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We present the derivation of the macroscopic equations for uniaxial ferrogels. In addition to the usual
hydrodynamic variables for gels we introduce the magnetization and the relative rotations between the mag-
netization and the network as macroscopic variables. The relative rotations introduced here for a system with
magnetic degrees of freedom are the analog of the relative rotations introduced by de Gennes in nematic
elastomers for rotations of the director with respect to the elastomeric network. These variables give rise to a
large number of static as well as dynamic effects due to their coupling to the magnetization, the strain field, and
the density of linear momentum. A few of them are discussed for specific geometries, for example, the case of
a shear-induced magnetization perpendicular to the preferred direction.
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I. INTRODUCTION

In recent decades gels and especially ferrogels became a
promising class of materials for applications in many fields.
Ferrogels are chemically cross-linked polymer networks that
are generated using a ferrofluid as a component. As was
shown in many publications[1–3], there exists a coupling
between the elastic and magnetic degrees of freedom allow-
ing one to control the mechanical behavior by applying ex-
ternal magnetic fields. This might lead to many different ap-
plications from soft actuators or micromanipulators in
technical fields to applications in medicine where they might
act as artificial muscles[4] or as carriers for drugs to guar-
antee controlled drug release. Frequently discussed is the ap-
plication in hyperthermia due to the heating of magnetic gels
in alternating external fields[5]. In our model we will as-
sume that the particles show some kind of interaction with
the polymer network although the mechanism is not yet well
understood.

Until 2002 interest focused on isotropic ferrogels. The
first attempt to generate anisotropic ferrogels was made by
Mitsumata et al. [6]. They produced gels that contained
barium ferrite particles of micrometer size that led to a rem-
nant magnetization without applying an external field. This
anisotropy seemed to affect the sound speed. The first aniso-
tropic ferrogels using ferrofluids containing monodomain
ferromagnetic particles were produced in 2003 by Zrínyiet
al. [2] and Collinet al. [7], and showed anisotropic features
qualitatively and quantitatively, respectively. To produce
these uniaxial gels, the cross-linking process was performed
in an external magnetic field. In this situation the nanosized
ferromagnetic particles form columns and fibers that are
larger than the network mesh size[7], because the stabilizing
coating of the particles[8] was reduced in its efficiency due
to the lowpH value needed to start the cross-linking process.
These chains are fixed in the network, interacting in a way
that is so far only partially understood, leading to a frozen-in
magnetization which in turn gives rise to several effects in
external shear and magnetic fields. In this paper we want to
consider this type of gel and we discuss several interesting
effects.

To derive the equations describing the macroscopic dy-
namics of these uniaxial ferrogels we will use the hydrody-
namic method. In this method we obtain the hydrodynamic
equations by using symmetry and thermodynamic argu-
ments. These equations hold in the long wavelength limit and
for sufficiently low frequencies. We use this method because
of its generality and its applicability to many different sys-
tems in the hydrodynamic regime. But one has to introduce
some phenomenological parameters and transport coeffi-
cients that cannot be derived by this method. These param-
eters have to be determined by microscopic models or one
has to measure them in experiments.

The method is not restricted to hydrodynamic variables
only. In some systems nonhydrodynamic relaxation pro-
cesses become so slow that they are comparable to macro-
scopic time scales. Then one must consider these macro-
scopic variables in the description as well. There is, however,
no general rule to decide which processes behave this way.
The identification of these macroscopic variables has to be
done for each system separately.

In this work we generalize the set of hydrodynamic equa-
tions for isotropic ferrogels[9] to these applicable to uniaxial
ferrogels. We then discuss some of the effects mediated by
couplings between the frozen-in magnetization and the elas-
tic polymeric network. We make predictions for uniaxial
magnetic gels, which can be tested experimentally. So far we
are not aware of any experimental work investigating the
cross-coupling effects discussed here.

II. DERIVATION OF MACROSCOPIC EQUATIONS

A. Hydrodynamic and macroscopic variables

To set up the macroscopic equations for uniaxial ferrogels
we start with the identification of the relevant variables[10].
We can separate them into three classes. The first class of
variables, also called the hydrodynamic variables, contains
those already known from a simple fluid, the mass densityr,
the energy density«, and the momentum densityg. In our
case we add another variable, the concentration of ferromag-
netic particlesc. To the second class belong the variables that
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are related to spontaneously broken continuous symmetries.
In our case we take into account the magnetizationM and
the strain fieldei j . The first one is related to the spontane-
ously broken rotational symmetry while the latter describes
the spontaneously broken translational symmetry. We will
introduce a unit vectormi defined bymi =Mi / uM u pointing in
the direction of magnetization in analogy to the directorni in
nematic liquid crystals. But there is a significant difference.
While both are even under parity, the unit vector of magne-
tizationm is odd under time reversal. This will permit static
as well as dynamic couplings to other variables that are odd
under time reversal. We can then define the transverse Kro-
necker tensordi j

'=di j −mimj and we have, together with the
Levi-Cevità symbolei jk, three invariants of the system in
terms of which the coupling tensors and the transport tensors
can be expanded. In a last step we consider a variable first
introduced by de Gennes for liquid crystalline elastomers

[11], called the relative rotationṼi. This variable belongs to
the class of slowly relaxing variables and describes the rela-
tive rotation between the polymer network and the orienta-
tion of the magnetization. It is defined by

Ṽi = dmi − Vi
' = dmi −

1

2
mjs¹iuj − ¹ juid, s1d

where we introduced a vectorui describing the displacement
field of the network and the variation of the orientation of the
magnetizationdmj. Sincemi is a unit vector,m ·d m=0. This
variable is odd under time reversal and even under parity.

B. Statics and thermodynamics

To get the static properties of our system we formulate the
local first law of thermodynamics relating changes in the
entropy densitys to changes in the hydrodynamic and mac-
roscopic variables discussed above. We find the Gibbs rela-
tion

d« = T ds + m dr + mcdc+ vidgi + HidBi + hi8
MdMi

+ Fi j
Mds¹ jMid + Ci jdei j + WidṼi . s2d

In Eq. (2) the thermodynamic quantities temperatureT,
chemical potentialm, relative chemical potentialmc, velocity
vi, magnetic fieldHi, the magnetic molecular fieldshi8

M and
Fi j

M, the elastic stressCi j and the molecular fieldWi are
defined as partial derivatives of the energy density with re-
spect to the appropriate variables[10]. If we neglect surface
effects and integrate Eq.(2) by parts we can obtain an ex-
pression for the Gibbs relation that we want to use through-
out the rest of this paper:

d« = T ds + m dr + mcdc+ vidgi + HidBi + hi
MdMi + Ci jdei j

+ WidṼi , s3d

where the molecular fieldhi
M is given byhi

M =hi8
M −¹ jFi j

M.
To determine the thermodynamic conjugate variables we

need an expression for the local energy density. This energy
density must be invariant under time reversal as well as un-
der parity and it must be invariant under rigid rotations, rigid
translations, and covariant under Galilei transformations. In

addition to that this energy density must have a minimum,
because there exists an equilibrium state for the gel. There-
fore the expression for the energy density needs to be con-
vex. Taking into account these symmetry arguments we write
down an expansion for the generalized energy density up to
second order in the variables that describe deviations out of
that equilibrium and considering several interesting third or-
der terms including magnetostriction:

« =
1

2
BiBi +

a

2
MiMi − MiBi −

1

2
gi jklMiMjekl +

1

2
mi jklei jekl

+
1

2
Kijkls¹iMjds¹kMld +

1

2
D1ṼiṼi + D2smjdik

' + mkdi j
'd

3Ṽie jk + si jk
s s¹iMjds¹kdsd + si jk

r s¹iMjds¹kdrd

+ si jk
c s¹iMjds¹kdcd + ei jsxi j

sds + xi j
r dr + xi j

c dcd + crrsdrd2

+ csssdsd2 + cccsdcd2 + crcsdrdsdcd + crssdrdsdsd

+ cscsdsdsdcd +
1

2r
gigi + cijkgis¹ jMkd + acM

2dc

+ asM2ds + arM
2dr. s4d

Apart from the energy density of a normal fluid binary mix-
ture, Eq. (4) contains the magnetic energy as well as the
elastic energy. It is worth mentioning that we get—because
of the negative time reversal property of the
magnetization—a coupling between the curl ofM and the
momentum density mediated by the tensorcijk, which takes
the form cijk =scimiml +c'dil

'del jk. This kind of coupling is
very similar to one of the couplings appearing in superfluid
3He-A first introduced by Graham[12]. In this system one
defines an axial vectorl parallel to the direction of the net
orbital momentum of the helium pairs. This vector does not
commute with the total angular momentum vector and there-
fore this variable breaks the continuous rotational symmetry
spontaneously, similarly to the magnetization in our system.
The source-free part of the momentum density of3He-A is
proportional to the curl of this vectorl while the proportion-
ality is given by" /2m and a coupling tensorcij .

Because we discuss a uniaxial system, the tensors will
have more independent constants than in the isotropic case of
Jarkovaet al. [9]. The tensor of the elastic energy, for ex-
ample, now has five independent constants instead of only
two and takes the form

mi jkl = m1di j
'dkl

' + m2hsdik
'd jl

' − 1
2di j

'dkl
'd + sdil

'd jk
' − 1

2di j
'dkl

'dj
+ m3mimjmkml + m4smimjdkl

' + mkmldi j
'd

+ m5hmimkd jl
' + mimld jk

' + mjmkdil
' + mjmldik

'j s5d

while the magnetostrictive tensor will have six independent
constants

gi jkl = g1di j
'dkl

' + g2hsdik
'd jl

' − 1
2di j

'dkl
'd + sdil

'd jk
' − 1

2di j
'dkl

'dj
+ g3mimjmkml + g4mimjdkl

' + g5mkmldi j
'

+ g6hmimkd jl
' + mimld jk

' + mjmkdil
' + mjmldik

'j. s6d

The tensorKijkl describes contributions to the local energy
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density due to spatial changes of the direction of the magne-
tization as well as of its magnitude. We get six independent
constants for this coupling,

Kijkl =
1

2
K1sdi j

'dkl
' + dil

'd jk
'd + K2mpepijmqeqkl + K3mkmidl j

'

+ K4mimjmkml + K5mjmldik
'

+
1

4
K6smimldkj

' + mjmkdil
' + mimjdkl

' + mkmldi j
'd. s7d

There are two more contributions to the energy density
due to the coupling between the strain field and the variables
associated with the relative rotations. One is proportional to
D1 and the other proportional toD2. One can interpret these
coefficients as a measure for the coupling strength of the
magnetic particles to the polymer network, although the mi-
croscopic mechanism of this interaction is not precisely un-
derstood so far.

Now we are left with the couplings between the scalars
r , c, ands and the strain field as well as with the coupling
between the gradient of the scalars and the gradient of the
magnetization. The tensors take the following form, respec-
tively:

xi j
j = xi

jmimj + x'
j di j

', s8d

si jk
j = s1

jmimjmk + s2
jmjdik

' + s3
jsmid jk

' + mkdi j
'd, s9d

wherej can be eitherr , s, or c.
We now give the expressions for the conjugated variables

in terms of the hydrodynamic and macroscopic variables.
They are defined as partial derivatives with respect to the
appropriate variable, while all the other variables are kept
constant, denoted by ellipses at the parentheses in the follow-
ing. We obtain

vi = S ]«

]gi
D

…
=

1

r
gi + cijks¹ jMkd, s10d

Hi = S ]«

]Bi
D

…
= Bi − Mi , s11d

hi8
M = S ]«

]Mi
D

…
= aMi − Bi − gi jklMjekl + 2acMidc

+ 2asMids + 2arMidr, s12d

Fi j
M = S ]«

]s¹ jMid
D

…
= Kijkls¹kMld + si jks¹kdjd + cijkgk,

s13d

Ci j = S ]«

]ei j
D

…
= −

1

2
gi jklMkMl + mi jklekl + D2smjdik

' + midkj
'd

3Ṽk + xi j
sds + xi j

r dr + xi j
c dc, s14d

Wi = S ]«

]Ṽi
D

…

= D1Ṽi + D2smjdik
' + mkdi j

'de jk, s15d

dT = S ]«

]ds
D

…
= xi j

sei j + 2cssds + crsdr + cscdc + asM2,

s16d

dm = S ]«

]dr
D

…
= xi j

r ei j + 2crrdr + crcdc + crsds + arM
2,

s17d

dmc = S ]«

]dc
D

…
= xi j

c ei j + 2cccdc + ccrdr + ccsds + acM
2.

s18d

We used integration by parts to obtain expression(3) for the
local energy density, where the new molecular fieldhi

M was
given by hi

M =hi8
M −¹ jFi j

M. If we use Eqs.(12) and (13) we
find

hi
M = aMi − Bi − gi jklMjekl + 2acMidc + 2asMids + 2arMidr

− s¹ jKijklds¹kMld − Kijkls¹ j¹kMld − s¹ jsi jkds¹kdjd

− si jks¹ j¹kdjd − s¹ jcijkdgk − cijks¹ jgkd. s19d

C. Dynamic equations

To determine the dynamics of the variables we take into
account that the first class of our set of variables contains
conserved quantities that obey a local conservation law while
the dynamics of the other two classes of variables can be
described by a simple balance equation where the counter-
term to the temporal change of the quantity is called a qua-
sicurrent. As a set of dynamical equations we get

]tr + ¹igi = 0, s20d

]ts + ¹issvid + ¹i j i
s =

R

T
, s21d

r]tc + srvi¹idc + ¹i j i
c = 0, s22d

]tgi + ¹ jhv jgi + di jfp + B ·Hg + si j
th + si jj = 0, s23d

]tMi + sv j¹ jdMi + sM 3 vdi + Xi = 0, s24d

]tei j + svk¹kdei j + Yij = 0, s25d

]tṼi + svk¹kdṼi + Zi = 0, s26d

where we introduced the vorticityvi =1/2ei jk¹ jvk and

si j
th = −

1

2
sBiHj + BjHid +

1

2
sC jkeki + Cikekjd. s27d

In Eq. (27) we implemented the requirement that the energy
density should be invariant under rigid rotations[10].

The pressurep in Eq. (23) is given by]E/]V and reads
for our system

p = − « + mr + Ts + v ·g. s28d
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In the equation for the entropy density(21) we introduced
R, the dissipation function which represents the entropy pro-
duction of the system. Due to the second law of thermody-
namicsR must satisfyRù0. For reversible processes this
dissipation function is equal to zero while for irreversible
processes it must be positive. In the following we will split
the currents and quasicurrents into reversible parts(denoted
with a superscriptR) and irreversible parts(denoted with a
superscriptD).

D. Reversible dynamics

If we again make use of the symmetry arguments men-
tioned above and use Onsager’s relations we obtain the fol-
lowing expressions for the reversible currents up to linear
order in the thermodynamic forces:

gi = rvi − rcijks¹ jMkd, s29d

j i
sR = − ki j

R¹ jT − Dij
TR¹ jmc + ji j

TR¹lC jl , s30d

j i
cR= − Dij

R¹ jmc + Dij
TR¹ jT + ji j

cR¹lCl j , s31d

si j
R = − Ci j − cijk

RJhk
M − ni jkl

R Akl + ji jk
sRWk, s32d

Yij
R = − Aij + ji jk

YRWk +
1

2
lMf¹is= 3 hMd j + ¹ js= 3 hMdig

−
1

2
f¹ihj jk

R¹lCkl + j jk
TR¹kT + j jk

cR¹kmcj + si ↔ jdg,

s33d

Xi
R = bij

Rhj
M + lMei jk¹ js¹lCkld − cjki

RJAjk + ji j
XRWj , s34d

Zi
R = ti j

RWj − ji j
XRhj

M − jkli
sRAkl − jkli

YRCkl. s35d

Compared to the reversible currents and quasicurrents of iso-
tropic ferrogels we have the additional quasicurrent of rela-
tive rotations with its counterterms inXi

R, si j
R, andYij

R. These
terms describe the dynamic coupling of relative rotations to
the magnetization, the momentum density, and the network,
respectively. The first coupling—mediated by the tensor
ji j

XR—is an additional term that exists neither in nematic liq-
uid crystalline elastomers[13] nor in superfluid3He-A, while
the second coupling—ji jk

sR—already appeared in nematic liq-
uid crystalline elastomers. The third coupling—ji jk

YR—is also
an additional one and will be discussed in detail in the fol-
lowing section. The additional term in the momentum den-
sity already appeared in superfluid3He-A and we will discuss
one of the consequences of this coupling later. The tensors in
the currents for the entropy density and the concentration all
have to be odd under time reversal, because the currents have
to be odd under time reversal. They are all of the form

ai j
R = aRei jkmk. s36d

Furthermore, we find for the coupling terms in the stress
tensor

cijk
RJ = c1

RJsmid jk
' + mjdik

'd + c2
RJmkdi j

' + c3
RJmimjmk, s37d

ni jkl
R = n1

Rheikpd jl
' + e jlpdik

' + eilpd jk
' + e jkpdil

'jmp

+ n2
Rheikpmjml + e jlpmimk + eilpmjmk + e jkpmimljmp,

s38d

ji jk
sR = jsRsmid jk

' + mjdik
'd. s39d

The coupling terms in the quasicurrent for the relative rota-
tions are

ji j
XR= jXRei jkmk, s40d

jkli
sR = jsRsmkdli

' + mldki
'd, s41d

ti j
R = tRei jkmk, s42d

jkli
YR= jYRsmkelip + mlekipdmp. s43d

We are now left with the tensor coupling the molecular field
hi

M to the magnetization quasicurrent which takes the form

bij
R = bRei jkmk. s44d

E. Irreversible dynamics and entropy production

We can use the dissipation functionR as a Liapunov func-
tional to derive the irreversible currents and quasicurrents.
One can expand the functionR (R/T is the amount of en-
tropy produced within a unit volume per unit time) into the
thermodynamic forces using the same symmetry arguments
as in the case of the energy density. We obtain

R=
1

2
ki js¹iTds¹ jTd + Dij

Ts¹iTds¹ jmcd + ji j
Ts¹iTds¹kC jkd

+
1

2
Dijs¹imcds¹ jmcd + ji j

c s¹imcds¹kC jkd +
1

2
ni jklAijAkl

+ ji jk
s AijWk + cijk

J Aijhk
M +

1

2
ji js¹kCikds¹lC jld +

1

2
bijhi

Mhj
M

+
1

2
ti jWiWj + ji j

XWihj
M , s45d

where we have again introduced some tensors. The tensors
ki j , Dij

T , ji j
T , Dij , ji j

c , ji j , andbij take the form

ai j = aimimj + a'di j
' s46d

while the tensorsti j andji j
X read

aij = adi j
'. s47d

This is due to the fact that only the parts of the relative
rotations perpendicular to the preferred direction contribute
to the entropy production[13]. For the viscosity tensorni jkl
we obtain

ni jkl = n1di j
'dkl

' + n2HSdik
'd jl

' −
1

2
di j

'dkl
'D + Sdil

'd jk
' −

1

2
di j

'dkl
'DJ

+ n3mimjmkml + n4smimjdkl
' + mkmldi j

'd

+ n5smimkd jl
' + mimld jk

' + mjmkdil
' + mjmldik

'd. s48d
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We are left with the tensorsji jk
s andcijk

J , which take the form

aijk = asmie jkl + mjeikldml . s49d

To obtain the dissipative parts of the currents and quasicur-
rents we take the partial derivatives with respect to the ap-
propriate thermodynamic force,

j i
sD = − S ]R

]s¹iTdD…
= − ki js¹ jTd − Dij

Ts¹ jmcd − ji j
Ts¹kC jkd,

s50d

j i
cD = − S ]R

]s¹ jmcd
D

…
= − Dijs¹ jmcd − Dij

Ts¹ jTd − ji j
c s¹kC jkd,

s51d

si j
D = − S ]R

]s¹ jvid
D

…
= − ni jklAkl − ji jk

s Wk − cijk
J hk

M , s52d

Yij
D = S ]R

]Ci j
D

…
= −

1

2
h¹isj jn¹lCnl + j jn

T ¹nT + j jn
c ¹nmcdj

−
1

2
h¹ jsjin¹lCnl + jin

T ¹nT + jin
c ¹nmcdj, s53d

Zi
D = S ]R

]Wi
D

…
= ti jWj + ji j

Xhj
M + jkli

s Akl, s54d

Xi
D = S ]R

]hi
MD

…
= bijhj

M + ji j
XWj + ckli

J Akl. s55d

III. SOME SIMPLE SOLUTIONS

In this section we discuss some experimental setups that
could reveal some of the unusual cross-coupling effects of
this class of materials.

A. Shear-induced magnetization

Our system differs qualitatively from the isotropic ferro-
gels by the macroscopic variables associated with relative
rotations. These variables describe, as already mentioned, the
relative rotations between the orientation of the magnetiza-
tion and the polymer network. In this section we discuss an
effect associated with these variables. We apply a constant
shear flow and determine the change of magnetization. We
assume that the direction of the frozen-in magnetization in
the uniaxial ferrogel is parallel to thex direction while the
shear is applied in thex-y plane as sketched in Fig. 1. Fur-
thermore we assume spatial homogeneity. In this case the
dynamic equations for the momentum density and the scalars
r , s, andc are satisfied automatically. Contributions due to
magnetostriction effects are neglected. These effects are of
higher order in the variables[cf. Eqs. (19) and (14)] while
we focus on linear effects. These assumptions reduce the set
of dynamic equations to

]tMi + Xi = 0, s56d

]tṼi + Zi = 0, s57d

]tei j + Yij = 0. s58d

Now we need to find the relevant expressions for the quasi-
currents. In the quasicurrent for the magnetization we can
discard the termlMei jks¹lCkld, because this term is of first
order in the derivatives and does not contribute in a homo-
geneous system

Xi
R = bij

Rhj
M + ji j

XRWj − cjki
RJAjk, s59d

Xi
D = bijhj

M + ji j
XWj + ckli

J Akl. s60d

The same arguments hold for the quasicurrents of the relative
rotations and of the strain field. Therefore we obtain

Zi
R = ti j

RWj − ji j
XRhj

M − jkli
YRCkl − jkli

sRAkl, s61d

Zi
D = ti jWj + ji j

Xhj
M + jkli

s Akl, s62d

Yij
R = ji jk

YRWk − Aij , s63d

Yij
D = 0. s64d

To obtain a closed set of equations for the macroscopic vari-
ables, we substitute for the conjugate variables the expres-
sions found in Sec. II B. Again we discard contributions due
to magnetostriction and inhomogeneous contributions. Fur-
thermore, we apply an external force, which is in our case a
constant shear flow. We take the simple shearSkl to be in the
x-y plane,

Skl = ¹kvldkydlx. s65d

Therefore we obtain

Ckl = mklmnemn+ D2smkdlm
' + mldkm

' dṼm, s66d

Wk = D1Ṽk + D2smmdkn
' + mndkm

' demn, s67d

FIG. 1. Sketch of experimental setup. The conelike arrow rep-
resents the magnetization of the uniaxial gel while the flat arrows
represent the external force.
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hj
M = adMj − dBj = Sa −

1

x0
DdMj . s68d

In the last expression we used the fact that in the case of a
small frozen-in magnetization and no external magnetic
fields the magnetic flux densityB is only due to the intrinsic
magnetization and that it can be expressed asB=x0M . We
will use a8 as an abbreviation in the following,

a8 = a −
1

x0
. s69d

We do not apply an external magnetic field. Therefore we
can assume that the magnitude of the magnetization is not
changed but only its direction. We can write

M = M0sm + d md. s70d

If we use the material tensors in our specific geometry we
can derive the following set of equations for the different
components of each macroscopic variable:

0 = jYRsD1Ṽz + 2D2exzd −
1

2
Axy

ext, s71d

0 = −jYRsD1Ṽy + 2D2exyd, s72d

0 = bRa8M0dmz + jXRsD1Ṽz + 2D2exzd − c1
RJAxy

ext

+ b'a8M0dmy + jXsD1Ṽy + 2D2exyd, s73d

0 = −bRa8M0dmy − jXRsD1Ṽy + 2D2exyd + b'a8M0dmz

+ jXsD1Ṽz + 2D2exzd + cJAxy
ext, s74d

0 = tRsD1Ṽz + 2D2exzd − jXRa8M0dmz

+ 2jYRs2m5exz+ D2Ṽzd − jsRAxy
ext+ tsD1Ṽy + 2D2exyd

+ jXa8M0dmy, s75d

0 = −tRsD1Ṽy + 2D2exyd + jXRa8M0dmy

− 2jYRs2m5exy + D2Ṽyd + tsD1Ṽz + 2D2exzd

+ jXa8M0dmz + jsAxy
ext. s76d

From the first and second equations we find a relation be-
tween the components of relative rotations and the strain
field, so that we can reduce this system to one with four
equations for four variables, which is now shown in matrix
form:

1
−

Z1

N1
−

Z2

N1
0 0

Z2

N2
−

Z1

N2
0 0

−
D1Z3

N3

D1Z4

N3
0

Z5

N3

−
Z4

N4
−

Z3

N4

Z5

D1N4
0

2 31
dmy

dmz

exy

exz

2 = Axy
ext1

1

1

1

1
2
s77d

with Z1=2jYRb'a8M0, Z2=Z1b
R/b' , Z3=2jYRjXa8M0, Z4

=Z3jXR/jX, Z5=8sjYRd2sD1m5−D2
2d, N1=jXR−2jYRc1

RJ,
N2=jX+2jYRcJ, N3=2jYRD2+tRD1−2jYRD1jsR, and N4
=t+2jYRjs.

The solution takes the form

dmy = −
− bRsjX + 2jYRcJd + b'sjXR− 2jYRc1

RJd
2jYRa8M0sb'

2 + bR2d
Axy

ext,

s78d

dmz = −
b'sjX + 2jYRcJd + bRsjXR− 2jYRc1

RJd
2jYRa8M0sb'

2 + bR2d
Axy

ext. s79d

For this experimental setup we thus predict a rotation of
the magnetization out of the shear plane as well as out of the
x-z plane, which is proportional to the applied external force
as can be seen from Eqs.(78) and(79). This effect is due to
the variables associated with relative rotations, because all
contributions are proportional to eitherjXR, jX, or jYR, which
represent the dynamical coupling of relative rotations to the
magnetization and the strain field, respectively. The change
of the direction of the magnetization should be easily observ-
able in the laboratory since Hall probes can sensitively mea-
sure magnetic fields.

B. The influence of„=ÃM … on the mass current

As pointed out in Secs. II B and II D, there is an addi-
tional contribution to the momentum density due to the cou-
pling of the curl of the magnetization to the momentum den-
sity via the tensorcijk (29). Here we want to discuss
consequences of this unusual coupling. It is useful to discuss
the Fourier transform of the energy density, where we focus
on those terms which contain the momentum density and
gradients of the magnetization:

«k =E H 1

2r
gigi + cijkgis¹ jMkd +

1

2
Kijkls¹iMjds¹kMldJ

3eik·rd3r . s80d

Since we do not consider an external magnetic field in the
following, we can assume that the magnitude of the magne-
tization is constant. In this case the coupling tensorKijkl
takes a form similar to the known Frank elastic tensor,
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Kijkl =
1

2
K1sdi j

'dkl
' + dil

'd jk
'd + K2mpepijmqeqkl + K3mkmidl j

',

s81d

while the tensorcijk has the form discussed in Sec. II B,

cijk = scimiml + c'dil
'del jk . s82d

We introduce a new coordinate system in analogy to the
one introduced by Brandet al. [14] for superfluid3He-A,

ê1 =
k − sk ·mdm
uk − sk ·mdmu

, s83d

ê2 = m 3 ê1, s84d

ê3 = m. s85d

One can expand the momentum densityg and the change of
the direction of the magnetizationdm with respect to this
basis:

g = g1ê1 + g2ê2 + g3ê3, s86d

dm = dm1ê1 + dm2ê2. s87d

It is worth mentioning that the individual components have
different properties under time reversal and parity,

eg1

T = − 1, eg1

P = + 1, s88d

eg2

T = + 1, eg2

P = + 1, s89d

eg3

T = + 1, eg3

P = − 1, s90d

edm1

T = − 1, edm1

P = − 1, s91d

edm2

T = + 1, edm2

P = − 1. s92d

Due to this different transformation behavior, the statics of
the componentsg2 and dm1 are decoupled completely from
the other components. We obtain the inverse susceptibility
matrix of these two variables by taking the second order
partial derivatives of the Fourier transformed energy density
with respect to the appropriate variables,

xi j
−1skd = 1 1

r
+ iM0c'ki

− iM0c'ki M0
2sK1k'

2 + K3ki
2d
2 , s93d

wherei , j P hg2,dm1j.
From Eq.(93) one can derive the static susceptibilities

xg2g2
=

r

N
sK1k'

2 + K3ki
2d, s94d

xdm1dm1
=

1

M0
2N

, s95d

xg2dm1
=

ic'kir

M0N
, s96d

with N=K1k'
2 +K3ki

2−rc'
2 ki

2. Now we will discuss the trans-
verse momentum density correlation function in more detail.
Therefore we determine the limiting cases for either setting
k' or ki to zero first,

lim
k'→0

lim
ki→0

xg2g2
= r, s97d

lim
ki→0

lim
k'→0

xg2g2
=

r

1 − rc'
2 /K3

. s98d

Because we discussed the autocorrelation function of the
transverse momentum density, Eqs.(97) and (98) give the
inertia of the gel against velocity perturbations along the
planes with a normal vector either perpendicular or parallel
to the preferred direction, respectively. In the first case the
usual inertia(Fig. 2) due to mass can be measured while in
the second case(Fig. 3) an increase of the inertia can be
observed.

The inverse susceptibility matrix of the other three com-
ponents is obtained in the same manner and reads

FIG. 2. Perturbation to measurer. The conelike arrows repre-
sent the orientation of the magnetization while the flat arrow repre-
sents the direction of the perturbation.

FIG. 3. Perturbation to measurers1−rc'
2 /K3d−1. Again the

conelike arrows represent the orientation of the magnetization while
the flat arrow represents the direction of the perturbation.
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xi j
−1 =1

1

r
0 + iM0c'ki

0
1

r
+ iM0cik'

− iM0c'ki − iM0cik' M0
2sK2k'

2 + K3ki
2d
2 ,

s99d

wherei , j P hg1,g3,dm2j.
We again obtain the static susceptibilities by inverting this

matrix:

xg1g1
= rfsK2k'

2 + K3ki
2d − ci

2k'
2 rgN−1, s100d

xg3g3
= rfsK2k'

2 + K3ki
2d − c'

2 ki
2rgN−1, s101d

xg1g3
= c'kicik'r2N−1, s102d

xg1dm2
= ic'kirM0

−1N−1, s103d

xg3dm2
= icik'rM0

−1N−1, s104d

xdm2dm2
= M0

−2N−1, s105d

with N=sK2k'
2 +K3ki

2d−rc'
2 ki

2−rci
2k'

2 . In analogy to the case
of the variablesg2 and dm1 we can evaluate the limiting
expressions for the momentum density correlation function
for setting eitherk' or ki to zero, first. One obtains

lim
k'→0

lim
ki→0

xg3g3
=

r

1 − rci
2/K2

, s106d

lim
ki→0

lim
k'→0

xg3g3
= r, s107d

lim
k'→0

lim
ki→0

xg1g1
= r, s108d

lim
ki→0

lim
k'→0

xg1g1
=

r

1 − rc'
2 /K3

. s109d

Here an increase of the inertia can be measured for velocity
perturbations parallel to the preferred direction(Fig. 4) while

for perturbations perpendicular to the frozen-in magnetiza-
tion the usual inertia is observed(Figs. 5 and 6).

It is worth mentioning that there exists a correlation be-
tween the parallel and the transverse components of the mo-
mentum density given by Eq.(102).

C. Field-induced strain

As a last example we want to discuss thek0 dynamics of
the system, if we apply an oscillating external magnetic field
perpendicular to the frozen-in magnetization. In our case we
apply a magnetic field in thez direction(cf. Fig. 7). We again
identify the relevant equations. At first one can neglect all the
dynamic equations for the concentrationc, the entropy den-
sity s, the mass densityr, and the momentum densityg,
because these are true hydrodynamic variables and contain
apart from the time derivative of the variable the gradient of
the current related to that variable. From the quasicurrents of
the remaining variables we consider only the contributions
without gradient terms. We obtain for their reversible parts

FIG. 4. Perturbation to measurers1−rci
2/K2d−1. The conelike

arrows represent the orientation of the magnetization while the flat
arrow represents the direction of the perturbation. FIG. 5. Perturbation to measurer. Again the conelike arrows

represent the orientation of the magnetization while the flat arrow
represents the direction of the perturbation.

FIG. 6. Perturbation to measurer. The conelike arrows repre-
sent the orientation of the magnetization while the flat arrow repre-
sents the direction of the perturbation.
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Yij
R = ji jk

YRWk, s110d

Xi
R = ji j

XRWj + bij
Rhj

M , s111d

Zi
R = − ji j

XRhj
M − jkli

YRCkl + ti j
RWj . s112d

And in the same manner for the irreversible parts

Yij
D = 0, s113d

Xi
D = bijhj

M + ji jWj , s114d

Zi
D = ti jWj + ji j

Xhj
M . s115d

One ends up with a rather complex set of equations. Here we
concentrate on some qualitatively different features due to
the dynamic couplings(and neglect magnetostriction).

After applying an oscillatory external field in thez direc-
tion, an oscillating magnetization in thez direction is in-
duced due to Eqs.(68) and(69). This magnetization leads to
an oscillation of the relative rotations(57), (61), and (62),
where the maximum amplitudes are related by

Ṽy , − jXRa8M0dmz, s116d

Ṽz , jXa8M0dmz. s117d

The relative rotations couple to the strain field(58) and(63)
and therefore lead to an oscillating strain in the plane per-
pendicular to the applied field as well as in the plane spanned
by the frozen-in and the induced magnetization with

exy , D1jYRjXM0dmz, s118d

exz, D1jYRjXRM0dmz. s119d

These shear strains should be experimentally observable with
piezoelectric transducers.

Second, we observe that, apart from the directly induced
magnetization parallel to the applied field, a magnetization in
the third direction, perpendicular to both the frozen-in and
the applied field is induced as well(56) and (59)

M0dmy , bRHz
ext. s120d

This effect differs from the case of isotropic ferrogels studied
by Jarkovaet al. [9] where this effect appears in higher order
of the magnetization, because in this case one has to induce
a magnetization first. Experimentally one can measure these
effects by using Hall probes.

For the last effect the crucial coefficientbR can be calcu-
lated explicitly, using the microscopic theory of linear re-
sponse. In this limit we make use of the results given by
Forster, who used the projector formalism of Zwanzig and
Mori. In the notation of[14] the temporal change of a mac-
roscopic variableai is given by

dȧisxtd = f− ivi js− i = d + si js− i = dgdl jsxtd. s121d

In this notation theli are the thermodynamic forces of the
system. The matrixvi j is called the frequency matrix while
the matrixsi j is called the memory matrix.

At t=0 the external perturbation is switched on, and the
system starts to relax toward the new equilibrium. The initial
time derivativedȧisk ,t=0+d is given by[14]

dȧisk,t = 0+d = − ivi jskddl jskd. s122d

Using the explicit expressions for the dynamic coupling
tensorsbij

R andji j
XR, one obtains for the dynamical equation of

the magnetization

s123d

In the last equation we discarded the contributions of the
irreversible parts of the quasicurrent. This can be done be-
cause the frequency matrixvi j contains the instantaneous
collisionless contributions which are purely reversible[14].

Explicitly, the frequency matrix for the autocorrelation of
the magnetization reads, using Eq.(123),

vMM = 1 0 ibRmz − ibRmy

− ibRmz 0 ibRmx

ibRmy − ibRmx 0
2 . s124d

Using for the frequency matrixvi j of the variablesMi and
Mj the representation

vi jskd =E dv

p
xi j9 =

1

"
E dx

3e−ik·xkfMisr − r 8,t − t8d,Mjs0,0dgl s125d

and taking into account the commutator for the magnetiza-
tion

kfM̂i,M̂ jgl = i"ei jkkM̂kl s126d

we obtain for the frequency matrix in the microscopic theory

vMM = 1 0 iM0km̂zl − iM0km̂yl
− iM0km̂zl 0 iM0km̂xl
iM0km̂yl − iM0km̂xl 0

2 . s127d

Now we can compare these matrices obtained in two dif-
ferent ways. We can conclude that the coefficientbR in thek0

FIG. 7. Sketch of experimental setup. The big conelike arrow
represents the magnetization of the uniaxial gel while the four
smaller arrows represent the direction of the alternating external
magnetic field.
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dynamics and in the linear and homogeneous regime is given
by

bR = M0. s128d

This result is also compatible with the results of Jarkovaet
al. for isotropic ferrogels, because if we setM0 to zero, the
coefficientbR and thus the instantaneous response to the ex-
ternal field vanish.

IV. DISCUSSION AND CONCLUSIONS

Ferromagnetic gels are uniaxial, if the frozen-in magneti-
zation denotes the only preferred direction. Such materials
are potentially very interesting for a variety of applications.
Here we investigate theoretically the thermodynamics and
hydrodynamics of these systems. Uniaxial magnetic gels
show on the one hand similarities to other anisotropic gels,
like nematic elastomers, and to isotropic ferrofluids and fer-
rogels, but the combination of preferred direction, magnetic
degree of freedom, and elasticity makes them unique and
very peculiar.

Prominent features are the relative rotations between the
magnetization and the elastic network, which couple dy-
namically flow, shear, and magnetic reorientation. As a re-
sult, shear flow in a plane that contains the frozen-in magne-
tization induces a rotation of the magnetization, not only
within the shear plane, but also out of the shear plane. This
behavior is qualitatively different from that of other types of
materials. The basic results hold, even if the constant shear
flow is replaced by an oscillating one, which is very likely
done in actual experiments, although the formulas for that
case will become much more complicated.

Another outstanding aspect of the hydrodynamics of this
material is the difference between the mass current density

(mass density times velocity) and the momentum density due
to a nonvanishing magnetization vorticity. Unheard of in
other classical condensed phases, it is known from some
uniaxial quantum fluids, where, however, experiments on
this aspect are impossible. In uniaxial ferromagnetic gels the
static susceptibilities for momentum fluctuations(the long
wavelength limit of the static momentum correlation func-
tions) are given by the(bare) density for some geometries
only, but show an increased renormalized effective density
for other directions.

Finally, we looked at an oscillating external magnetic field
that induces not only an oscillation of the magnetization in
the direction of the external field, but also oscillating shear
strains. The latter are found in planes that contain the
frozen-in magnetization and either the external field or the
third, perpendicular direction. In addition, the external field
also induces a magnetization component perpendicular to
both the field and the frozen-in magnetization. The reversible
transport coefficient that governs this effect can be calculated
by referring to the microscopic quantum mechanical spin-
type dynamics for magnetic moments and using the projector
formalism to evaluate the frequency matrix. This coefficient
vanishes with the magnetization and is, thus, characteristic
for this type of ferromagnetic gel.
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