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We exploit magnetostriction in polydisperse ferrofluids in order to generate nonlinear responses and apply a
thermodynamical method to derive the desired nonlinear magnetic susceptibility. For an ideal gas, this method
has been demonstrated to be in excellent agreement with a statistical method. In the presence of a sinusoidal ac
magnetic field, the magnetization of the polydisperse ferrofluid contains higher-order harmonics, which can be
extracted analytically by using a perturbation approach. We find that the harmonics are sensitive to the particle
distribution and the degree of field-induced anisotropy of the system. In addition, we find that the magnetiza-
tion is higher in the polydisperse system than in the monodisperse one, as also found by a recent Monte Carlo
simulation. Thus, it seems possible to detect the size distribution in a polydisperse ferrofluid by measuring the
harmonics of the magnetization under the influence of magnetostriction.
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I. INTRODUCTION

Ferrofluids (magnetic fluids) are colloidal suspensions
containing single domain nanosize ferromagnetic particles
dispersed in a carrier liquid[1]. These particles are usually
stabilized against agglomeration by coating them with long-
chain molecules(steric stabilization) or decorating them with
charged groups(electrostatic stabilization). Since these par-
ticles can easily interact via applied magnetic fields, which in
turn can affect the viscosity and structural properties, ferro-
fluids possess a wide variety of potential applications in
many fields ranging from mechanical engineering[2,3] to
biomedical applications[4,5]. Thus, ferrofluids have re-
ceived much attention in the scientific community[6–20].

Polydispersity of ferrofluids emerges naturally since the
particles in them always possess a log-normal distribution
[8–10]. It has been experimentally observed that different
microstructures can spontaneously form in ferrofluids[10].
This has a strong effect on the macroscopic properties of
ferrofluids. In this regard, the influence of polydispersity on
the magnetization of ferrofluids is of both academic and
practical interest. Due to the polydispersity of ferrofluids,
their structure and magnetization properties may signifi-
cantly differ from those of monodisperse systems[11–14].

The structure of polydisperse ferrofluids has been dis-
cussed theoretically on the basis of a bidisperse model in
which the fluids consist of two fractions of magnetic par-
ticles with significant size differences[15,17]. In a bidisperse
ferrofluid, the smaller particles are affected by Brownian mo-
tion and are therefore more or less randomly dispersed. The
larger magnetic dipole moment of the larger particles leads,
however, to a strong interparticle force which dominates over
Brownian motion. Thus the salient structure in these systems
is proposed to be a chainlike aggregate formed by the larger
particles. Some small particles may be attached to the ends
of these aggregates, but most of them remain in the nonag-
gregated state[17]. These features have also been observed

in Langevin dynamics simulations[18]. In addition, Wang
and Holm [18] found that the smaller particles hinder the
aggregation of larger particles. Since then, that effect has
been investigated in detail by Zubarev and Iskakova[21],
and the influence of polydispersity on the equilibrium prop-
erties of ferrofluids was very recently investigated by Kristóf
and Szalai using Monte Carlo simulations[19]. Kristóf and
Szalai found that magnetization is generally higher in a poly-
disperse system than in the corresponding monodisperse one.

An inhomogeneous magnetic fieldH exerts a translational
force F on a ferromagnetic particle given by

F = aH · = H + m0 · = H , s1d

wherem0 anda are the permanent magnetic dipole moment
and the magnetizability of the particle, respectively. Thus, if
the permanent moment points in the direction ofH, the par-
ticles will be displaced towards the regions of higher field
strength. In a macroscopic sample the average moment is in
the direction of the field; i.e., the particles favor orientations
where their permanent magnetic dipole moments are directed
along the field. Thus, an inhomogeneous field acting on a
macroscopic sample causes a concentration gradient with
high concentrations at high field strengths. If a sample is
situated partially in a field and held at constant pressure, the
particle density in the field region will increase, leading to an
increase of the permeability. This effect is called magneto-
striction or, in general, a response of the solution to an inho-
mogeneous magnetic field. Magnetostriction has been exten-
sively studied—e.g., in dipolar fluids[22], single crystals of
the high-Tc cuprate Bi2Sr2CaCu2O8 [23], polycrystalline Fe
films [24], and cylindrical type-II superconductors[25]. Un-
fortunately, to the best of our knowledge, so far there is
neither theory nor experiments dealing with the important
problem of the magnetostriction of ferrofluids. The only no-
table exception is ferrogels[26] which are chemically cross-
linked polymer networks swollen with a ferrofluid.

To model ferrofluids we use a thermodynamical method
to derive the magnetostriction-induced effective third-order
nonlinear magnetic susceptibilityj. As a sinusoidal ac mag-
netic field is applied, the magnetization will, in general, con-*Email address: jphuang@mpip-mainz.mpg.de
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sist of ac fields at frequencies of the higher-order harmonics.
We derive the harmonics analytically by using a perturbation
approach. The aim of the present paper is to exploit magne-
tostriction in ferrofluids in order to generate a nonlinear re-
sponse and thus a harmonic response. In experiments, mea-
surements of the harmonic responses of magnetization have
been used to obtain information of the anisotropy distribu-
tion in a ferromagnetic amorphous alloy[27].

This paper is organized as follows. In Sec. II, the nonlin-
ear magnetic susceptibility arising from the magnetostriction
is derived and the harmonics of the magnetization are ex-
tracted analytically. In Sec. III, we numerically calculate the
harmonics of the magnetization under various conditions. We
finish with a discussion and conclusions in Sec. IV.

II. FORMALISM

A. Nonlinear characteristic arising from magnetostriction

Let us assume that a ferrofluid is placed in an inhomoge-
neous magnetic field and kept at constant pressure. Then, the
density of the particles in the field regions will increase due
to the interaction between the permanent magnetic moments
of the particles and the field leading to an increase in the
permeability. This effect is called magnetostriction.

The experimental situation is the following: There is a
field-affected volume with volumeVc, in which the magnetic
field and the magnetic induction are denoted byHc andBc,
respectively. Both of them should satisfy the usual magneto-
static equations[28]

= ·Bc = 0, s2d

= 3 Hc = 0. s3d

Here Eq.(3) implies that the magnetic fieldHc can be ex-
pressed as the gradient of a magnetic scalar potentialF such
that

Hc = − = F. s4d

Under appropriate boundary conditions, the inhomogeneous
ferrofluid inside the field-affected volume can be represented
as a region of volumeVc, surrounded by a surfaceS8. Such
boundary conditions can be written as

F = − H ·X on S8, s5d

which, if the ferrofluid withinVc were uniform, would give
rise to a magnetic field which is identical toH (external
field) everywhere withinVc. In fact, this boundary condition
guarantees that even in an inhomogeneous ferrofluid the vol-
ume average of the magnetic fieldkHcl within Vc still equals
that of the external field,kHl—namely,

kHcl =
1

Vc
E HcsXdd3x = kHl. s6d

In this case there is no external field outside the field-affected
volume and(or, in practice, the external field in other areas is
weak enough to be neglected). The ferrofluid with volumeV
is situated such that it has regions both inside and outside the

field-affected volume at a constant pressurep.
In the presence of an inhomogeneous external magnetic

field H, the effective linear permeabilityme and the effective
third-order nonlinear magnetic susceptibilityj for the ferro-
fluid inside the field-affected volume are defined as

kBcl = sme + 4pjkHl2dkHl, s7d

wherek¯l denotes the volume average. Equation(7) implies
that there is a nonlinear relation between the magnetization
M and the magnetic fieldkHl. This will be explicitly shown
later in Eq.(31) . Further, it is worth noting that the nonlinear
term j of the magnetic susceptibility is actually an effective
quantity. It appears due to the fact that the particles can re-
ceive a translational force which drives them into the field-
affected volume in the presence of an inhomogeneous field.
In this regard, rather thanH, we should usekHl in Eq. (7) in
order to derive the(effective) nonlinear termj.

Alternatively, based on thermodynamics, the permeability
mH including the incremental part due to the magnetostric-
tion can be defined as

mH = S ] kBcl
] kHl DT,p

= S ] kBcl
] kHl DT,r

+E
dmin

dmax

fsddS ] kBcl
] rsddDT,kHl

3S ] rsdd
] kHl DT,p

dd, s8d

wherer stands for the density of the part of the ferrofluid
inside the field-affected volume anddmin (or dmax) denotes
the minimum(or maximum) particle diameter. Here the size
distribution of particlesfsdd satisfies the known log-normal
law [9,29]

fsdd =
1

Î2psd
expF−

ln2sd/dd
2s2 G , s9d

wheres is the standard deviation of lnd and d the median
diameter.

In Eq. (8), s]kBcl /]kHldT,r represents the effective perme-
ability including all nonlinear effects at a constant density.
As a matter of fact, regarding both Eqs.(7) and(8), the total
effective third-order nonlinear susceptibility generally con-
tains two contributions. The first is the magnetostriction-
induced one considered in this work, and the other is the
normal-saturation contribution. At large field intensities, the
higher terms of the Langevin function should be taken into
account. This contribution is negative and is called normal
saturation. In contrast, the magnetostriction has a positive
contribution. In this work, we assume that the field is mod-
erate such that the normal-saturation contribution is weak
enough to be neglected. It should be noted that the argument
of the Langevin function can become large for a very small
number of large particles in the tail of the size distribution.
Further, we shall also neglect the normal-saturation contribu-
tion resulting from the very small amount of the large par-
ticles since this contribution might be expected to have a
very weak effect on the total effective third-order suscepti-
bility. To summarize the above, throughout this work, only
the magnetostriction-induced contribution is considered.
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Using the above assumptionss]kBcl /]kHldT,r;me can be
given by the anisotropic Clausius-Mossotti equation—
namely[30],

gLsme − m2d
m2 + gLsme − m2d

=
4p

3
E

dmin

dmax

fsddNsddSasdd +
m0sdd2

3kBT
Ddd,

s10d

where m2 denotes the permeability of the carrier liquid,
m0sdd [or asdd] the permanent magnetic dipole moment[or
magnetizability] of a particle with diameterd, Nsdd is the
number density of particles with diameterd, kB the Boltz-
mann constant, andT the temperature. Regarding Eq.(10),
more issues should be remarked on. It is known that the
usual(isotropic) Clausius-Mossotti equation does not include
the particle-particle interaction. When Lo and Yu[30] stud-
ied the field-induced structure transformation in electrorheo-
logical solids, they succeeded in developing a generalized
Clausius-Mossotti equation by introducing a local-field fac-
tor b8 which reflects the particle-particle interaction between
the particles in an anisotropic lattice. This generalized
Clausius-Mossotti approach[Eq. (10)] is a self-consistent de-
termination of the local field due to a lattice of dipole mo-
ments. In other words, Eq.(10) should be expected to in-
clude particle-particle interactions(at least to some extent)
and the degree of the particle-particle interactions depends
on how muchgL deviates from 1/3(note that heregL
=b8 /3), wheregL represents the demagnetizing factor in the
longitudinal field case. In particular, the case when 1/gL=3
(or gL=1/3) corresponds to the isotropic case, which yields
the well-known(isotropic) Clausius-Mossotti equation. It is
worth noting that there is a sum rulegL+2gT=1 [31], where
gT is the demagnetizing factor in the transverse field case.
For electrorheological fluids, similar factors were measured
in simulations[32,33].

In Eq. (10), the termm0sdd2/3kBT results from the aver-
age contribution of the permanent magnetic dipole moment
to the average value of the work required to bring a particle
with diameterd into the fieldkHl. More precisely, the mean
value of the component of the dipole moment in the direction
of the field is given by

m0sddLsgd =
m0sdd2

3kBT
kHl, s11d

with g=m0sddkHl /kBT. That is, we set the Langevin function
to Lsgd=g /3. Regarding this relation, the following issues
should be noted. In the present work, we shall adopt a per-
turbation approach[34] [see Sec. II C], which is suitable for
a weak nonlinearity. In the perturbation approach, it is well
established that the effective third-order nonlinear suscepti-
bility can be calculated from the linear field[35], while the
effective higher-order nonlinearity must depend on the non-
linear field [34]. In fact, we could have adopted a self-
consistent mean-field approach[36], but the perturbation ap-
proach appears to be more convenient for analytic
expressions[36]. Thus, to be able to focus on(weak) third-
order nonlinearity, it suffices to use the Clausius-Mossotti
equation[Eq. (10)] by taking into account the linear relation

only—i.e., Lsgd=g /3. Due to the same reason, in what fol-
lows we shall omit the contribution from the nonlinear field,
too.

Regarding the incremental permeability due to the mag-
netostriction, namely, the last term in Eq.(8)

E
dmin

dmax

fsddS ] kBcl
] rsddDT,kHl

S ] rsdd
] kHl DT,p

dd ; 12pjkHl2,

we obtain

12pjkHl2 =E
dmin

dmax

fsddkHlS ] me

] rsddDT,kHl
S ] rsdd

] kHl DT,p
dd.

s12d

This equation is valid for the lowest-order perturbation. The
differential increase of the density inside the field-affected
volume drsdd corresponds to an increase in mass given by
Vcdrsdd. This increase is equal to the decrease in mass out-
side the field-affected volume given by −rsdddsV−Vcd
=−rsdddV, so that drsdd=−frsdd /VcgdV. Thus, we may re-
write Eq. (12) as

12pjkHl2 = −E
dmin

dmax

fsddkHlS ] me

] rsddDT,kHl

rsdd
Vc

S ] V

] kHlDT,p
dd.

s13d

Next, we can obtains]V/]kHldT,p based on the differential
of the free energy dF:

dF = − SdT − pdV +
Vc

4p
kHldkBcl, s14d

where S denotes the entropy. Introducing the transformed

free enthalpyḠ,

Ḡ = F + pV−
Vc

4p
kHlkBcl, s15d

we obtain the following expression for its differential:

dḠ = − SdT + Vdp −
Vc

4p
kBcldkHl. s16d

From this equation, we find

S ] V

] kHlDT,p
= −

Vc

4p
S ] kBcl

] p
D

T,kHl
= −

VckHl
4p

S ] me

] p
D

T,kHl
.

s17d

Then, the substitution of this into Eq.(13) leads to

12pjkHl2 =E
dmin

dmax

fsdd
kHl2

4p
rsddS ] me

] rsddDT,kHl
S ] me

] p
D

T,kHl
dd.

s18d

We now use
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S ] me

] p
D

T,kHl
= S ] me

] rsddDT,kHl
S ] rsdd

] p
D

T,kHl
= brsddS ] me

] rsddDT

,

s19d

whereb=−s1/Vds]V/]pdT is the compressibility in the ab-
sence of the field. In the last term of Eq.(19) , terms depend-
ing on kHl have been neglected since they lead to terms in
powers ofkHl higher than the second term in Eq.(18) . In
the same approximation, after substitution of Eq.(19) into
Eq. (18) we obtain

12pjkHl2 =E
dmin

dmax

fsdd
kHl2

4p
brsdd2S ] me

] rsddDT

2

dd. s20d

Thus, we have

j =
b

48p2E
dmin

dmax

fsddrsdd2S ] me

] rsddDT

2

dd. s21d

So far, the effective third-order nonlinear magnetic suscepti-
bility j has been derived in terms of the compressibility, size
distribution function, and the differential of effective linear
permeability with respect to the density.

B. Comparison with a statistical method

The increase of the densityDr due to magnetostriction
can be calculated froms]V/]kHldT,p. Details are as follows:

Dr =E
dmin

dmaxE
0

kHl

fsddS ] rsdd
] kHl DT,p

dkHldd

=E
dmin

dmaxE
0

kHl

− fsdd
rsdd
Vc

S ] V

] kHlDT,p
dkHldd

=E
dmin

dmaxE
0

kHl kHlrsdd
4p

S ] me

] p
D

T,kHl
dkHldd

=E
dmin

dmaxE
0

kHl kHlbrsdd2

4p
S ] me

] rsddDT

dkHldd. s22d

To obtain this equation, Eq.(19) has been used, which means
that in the expression forDr terms in powers ofkHl higher
than the second have been neglected. Then, the integration
can be performed, and we obtain

Dr =E
dmin

dmax kHl2

8p
brsdd2S ] me

] rsddDT

dd. s23d

For comparing with a statistical method, let us apply our
formalism to a(monodisperse) ideal gas[22]. For its effec-
tive permeability, in view ofgL=1/3, Eq.(10) can be rewrit-
ten as

me − 1

me + 2
=

4p

3
NSa +

m0
2

3kBT
D . s24d

For the ideal gas,me,1, and hence we obtain

S ] me

] r
D

T

=
4p

mm
Sa +

m0
2

3kBT
D , s25d

where mm denotes the mass of a single molecule,mm
=M /NA. Here M is the molecular weight andNA the
Avogadro constant. For this case, usingb=M /rRT, Eq. (23)
predicts

Dr =
NAkHl2r

2RT
Sa +

m0
2

3kBT
D . s26d

HereR represents the molar gas constant.
This result [Eq. (26)] can also be achieved by using a

statistical method. Because of Boltzmann’s distribution law,
nkHl, the number of moles per cm3 of the gas at a point with
field strengthkHl, is given by

nkHl = ns0dexps− W/kBTd, s27d

wherens0d is the number of moles per cm3 of the gas at a
point with zero field andW the average value of the work
required to bring a molecule into the fieldkHl:

W= −
1

2
Sa +

m0
2

3kBT
DkHl2. s28d

Thus, we have

nkHl = ns0dexpF1

2
Sa +

m0
2

3kBT
DkHl2/kBTG . s29d

Let us neglect the terms in higher than second powers of
kHl, and we have

Dr = MsnkHl − ns0dd =
NAkHl2r

2RT
Sa +

m0
2

3kBT
D . s30d

For an ideal gas, Eq.(30) yields exactly the same result as
Eq. (26), albeit derived using a different approach. This
shows the consistency of our arguments.

C. Magnetization and high-order harmonics

The orientational magnetization(z axis) has the general
form

M =
me − m2

4p
kHl + jkHl3. s31d

Here, the higher-order terms have been omitted. We use an
inhomogeneous sinusoidal ac fieldH =slz/LzdHacstdẑ
=slz/LzdHacẑsinsvtd, where 0, lzøLz, with Lz being the
length of the field-affected volume along thez axis. Without
loss of generality, we setLz=1 in the following. We now
obtain

M =
me − m2

8p
Hacstd +

j

8
Hacstd3. s32d

In view of Hacstd=Hacsinsvtd, the magnetizationM can be
expressed in terms of the odd-order harmonics such that
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M = Mvsinsvtd + M3vsins3vtd, s33d

where the fundamental and third-order harmonics are given
by

Mv =
me − m2

8p
Hac+

3j

32
Hac

3 , s34d

M3v = −
j

32
Hac

3 . s35d

In the above derivation, we have used the identity sin3svtd
=s3/4dsinsvtd−s1/4dsins3vtd.

III. NUMERICAL RESULTS

Without any loss of generality, we choose the following
parameters for our numerical calculations:m2=1 (nonmag-
netic carrier fluid), density of the bulk material of the par-
ticles 7 g/cm3, Hac=20 Oe, b=0.62310−10cm s2/g, asdd
=0 (due to the small size of the particles), andT=298 K. In
addition, the volume fraction of the particles is set to be 0.08,
and the saturation magnetization of the bulk material of the
particles is 450 emu. Finally, settingdmin=1 nm anddmax
=30 nm ensures

E
dmin

dmax

fsdddd . 1,

as expected.
Based on the model parameters, we calculated the dipolar

coupling constant[37] lsdd=m0sdd2/m0kBTd3 and found
ls9.5 nmd=1.16, ls10 nmd=1.35, and ls10.5 nmd=1.56,

which ensures the assumption that the particle interaction in
our system is weak.

In Fig. 1, we display the size distribution of the particles
in the lognormal law for different(a) median diameterd and
(b) standard deviations. Figure 2 shows the fundamental
[Fig. 2(a)] and third-order[Fig. 2(c)] harmonics of the mag-
netization as a function of the degree of anisotropy 1/gL for
different median diametersd. The size distribution of the
particles is shown in Fig. 1(a). It is found that increasing the
degree of anisotropy 1/gL causes both the fundamental and
third-order harmonics to increase. Also, a higher median di-
ameterd leads to larger harmonics.

In Fig. 3, the fundamental[Fig. 2(b)] and third-order[Fig.
2(c)] harmonics of the magnetization are plotted as a func-
tion of 1/gL for different standard deviationss. The lognor-
mal size distribution of the particles is shown in Fig. 1(b).
Again, it is shown that the harmonics increase with increas-
ing median diameterd.

Finally, to compare the above polydisperse case with the
corresponding monodisperse one, we study the monodisperse
case in Fig. 4 for three different diameters which have the
same values as the median diameters used in Fig. 2. In the
monodisperse case, it is also evident that increasing the de-
gree of anisotropy 1/gL causes both the fundamental and
third-order harmonics to increase. In addition, larger diam-
eter leads to larger harmonics. It is worthing noting that both
the fundamental and third-order harmonics of the magnetiza-
tion are higher in the polydisperse system than in the mono-
disperse one when comparing Fig. 2 with Fig. 4. In particu-
lar, the third-order harmonics of the polydisperse system can
be of two orders of magnitude larger than those of the mono-
disperse system. In other words, the magnetization is higher
in the polydisperse system than in the monodisperse one, due

FIG. 1. Lognormal distribution of particles for different(a) me-
dian diameterd and (b) standard deviations. Parameters:(a) s
=0.45 and(b) d=10 nm.

FIG. 2. Polydisperse case. (a) Fundamental and(b) third-order
harmonics of the magnetization against the degree of anisotropy
1/gL for different median diameterd. Parameter:s=0.45.
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to the fact that for this comparison the volume fraction of the
particles is fixed. This is in agreement with the findings of
Ref. [19] where a Monte Carlo simulation was used to study
the influence of polydispersity on the equilibrium properties
of ferrofluids.

IV. DISCUSSION AND CONCLUSION

Here some comments are in order. In the present paper,
we have exploited magnetostriction in ferrofluids in order to
generate nonlinear responses. The proposed mechanism
should work for dc magnetic fields. It will also work for ac
fields with frequencyn=v / s2pd if the size of the sample is
not greater thancs/n, wherecs is the sound velocity. Thus,n
can be up to kHz or so. Otherwise the required mass density
oscillations will not be able to keep up with the rapid
changes in the magnetic field.

To obtain the lowest-order(i.e., cubic) nonlinearity, we
have assumed that material properties such as permeability
of the polydisperse system can be calculated as a linear su-
perposition of the corresponding values in the monodisperse
systems; see Eqs.(8), (10), and(22). For Eq.(8), the linear
superposition should hold since the nonlinear termj is actu-
ally an effective quantity which results from all the mono-
disperse systems. For Eq.(10), we used the linear superpo-
sition again. The reason is that the right-hand side of Eq.(10)
actually represents the effective contribution from two parts:
the induced magnetization(which has been assumed to dis-
appear due to the small size of the particles in our numerical
calculations) and the permanent-moment-related magnetiza-
tion. In addition, once the inhomogeneous field is applied,
the particles with different sizes are able to move into the
field-affected volume, thus yielding an increasing particle

density. In this regard, for Eq.(22), the linear superposition
should be used naturally.

Nonlinear optical materials with large values of(effec-
tive) third-order nonlinear dielectric susceptibilities[38] are
in great need in industrial applications such as nonlinear op-
tical switching devices for use in photonics, and real-time
coherent optical signal processors, and so on. Due to the
similarity between magnetics and dielectrics, the present(ef-
fective) third-order nonlinear magnetic susceptibilities are
expected to have some potential applications in nonlinear
magnetic devices.

Throughout the paper, only odd-order harmonics are in-
duced to appear. As a matter of fact, if one applies an ac
magnetic field superimposed onto a dc field, the even-order
harmonics should appear[27]. That is due to the coupling
between the two kinds of fields. On the other hand, since the
second-order harmonics are often of several orders of mag-
nitude larger than the corresponding third-order harmonics,
the second-order harmonics are more attractive for the ex-
perimental measurements[27].

We have considered the fundamental and third-order har-
monics. In fact, we can consider much higher-order harmon-
ics [36,39], such as fifth-order, seventh-order, etc. In doing
so, we need to keep more terms in powers ofkHl higher than
the second in Eq.(18). Accordingly, more terms should be
included in Eq.(31). However, such higher-order harmonics
are often of several orders of magnitude smaller than the
third-order and, thus, less attractive.

In the numerical calculations, we have omitted the mag-
netizability of the particles due to the fact that the sizes of the
particles are very small in ferrofluids. For these particles, the
permanent magnetic dipole moments play the main role.
However, in the case of a magnetorheological fluid, the mag-
netizability of the particles should be taken into account

FIG. 3. Polydisperse case. (a) Fundamental and(b) third-order
harmonics of the magnetization against the degree of anisotropy
1/gL for different standard deviations. Parameter:d=10 nm.

FIG. 4. Monodisperse case. (a) Fundamental and(b) third-order
harmonics of the magnetization against the degree of anisotropy
1/gL for different diameterd.
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since the particle sizes range from 2 to 20mm—about three
orders of magnitude larger than in ferrofluids. Fortunately,
for treating magnetorheological fluids, the present theory
holds as well.

In this paper, we have investigated a log-normal distribu-
tion [see Eq.(9)]. Our theory could be extended to treat other
particle distributions as well. For instance, for aG distribu-
tion [40], we should replace Eq.(9) with

fsdd =
1

d0
S d

d0
Da e−d/d0

Gsa + 1d
,

whered0 anda are the parameters of the distribution andG
denotes the gamma function.

In view of the existing theory which deals with the influ-
ence of polydispersity on the magnetization of ferrofluids,
such as a perturbation theoretical study[12] and a cluster
expansion study[14], it is instructive to compare the present
theory with these methods.

To sum up, we have used a thermodynamical method to
derive the nonlinear magnetic susceptibility resulting from
magnetostriction, which further yields the harmonics of mag-
netization in response to an applied ac magnetic field. For an
ideal gas, this method has been shown to be in excellent
agreement with a statistical method. It has been shown that

the harmonics are sensitive to the particle distribution
(namely, median diameters and standard deviations) and de-
gree of field-induced anisotropy of the system. In addition,
we also find that the magnetization is higher in the polydis-
perse system than in the corresponding monodisperse one,
which is in agreement with previous findings. Thus, it seems
possible to detect the size distribution in the polydisperse
ferrofluids by measuring the harmonics of the magnetization
of colloidal ferrofluids under the influence of magnetostric-
tion. In detail, the size distribution might be achieved by
using Eq.(21) and choosing a suitable distribution forfsdd to
fit experimental data.

ACKNOWLEDGMENTS

We thank Professor H. Pleiner of the Max Planck Institute
for Polymer Research for a thorough reading of the manu-
script and Dr. M. Karttunen of the Helsinki University of
Technology for carefully polishing the wording of the paper.
J. P. H. acknowledges fruitful discussions with Professor
K. W. Yu of the Chinese University of Hong Kong. This
work has been supported by the Deutsche Forschungsge-
meinschaft(German Research Foundation) under Grant No.
HO 1108/8-3 and in part by the Alexander von Humboldt
Foundation in Germany(J.P.H.).

[1] R. E. Rosensweig,Ferrohydrodynamics(Cambridge Univer-
sity Press, Cambridge, England, 1985).

[2] B. M. Berkovsky, V. F. Medvedev, and M. S. Krakov,Mag-
netic Fluids, Engeering Applications(Oxford University Press,
Oxford, 1993).

[3] S. Odenbach, Magn. Electr. Sep.9, 1 (1998).
[4] R. Hergt, W. Andrä, C. G. Ambly, I. Hilger, W. A. Kaiser, U.

Richter, and H. G. Schmidt, IEEE Trans. Magn.34, 3745
(1998).

[5] C. Alexiou, W. Arnold, P. Hulin, R. Klein, A. Schmidt, C.
Bergemann, and F. G. Parak, Magnetohydrodynamics37, 3
(2001).

[6] M. Liu, Phys. Rev. Lett.80, 2937(1998).
[7] H. W. Müller and M. Liu, Phys. Rev. Lett.89, 067201(2002).
[8] A. F. Psheshnikov, V. V. Mekhonoshin, and A. V. Lebedev, J.

Magn. Magn. Mater.161, 94 (1996).
[9] B. M. Lacavaet al., Appl. Phys. Lett.77, 1876(2000).

[10] S. Odenbach,Magnetoviscous Effects in Ferrofluids, Lecture
Notes in Physics, Monograph No. 71(Springer, Berlin, 2002).

[11] K. I. Morozov and A. V. Lebedev, J. Magn. Magn. Mater.85,
51 (1990).

[12] A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E64, 041405
(2001).

[13] B. Huke and M. Lücke, Phys. Rev. E62, 6875(2000).
[14] B. Huke and M. Lücke, Phys. Rev. E67, 051403(2003).
[15] A. Y. Zubarev, J. Exp. Theor. Phys.120, 80 (2001).
[16] P. Ilg, M. Kröger, S. Hess, and A. Y. Zubarev, Phys. Rev. E

67, 061401(2003).
[17] S. S. Kantorovich, J. Magn. Magn. Mater.258-259, 471

(2003).
[18] Z. Wang and C. Holm, Phys. Rev. E68, 041401(2003).
[19] T. Kristóf and I. Szalai, Phys. Rev. E68, 041109(2003).
[20] A. Ryskin and H. Pleiner, Phys. Rev. E69, 046301(2004).
[21] A. Y. Zubarev and L. Y. Iskakova, Physica A335, 314(2004).
[22] C. J. F. Böttcher,Theory of Electric Polarization(Elsevier,

Amsterdam, 1973), Vol. 1.
[23] H. Ikuta, N. Hirota, Y. Nakayama, K. Kishio, and K. Kitazawa,

Phys. Rev. Lett.70, 2166(1993).
[24] M. Weber, R. Koch, and K. H. Rieder, Phys. Rev. Lett.73,

1166 (1994).
[25] T. H. Johansen, J. Lothe, and H. Bratsberg, Phys. Rev. Lett.

80, 4757(1998).
[26] E. Jarkova, H. Pleiner, H. W. Müller, and H. R. Brand, Phys.

Rev. E 68, 041706(2003).
[27] A. García-Arribas, J. M. Barandiarán, and G. Herzer, J. Appl.

Phys. 71, 3047(1992).
[28] W. F. Brown, Jr.,Magnetostatic Principles in Ferromagnetism

(North-Holland, Amsterdam, 1962).
[29] B. Payet, D. Vincent, L. Delaunay, and G. Noyel, J. Magn.

Magn. Mater.186, 168 (1998).
[30] C. K. Lo and K. W. Yu, Phys. Rev. E64, 031501(2001).
[31] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii,Electrody-

namics of Continuous Media, 2nd ed.(Pergamon Press, New
York, 1984), Chap. II.

[32] J. E. Martin, R. A. Anderson, and C. P. Tigges, J. Chem. Phys.
108, 3765(1998).

[33] J. E. Martin, R. A. Anderson, and C. P. Tigges, J. Chem. Phys.
108, 7887(1998).

MAGNETIZATION OF POLYDISPERSE COLLOIDAL… PHYSICAL REVIEW E 70, 061404(2004)

061404-7



[34] G. Q. Gu and K. W. Yu, Phys. Rev. B46, 4502(1992).
[35] D. Stroud and P. M. Hui, Phys. Rev. B37, 8719(1988).
[36] J. P. Huang, J. T. K. Wan, C. K. Lo, and K. W. Yu, Phys. Rev.

E 64, 061505(R) (2001).
[37] For example, see Z. Wang, C. Holm, and H. W. Müller, Phys.

Rev. E 66, 021405(2002).
[38] See, for example,Nonlinear Photonics, edited by H. M. Gibbs,

G. Khitrova, and N. Peyghambarian(Springer-Verlag, New

York, 1990); G. I. Stegeman, inContemporary Nonlinear Op-
tics, edited by G. P. Agrawal and R. W. Boyd(Academic Press,
Boston, 1992).

[39] J. P. Huang, L. Gao, and K. W. Yu, J. Appl. Phys.93, 2871
(2003).

[40] M. I. Shliomis, A. F. Pshenichnikov, K. I. Morozov, and I. Y.
Shuiubor, J. Magn. Magn. Mater.85, 40 (1990).

J. P. HUANG AND C. HOLM PHYSICAL REVIEW E70, 061404(2004)

061404-8


