
Structural analysis of a dipole system in two-dimensional channels

Ramin Haghgooie and Patrick S. Doyle*
Department of Chemical Engineering and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA
(Received 1 July 2004; published 17 December 2004)

A system of magnetic dipoles in two-dimensional(2D) channels was studied using Brownian dynamics
simulations. The dipoles interact with a purely repulsiver−3 potential and are confined by two hard walls in one
of the dimensions. Solid crystals were annealed in the 2D channels and the structural properties of the crystals
were investigated. The long-ranged nature of the purely repulsive dipoles combined with the presence of hard
walls led to structural deviations from the unbounded(infinite) 2D dipolar crystal. The structures in the
channels were characterized by a high density of particles along the walls. The particles along the wall became
increasingly localized as the channel width was increased. The spacing of the walls was important in deter-
mining the properties of the structures formed in the channel. Small changes in the width of the channel
induced significant structural changes in the crystal. These structural changes were manifested in the density
profiles, defect concentrations, and local bond-orientation order of the system. Oscillations in the structural
properties were observed as the channel width was increased, indicating the existence of magic-number chan-
nel widths for this system. As the channel width was increased the properties of the confined system ap-
proached those of the unbounded system surprisingly slowly.
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I. INTRODUCTION

Magnetorheological(MR) fluids are suspensions of col-
loids which acquire dipole moments under application of a
magnetic field. Traditionally these colloids have been used in
macroscopic applications such as controllable dampers,
where the ability to tune their bulk rheological properties
with a magnetic field has been exploited. Doyleet al. [1]
have recently shown that the microstructure formed by the
colloids in thin gaps can be used to efficiently separate DNA
in microfluidic devices. Further fundamental understanding
of the self-assembly in confined geometries will allow for
greater control of the porosity of colloidal matrices used for
biomolecule separations in microfluidic devices. Addition-
ally, it will lead to design principles for many other applica-
tions such as field responsive fabrics[2]. Here we investigate
the self-assembly of MR fluids in two-dimensional(2D)
channels using Brownian dynamics simulations.

Many authors have examined the 2D self-assembly of
field-responsive colloids[3–6]. Most of the work has fo-
cused on the solid-liquid phase transition in the unbounded
system(an infinite 2D system) to try and determine if the
melting process is first order as in 3D systems or second
order as predicted by theory[7–9]. Others have studied the
2D field-responsive colloid system under various confine-
ments. Most of this research has focused on circular confine-
ments[10–14] and confinement due to a periodic 1D poten-
tial [15]. The overriding theme of these studies is that the
confinement induces a change in the structural and dynami-
cal behavior of the colloidal crystal and the trends depend
upon the nature of the confinement. The 2D channel system
is of great interest not only because it is, as of yet, unex-

plored but also because it serves as a model for understand-
ing self-assembly in microchannels. It is fundamentally im-
portant to understand how parallel flat walls affect the
properties of the 2D dipolar crystal in order to understand
structure formation of MR fluids in rectangular channels.

Several experimental studies have been done on colloidal
systems in 2D confined by parallel walls[16–18]. In the first
study [16], done on a dusty plasma system, the authors ob-
serve that the crystal forms layers in the direction parallel to
the walls. They observe that the layered structure decays
away from the walls in wide channels and that oscillations
occur in the width of the density peaks as the channel width
is increased. The most important observation in this study is
the anisotropic diffusion of the colloids, enhanced in the di-
rection parallel to the walls and constrained in the direction
perpendicular to the walls. The system in the dusty plasma
study differs in several important ways from the system stud-
ied here. The dusty plasma system was not a truly 2D system
in that the “colloids” were actually short chains of particles
aligned in the direction normal to the plane of observation.
These chains interact differently than repulsive dipoles caus-
ing significant differences between the behavior of dusty
plasma system and the one studied here. The other studies
were done on a system of spherical block copolymers con-
fined by parallel walls[17,18]. In these studies, the authors
examine the structure and phase behavior of the system as a
function of distance from the wall. They find that the walls
help to stabilize a solid structure and the structural properties
transition to liquidlike behavior as the center of the channel
is approached. The channels in this study were three orders
of magnitude larger than the block copolymers so the effects
of tight confinement were not probed.

A 3D system, similar to the 2D channel, that has been
studied in detail is confinement of a liquid film in a narrow
slit between two parallel planes. It is well known that liquids
confined in a thin gap form layered structures characterized*Electronic address: pdoyle@mit.edu
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by oscillations in the density profile normal to the confining
planes[19]. The properties of the density profiles of this
system have been shown to depend on the separation of the
two confining planes[20]. This bears resemblance to the 2D
channel system where the confining walls also impart struc-
ture to the confined medium but there are many other rich
structural changes induced by the confinement which we will
discuss in detail.

The organization of this paper is as follows. In Sec. II we
provide details about the simulations performed in this study.
In Sec. III we discuss the structural properties of the 2D
channel system at zero temperature(when thermal fluctua-
tions are negligible). The structure of the system at a finite
(nonzero) temperature is investigated in Sec. IV. The layer-
ing of the colloids at this finite temperature is discussed in
Sec. IV A and the properties of the layers closest to the walls
are further investigated in Sec. IV B. The properties of the
crystal in the 2D channel are compared to those of the un-
bounded crystal in Sec. IV C. The results and impact of this
study are summarized in Sec. V.

II. SIMULATION DETAILS

The system studied in the present work contains purely
repulsive magnetic dipoles in 2D confined in one lateral
direction between two hard walls. The colloids interact
with the walls only via hard-sphere interactions. This 2D
channel system also serves as a preliminary model for study-
ing the structural properties of the 3D MR fluid structures
formed in microfluidic devices. In these devices, the struc-
tures are columns of magnetic particles which span the
height of the channel and repel each other in the lateral di-
rections. When viewed from the top, the columns can be
modeled by a 2D plane containing purely repulsive dipoles.
This model fails to capture the effects of chain coalescence
that occur in a truly 3D system[21], but it serves as a starting
point for understanding the intercolumn structure in the
channel system.

The MR colloids confined to a plane are modeled as hard
spheres with repulsive point dipoles at their centers when the
field is directed normal to the plane of the 2D system. The
point-dipole approximation for MR colloids in 2D is very
common in the literature[6,22] and has been shown to be a
good approximation for the magnetic behavior of MR col-
loids [23]. It has even been used to generate meaningful
results in the case where hard walls are present in the system
[11,13]. Additionally the effects of mutual induction between
particles in this system are negligible due to the large sepa-
ration distances between the particles. Therefore, the mag-
netic interactions in the system are dominated by the large
magnitude of the applied external field. The pairwise dipolar
interaction energysVijd between the colloids is

Vijsr ijd = eS d

rij
D3

, s1d

where e=m0MsBd2/4pd3 is the energy scale andd is the
diameter of the hard sphere. The center-to-center distance

between the two particlesi and j is given by r ij , m0 is the
magnetic permeability of free space, andMsBd is the dipole
moment of an individual colloid and is a function of the
magnetic field strengthsBd. A dimensionless field strength is
then defined as

G =
e

kBT
S d

R
D3

, s2d

whereR is the natural length scale for these systems, defined
as R=a sin 60°. The parametera is the lattice spacing in a
perfectly hexagonal lattice and the angle 60° is the charac-
teristic angle for a hexagonal lattice. The length scaleR cor-
responds to the spacing between two neighboring lattice
lines in the hexagonal lattice. A lattice line is a line of par-
ticles in the 2D crystal along one of the lattice vectors. The
lattice spacingsad depends on the number density in the
systemfa=snÎ3/2d−1/2g where the number densitysnd is de-
fined as the number of particles per unit areasn=N/Ad andA
is defined as the area available to the centers of the particles.
Therefore, the length scale is written in terms of the number
density as

R= S 2
Î3

nD−1/2

. s3d

This length scale differs from ones used in previous studies
of the 2D dipolar unbounded system[4,24,25] by a constant,
but is appropriate for the 2D channel system as discussed in
Sec. III. The dimensionless interaction energy in the system
is defined as

Vijsr ijd
kBT

= GS R

rij
D3

, s4d

and the dimensionless temperature in the system is 1/G.
Nondimensionalizing the system properties in this way re-
sults in the interesting observation that all 2D dipolar sys-
tems at the same temperature behave identically, independent
of the number density in the system as long asR is the only
relevant length scale in the system(i.e., d!R) as is the case
for all of the results reported here.

To study the 2D dipole system we used the Brownian
dynamics simulation technique[26]. The equation of motion
is approximated by the stochastic differential equation

ṙ istd .
1

z
Fs,i„r jstd… +Î2kBT

zdt
dW i , s5d

where the inertia of the particles is neglected. The parameter
W i is a Wiener process withkdW il=0 andkdW idW jl=di jd
and represents the thermal fluctuations.Fs,i(r jstd) is the sum
of all pairwise interactions in the system including dipole-
dipole interactions andz is the drag coefficient on a single
particle. A simple Euler integration scheme was used for the
time integration. At the end of a time step, hard-sphere ex-
cluded volume interactions were treated by displacing over-
lapped particles along the line connecting their centers until
they are just contacting each other as discussed in[27]. Par-
ticles that overlap with the wall were displaced normal to the
wall until they just contacted the wall. This procedure was
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performed in a pairwise fashion and was iterated until all
overlaps were removed and then the simulation proceeded to
the next time step. In the case of our 2D dipolar system there
were never particle-particle overlaps, only particle-wall over-
laps, because the repulsive potential between particles is so
large for the field strengths used in our study.

For the simulations of the unbounded system, periodic
boundary conditions were imposed in both thex andy direc-
tions and the number of particles was 14 784. The simula-
tions of the channel system had periodic boundary conditions
in they direction and hard-wall boundaries in thex direction.
The number of particles varied from 960 to 3840. Hydrody-
namic interactions were neglected for simplicity as they do
not affect the structural properties of the 2D crystal and they
are screened in thin gaps. A time stepdt̃ of 7.5310−5 was
employed where time is made dimensionless ast̃
= tkBT/zR2. The valuezR2/kBT is approximately the time
necessary for a particle to freely diffuse a unit lengthR. A
cutoff of 6.5R was used for the dipole-dipole interactions in
conjunction with a linked-list binning algorithm[28] using
bin sizes slightly larger than the cutoff for the dipole-dipole
interactions. Only interactions with particles closer than the
cutoff were considered. All of the simulations reported here
were done holding number density constant atn=0.0462 and
were confirmed to be converged in system size, time step,
and cutoff. In the channel systems, the width of the channel
is taken to be the space which the center of a particle can
access and therefore the area used in calculating the number
density is the true area minus two area elementsd/2 wide,
one at each wall. In defining the channel width in this man-
ner, we remove any system dependence ond for d!R. In the
unbounded systems, the area is simply the true area. The
systems were equilibrated fort̃=373 and statistics were
taken for t̃=37.3. Taking statistics over a longer period of
time did not change the results and therefore was considered
unnecessary.

The 2D unbounded system was carefully simulated using
14 784 particles in order to determine the dimensionless tem-
perature at which the system transitions from a solid to a
liquid. It was determined that above a dimensionless tem-
perature of 0.0672 the 2D unbounded system is a liquid and
below a dimensionless temperature of 0.0658 it is a solid, in
agreement with the literature[3]. Between these two tem-
peratures, we were unable to converge the simulations be-
cause of the diverging correlation lengths that occur near the
phase transition[29].

III. ZERO-TEMPERATURE-ANNEALED STRUCTURES

The 2D channel system was annealed from an equili-
brated liquid state to a very low temperatures1/G=0.02d.
The channel system is found to be in the solid phase at this
temperature. The annealing process was performed at vary-
ing rates and with sequential heating and cooling to ensure
an equilibrium structure at a temperature of 0.02. The system
was then quenched to zero temperature by setting the sto-
chastic term in Eq.(5) to zero. This turns off the Brownian
motion, effectively causing 1/G to go to zero. This quench-
ing was done from a variety of different starting configura-

tions within the equilibrated crystal. The final internal energy
of all the quenched systems for a given channel width did not
vary by more than 1%.

The zero-temperature crystal was observed to align with
one of its lattice vectors along the length of the channel,
parallel to the confining walls as seen in the top of Fig. 1(b).
From this observation we note that there should be certain
channel widths, magic numbers, that are fully commensurate
with the natural spacing of an unbounded crystal aligned in
the direction parallel to the walls. We will show, however,
that these magic numbers are not simply integer multiples of
R, as implied by the alignment of the crystal, but are affected
by a number of the properties of the 2D crystal in channels.
A structural characteristic of the zero-temperature structures
in channels is the dimensionless wall spacingãw which is
defined as the distance between adjacent particles along the
walls. In Fig. 1(a) the dimensionless wall spacing is seen to
follow exactly the 1D lattice spacing for channel widths less
than,2. The 1D lattice spacing[dashed line in Fig. 1(a)] is
the calculated wall spacing for a constantn channel system
in which the particles are aligned in two rows, one at each
wall. In the large channel limit the wall spacing approaches a
constant, showing the behavior of a semi-infinite system. The
value that is approacheds,0.83ad is actually less than the
spacing of the 2D unbounded crystal meaning that the line
density of the lattice line on the wall is larger than that of a

FIG. 1. (a) The average dimensionless wall spacing for different
dimensionless channel widths; square symbols correspond to inte-
ger channel widths and circle symbols correspond to noninteger
channel widths. The dash-dotted line corresponds to the dimension-
less 2D unbounded lattice spacing and the dashed line corresponds
to the dimensionless 1D lattice spacing. The oscillations in wall
spacing as a function of channel width are continuous(inset). (b)
The crystal aligns with the channel walls(top) and remains hexago-
nal in the Delaunay triangulation(bottom) for a dimensionless
channel width of 3.
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lattice line in the unbounded 2D crystal. The line density is
defined as the number of particles per unit length along a
lattice line and is a constant equal toa−1 along the lattice
lines of an unbounded 2D lattice. The increased line density
along the wall is explained by noting that the walls remove
some of the energetic penalty associated with a higher line
density. In the unbounded 2D crystal, increasing the line den-
sity of a row in the crystal results in a higher interaction
energy between the particles in that row(i.e., the spacing
between particles in the row is reduced) and a higher inter-
action energy between that row and adjacent rows. In the
channel system, the row of particles at the wall has only one
neighboring row, not two, so the energetic penalty for in-
creasing the line density along the wall is lower than for the
unbounded 2D crystal. The consequences of the higher den-
sity of particles along the wall will be discussed further in
Sec. IV A.

In Fig. 1(a) there is a nonmonotonic decrease in the wall
spacing characterized by a series of decaying oscillations as
the channel width is increased. The largest oscillation occurs
near a channel width of 2. For very narrow channels, the
particles are aligned in two parallel rows, but as the channel
width is increased, it becomes energetically favorable for
particles to be in the center of the channel so they leave the
walls, thus increasing the wall spacing. As the channel width
is further increased and the center of the channel is filled in
with particles, it becomes less energetically favorable for the
particles to be in the center of the channel and again the wall
spacing decreases following approximately the 1D scaling.
This process continues as the channel width is increased but
the walls become farther removed from the center of the
channel and therefore are less affected by the changes occur-
ring there. Thus, the oscillations in the wall spacing decay
after a channel width of,5 where there is a buffer of at least
one lattice line between the wall and the center of the chan-
nel. These oscillations are continuous as shown by the inset
in Fig. 1(a), indicating that the addition of a new row in the
center of the channel is a continuous process as the channel
width is increased. The presence of these oscillations indi-
cates that the channel width plays an important role in the
types of structures that form in the 2D channel system. The
oscillations in the wall spacing occur with a period,R but
the maxima and minima do not occur at integer multiples of
R. This shows that the magic numbers are not simply integer
multiples ofR.

IV. LOW-TEMPERATURE-ANNEALED STRUCTURES

In order to study the properties of the crystal at a finite
temperature, where thermal fluctuations become important,
the 2D channel system was annealed to a temperature of
1/G=0.062 as in Sec. III. This temperature is in the solid
phase for the unbounded 2D system.

A. Density profile

One measure that has been widely used to characterize
the structure of a system confined between parallel planes is
the equilibrium density profile of that system normal to the

confining planes[20]. Figure 2 shows equilibrium density
profiles transverse to the walls for a selection of channel
widths. A characteristic feature of the density profiles is that
they show a well-defined layered structure parallel to the
walls similar to the aforementioned dusty plasma study[16].
This layered structure is evident even for channel widths of
100, implying that the system is in a solid state with rows
that are parallel to the walls of the channel for all channel
widths.

The sharpness of the peaks in the center of the channel
varies nonmonotonically as the channel width is increased.
The broadening and sharpening of the peaks always occurs
near the center of the channel, showing that the layering near
the walls is weakly affected by the increase in channel width,
but the structure in the center of the channel undergoes large
changes. The change in the structural properties in the center
of the channel will prove important in characterizing the 2D
dipole system in channels.

The most unique feature of the density profiles is the
large peak in the profile occurring at each wall which was
not observed in the dusty plasma study[16]. This peak is
the result of the convolution of two collaborating effects.
The increase in channel width causes an increase in the
line density of the particles along the wall as seen in
Fig. 1(a). Additionally, the long-ranged nature of the dipole-
dipole interaction results in a net increase in the localiza-
tion of the particles at the walls as the channel width is
increased.

B. Transverse mobility at walls

The most direct measure of the transverse mobility of the
particles localized at the wall is their mean-squared displace-
ment (MSD) in the direction normal to the wallkDx̃2st̃dl
wheret̃ is the dimensionless lag time. The wall particles are

FIG. 2. Configuration snapshots, channel width, and equilibrium
density profiles for selected dimensionless channel widths.
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defined as particles located within a distanceR/2 from the
wall. The MSD of the wall particles was observed to ap-
proach a plateau at long lag times(Fig. 3, inset), implying
that the particles are localized at the wall for significant
lengths of time. Eventually, the wall particles will migrate
away from the wall but this was only rarely observed over
the time scale of observation in Fig. 3. Additionally, this
escape became increasingly unlikely as the channel width
was increased. It was observed that the plateau value of the
MSD decreases as the channel width is increased(Fig. 3),
implying that the wall particles become more localized. This
increased localization is a direct result of the long-ranged
nature of the dipole interactions, combined with the presence
of a hard wall, and contributes to the large peaks at the walls
in the density profiles. In the limit of large channels, the
MSD approaches a constant with a correction of orderw̃−1.
This form for the MSD is expected when the potential near
the walls is approximated by the sum of a near and a far
contribution

Vsx̃,w̃d
kBT

= Ṽnearsx̃,w̃d + Ṽfarsx̃,w̃d. s6d

The two parts of the potential are defined as

Ṽnearsx̃,w̃d = GRrLE
−`

` dỹ

fsc̃ − x̃d2 + ỹ2g3/2, s7d

Ṽfarsx̃,w̃d = GR2nE
2c̃

w̃E
−`

` dỹdX

fsX − x̃d2 + ỹ2g3/2, s8d

wherec̃ is thex position of the first row away from the wall
(the arbitrary cutoff between the near and far parts of the

potential) and rL is the line density of the row. This defini-
tion of the potentials approximates the rows neighboring the
walls as a continuum. This approximation introduces some
error into the quantitative prediction for the MSD but does
not affect the qualitative nature of the scaling. After the in-
tegrations, the potentials become

Ṽnearsx̃,w̃d =
2GRrL

sc̃ − x̃d2 , s9d

Ṽfarsx̃,w̃d = 2GR2nS 1

2c̃ − x̃
−

1

w̃ − x̃
D . s10d

The dimensionless MSD in Fig. 3 is much smaller than
one for all channel widths and, therefore, the potential can be
expanded to first order nearx̃=0 as

Ṽsx̃,w̃d < Asw̃,c̃d + Bsw̃,c̃dx̃, s11d

where

Asw̃,c̃d =
2GRrL

c̃2 + 2GR2nS 1

2c̃
−

1

w̃
D , s12d

Bsw̃,c̃d =
4GRrL

c̃3 + 2GR2nS 1

4c̃2 −
1

w̃2D . s13d

The average MSD is given by the expression

kDx̃2lsw̃,c̃d = ksx̃st̃d − x̃s0dd2lsw̃,c̃d. s14d

In the long-time limit Eq.(14) can be written as

lim
t̃→`

kDx̃2lsw̃,c̃d = 2kx̃2lsw̃,c̃d − 2kx̃l2sw̃,c̃d. s15d

This expression can be written as the integral

lim
t̃→`

kDx̃2lsw̃,c̃d = 2

E
0

«

x̃2e−A−Bx̃dx̃

E
0

«

e−A−Bx̃dx̃

− 21E0

«

x̃e−A−Bx̃dx̃

E
0

«

e−A−Bx̃dx̃ 2
2

.

s16d

Since the Boltzmann weighting goes to zero quickly asx̃
increases, the limits«d of the integration can be taken to
infinity. The average MSD displacement then becomes

lim
t̃→`

kDx̃2lsw̃,c̃d =
4

B2 −
2

B2 =
2

B2 . s17d

From the density profiles in Fig. 2 the position of the first
peak away from the wallsc̃d can be calculated as a function
of the channel width. This dependence is shown in Fig. 4 and
is found to be

c̃ < 1.0 +
1.0

w̃
. s18d

Equation(18) implies that the separation between the row at
the wall and the next row away is approximately equal to the
lattice-line spacing in the unbounded 2D crystalsRd which is

FIG. 3. Plateau value of the mean-squared displacement(MSD)
of wall particles in the direction normal to the wall for selected
dimensionless channel widths; square symbols correspond to inte-
ger channel widths and circle symbols correspond to noninteger
channel widths. The value ofkDx̃2ls`d is taken from an extrapola-
tion of the simulation data. The dotted line is the approximation
derived for the MSD[Eq. (19)] (without the constant term). Bottom
left is a trace of the particle motion near the wall in a channel width
of w̃=10, for a lag time oft̃=3.73, showing constrained motion at
the wall. The top inset shows the MSD versus lag time for three
channels: w̃=3 (dashed line), w̃=10 (dotted line), and w̃=100
(solid line).
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an intuitive result. The functional form ofc̃ is important in
determining how the MSD behaves as a function of the chan-
nel width. Combining Eqs.(13), (17), and(18) and expand-
ing in the limit of largew̃ gives the approximate form for the
average MSD as

lim
t̃→`

kDx̃2lsw̃,c̃d <
8

G2R2sRn+ 8rLd2S1 +
Rn+ 12rL

Rn+ 8rL

1

w̃
D .

s19d

The result of this analysis is plotted as a dotted line in
Fig. 3 (without the constant term) and is seen to predict
the correct scaling behavior. The quantitative error in the
prefactors is introduced by the many approximations
made during the derivation of the MSD dependence onw̃.
Importantly, the derivation of the MSD dependence shows
that the interactions of the wall particles with the particles in
their immediate vicinity(the neighboring row) are the domi-
nant factor in determining the behavior of the MSD as a
function of the channel width. The interactions with the par-
ticles farther away give higher-order corrections to the MSD
scaling.

The data in Fig. 3 also show oscillations in the MSD as a
function of the channel width. As in the case of the wall
spacing [Fig. 1(a)] the oscillations decay after a channel
width of ,5. This implies that effects of the changes occur-
ring in the center of the channel are being shielded from the
wall particles. There is a regular periodicity of the oscilla-
tions which is,R, implying that there are magic-number
channel widths and in this case the maxima in the MSD data
occur at integer multiples ofR for channel widths greater
than 2.

Figure 5 shows the physical changes occurring in the
structure that give rise to the first oscillation. For channel
widths less than,2 there are two rows of particles, one on
each wall. As the channel width is increased, the two rows of
particles have weaker interactions, leading to an increase in
the MSD plateau of the wall particles. Near a channel width
of 2, particles begin to occupy the center of the channel. The

increased number of particles occupying the center of the
channel results in a decrease of the MSD of the wall par-
ticles. For a channel width of 2.31 there is a well-defined row
in the center of the channel, forcing the wall particles to
remain near the wall, thus causing a minimum in the MSD at
the wall. As the channel width is further increased, the center
row begins to divide into two rows, causing a very loose
structure to exist in the center of the channel. This loose
structure allows the particles at the wall to fluctuate away
more easily, resulting in a maximum for the MSD at a chan-

FIG. 4. x position of the first peak in the density profile for
selected channel widths; square symbols correspond to integer
channel widths and circle symbols correspond to noninteger chan-
nel widths. The dotted line is a linearfit to the data showing the
functional form ofc̃ in the limit of largew̃.

FIG. 5. Density of particles for selected dimensionless channel
widths sw̃=1.50–6.00d for a total time oft̃=37.3 showing the os-
cillations between a loose and tight center row as the channel width
is increased. Each point represents the position of a particle and
points were drawn everyt̃=0.373.
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nel width of 3. Above a channel width of 3, the rows in the
center of the channel begin to form and become distinct and
at a channel width of 3.46 there are two distinct rows in the
bulk, both of which force their respective neighboring wall
particles to remain near the wall. A similar process is re-
peated as the channel width is increased from 3.46 to 4(max
MSD) to 4.62 (min MSD). The intermediate channel width
of 4.15 shows a large amount of disorder in the bulk, so it is
surprising that a maximum in the MSD does not occur at
this channel width. However, in this channel, the first rows
in the bulk remained well defined and therefore do not allow
the wall particles to fluctuate away from the walls. At a
channel width of 5 the row in the center of the channel again
begins to broaden and the MSD at the walls passes through
a maximum. However, in this case, the first row in from
the wall is left relatively unchanged by this process and
therefore the oscillations in the MSD of the wall particles
are diminished for channel widths greater than 5. In Fig. 5
this effect is further illustrated by the channel widths of 4.15
and 5.15 where it is evident that there is disorder in the
center of the channel but the first rows in the bulk remain
well defined.

C. Structure analysis

The analysis of the density profiles and the MSD at the
walls leads to the observation that the structural changes that
take place in the crystal as the channel width is increased are
occurring predominantly in the bulk for large channels. The
structural changes in the bulk in turn affect the properties of
the wall particles. In order to further understand the effect of
channel width on the structure of the 2D crystal, it is neces-
sary to measure the properties of the whole crystal, not just
the properties at the walls. One measure of the structure of a
2D crystal is the defect concentration. For an unbounded
system of dipoles in 2D the structure is purely hexagonal
with each particle having six neighbors. Defect sites in that
crystal are defined as sites which have more or less than the
usual six neighbors. For wall particles in a channel, a defect
is defined as a particle that would have more or less than six
neighbors if the wall were not present. This translates to
defects at the wall being defined as particles with more or
less than four neighbors since a wall particle with four neigh-
bors is equivalent to a nondefect site in the unbounded 2D
case. This can be seen in the Delaunay triangle diagram in
Fig. 1(b) where the crystal is triangular and each wall par-
ticle has four neighbors. For the nonwall particles(bulk par-
ticles) in the channel system, defects are defined in the same
way as they are in the unbounded 2D crystal. The concentra-
tion of defect sites can be used to determine the state of the
system[30,31], but here we are interested in using the defect
concentration as a measure of how the channel system differs
from the unbounded system.

The defect concentration as a function of channel width
is shown in Fig. 6(a). Surprisingly, the defect concentration
increases as the channel width is decreased. This is counter-
intuitive because the channel geometry is shown to stabilize
layered structure near the walls as shown in the density
profiles (Fig. 2). These two observations are reconciled by

noting that although the channel walls do impart a very
nice layered structure near the walls, that structure is not
perfectly hexagonal because the line density of the particles
at the wall differs from that in the adjacent row. Therefore,
the wall spacing is not commensurate with the bulk crystal
spacing and as a result defects occur near the walls. For
the narrow channels, the wall particles comprise a large por-
tion of the system and therefore their higher defect con-
centration dominates the overall defect concentration of the
system.

The behavior of the defect concentration as a function of
the channel width in Fig. 6(a) is predicted by a simple argu-
ment. The concentration of defects is given by a bulk contri-
bution and a wall contribution:

Cdefsw̃d =
Ndef

N
=

Ndef
b

Nb

Nb

N
+

Ndef
w

Nw

Nw

N
, s20d

whereN and Ndef are the total number of particles and de-
fects in the system, respectively. The parametersNb andNw

FIG. 6. (a) Defect concentration for selected dimensionless
channel widths; square symbols correspond to integer channel
widths and circle symbols correspond to noninteger channel widths.
The dotted line is the prediction given by Eq.(24) (without the
constant term). (b) The defect concentration approaches a constant
as the channel width increases. The dash-dotted line corresponds to
the equilibrium defect concentration in the unbounded system at a
temperature of 1/G=0.062.
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are the number of bulk and wall particles, respectively.
Again, the boundary between the bulk region and the wall
region is defined as a distanceR/2 away from the walls. The
ratiosNdef

b /Nb andNdef
w /Nw can be approximated as constants

equal to the unbounded system defect density and the semi-
infinite wall-defect density, respectively. The wall-defect
structure is shown in Fig. 7(inset) where the defects along
the walls are always accompanied by another defect in the
first row of the bulk. Taking this into consideration, each
wall defect in the semi-infinite limit actually induces another
defect in the bulk and therefore the semi-infinite wall-defect
density must be doubled. Therefore, the total defect concen-
tration is approximated as

Cdefsw̃d < Cdef
b s`d

Nb

N
+ 2Cdef

w s`d
Nw

N
. s21d

Based upon the definition of the wall region, the two ratios in
Eq. (21) can be approximated as

Nw

N
<

2rw

nw
=

2R

0.83w
=

2

0.83w̃
, s22d

Nb

N
< 1 −

2

0.83w̃
. s23d

The parameterrw is the line density along the wall and is
equal to s0.83ad−1 (from Sec. III) for large channels. The
factor of 2 comes from the two walls. Therefore the total
concentration of defects is approximated as

Cdefsw̃d < Cdef
b s`d + f2Cdef

w s`d − Cdef
b s`dg

2

0.83w̃
, s24d

in the limit of large channels. The values ofCdef
b s`d and

Cdef
w s`d were obtained by extrapolating the simulation data

in the channels. This approximation(constant plus correc-
tion of orderw̃ −1) is seen as a dotted line in Fig. 6(a) and
additionally the total defect concentration is observed to
approach the unbounded limit of 0.02 exactly as the channel
width gets very large in Fig. 6(b). This observation implies
that the defect properties of the channel system approach
the unbounded system in the limit of large channels, as
expected. Even for large channels, however, there is still a
large concentration of defects at the walls as seen in Fig. 7.
The concentration of wall defects goes to a constant in
the limit of large channels. The value that the wall-defect
density approaches(0.18) is much larger than the value
that the bulk-defect density approaches(0.02). The cause
of this higher defect density can be seen in Fig. 7(inset)
where there are stable dislocations along the length of the
wall. In the unbounded system, a dislocation is defined as a
pair of neighboring particles with five and seven neighbors,
respectively. Along the wall in the channel system, a dislo-
cation is defined as a wall particle with three or five neigh-
bors neighboring a bulk particle with seven or five neigh-
bors, respectively. Along the wall, 18% of the total wall
particles are part of a dislocation and are the cause of the
higher density of defects at the wall. The dislocations along
the walls are spaced evenly, which is a consequence of the
differing line densities along the wall and in the first row.
The different line densities force wall particles and their
neighboring row to form dislocations at regular intervals in
order to minimize the energy of interaction between these
two rows.

The oscillations in defect concentration as a function of
channel width decay much more slowly than the oscillations
in the wall spacing or MSD. The splitting of the center row
into two rows as the channel width is increased causes a
loose structure to form in the center of the channel and in-
creases the defect concentration in the channel. When there
are well-defined rows in the center of the channel, the struc-
ture there is very regular and therefore the defect concentra-
tion in the channel is lower. As in the case of the wall spac-
ing and the MSD, the periodicity of the oscillations in the
defect density is,R but in this case the maxima and minima
do not occur at integer multiples ofR. The oscillations in
defect density persist for large channelssw̃.10d, indicating
that the structure in the center of wide channels is still
strongly influenced by the channel width. At the walls, how-
ever, the oscillations in the wall-defect concentration decay
by a channel with of,5. The combination of these two
observations leads to the conclusion that the long-lived os-
cillations in total defect concentration are due to bulk contri-
butions and not the walls. Therefore, the structural changes
due to changing channel width are predominantly manifested
in the center of the channel and the structure near the walls is
influenced in a secondary manner. The long-lived nature of
the oscillations indicates that defect concentration is a very

FIG. 7. Defect concentration at the wall for selected dimension-
less channel widths; square symbols correspond to integer channel
widths and circle symbols correspond to noninteger channel widths.
The inset is a snapshot near the wall for a dimensionless channel
width of 50 showing coordination of nearest neighbors; open thin
circles correspond to sixfold-coordinated particles(or fourfold if on
a wall), solid circles correspond to fivefold-coordinated particles(or
threefold if on a wall), and 3 symbols correspond to sevenfold-
coordinated particles(or fivefold if on a wall).
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sensitive measure of the effects of channel width on the crys-
tal structure in the channel.

Another factor indicating the nature of the structure of the
2D crystal is the average local bond-orientation orderkuC6ul.
This parameter is a measure of the angles between a particle
and its nearest neighbors. It is defined as

kuC6ul =
1

N
o
N U 1

m
o
k=1

m

ei6ukU , s25d

wherem is the number of neighbors for a given particle and
uk is the angle between the vector connecting the particle and
its kth nearest neighbor and an arbitrary reference axis.
When the lattice is perfectly hexagonal,kuC6ul=1. Addition-
ally, if the lattice is six fold coordinated and has few defects,
it can still be deformed by the presence of the walls[as
shown by the Delaunay triangles in Fig. 1(b)], causingkuC6ul
to deviate from a value of 1. The average local bond-
orientation order is shown in Fig. 8 as a function of channel
width. For very narrow channelsw̃,2, there are large oscil-
lations inkuC6ul due to the structure switching back and forth
as the channel width is increased from a nicely hexagonal
lattice to a triangular lattice with angles that deviate from
60°. The average value ofuC6u approaches the value for the
unbounded system with a correctionw̃ −1. For channel widths
greater than 2, the oscillations inkuC6ul are well correlated
with those for the defect concentration. This correlation in-
dicates that the oscillations inkuC6ul are due to defects and
not to the deformation of the angles in a triangular lattice
from the normal 60°.

V. SUMMARY

A structural analysis has been performed on a system of
particles interacting with a purely repulsive dipolar interac-
tion confined in 2D channels. The application of parallel pla-
nar walls to the system of 2D dipoles results in unique and

sometimes surprising structural properties. This system has
not been explored in the literature and it is important in
further understanding the effects of confinement on colloidal
systems. The alignment of the crystal in the direction of the
walls is expected for any confined colloidal system; however,
the large magnitude of the wall peaks in the density profile is
a unique property of the long-ranged nature of the particle
interactions. The spreading of the peaks in the center of the
channel, for channel widths not commensurate with the natu-
ral crystal, indicates a loss of structure in that region. The
defect concentration and local bond-orientational order in the
channel confirm that the local structure is disrupted in these
channels. The oscillations in all of the structural properties
indicate that the structure of the crystal in the 2D channel
system can be altered by slight changes in the channel width.
This is a very important observation for any application that
is highly dependent on the type of structure in the channel.
Additionally, the slow approach(w̃ −1) of the system proper-
ties to their unbounded values indicate that channel-like con-
finement, even fairly large channels, drastically changes the
structural properties of the 2D dipolar crystal.

The structural analysis of the dipole system in 2D chan-
nels shows many similarities to other studies of confined 2D
systems. Wall-induced layering is observed in this system
analogous to the layering observed in a dusty-plasma study
[16] and the shell structure in circular confinements[10–14].
However, in the case of repulsive magnetic dipoles there is a
higher density and localization at the walls in the 2D channel
system than in the dustyplasma system. The increased den-
sity is the cause of the unique structural properties that occur
in the 2D crystal near the wall, such as evenly spaced stable
dislocations. Extreme localization of the wall particles has
been observed in hard circular confinement studies with
long-ranged repulsive interactions[10]. However, the in-
creased localization as a function of the channel width is an
important observation in this study in that it shows how the
addition of walls continues to influence the behavior of the
system, even for large channel widths. Similar to the dusty-
plasma study, order-disorder transitions were observed in the
channel by observing the alternate sharpening and broaden-
ing of the density peaks as the channel width was increased.
However, in the case of the dipole interactions, the wall peak
actually increases in magnitude as the channel width is in-
creased due to the long-ranged nature of the interparticle
interactions and the presence of the hard wall. Also, the
sharpening and broadening of the peaks only occurs near the
center of the channel in the case of dipolar interactions, in-
dicating that the structure of the crystal in the center of the
channel changes significantly with only slight changes in the
channel width. The oscillations in the structural properties as
a function of the channel width occur with a regular period
,R, indicating that there are certain regular intervals of
channel widths, magic numbers, that are commensurate with
the natural structure of dipolar particles in 2D channels.
These magic numbers do not occur at integer multiples ofR,
as expected, but are influenced by such system properties as
the high density at the walls. This observation is important in
that it indicates that there is an appropriate, yet complex,
methodology for predicting the structures that will form in
the channel system.

FIG. 8. Average local bond-orientation order for selected chan-
nel widths; square symbols correspond to integer channel widths
and circle symbols correspond to noninteger channel widths. The
dotted line corresponds to the value ofkuC6ul for an unbounded
system at a temperature of 1/G=0.062.
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Other studies on the structure and dynamics of 2D dipole
systems under confinement have shown that the nature of the
melting transition is altered due to the confinement
[10–12,14]. The structural properties of these confined sys-
tems have a strong influence on the nature of the phase
transition—where it begins and how it proceeds. In the case
of 2D channels we have observed structural properties of the
crystal which, in the context of previous studies[10–14], will
likely prove important in studying the phase transition in the
2D channel system. These other interesting properties of the
2D channel system will be discussed in future work. The
study presented here serves as an introduction to the funda-

mental structural properties of self-assembled dipole systems
in 2D channel geometries.
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