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Structural analysis of a dipole system in two-dimensional channels
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A system of magnetic dipoles in two-dimensiorfdD) channels was studied using Brownian dynamics
simulations. The dipoles interact with a purely repulsivépotential and are confined by two hard walls in one
of the dimensions. Solid crystals were annealed in the 2D channels and the structural properties of the crystals
were investigated. The long-ranged nature of the purely repulsive dipoles combined with the presence of hard
walls led to structural deviations from the unboundédfinite) 2D dipolar crystal. The structures in the
channels were characterized by a high density of particles along the walls. The particles along the wall became
increasingly localized as the channel width was increased. The spacing of the walls was important in deter-
mining the properties of the structures formed in the channel. Small changes in the width of the channel
induced significant structural changes in the crystal. These structural changes were manifested in the density
profiles, defect concentrations, and local bond-orientation order of the system. Oscillations in the structural
properties were observed as the channel width was increased, indicating the existence of magic-number chan-
nel widths for this system. As the channel width was increased the properties of the confined system ap-
proached those of the unbounded system surprisingly slowly.
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I. INTRODUCTION plored but also because it serves as a model for understand-
) ) ) ing self-assembly in microchannels. It is fundamentally im-
Magnetorheologica(MR) fluids are suspensions of col- portant to understand how parallel flat walls affect the

loids which acquire dipole moments under application of aproperties of the 2D dipolar crystal in order to understand
magnetic field. Traditionally these colloids have been used istructure formation of MR fluids in rectangular channels.
macroscopic applications such as controllable dampers, Several experimental studies have been done on colloidal
where the ability to tune their bulk rheological propertiessystems in 2D confined by parallel wafs6—18§. In the first
with a magnetic field has been exploited. Dogeal. [1] study [16], done on a dusty plasma system, the authors ob-
have recently shown that the microstructure formed by theserve that the crystal forms layers in the direction parallel to
colloids in thin gaps can be used to efficiently separate DNAhe walls. They observe that the layered structure decays
in microfluidic devices. Further fundamental understandinggway from the walls in wide channels and that oscillations
of the self-assembly in confined geometries will allow for occur in the width of the density peaks as the channel width
greater control of the porosity of colloidal matrices used foriS increased. The most important observation in this study is
biomolecule separations in microfluidic devices. Addition-the anisotropic diffusion of the colloids, enhanced in the di-
ally, it will lead to design principles for many other applica- rection parallel to the walls and constra|_ned in the direction
tions such as field responsive fabr@3. Here we investigate Perpendicular to the walls. The system in the dusty plasma
the self-assembly of MR fluids in two-dimensioné2D) §tudy differs in several important ways from the system stud-
fielzﬂ-?ggpgg;?\?éscgﬁgﬁj i%)iag]'ﬁgstth; tzr:?a Sﬁg;l?sr?:??g O,fa?ligned in 'the_direction_normal to the pIane_ of o'bservation.

Co : o hese chains interact differently than repulsive dipoles caus-
cused on the solid-liquid phase transition in the unbounde

L o g significant differences between the behavior of dusty
systgm(an '”f'”'t‘? 2'.3 systemto try and determine if the lasma system and the one studied here. The other studies
melting process is first order as in 3D systems or secon

. ! ere done on a system of spherical block copolymers con-
order as predicted by theofy—9. Others have studied the 04 b harallel wallg17,18. In these studies, the authors

2D field-responsive colloid system under various Conﬁr.‘e'examine the structure and phase behavior of the system as a
101 d & q iodic 1D &unction of distance from the wall. They find that the walls
r_nelntis[ _th an 93.” mer:nent L;e ;o a perlg_ Ic- EOteﬂ'help to stabilize a solid structure and the structural properties
tia f[ 5. e_o(\j/em ng L eme o these stu |e|s |sdtdat t Sransition to liquidlike behavior as the center of the channel
confinement induces a change In the structural and dynamjg 545 0ached. The channels in this study were three orders

cal behavior of the coIIoida] crystal and the trends depenq)f magnitude larger than the block copolymers so the effects
upon the nature of the confinement. The 2D channel systenk tight confinement were not probed.

is of great interest not only because it is, as of yet, unex- A"5p system, similar to the 2D channel, that has been

studied in detail is confinement of a liquid film in a narrow
slit between two parallel planes. It is well known that liquids
*Electronic address: pdoyle@mit.edu confined in a thin gap form layered structures characterized
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by oscillations in the density profile normal to the confining between the two particleisand j is given byr;, uo is the
planes[19]. The properties of the density profiles of this magnetic permeability of free space, aMdB) is the dipole
system have been shown to depend on the separation of th@oment of an individual colloid and is a function of the
two confining plane$20]. This bears resemblance to the 2D magnetic field strengttB). A dimensionless field strength is
channel system where the confining walls also impart structhen defined as

ture to the confined medium but there are many other rich 3

structural changes induced by the confinement which we will = i<9> 2)
discuss in detail. keT\R/ "’

The orgamzaﬂon of thls'paper' is as follows. In Seg:. I W€ vhereR is the natural length scale for these systems, defined
provide details about the simulations performed in this study, - " o . ; S
In Sec. Il we discuss the structural properties of the 2D2> R=asin 60°. The parametd is the lattice spacing in a

prop
channel system at zero temperatgwehen thermal fluctua-

tions are negligiblg The structure of the system at a finite . . . .
(nonzerQ temperature is investigated in Sec. IV. The Iayer-r.eSpO.ndS to the spacmg_between_ two nglghb(_)rlng latttice
lines in the hexagonal lattice. A lattice line is a line of par-

ing of the colloids at this finite temperature is discussed inticles in the 2D crystal along one of the lattice vectors. The

Sec. IVAar_1d the_proper_ties of the layers closest to the Wa"?attice spacing(a) depends on the number density in the
are further investigated in Sec. IV B. The properties of the ystem[a:(n\s’§/2)‘1’2] where the number density) is de-

crystal in the 2D channel are compared to those of the uns . !
bounded crystal in Sec. IV C. The results and impact of thidined as the number of particles per unit afeaN/A) andA

perfectly hexagonal lattice and the angle 60° is the charac-
teristic angle for a hexagonal lattice. The length séaleor-

study are summarized in Sec. V. is defined as the area available to the centers of the particles.
Therefore, the length scale is written in terms of the number
density as
Il. SIMULATION DETAILS o \-12
The system studied in the present work contains purely R= (En) ' 3

repulsive magnetic dipoles in 2D confined in one lateral
direction between two hard walls. The colloids interact This length scale differs from ones used in previous studies
with the walls only via hard-sphere interactions. This 2D0f the 2D dipolar unbounded systge 24,23 by a constant,
channel system also serves as a preliminary model for studjaut is appropriate for the 2D channel system as discussed in
ing the structural properties of the 3D MR fluid structuresSec. lll. The dimensionless interaction energy in the system
formed in microfluidic devices. In these devices, the strucis defined as
tures are columns of magnetic particles which span the Vii(ri) R\3
height of the channel and repel each other in the lateral di- U :F<—> , (4)
rections. When viewed from the top, the columns can be keT Tij
modeled by a 2D plane containing purely repulsive dipolesand the dimensionless temperature in the system I& 1/
This model fails to capture the effects of chain coalescencgiondimensionalizing the system properties in this way re-
that occur in a truly 3D systeii21], but it serves as a starting sults in the interesting observation that all 2D dipolar sys-
point for understanding the intercolumn structure in thetems at the same temperature behave identically, independent
channel system. of the number density in the system as longRais the only

The MR colloids confined to a plane are modeled as hargelevant length scale in the systghe., d<R) as is the case
spheres with repulsive point dipoles at their centers when thgyr all of the results reported here.
field is directed normal to the plane of the 2D system. The To study the 2D dipole system we used the Brownian
point-dipole approximation for MR colloids in 2D is very dynamics simulation techniqUe6]. The equation of motion

common in the literatur¢6,22 and has been shown to be a js approximated by the stochastic differential equation
good approximation for the magnetic behavior of MR col-

loids [23]. It has even been used to generate meaningful oo 1 [ 2kgT
results in the case where hard walls are present in the system ri(t) = gFSvi(ri(t)) * L&t dwi, 5)

[11,13. Additionally the effects of mutual induction between ) ) ] )
particles in this system are negligible due to the large sepa¥here the inertia of the particles is neglected. The parameter

ration distances between the particles. Therefore, the magYi iS @ Wiener process Withi>:Q a”d<dWquJ>:5i15
netic interactions in the system are dominated by the larg@nd represents the thermal fluctuatiofig(r (1)) is the sum
magnitude of the applied external field. The pairwise dipolaof all pairwise interactions in the system including dipole-

interaction energyV;;) between the colloids is dipole interactions and is the drag coefficient on a single
particle. A simple Euler integration scheme was used for the
d\3 time integration. At the end of a time step, hard-sphere ex-
Vij(rij) = e<r—> , (1) cluded volume interactions were treated by displacing over-

ij lapped particles along the line connecting their centers until
_ _ they are just contacting each other as discussg¢ddh Par-
where e=uoM(B)?/47d® is the energy scale and is the ticles that overlap with the wall were displaced normal to the

diameter of the hard sphere. The center-to-center distanagall until they just contacted the wall. This procedure was
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performed in a pairwise fashion and was iterated until all 10'f - - —

overlaps were removed and then the simulation proceeded to [ s ]

the next time step. In the case of our 2D dipolar system there [ 2F e, 41

were never particle-particle overlaps, only particle-wall over- I "o ™

laps, because the repulsive potential between particles is so I R

large for the field strengths used in our study. tan 1 )
For the simulations of the unbounded system, periodic I L )

boundary conditions were imposed in both thendy direc- ‘@\@

tions and the number of particles was 14 784. The simula- 100k q@%

tions of the channel system had periodic boundary conditions I =8

in they direction and hard-wall boundaries in tkelirection. [ , ,

The number of particles varied from 960 to 3840. Hydrody- 107 10° 10 102

namic interactions were neglected for simplicity as they do @ w

not affect the structural properties of the 2D crystal and they

are screened in thin gaps. A time stépof 7.5X 10°° was

employed where time is made dimensionless &s . . . . . .

=tkgT/{R?. The value{R?/kgT is approximately the time * o o o 0 o b o s e b s 4

necessary for a particle to freely diffuse a unit len§thA

cutoff of 6.9R was used for the dipole-dipole interactions in

conjunction with a linked-list binning algorithrf28] using N

bin sizes slightly larger than the cutoff for the dipole-dipole

interactions. Only interactions with particles closer than the (0) :

cutoff were considered. All of the simulations reported here -~ ; (a) The average dimensionless wall spacing for different

were done_ holding number denS|ty_ constanhaO_.046_2 and  gimensionless channel widths; square symbols correspond to inte-
were confirmed to be converged in system size, time SteRyer channel widths and circle symbols correspond to noninteger
and cutoff. In the channel systems, the width of the channelhannel widths. The dash-dotted line corresponds to the dimension-
is taken to be the space which the center of a particle capss 2D unbounded lattice spacing and the dashed line corresponds
access and therefore the area used in calculating the numhgrthe dimensionless 1D lattice spacing. The oscillations in wall
density is the true area minus two area elemeit wide,  spacing as a function of channel width are continugosey. (b)

one at each wall. In defining the channel width in this man-The crystal aligns with the channel wa{top) and remains hexago-
ner, we remove any system dependence &or d<R. Inthe  nal in the Delaunay triangulatiogbottom) for a dimensionless
unbounded systems, the area is simply the true area. Thuhannel width of 3.

systems were equilibrated fdi=373 and statistics were

taken fort=37.3. Taking statistics over a longer period of tions within the equilibrated crystal. The final internal energy
time did not change the results and therefore was consideratf all the quenched systems for a given channel width did not
unnecessatry. vary by more than 1%.

The 2D unbounded system was carefully simulated using The zero-temperature crystal was observed to align with
14 784 particles in order to determine the dimensionless tenvne of its lattice vectors along the length of the channel,
perature at which the system transitions from a solid to garallel to the confining walls as seen in the top of Fidp)1
liquid. It was determined that above a dimensionless temFrom this observation we note that there should be certain
perature of 0.0672 the 2D unbounded system is a liquid andhannel widths, magic numbers, that are fully commensurate
below a dimensionless temperature of 0.0658 it is a solid, inith the natural spacing of an unbounded crystal aligned in
agreement with the literaturg8]. Between these two tem- the direction parallel to the walls. We will show, however,
peratures, we were unable to converge the simulations béhat these magic numbers are not simply integer multiples of
cause of the diverging correlation lengths that occur near thR, as implied by the alignment of the crystal, but are affected

(@w)

phase transitiori29]. by a number of the properties of the 2D crystal in channels.
A structural characteristic of the zero-temperature structures
IIl. ZERO-TEMPERATURE-ANNEALED STRUCTURES in channels is the dimensionless wall spacagwhich is

defined as the distance between adjacent particles along the
The 2D channel system was annealed from an equiliwalls. In Fig. Xa) the dimensionless wall spacing is seen to

brated liquid state to a very low temperat®/I'=0.02.  follow exactly the 1D lattice spacing for channel widths less
The channel system is found to be in the solid phase at thighan~2. The 1D lattice spacinfdashed line in Fig. ®)] is
temperature. The annealing process was performed at varjhe calculated wall spacing for a constanthannel system
ing rates and with sequential heating and cooling to ensura which the particles are aligned in two rows, one at each
an equilibrium structure at a temperature of 0.02. The systerwall. In the large channel limit the wall spacing approaches a
was then quenched to zero temperature by setting the staonstant, showing the behavior of a semi-infinite system. The
chastic term in Eq(5) to zero. This turns off the Brownian value that is approached-0.83a) is actually less than the
motion, effectively causing 17 to go to zero. This quench- spacing of the 2D unbounded crystal meaning that the line
ing was done from a variety of different starting configura-density of the lattice line on the wall is larger than that of a
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lattice line in the unbounded 2D crystal. The line density is SV 150
defined as the number of particles per unit length along a ST 500
lattice line and is a constant equal &' along the lattice

lines of an unbounded 2D lattice. The increased line density SLnenn 231

along the wall is explained by noting that the walls remove
some of the energetic penalty associated with a higher line e
density. In the unbounded 2D crystal, increasing the line den- SRR aag
sity of a row in the crystal results in a higher interaction ' '
energy between the particles in that ragie., the spacing
between particles in the row is redugexhd a higher inter-

action energy between that row and adjacent rows. In the T
channel system, the row of particles at the wall has onlyone 7w
neighboring row, not two, so the energetic penalty for in-

3.00

4.00

) ) . ) 4.62
creasing the line density along the wall is lower than for the
unbounded 2D crystal. The consequences of the higher den-
sity of particles along the wall will be discussed further in 5.00
Sec. IVA.
In Fig. 1(a) there is a nonmonotonic decrease in the wall 5.15

spacing characterized by a series of decaying oscillations as
the channel width is increased. The largest oscillation occurs
near a channel width of 2. For very narrow channels, the
e e o, it 21 SR .2, Conutionsnpshos,cherne i, an o
. . density profiles for selected dimensionless channel widths.
particles to be in the center of the channel so they leave the
walls, thus increasing the wall spacing. As the channel width ) o .
is further increased and the center of the channel is filled i$onfining planeg20]. Figure 2 shows equilibrium density
with particles, it becomes less energetically favorable for therofiles transverse to the walls for a selection of channel
spacing decreases following approximately the 1D scalingthey show a well-defined layered structure parallel to the
This process continues as the channel width is increased bi#lls similar to the aforementioned dusty plasma stlic).
the walls become farther removed from the center of thelhis layered structure is evident even for channel widths of
channel and therefore are less affected by the changes occdfQ0, implying that the system is in a solid state with rows
ring there. Thus, the oscillations in the wall spacing deca)}h.at are parallel to the walls of the channel for all channel
after a channel width of-5 where there is a buffer of at least Widths. _
one lattice line between the wall and the center of the chan- The sharpness of the peaks in the center of the channel
nel. These oscillations are continuous as shown by the insé@ries nonmonotonically as the channel width is increased.
in Fig. 1(a), indicating that the addition of a new row in the The broadening and sharpening of 'ghe peaks alway_s occurs
center of the channel is a continuous process as the chanrigar the center of the channel, showing that the layering near
width is increased. The presence of these oscillations indithe walls is weakly affected by the increase in channel width,
cates that the channel width plays an important role in thdut the structure in the_ center of the channel qnd(_argoes large
types of structures that form in the 2D channel system. Th€hanges. The change in the structural properties in the center
oscillations in the wall spacing occur with a periecR but  ©f the channel will prove important in characterizing the 2D
the maxima and minima do not occur at integer multiples ofdipole system in channels.

R. This shows that the magic numbers are not simply integer The most unique feature of the density profiles is the
multiples of R. large peak in the profile occurring at each wall which was

not observed in the dusty plasma study]. This peak is

the result of the convolution of two collaborating effects.
IV. LOW-TEMPERATURE-ANNEALED STRUCTURES The increase in channel width causes an increase in the
line density of the particles along the wall as seen in

o B o betame b ananfi0 18 Additonly he ong ranged nature of e ipole-
P ' P d]ipole interaction results in a net increase in the localiza-

the 2D channel system was annealed to a temperature . : .
1/I'=0.062 as in Sec. lll. This temperature is in the :solid?IOn of the particles at the walls as the channel width is

phase for the unbounded 2D system. increased.

N

6.00

B. Transverse mobility at walls

A. Density profile The most direct measure of the transverse mobility of the

One measure that has been widely used to characterizgarticles localized at the wall is their mean-squared displace-
the structure of a system confined between parallel planes ient (MSD) in the direction normal to the walAX*(7))
the equilibrium density profile of that system normal to thewhereT is the dimensionless lag time. The wall particles are
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107 0010 potentia) and p, is the line density of the row. This defini-
i =7 ] tion of the potentials approximates the rows neighboring the
@1 A 5 0.005 f-----=s=ssmmome ] walls as a continuum. This approximation introduces some
=10 g 4 3 error into the quantitative prediction for the MSD but does
?g]? 0.000 ] not affect the qualitative nature of the scaling. After the in-
T 10° 05 1~0 15 20_ tegrations, the potentials become
................. T
g E ................... 2 E - - ZFRPL
?/1'\ I 1 Vneal(s‘(aw) = ~\2! (9)
2 104k EE ALY | €-%)
= F »“&‘ﬁ"l“‘ﬁ.ﬂ ................... 3
e ] ~ - , 11
10 s Vi(X, W) = 2I'Rn ———. (10
10° 10' 102 2Z-X W-%
w The dimensionless MSD in Fig. 3 is much smaller than

one for all channel widths and, therefore, the potential can be

FIG. 3. Plateau value of the mean-squared displace(M8D) expanded to first order ne&r0 as

of wall particles in the direction normal to the wall for selected
dimensionless channel widths; square symbols correspond to inte- IV TV =

ger channel widths and circle symbols correspond to noninteger VW) ~ AW,S) + BW.O)x, (11)
channel widths. The value gfA%%)(») is taken from an extrapola- where

tion of the simulation data. The dotted line is the approximation

derived for the MSOEq. (19)] (without the constant termBottom AW, = 2I'Rp. n 21"R2n<i _ 1) (12)
left is a trace of the particle motion near the wall in a channel width ' T2 e '

of W=10, for a lag time ofr=3.73, showing constrained motion at

the wall. The top inset shows the MSD versus lag time for three 4TRp 1 1
channels: W=3 (dashed ling W=10 (dotted ling, and W=100 B(W,C) = —; L+ 21“R2n<—2 - ~—) (13
(solid line). c 4 W

defined as particles located within a distarRe from the The average MSD is given by the expression

wall. The MSD of the wall particles was observed to ap- (AX®)(W,B) = ((X(7) = %(0))*)(W,©). (14)
proach a plateau at long lag timésig. 3, insef, implying ) o )

that the particles are localized at the wall for significant!n the long-time limit Eq.(14) can be written as

lengths of time. Eventuall_y, the wall particles will migrate lim (AS)(W,8) = 262 (W, ) - 2(04W.T). (15)
away from the wall but this was only rarely observed over Foo

the time scale of observation in Fig. 3. Additionally, this

escape became increasingly unlikely as the channel widtﬁhIS expression can be written as the integral

2

was increased. It was observed that the plateau value of the & _ €

MSD decreases as the channel width is increa§égl 3), f e A B f Ke A Bk
implying that the wall particles become more localized. This lim (A% (W.8) = 2 0 -2 0
increased localization is a direct result of the long-ranged 7« ® ABX o AEy
nature of the dipole interactions, combined with the presence fo e X fo e X

of a hard wall, and contributes to the large peaks at the walls
in the density profiles. In the limit of large channels, the (16)

MSD approaches a constant with a correction of Ofiet.  gjnce the Boltzmann weighting goes to zero quicklyXas
This form for the MSD is expected when the potential near;

h ls i ; d by th ¢ daf increases, the limite) of the integration can be taken to
::oitwt?u;ols approximated by the sum of a near and a arnfinity. The average MSD displacement then becomes

T (@) = o5 - = =

V(‘S’(,W) T ~ > ~ —_—-— =,
= VnealX: W) + Via(X,W). (6) 00 B2 BZ2 B2

keT

17

From the density profiles in Fig. 2 the position of the first

The two parts of the potential are defined as peak away from the wall¢) can be calculated as a function

~ L ” dy of the channel width. This dependence is shown in Fig. 4 and
Vneat(;(lw) = 1_‘RPL . [(E _~)~()2 +')72]3/2’ (7) is found to be
~ 1.0
- W dydX C=1.0+—. (18
2 w
Vfarc(uW) I'R nfzé . [(X _.).2)2 +-y2]3/2: (8)

Equation(18) implies that the separation between the row at
wheret is thex position of the first row away from the wall the wall and the next row away is approximately equal to the
(the arbitrary cutoff between the near and far parts of thdattice-line spacing in the unbounded 2D crygf which is
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2_0: T T T T 150 ey -

T 2.00
: 2.31
05fF —
o.o: , . . ) 3.00
0.0 0.1 0.2 0.3 0.4 0.5
1/
WA A
340 sl wfmmpenis

FIG. 4. x position of the first peak in the density profile for
selected channel widths; square symbols correspond to integer
channel widths and circle symbols correspond to noninteger chan-

nel widths. The dotted line is a linearfit to the data showing the 4.00 m
functional form of€ in the limit of largei. : WA Wby

an intuitive result. The functional form af is important in
determining how the MSD behaves as a function of the chan-
nel width. Combining Eqs(13), (17), and(18) and expand-
ing in the limit of largeW gives the approximate form for the
average MSD as

A St i
. o e 8 Rn+12p 1 4.62  seneumipsabiumdin i
lim (AX)(W,T) = ( + ) e
Nim (W) =~ fore R 8p)2\ - T Rn+ 8o,
(19
The result of this analysis is plotted as a dotted line in 5.00

Fig. 3 (without the constant terjnand is seen to predict
the correct scaling behavior. The quantitative error in the
prefactors is introduced by the many approximations
made during the derivation of the MSD dependenceion
Importantly, the derivation of the MSD dependence shows
that the interactions of the wall particles with the particles in
their immediate vicinity(the neighboring royware the domi-
nant factor in determining the behavior of the MSD as a
function of the channel width. The interactions with the par-
ticles farther away give higher-order corrections to the MSD
scaling.

The data in Fig. 3 also show oscillations in the MSD as a
function of the channel width. As in the case of the wall FIG. 5. Density of particles for selected dimensionless channel
spacing [Fig. 1(a)] the oscillations decay after a channel widths (W=1.50-6.00 for a total time of7=37.3 showing the os-
width of ~5. This implies that effects of the changes occur-cillations between a loose and tight center row as the channel width
ring in the center of the channel are being shielded from thés increased. Each point represents the position of a particle and
wall particles. There is a regular periodicity of the oscilla- points were drawn evefy=0.373.
tions which is~R, implying that there are magic-number
channel widths and in this case the maxima in the MSD datincreased number of particles occupying the center of the
occur at integer multiples oR for channel widths greater channel results in a decrease of the MSD of the wall par-
than 2. ticles. For a channel width of 2.31 there is a well-defined row

Figure 5 shows the physical changes occurring in thén the center of the channel, forcing the wall particles to
structure that give rise to the first oscillation. For channelremain near the wall, thus causing a minimum in the MSD at
widths less than-2 there are two rows of particles, one on the wall. As the channel width is further increased, the center
each wall. As the channel width is increased, the two rows ofow begins to divide into two rows, causing a very loose
particles have weaker interactions, leading to an increase istructure to exist in the center of the channel. This loose
the MSD plateau of the wall particles. Near a channel widthstructure allows the particles at the wall to fluctuate away
of 2, particles begin to occupy the center of the channel. Thenore easily, resulting in a maximum for the MSD at a chan-
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nel width of 3. Above a channel width of 3, the rows in the 10° T
center of the channel begin to form and become distinct and P
at a channel width of 3.46 there are two distinct rows in the
bulk, both of which force their respective neighboring wall
particles to remain near the wall. A similar process is re-
peated as the channel width is increased from 3.46(taak
MSD) to 4.62(min MSD). The intermediate channel width
of 4.15 shows a large amount of disorder in the bulk, so it is
surprising that a maximum in the MSD does not occur at
this channel width. However, in this channel, the first rows
in the bulk remained well defined and therefore do not allow 10° I .
the wall particles to fluctuate away from the walls. At a 10° 10 10
channel width of 5 the row in the center of the channel again (a) I

begins to broaden and the MSD at the walls passes through

a maximum. However, in this case, the first row in from 0.4F
the wall is left relatively unchanged by this process and ;
therefore the oscillations in the MSD of the wall particles
are diminished for channel widths greater than 5. In Fig. 5
this effect is further illustrated by the channel widths of 4.15
and 5.15 where it is evident that there is disorder in the
center of the channel but the first rows in the bulk remain
well defined.

107§

102E

{Caet) (W) — (Caer) (00)

0.3f ° 3

(o]

{Caet) ()

01F .
C. Structure analysis F e

The analysis of the density profiles and the MSD at the 0'8_00 0.05 0.10 0.15 0.20
walls leads to the observation that the structural changes that 1/
take place in the crystal as the channel width is increased are
occurring predominantly in the bulk for large channels. The FIG. 6. (a) Defect concentration for selected dimensionless
structural changes in the bulk in turn affect the properties othannel widths; square symbols correspond to integer channel
the wall particles. In order to further understand the effect ofwidths and circle symbols correspond to noninteger channel widths.
channel width on the structure of the 2D crystal, it is necesThe dotted line is the prediction given by E4) (without the
sary to measure the properties of the whole crystal, not justonstant term (b) The defect concentration approaches a constant
the properties at the walls. One measure of the structure of @ the channel width increases. The dash-dotted line corresponds to
2D crystal is the defect concentration. For an unboundeéhe equilibrium defect concentration in the unbounded system at a
system of dipoles in 2D the structure is purely hexagonafemperature of 17=0.062.
with each particle having six neighbors. Defect sites in that
crystal are defined as sites which have more or less than theting that although the channel walls do impart a very
usual six neighbors. For wall particles in a channel, a defechice layered structure near the walls, that structure is not
is defined as a particle that would have more or less than sigerfectly hexagonal because the line density of the particles
neighbors if the wall were not present. This translates tat the wall differs from that in the adjacent row. Therefore,
defects at the wall being defined as particles with more othe wall spacing is not commensurate with the bulk crystal
less than four neighbors since a wall particle with four neigh-spacing and as a result defects occur near the walls. For
bors is equivalent to a nondefect site in the unbounded 2@he narrow channels, the wall particles comprise a large por-
case. This can be seen in the Delaunay triangle diagram ition of the system and therefore their higher defect con-
Fig. 1(b) where the crystal is triangular and each wall par-centration dominates the overall defect concentration of the
ticle has four neighbors. For the nonwall particieslk par-  system.
ticleg) in the channel system, defects are defined in the same The behavior of the defect concentration as a function of
way as they are in the unbounded 2D crystal. The concentrahe channel width in Fig. @) is predicted by a simple argu-
tion of defect sites can be used to determine the state of th@ent. The concentration of defects is given by a bulk contri-
system[30,31], but here we are interested in using the defectbution and a wall contribution:
concentration as a measure of how the channel system differs
from the unbounded system.

The defect concentration as a function of channel width ~ Ngef Ngebe e NY
is shown in Fig. €a). Surprisingly, the defect concentration Cael(W) = N NI NN
increases as the channel width is decreased. This is counter-
intuitive because the channel geometry is shown to stabilize
layered structure near the walls as shown in the densitywhereN and Ny are the total number of particles and de-
profiles (Fig. 2). These two observations are reconciled byfects in the system, respectively. The paramei&rsnd NV

(20)
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10° F j ~ b w b 2
- CedW) = Cdef(oc) + [chef(oo) - Cdef(oo)]mv (24)

= in the limit of large channels. The values 6f() and
== 10" Cye{>) were obtained by extrapolating the simulation data
£ e von ] in the channels. This approximatigoonstant plus correc-
- S e b0 a8 Sy §s 0o oo ] tion of order ') is seen as a dotted line in Fig(a and
36000000 000000 xE ok 00 0 s, additionally the total defect concentration is observed to
§ 0 X 00 W o s o x € s oo kb 000K ] approach the unbounded limit of 0.02 exactly as the channel
102 . width gets very large in Fig.(6). This observation implies
10° 10" 102 that the defect properties of the channel system approach

_ the unbounded system in the limit of large channels, as
w expected. Even for large channels, however, there is still a
FIG. 7. Defect concentration at the wall for selected dimensionJarge concentration of defects at the walls as seen in Fig. 7.
less channel widths; square symbols correspond to integer channEh€ concentration of wall defects goes to a constant in
widths and circle symbols correspond to noninteger channel widthdhe limit of large channels. The value that the wall-defect
The inset is a snapshot near the wall for a dimensionless channélensity approache¢0.18 is much larger than the value
width of 50 showing coordination of nearest neighbors; open thirthat the bulk-defect density approach@02. The cause
circles correspond to sixfold-coordinated partiqlesfourfold if on ~ of this higher defect density can be seen in Fig(inse)
a wall), solid circles correspond to fivefold-coordinated parti¢es ~ where there are stable dislocations along the length of the
threefold if on a wall, and X symbols correspond to sevenfold- wall. In the unbounded system, a dislocation is defined as a
coordinated particle¢or fivefold if on a wal). pair of neighboring particles with five and seven neighbors,
respectively. Along the wall in the channel system, a dislo-
are the number of bulk and wall particles, respective|y_Cati0n is defined as a wall particle with three or five neigh-
Again, the boundary between the bulk region and the walbors neighboring a bulk particle with seven or five neigh-
region is defined as a distanB¢2 away from the walls. The bors, respectively. Along the wall, 18% of the total wall
ratiosNgef/Nb andNY./N" can be approximated as constantsparticles are part of a dislocation and are the cause of the
equal to the unbounded system defect density and the senfligher density of defects at the wall. The dislocations along
infinite wall-defect density, respectively. The wall-defectthe walls are spaced evenly, which is a consequence of the
structure is shown in Fig. finse) where the defects along differing line densities along the wall and in the first row.
the walls are always accompanied by another defect in th&he different line densities force wall particles and their
first row of the bulk. Taking this into consideration, each neighboring row to form dislocations at regular intervals in
wall defect in the semi-infinite limit actually induces another order to minimize the energy of interaction between these
defect in the bulk and therefore the semi-infinite wall-defecttwo rows.
density must be doubled. Therefore, the total defect concen- The oscillations in defect concentration as a function of
tration is approximated as channel width decay much more slowly than the oscillations
in the wall spacing or MSD. The splitting of the center row
N " :nto two rows as ;he chankr:el width isf irr:creﬁsed (I:ausde§ a
=~y __ b N7 w N& oose structure to form in the center of the channel and In-
CaefW) =~ Cae ) N + 2Caef) N’ D) creases the defect concentration in the channel. When there
are well-defined rows in the center of the channel, the struc-
o ) .. ture there is very regular and therefore the defect concentra-
Based upon the deflmtlpn of the wall region, the two ratios intjon in the channel is lower. As in the case of the wall spac-
Eq. (21) can be approximated as ing and the MSD, the periodicity of the oscillations in the
defect density is-R but in this case the maxima and minima
NY  2p, 2R 2 do not occur at int_eger multiples &. The osci_llat_ion_s in
— =z —— = (22)  defect density persist for large channéls>10), indicating
N nw  0.83v 0.8 that the structure in the center of wide channels is still
strongly influenced by the channel width. At the walls, how-
ever, the oscillations in the wall-defect concentration decay
NP _ 2 by a channel with of~5. The combination of these two
Nl ' (23 observations leads to the conclusion that the long-lived os-
cillations in total defect concentration are due to bulk contri-
butions and not the walls. Therefore, the structural changes
The parametep,, is the line density along the wall and is due to changing channel width are predominantly manifested
equal t0(0.83)™* (from Sec. Il) for large channels. The in the center of the channel and the structure near the walls is
factor of 2 comes from the two walls. Therefore the totalinfluenced in a secondary manner. The long-lived nature of
concentration of defects is approximated as the oscillations indicates that defect concentration is a very
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10° : ] sometimes surprising structural properties. This system has
not been explored in the literature and it is important in
further understanding the effects of confinement on colloidal
systems. The alignment of the crystal in the direction of the
walls is expected for any confined colloidal system; however,
the large magnitude of the wall peaks in the density profile is
a unique property of the long-ranged nature of the particle
interactions. The spreading of the peaks in the center of the
channel, for channel widths not commensurate with the natu-
ral crystal, indicates a loss of structure in that region. The
10" . defect concentration and local bond-orientational order in the
10° 10" 102 channel confirm that the local structure is disrupted in these
~ channels. The oscillations in all of the structural properties
w indicate that the structure of the crystal in the 2D channel

FIG. 8. Average local bond-orientation order for selected chanSystéem can be altered by slight changes in the channel width.

nel widths; square symbols correspond to integer channel Widthg_his_ is a very important observation for any application that
and circle symbols correspond to noninteger channel widths. ThE highly dependent on the type of structure in the channel.

2, ~ 1

dotted line corresponds to the value @W4|) for an unbounded Additionally, the slow approactw ) of the system proper-

system at a temperature of [1#0.062. ties to their unbou_nded values indicate that_ channel-like con-
finement, even fairly large channels, drastically changes the

. . structural properties of the 2D dipolar crystal.

sensitive measure of the effects of channel width on the crys- The structural analysis of the dipole system in 2D chan-

tal :Hgfrfgﬁa:&é??ng?faqinnel' the nature of the structure of thenels shows many similarities to other studies of confined 2D
9 systems. Wall-induced layering is observed in this system

2D_ crystal is the. average local bond-orientation ordér|). _analogous to the layering observed in a dusty-plasma study
This parameter is a measure of the angles between a parncﬁl%] and the shell structure in circular confinemefite—14.

and its nearest neighbors. It is defined as However, in the case of repulsive magnetic dipoles there is a
higher density and localization at the walls in the 2D channel

(IWel) (w)

1N ym system than in the dustyplasma system. The increased den-
(| Wqly = == %% (25) sity is the cause of the unique structural properties that occur
N M=y in the 2D crystal near the wall, such as evenly spaced stable

dislocations. Extreme localization of the wall particles has
wherem is the number of neighbors for a given particle andbeen observed in hard circular confinement studies with
6, is the angle between the vector connecting the particle andng-ranged repulsive interactior{d0]. However, the in-
its kth nearest neighbor and an arbitrary reference axiscreased localization as a function of the channel width is an
When the lattice is perfectly hexagongVe[)=1. Addition-  important observation in this study in that it shows how the
ally, if the lattice is six fold coordinated and has few defects,addition of walls continues to influence the behavior of the
it can still be deformed by the presence of the wdlis  System, even for large channel widths. Similar to the dusty-
shown by the Delaunay triangles in Figbjl, causing(|¥¢) ~ Plasma study, order-disorder transitions were observed in the
to deviate from a value of 1. The average local bond-channel by observing the alternate sharpening and broaden-
orientation order is shown in Fig. 8 as a function of channeind of the density peaks as the channel width was increased.
width. For very narrow channeilg< 2, there are large oscil- However, in the case of the dipole interactions, the wall peak
lations in(|W¢|) due to the structure switching back and forth actually increases in magnitude as the channel width is in-
as the channel width is increased from a nicely hexagondi'®@sed due to the long-ranged nature of the interparticle
lattice to a triangular lattice with angles that deviate fromNteractions and the presence of the hard wall. Also, the
60°. The average value ¢¥¢| approaches the value for the sharpening and broadgnlng of the peaks only occurs near'the
unbounded system with a correctiar®. For channel widths center of the channel in the case of dipolar interactions, in-

greater than 2, the oscillations {f¥¢|) are well correlated d;]catlngl tr;]at the st_ruc_th_Jre (:If the_:tr::rysltal :_n rt:t]e r::enter of me
with those for the defect concentration. This correlation in—C annel changes significantly with only slight changes in the

dicates that the oscillations ifi¥¢|) are due to defects and channel width. The oscillations in the structural properties as
6

not to the deformation of the angles in a triangular Iatticea function of the channel width occur with a regular period
o 9 9 ~R, indicating that there are certain regular intervals of
from the normal 60°.

channel widths, magic numbers, that are commensurate with

the natural structure of dipolar particles in 2D channels.
V. SUMMARY These magic numbers do not occur at integer multiple®, of

as expected, but are influenced by such system properties as

A structural analysis has been performed on a system dahe high density at the walls. This observation is important in

particles interacting with a purely repulsive dipolar interac-that it indicates that there is an appropriate, yet complex,
tion confined in 2D channels. The application of parallel pla-methodology for predicting the structures that will form in
nar walls to the system of 2D dipoles results in unique andhe channel system.

061408-9



R. HAGHGOOIE AND P. S. DOYLE PHYSICAL REVIEW E70, 061408(2004)

Other studies on the structure and dynamics of 2D dipolenental structural properties of self-assembled dipole systems
systems under confinement have shown that the nature of thie 2D channel geometries.
melting transition is altered due to the confinement
[10-12,14. The structural properties of these confined sys-
tems have a strong influence on the nature of the phase ACKNOWLEDGMENTS
transition—where it begins and how it proceeds. In the case ) )
of 2D channels we have observed structural properties of the This research was supported by, or supported in part by,
Crysta| which, in the context of previous stud[@9-14, will the U.S. Army through the Institute for Soldier Nanotech-
likely prove important in studying the phase transition in thenologies, under Contract DAAD-19-02-D-0002 with the U.S.
2D channel system. These other interesting properties of thermy Research Office. The content does not necessarily re-
2D channel system will be discussed in future work. Theflect the position of the Government and no official endorse-
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