscopic models or one
act as artificial musclep4] or as carriers for drugs to guar- has to measure them in experiments.
antee controlled drug release. Frequently discussed is the ap- The method is not restricted to hydrodynamic variables
plication in hyperthermia due to the heating of magnetic gel®nly. In some systems nonhydrodynamic relaxation pro-
in alternating external fieldg5]. In our model we will as- cesses become so slow that they are comparable to macro-
sume that the particles show some kind of interaction withscopic time scales. Then one must consider these macro-
the polymer network although the mechanism is not yet wellscopic variables in the description as well. There is, however,
understood. no general rule to decide which processes behave this way.

Until 2002 interest focused on isotropic ferrogels. TheThe identification of these macroscopic variables has to be
first attempt to generate anisotropic ferrogels was made bgione for each system separately.

Mitsumata et al. [6]. They produced gels that contained In this work we generalize the set of hydrodynamic equa-
barium ferrite particles of micrometer size that led to a rem-ions for isotropic ferrogelf9] to these applicable to uniaxial
nant magnetization without applying an external field. Thisferrogels. We then discuss some of the effects mediated by
anisotropy seemed to affect the sound speed. The first anisgouplings between the frozen-in magnetization and the elas-
tropic ferrogels using ferrofluids containing monodomaintic polymeric network. We make predictions for uniaxial
ferromagnetic particles were produced in 2003 by Zriglyi magnetic gels, which can be tested experimentally. So far we
al. [2] and Collinet al. [7], and showed anisotropic features are not aware of any experimental work investigating the
qualitatively and quantitatively, respectively. To producecross-coupling effects discussed here.

these uniaxial gels, the cross-linking process was performed

in an external magnetic field. In this situation the nanosized II. DERIVATION OF MACROSCOPIC EQUATIONS
ferromagnetic particles form columns and fibers that are
larger than the network mesh sigg, because the stabilizing
coating of the particleg8] was reduced in its efficiency due To set up the macroscopic equations for uniaxial ferrogels
to the lowpH value needed to start the cross-linking processwe start with the identification of the relevant variabj&§].
These chains are fixed in the network, interacting in a wayWe can separate them into three classes. The first class of
that is so far only partially understood, leading to a frozen-invariables, also called the hydrodynamic variables, contains
magnetization which in turn gives rise to several effects inthose already known from a simple fluid, the mass density
external shear and magnetic fields. In this paper we want tthe energy density, and the momentum density In our
consider this type of gel and we discuss several interestingase we add another variable, the concentration of ferromag-
effects. netic particles. To the second class belong the variables that

A. Hydrodynamic and macroscopic variables
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are related to spontaneously broken continuous symmetrieaddition to that this energy density must have a minimum,
In our case we take into account the magnetizabbrand  because there exists an equilibrium state for the gel. There-
the strain fielde;. The first one is related to the spontane-fore the expression for the energy density needs to be con-
ously broken rotational symmetry while the latter describessex. Taking into account these symmetry arguments we write
the spontaneously broken translational symmetry. We wildown an expansion for the generalized energy density up to
introduce a unit vectom; defined bym=M,/|M| pointing in  second order in the variables that describe deviations out of
the direction of magnetization in analogy to the directoin that equilibrium and considering several interesting third or-
nematic liquid crystals. But there is a significant difference.der terms including magnetostriction:
While both are even under parity, the unit vector of magne- 1 1
tizationm is odd under time reversal. This will permit static . = =g + gMiMi ~ MiBi = Z%jaMiM; e + =
as well as dynamic couplings to other variables that are odd 2 2 2 2
under time reversal. We can then define the transverse Kro- 1 -~

necker tensos; =& —mm, and we have, together with the ~ + EKijkI(ViMj)(VkMI) + EDlﬂiQi +Dp(M 8 + MS;)
Levi-Cevita symbolejy, three invariants of the system in

terms of which the coupling tensors and the transport tensors ., & o

can be expanded. In ellolagt step we consider a \E)ariable first i€kt (VM) (Vidor) + o (ViM;) (Viedp)
introduced by de Gennes forNquuid crystalline elastomers +oﬁk(ViMj)(Vk5c)+eij(Xi‘j’5(r+ Xﬁ&p+xﬁ(5c)+cpp(5p)2
[11], called the relative rotatiof);. This variable belongs to + C (802 + o )2+ e 8p) (5C) + €, 8p) (507)

the class of slowly relaxing variables and describes the rela-
tive rotation between the polymer network and the orienta-
tion of the magnetization. It is defined by

Mijki €ij €kl

1
+C,c(d0)(5C) + 2_pgigi + 0 (V;My) +aM?sc

~ . 1 +a,M?50 +a,M?8p. (4)
Qi:&ni_ﬂi :mi_EmJ(Vin_VjUi), (1) ) ) ] ]
Apart from the energy density of a normal fluid binary mix-
¢ ture, Eqg.(4) contains the magnetic energy as well as the
elastic energy. It is worth mentioning that we get—because
of the negative time reversal property of the
magnetization—a coupling between the curlMfand the
momentum density mediated by the tensgy, which takes
the form cj=(cmmy+c, &;)e. This kind of coupling is
very similar to one of the couplings appearing in superfluid
To get the static properties of_our system we formulgte théHe-A first introduced by Graharfil2]. In this system one
local first law of thermodynamics relating changes in thegefines an axial vectdr parallel to the direction of the net
entropy densityr to changes in the hydrodynamic and mac- grpjtal momentum of the helium pairs. This vector does not
r_oscopic variables discussed above. We find the Gibbs relgommute with the total angular momentum vector and there-
tion fore this variable breaks the continuous rotational symmetry
_ ™ spontaneously, similarly to the magnetization in our system.
de=Tdo+udp+ pedevidg + HidB, +hy “dM, The source-free part of the momentum density’laé-A is

where we introduced a vectar describing the displacemen
field of the network and the variation of the orientation of the
magnetizationdm;. Sincem is a unit vectorm-6m=0. This
variable is odd under time reversal and even under parity.

B. Statics and thermodynamics

+ q)iMd(VjMi) +W;de; + \Nidﬁi- (2)  proportional to the curl of this vectdrwhile the proportion-
J ) N ality is given bys/2m and a coupling tensag;.
In Eq. (2) the thermodynamic quantities temperature Because we discuss a uniaxial system, the tensors will

chemical potential, relative chemical potential,, velocity  have more independent constants than in the isotropic case of

vi, magnetic fieldH;, the magnetic molecular fieldg™ and  Jarkovaet al. [9]. The tensor of the elastic energy, for ex-

@i, the elastic stres¥;; and the molecular fieldV; are  ample, now has five independent constants instead of only

defined as partial derivatives of the energy density with retwo and takes the form

spect to the appropriate variablgd]. If we neglect surface L L i L i

effects and integrate E@2) by parts we can obtain an ex-  Aij = 416 & +M2{(5|k5j| — 30 8q) + (8 O~ 36 )}

pression for the Gibbs relation that we want to use through- . sl L

out the rest of this paper: + MMM + 24 (MM; G + My &)

+ us{mm Sy + mm &y + mm S + mim 8 5

de =T do+ u dp + pede-+ vidg + HidB; + h'dM; + W de; Hl MM+ MM MMA * MM ()
while the magnetostrictive tensor will have six independent

+WdQ;, (3 constants
AlHM e i M_p/M_ o @M
where the molecular fielt!" is given byh!=h/"-v;d}. Vi = 1105 8+ v (ki = 385 ) + (81 8 - 387 84)}
To determine the thermodynamic conjugate variables we i i
need an expression for the local energy density. This energy + MMM, + MM & + ysMm; &

density must be invariant under time reversal as well as un-
der parity and it must be invariant under rigid rotations, rigid
translations, and covariant under Galilei transformations. InThe tensorKj;, describes contributions to the local energy

+ Yelmms; + mm Sy + mms +mmsi}.  (6)
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density due to spatial changes of the direction of the magne- de ” 5
tization as well as of its magnitude. We get six independent ' ={-="] = xij&j* 2C;500 + Cpgdp + CoedC +a,M7,
constants for this coupling,

L (16)
Kijkl = EKl(alJ]' 5;] + 5IJ|' 5JJ|2) + szpépijmqfqm + K3mkmi ajj_ P
(]
op= <—) =x2¢&; +2C,,0p + C,.5C + C,, 00 +a,M?,
+ K4mi I'T]J mJm; + K5mJ m @t (95p R o e g ’
(17)

1
+ ZKG(mim, 5@- +mMmS; +mm; g + mgm 5”*). (7)
de
_ - 2
There are two more contributions to the energy density %&c= (ﬁ) = Xii €ij + 2Ccc8C + Cop0p + Coy 60 + M.
due to the coupling between the strain field and the variables
associated with the relative rotations. One is proportional to (18

D, and the other proportional ,. One can interpret these \we used integration by parts to obtain express@yfor the
coefficients as a measure for the coupling strength of thgyca| energy density, where the new molecular fieliwas
magnetic particles to the polymer network, although the mi'given by hilvlzhirM_qu)il\/l_ If we use Egs(12) and (13) we
croscopic mechanism of this interaction is not precisely untjng !
derstood so far.

Now we are left with the couplings between the scalarshiM = aM; - B; — %juMj€q + 2a.M; 6¢ + 2a,M; 60 + 2a,M; 5p
p, ¢, ando and the strain field as well as with the coupling _ B B
between the gradient of the scalars and the gradient of the (ViKij) (VM) = Kijia (ViViMy) = (Vi) (Vi 58)
magnetization. The tensors take the following form, respec- = oijk(V;V6é) = (ViCij) 9k — Cijk (V91 - (19
tively:

Xﬁ = Xﬁmimj +xh 5|Ji (8) C. Dynamic equations

To determine the dynamics of the variables we take into
ol = oimmm + oim; sy + of(ms +ms;),  (9)  account that the first class of our set of variables contains
conserved quantities that obey a local conservation law while

where¢ can be eithep, o, or c. the dynamics of the other two classes of variables can be

, We nowfgi\r/]e tne expressio_ns for the conjugaFed Va_ria?leﬁescribed by a simple balance equation where the counter-
in terms of the hydrodynamic and macroscopic variablesie i, 15 the temporal change of the quantity is called a qua-

They are defined as partial derivatives with respect to the. ,rrent. As a set of dynamical equations we get
appropriate variable, while all the other variables are kept

constant, denoted by ellipses at the parentheses in the follow- ap+V,g=0, (20)
ing. We obtain
+_R
vi = (ﬁ) - 1gi +Cik(ViMy), (10 G+ Vilovi) + Vil = T 2D
WG/ p
%) e+ (pviVy)c+ Viji =0, (22
i:(£> =B - M, (11) Po PU Vi ili
i/
39 + Vifvgi + 8i[p+B -H]+ ol + 0y} =0,  (23)
de
™M YE — _ _

hi _<,9|v|i) = aM; = Bi = M, € + 28:M; o M + (UV)M; + (M X @), + % =0, (24)
+ 2a,M; 60 + 2a,M;p, (12 dre; + 0V + Yy =0, (25)

de ~ ~
o = (ﬂ(VjMi)) = Kij (VM) + 0ij (Vcd€) + Cijie G, a0+ (V) Qi +Z,=0, (26)

(13)  where we introduced the vorticity; = 1/2¢;, Vjvy and
1 1
Je 1 ol'==Z(BH, +BH) + Z(Wje + Vice).  (27)
i :(E> :‘E%jk|MkM|+Mijk|€k|+D2(mj@t+mi5|fj) BT T g Pk T Tk
ij

~ " . In Eq. (27) we implemented the requirement that the energy
X+ xijéo + xfi6p + xj; &€, (14)  density should be invariant under rigid rotatigis).
The pressurg in Eq. (23) is given byJE/dV and reads

de for our system

W, = <—> =Dy + Da(m& + M€, (15)

~ ]

i/ .. p=-—c+up+To+v-g. (28)
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In thg equat_ion for the entropy dens{®1) we introduced ViF]ﬁkl = VlR{fikp5ﬁ + ejlpgit + enpgﬁ( + e,-kpﬁif}mp
R, the dissipation function which represents the entropy pro-

. R
duction of the system. Due to the second law of thermody- * V1 €ipMyMy + €pM My + €My My + €M My,

namicsR must satisfyR=0. For reversible processes this (39
dissipation function is equal to zero while for irreversible
processes it must be positive. In the following we will split fuk = &R(m 6 i+ my 8L, (39)

the currents and quasicurrents into reversible pakesoted _ _
with a superscripR) and irreversible partédenoted with a  The coupling terms in the quasicurrent for the relative rota-

superscripD). tions are
D. Reversible dynamics &R = &Rejamy, (40)
If we again make use of the symmetry arguments men- R
tioned above and use Onsager’s relations we obtain the fol- = R Mg+ msg), (41)
lowing expressions for the reversible currents up to linear
order in the thermodynamic forces: = Reym, (42)
G =pui~ PCijk(Vij)i (29) kI| E F(’(mkfllp + mléklp)mp (43)
J| _ KRV T- DTRVJMC*' guRqu,”’ (30) V\'\/Ae are now left Wlth _the tensqr coupling _the molecular field
h" to the magnetization quasicurrent which takes the form
ji - DRV]MC + D RV T+ §CRV \IIIJ ’ (31) b'? = bREijkrﬂ(. (44)
Ro_p. — cRIZM R A 4 goRy 2 . . .
0 = ij 7 Gk ~ Vija Al fﬁk k> (32 E. Irreversible dynamics and entropy production

We can use the dissipation functi®mas a Liapunov func-
YR=— A+ &AW+ EAM[Vi(V X hM); +V,(V X hM);] tional to derive the irreversible currents and quasicurrents.
One can expand the functidR (R/T is the amount of en-
1 tropy produced within a unit volume per unit timito the
- E[Vi{gﬁ(v,\lfm + &y WV T+ gCRVk,uC} +( <), thermodynamic forces using the same symmetry arguments
as in the case of the energy density. We obtain

(33
R= VTV, + D VTV j0) + €] (VT (b0
X = b + \Me Vi(ViWy) = A+ &FW, - (34)
1 1
ZR= 7J”?VVJ _ I>J<Rh:v| — &RA - &R, (35) + EDij(Vi/-Lc)(Vch) + & (Vine) (VW) + EvijkIAijAkI

Compared to the reversible currents and quasicurrents of iso-

tropic ferrogels we have the additional quasicurrent of rela-

tive rotations with its counterterms X, o}, andY};. These

terms descnbe_the dynamic coupling of_relatlve rotations to }ri-WW- + &WhM, (45)

the magnetization, the momentum density, and the network, 2 i

respectlvely The first coupling—mediated by the tensor
—is an additional term that exists neither in nematic I|q— here we have again introduced some tensors. The tensors

Uld crystalline eIastomer[iS] nor in superfluiPHe-A, while ij, D 'l’ §,,, Dij, £, &j, andby; take the form

the second couphngfi‘k —already appeared in nematic lig- @ = aymm; + a; 5”+ (46)

uid crystalline elastomers The third couplm@-—k—ls also

an additional one and will be discussed in detall in the fol-While the tensorsy; and §u read

lowing section. The additional term in the momentum den- a =ast (47)

sity already appeared in superfldide-A and we will discuss J v

one of the consequences of this coupling later. The tensors ihhis is due to the fact that only the parts of the relative

the currents for the entropy density and the concentration aliotations perpendicular to the preferred direction contribute

have to be odd under time reversal, because the currents hatgethe entropy productiofl3]. For the viscosity tensow

to be odd under time reversal. They are all of the form we obtain

1 1
+ &AW+ G A + S8 (Vi) (Vi) + EbijhiMh]M

R— 4Re. 1
a” a 6|Jqu(- (36) V|Jk| - V]_(S 5k| + V2{<(5|k51| Z(Sﬁ 5]5) (5 _5L5kl>}
Furthermore, we find for the coupling terms in the stress
tensor + vaMM MMy + v (MM G + man 5;)
Cie = CRAM S + My &) + 5 msy + cFmmymy, (37) + vs(MMS; + MM S + mms; + mm ;). (48)
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We are left with the tensorgj, andcﬂ-k, which take the form z
i = a(Migj + M) M. (49)
To obtain the dissipative parts of the currents and quasicur-

rents we take the partial derivatives with respect to the ap-
propriate thermodynamic force,

R
7P = - (ﬁ) == ki (V;T) = D (Vi 0) = & (Vi)

(50)

X y

. JR
jP=- (a(V )) == D;(Viue) = D{(V;T) = & (VW)
jMc)/ .. FIG. 1. Sketch of experimental setup. The conelike arrow rep-
(51) resents the magnetization of the uniaxial gel while the flat arrows
represent the external force.

IR
D__ N oW ) M
%= (a(v,-vo)__ ik~ i G, (52 M, +%,=0, (56)
R ! Qi +7,=0, 57
Yill? = (W) == E{Vi(gjnvlq,nl + f};VnT-" g}:nvn:u/c)} e ! ®7
i/ ..
1 T (9t€ij + Y” =0. (58)
B E{Vi(g"‘v'q'”' * &Vl + & Vo)), (53 Now we need to find the relevant expressions for the quasi-
currents. In the quasicurrent for the magnetization we can
IR discard the term\“"eijk(V,\Ifk,), because this term is of first
zP= (M) =W + §i)j(h}v' + &P (54)  order in the derivatives and does not contribute in a homo-
i’ geneous system
IR XX =bh" + £RwW - A, (59)
xP:(&h—M> =byh" + §W + e (55 AR
i/
XP = byh! + W, + cliAy. (60)
The same arguments hold for the quasicurrents of the relative
Ill. SOME SIMPLE SOLUTIONS rotations and of the strain field. Therefore we obtain
In this section we discuss some experimental setups that ZR= W, = &7 - 87 - ERA, (61)
could reveal some of the unusual cross-coupling effects of
this class of materials. ZP= W, + §i)j(h}vl + &AL (62)
A. Shear-induced magnetization YE = G W Ay, (63

Our system differs qualitatively from the isotropic ferro- VP =0 (64)
gels by the macroscopic variables associated with relative ijT
rotations. These variables describe, as already mentioned, thf® obtain a closed set of equations for the macroscopic vari-
relative rotations between the orientation of the magnetizaables, we substitute for the conjugate variables the expres-
tion and the polymer network. In this section we discuss arsions found in Sec. Il B. Again we discard contributions due
effect associated with these variables. We apply a constaf$ magnetostriction and inhomogeneous contributions. Fur-
shear flow and determine the change of magnetization. Wghermore, we apply an external force, which is in our case a

assume that the direction of the frozen-in magnetization iconstant shear flow. We take the simple st®ato be in the
the uniaxial ferrogel is parallel to the direction while the  x-y plane,

shear is applied in thg-y plane as sketched in Fig. 1. Fur-

thermore we assume spatial homogeneity. In this case the Sa = Viv1 6cydix.- (65
dynamic equations for the momentum density and the scalarp,arefore we obtain

p, o, andc are satisfied automatically. Contributions due to

magnetostriction effects are neglected. These effects are of = + L 4 S0

higher order in the variableief. Eqgs.(19) and (14)] while Wia= tramnnn* Do(Mcdim + M ) Vo (66)
we focus on linear effects. These assumptions reduce the set ~ . "

of dynamic equations to Wic= D1y + DMy + M) €mns (67)
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1 Z Z
h]M:cyéMj—éBj:(a——)éMj. (69) -2 -2 0 o0
Xo Ny Ny
Z, Z; 0 0 om, 1
In the last expression we used the fact that in the case ofa| N, N, om, 1
small frozen-in magnetization and no external magnetic D.7. D.7 7 X =A§§ 1
fields the magnetic flux densi® is only due to the intrinsic 2= 1 5 5 Sy
magnetization and that it can be expresse®agM. We N3 N3 N3 €xz 1
will use &’ as an abbreviation in the following, Z, Zs Zs 0
N, N, DiNg
1
a'=a-—. (69 (77)
Xo
W|th 21:2§Y%La’MO, Zzzzle/bL ’ 23:2§YR§XQ,M0, Z4
— — 2 — RJ
We do not apply an external magnetic field. Therefore W€23§>;R/§XvY25J—8(§YR)2$D1M5‘D2), y N1—§XR‘2§YRC ,
can assume that the magnitude of the magnetization is né¥2=¢ ¢§§ R, N3=26"RD,+7°D, -26"FD &R, and N,
changed but only its direction. We can write =T+287°¢.
The solution takes the form
M=M + . 7
olm+é6m) (70) - BRE+ 28R + b, (ER- 26T
If we use the material tensors in our specific geometry we omy =~ 26YRa' M o(b% + bR2) Ay
. . . . o\M
can derive the following set of equations for the different
components of each macroscopic variable: (78
- 1 b (§X+ 2§YRCJ) + bR(é;XR_ 2§YF%R‘,5
0=£"RD1Q, + 2Dye,,) — ZA, 71 =-—= Lo (79
é‘: R( 124z ZExz) 2 Xy ( ) &nz 2§YRC¥,M0(b2l+bR2) Xy ( )
For this experimental setup we thus predict a rotation of
~ the magnetization out of the shear plane as well as out of the
— _ &Y
0=-¢ R(DlﬂyJ' 2D2&xy), (72) x-z plane, which is proportional to the applied external force
as can be seen from Eq88) and(79). This effect is due to
. “ - - the variables associated with relative rotations, because all
0 =b%a'Moom, + &KD1Q, + 2Dye,,) — cr Ay contributions are proportional to eithgfR, &, or £"R which
b o N represent the dynamical coupling of relative rotations to the
+bya’Modm, + E7(D1 €y + 2D2eyy), (73) magnetization and the strain field, respectively. The change
of the direction of the magnetization should be easily observ-
o y - able in the laboratory since Hall probes can sensitively mea-
0= -ba'Mgom, - &RD1Qy + 2D,¢,) +b, a'Mgom, sure magnetic fields.
+8(D,0,+ 2D,6,) + A (74)

y! .
B. The influence of (VXM) on the mass current

~ YR, As pointed out in Secs. Il B and Il D, there is an addi-
0 =7(D1Q, + 2D,¢,,) = &Fa’Mosm, tional contribution to the momentum density due to the cou-

Y 0O ) _ soRpaext A
+ 26"\ 2us60+ DoY) ~ € Ay + T(Dafdy + 2Dzey) sity via the tensorcj, (29). Here we want to discuss

pling of the curl of the magnetization to the momentum den-

+ §Xa’Moéh’ly, (75  consequences of this unusual coupling. It is useful to discuss
the Fourier transform of the energy density, where we focus
on those terms which contain the momentum density and

0= _#(Dlﬁ +2D,6,,) + &Fa’ Moo, gradients of the magnetization:
y Xy
~ 26" 2usey + Do0)y) + 7Dy, + 2D5e,)

—Hl + GG (VM + =K (VM)(VM)}
&k~ 5 99 T GijkGilV; S Rijk LVilVlj
+ &0 Moom, + £7AS (76) R e

xekrdr. (80)
From the first and second equations we find a relation be-

tween the components of relative rotations and the strailsince we do not consider an external magnetic field in the
field, so that we can reduce this system to one with fourfollowing, we can assume that the magnitude of the magne-

equations for four variables, which is now shown in matrixtization is constant. In this case the coupling ten&gg
form: takes a form similar to the known Frank elastic tensor,
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1
Kijia = 5K1(5”*5,$ + 81 ) + KoMy Myeq + Ksmam 5

(81)

while the tensoc;;, has the form discussed in Sec. Il B,

Judot b

Cijk = (Gmmy + ¢, 5ill)eljk- (82)

We introduce a new coordinate system in analogy to the
one introduced by Branelt al. [14] for superfluid®He-A,
. _ k=(k-mm

el_|k—(k-m)m : ®3

FIG. 2. Perturbation to measure The conelike arrows repre-
&=mxé (84) sent the orientation of the magnetization while the flat arrow repre-
b sents the direction of the perturbation.

€;=m. (85 c K
. IC.LKiP
One can expand the momentum densjtgnd the change of Xg,om, = ﬁ (96)
the direction of the magnetizatiobm with respect to this 0
basis: with N=K;k? +Kzk?- pc? k2. Now we will discuss the trans-
0= 0.8 + 0ol + 0383, (86) verse momentum density correlation function in more detail.
Therefore we determine the limiting cases for either setting
oM = STy@, + My, 87) k, ork; to zero first,
It is worth mentioning that the individual components have lim lim Xg,9,= P> (97)
different properties under time reversal and parity, k —0k—0
T — P _
€,=~1, € =+1, (89 o p
lim lim xg9 =75 (98)
T p k—0k; —0 21— pCL/KB
€, = +1, €y, = +1, (89)

Because we discussed the autocorrelation function of the
e =+1, & =-1, (90)  transverse momentum density, E¢87) and (98) give the
inertia of the gel against velocity perturbations along the
T b planes with a normal vector either perpendicular or parallel
€m="1 €m="1, (91 to the preferred direction, respectively. In the first case the
usual inertia(Fig. 2) due to mass can be measured while in
f;mf +1, f';mf‘ _ (92)  the second casgrig. 3) an increase of the inertia can be
observed.
Due to this different transformation behavior, the statics of The inverse susceptibility matrix of the other three com-
the componentsg, and dm, are decoupled completely from ponents is obtained in the same manner and reads
the other components. We obtain the inverse susceptibility
matrix of these two variables by taking the second order
partial derivatives of the Fourier transformed energy density
with respect to the appropriate variables,

1 .
xi=| » FMiek (o

—iMgc Kk MB(K kS + Kgkd)

wherei, | € {g,, dmy}.
From Eq.(93) one can derive the static susceptibilities

_Pp 2 2
Xg,0, = N(Klkj_ + ngu), (94
1 FIG. 3. Perturbation to measum(l—pci/Kg,)‘l. Again the
Xompom, = o (95  conelike arrows represent the orientation of the magnetization while
MgN the flat arrow represents the direction of the perturbation.
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FIG. 4. Perturbation to measum‘l—pcﬁ/Kz)‘l. The conelike
arrows represent the orientation of the magnetization while the flat
arrow represents the direction of the perturbation. FIG. 5. Perturbation to measuge Again the conelike arrows

represent the orientation of the magnetization while the flat arrow

represents the direction of the perturbation.

1
- 0 + |M OCJ_kH
p for perturbations perpendicular to the frozen-in magnetiza-
Xﬁl= 0 1 +iMecik ) tion the usual inertia is observe#igs. 5 and &
p O¥IPL It is worth mentioning that there exists a correlation be-
. . 2 2 2 tween the parallel and the transverse components of the mo-
IMoC K —iMoGk, MoK’ +Kkj) mentum density given by E¢102).
(99)
wherei, | 6_{91793_- omy}. _ o ) ) ) C. Field-induced strain
We again obtain the static susceptibilities by inverting this i )
matrix: As a last example we want to discuss #ledynamics of
) s s the system, if we apply an oscillating external magnetic field
Xayq, = PLIKKS + Kgkf) = cfk? pIN?, (100 perpendicular to the frozen-in magnetization. In our case we
apply a magnetic field in thedirection(cf. Fig. 7). We again
Xgs95= pl(Kok2 + K3kf) - cikfp]N‘l, (102) identify_ the rele_vant equations. At first one can neglect all the
dynamic equations for the concentrationthe entropy den-
_ 2N -1 sity o, the mass density, and the momentum density,
Xg,05 = cokick, p™N, (102 because these are true hydrodynamic variables and contain

. - apart from the time derivative of the variable the gradient of
Xg,om, = 1€ KipMg™N™", (103)  the current related to that variable. From the quasicurrents of
the remaining variables we consider only the contributions

Xgyom, = ichlpMalN‘l, (104)  without gradient terms. We obtain for their reversible parts
3

Xomyom, = Mg?N™%, (105

with N=(Kk3 +K3k?) - pc? k- pck? . In analogy to the case
of the variablesg, and dm; we can evaluate the limiting
expressions for the momentum density correlation function
for setting eithelk, or k; to zero, first. One obtains

p (106) ‘ ‘

A
® v

lim lim =,
k, —0 kH~>0 nggg 1- pCﬁ/Kz
lim lim =p, 10 ‘ b
k—0k, —0 Xogs =P (1079
lim lim =p, 108
klﬂo k“~>0 Xglgl P ( )
. . p
lim lim = . 109
ki—0k, —0 Xow ™ — pc? IKq (109

FIG. 6. Perturbation to measuge The conelike arrows repre-
Here an increase of the inertia can be measured for velocityent the orientation of the magnetization while the flat arrow repre-
perturbations parallel to the preferred direct{®ig. 4 while  sents the direction of the perturbation.
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FIG. 7. Sketch of experimental setup. The big conelike arrow

PHYSICAL REVIEW E70, 061411(2004)

Modm, ~ bRHEX. (120

This effect differs from the case of isotropic ferrogels studied
by Jarkoveet al. [9] where this effect appears in higher order
of the magnetization, because in this case one has to induce
a magnetization first. Experimentally one can measure these
effects by using Hall probes.

For the last effect the crucial coefficieb® can be calcu-
lated explicitly, using the microscopic theory of linear re-
sponse. In this limit we make use of the results given by
Forster, who used the projector formalism of Zwanzig and
Mori. In the notation off 14] the temporal change of a mac-
roscopic variabley; is given by

5a|(Xt)=[—|a)”(—| V)+O'|J(—|V)]5)\](Xt) (121)

represents the magnetization of the uniaxial gel while the four, this notation the\; are the thermodynamic forces of the
I

smaller arrows represent the direction of the alternating extern

magnetic field.

YR = &AW, (110
XR= &R, + blh, (119
ZR=- §i>j(Rh,M - G+ 7J|TWJ (112

And in the same manner for the irreversible parts

YP =0, (113
XP = byh + &;W,, (114
ZP =W+ gh)". (115

One ends up with a rather complex set of equations. Here

concentrate on some qualitatively different features due to

the dynamic couplinggéand neglect magnetostrictipn
After applying an oscillatory external field in thedirec-
tion, an oscillating magnetization in the direction is in-

duced due to Eqg68) and(69). This magnetization leads to

an oscillation of the relative rotation®7), (61), and (62),
where the maximum amplitudes are related by

Q, ~ - &Ra’Moom, (116)

Q, ~ &a'Myom,. (117
The relative rotations couple to the strain fi¢gkB) and(63)

and therefore lead to an oscillating strain in the plane per-

W

a%ystem. The matrix;; is called the frequency matrix while
the matrixoy; is called the memory matrix.

At t=0 the external perturbation is switched on, and the
system starts to relax toward the new equilibrium. The initial
time derivativesa(k ,t=0%) is given by[14]

Using the explicit expressions for the dynamic coupling
tensorsyf and&, one obtains for the dynamical equation of
the magnetization

M,' + bREijkmkhj-w + fXRE,-jkmij =0.

——

e (123

In the last equation we discarded the contributions of the
irreversible parts of the quasicurrent. This can be done be-
cause the frequency matri; contains the instantaneous
Eollisionless contributions which are purely reversifld].
Explicitly, the frequency matrix for the autocorrelation of
the magnetization reads, using K23,

0 ib"m, —ib"m,
oy =| —ibfm, 0 ibRm,
imey - ibR"m, 0
Using for the frequency matrix;; of the variablesvi; and
M; the representation
% J dx

d
w(k) = f X =

Xe XM =1',t =), M;(0,0)

(124)

(129

pendicular to the applied field as well as in the plane spannegnd taking into account the commutator for the magnetiza-

by the frozen-in and the induced magnetization with
Exy ™ DngRgxMoéT‘n ) (118

€xz ™ DngR§XRMOéTnz- (119

These shear strains should be experimentally observable with

piezoelectric transducers.

Second, we observe that, apart from the directly induced
magnetization parallel to the applied field, a magnetization in

tion
(M, MDD = i e (M) (126)

we obtain for the frequency matrix in the microscopic theory

0 iMg(m,) = iMg(m,)
oum = | —iMg(imy) 0 iMg(my |. (127
iMg(my) = iMg(Mmy 0

the third direction, perpendicular to both the frozen-in and Now we can compare these matrices obtained in two dif-

the applied field is induced as we&b6) and(59)

ferent ways. We can conclude that the coefficighin the k°
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dynamics and in the linear and homogeneous regime is givefmass density times velocijtand the momentum density due
by to a nonvanishing magnetization vorticity. Unheard of in
bR= M (128) other classical condensed phases, it is known from some
- Vo uniaxial quantum fluids, where, however, experiments on
This result is also compatible with the results of Jarkeva this aspect are impossible. In uniaxial ferromagnetic gels the
al. for isotropic ferroge|s] because if we Nb to zero, the static SUSCGptibilitieS for momentum ﬂUCtuatiO(tbe |Ong
coefficientb® and thus the instantaneous response to the exvavelength limit of the static momentum correlation func-

ternal field vanish. tions) are given by thgbarg density for some geometries
only, but show an increased renormalized effective density
IV. DISCUSSION AND CONCLUSIONS for other directions.

Finally, we looked at an oscillating external magnetic field
Ferromagnetic gels are uniaxial, if the frozen-in magneti-that induces not only an oscillation of the magnetization in
zation denotes the only preferred direction. Such materialthe direction of the external field, but also oscillating shear
are potentially very interesting for a variety of applications.strains. The latter are found in planes that contain the
Here we investigate theoretically the thermodynamics androzen-in magnetization and either the external field or the
hydrodynamics of these systems. Uniaxial magnetic gelshird, perpendicular direction. In addition, the external field
show on the one hand similarities to other anisotropic gelsalso induces a magnetization component perpendicular to
like nematic elastomers, and to isotropic ferrofluids and ferboth the field and the frozen-in magnetization. The reversible
rogels, but the combination of preferred direction, magnetiaransport coefficient that governs this effect can be calculated
degree of freedom, and elasticity makes them unique anby referring to the microscopic quantum mechanical spin-
very peculiar. type dynamics for magnetic moments and using the projector
Prominent features are the relative rotations between thformalism to evaluate the frequency matrix. This coefficient
magnetization and the elastic network, which couple dywanishes with the magnetization and is, thus, characteristic
namically flow, shear, and magnetic reorientation. As a refor this type of ferromagnetic gel.
sult, shear flow in a plane that contains the frozen-in magne-
tization induces a rotation of the magnetization, not only
within the shear plane, but also out of the shear plane. This ACKNOWLEDGMENTS
behavior is qualitatively different from that of other types of
materials. The basic results hold, even if the constant shear Partial support of this work through the Schwerpunktspro-
flow is replaced by an oscillating one, which is very likely gramm 1104 “Colloidal Magnetic Fluids” of the Deutsche
done in actual experiments, although the formulas for thaForschungsgemeinschaft is gratefully acknowledged. H.R.B.
case will become much more complicated. thanks the Deutsche Forschungsgemeinschaft for partial sup-
Another outstanding aspect of the hydrodynamics of thigort through Sonderforschungsbereich 481: Polymere und
material is the difference between the mass current densitilybridmaterialien in inneren und aufReren Feldern.

[1] M. Zrinyi, Trends Polym. Sci5, 280(1997). [8] R. E. RosensweigkerrohydrodynamicgCambridge Univer-
[2] Z. Varga, J. Fehér, G. Filipcsei, and M. Zrinyi, Macromol. sity Press, Cambridge, U.K., 1985
Symp. 200, 93 (2003. [9] E. Jarkova, H. Pleiner, H.-W. Mller, and H. R. Brand, Phys.
[3] M. Zrinyi, L. Barsi and A. Buki, J. Chem. Physl04, 8750 Rev. E 68, 041706(2003.
(1996. [10] H. Pleiner and H. R. Brand, ifattern Formation in Liquid
[4] M. Zrinyi and F. Horkay, J. Intell. Mater. Syst. Struet, 190 Crystals edited by A. Buka and L. Krame(Springer, New
(1993. York, 1996, p. 15.
[5] M. Babincova, D. Leszczynska, P. Sourivong,(®¢manec, [11] P. G. de Gennes, irLiquid Crystals of One- and Two-
and P. Babinec, J. Magn. Magn. Mat&25 109 (2001). Dimensional Order edited by W. Helfrich and G. Heppke
[6] T. Mitsumata, E. Juliac, K. Furukawa, K. lwakura, T. Tanigu- (Springer, New York, 1980
chi, and K. Koyoma, Macromol. Rapid Commu23, 175 [12] R. Graham, Phys. Rev. Let83, 1431(1974.
(2002. [13] H. R. Brand and H. Pleiner, Physica 208 359(1994).
[7] D. Collin, G. K. Auernhammer, O. Gavat, P. Martinoty, and H. [14] H. R. Brand, M. Dérfle, and R. Graham, Ann. PhyhLY.)
R. Brand, Macromol. Rapid Commur24, 737 (2003. 119, 434 (1979.

061411-10



