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Magnetization of polydisperse colloidal ferrofluids: Effect of magnetostriction

J. P. Huan§j and C. Holm
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
(Received 8 May 2004; published 10 December 2004

We exploit magnetostriction in polydisperse ferrofluids in order to generate nonlinear responses and apply a
thermodynamical method to derive the desired nonlinear magnetic susceptibility. For an ideal gas, this method
has been demonstrated to be in excellent agreement with a statistical method. In the presence of a sinusoidal ac
magnetic field, the magnetization of the polydisperse ferrofluid contains higher-order harmonics, which can be
extracted analytically by using a perturbation approach. We find that the harmonics are sensitive to the particle
distribution and the degree of field-induced anisotropy of the system. In addition, we find that the magnetiza-
tion is higher in the polydisperse system than in the monodisperse one, as also found by a recent Monte Carlo
simulation. Thus, it seems possible to detect the size distribution in a polydisperse ferrofluid by measuring the
harmonics of the magnetization under the influence of magnetostriction.

DOI: 10.1103/PhysRevE.70.061404 PACS nunm®er82.70-y, 72.20.Ht, 42.65.Ky, 75.50.Mm

I. INTRODUCTION in Langevin dynamics simulationd8]. In addition, Wang
) ) ) ] ) and Holm[18] found that the smaller particles hinder the
Ferrofluids (magnetic fluids are colloidal suspensions 4qqregation of larger particles. Since then, that effect has
containing single domain nanosize ferromagnetic particlegqan investigated in detail by Zubarev and Iskak§®24
dispersed in a carrier liquifll]. These particles are usually anq the influence of polydispersity on the equilibrium prop-
stabilized against agglomeration by coating them with longeties of ferrofluids was very recently investigated by Kristof
chain moleculessteric stabilizationor decorating them with 514 s731ai using Monte Carlo simulatioff9]. Kristéf and
charged groupselectrostatic stabilizatign Since these par- gza|aj found that magnetization is generally higher in a poly-
ticles can easily interact via applied magnetic fields, which INdisperse system than in the corresponding monodisperse one.
turn can affect the viscosity and structural properties, ferro- ap, inhomogeneous magnetic figit exerts a translational

fluids possess a wide variety of potential applications ingrce E on a ferromagnetic particle given by
many fields ranging from mechanical engineeriig3] to

biomedical applicationg4,5]. Thus, ferrofluids have re- F=aH-VH+my- VH, 1)

ceived much attention in the scientific commur(i6-20. wherem, and « are the permanent magnetic dipole moment

Polydispersity of ferrofluids emerges naturally since theand the magnetizability of the particle, respectively. Thus, if

particles in them always possess a log-normal distributio he permanent moment points in the directiorHbfthe par-

[8__1(]' It has been experimentally obser_ved that Ollfferentticles will be displaced towards the regions of higher field
microstructures can spontaneously form in f_erroflujdi@]_. trength. In a macroscopic sample the average moment is in
This has a strong effect on the macroscopic properties e direction of the field; i.e., the particles favor orientations

ferrofluids. In this regard, the influence of polydispersity on ; o ;
o S X where their permanent magnetic dipole moments are directed
the magnetization of ferrofluids is of both academic and P g P

dcal int ¢ Due (o th i itv of ferrofluid along the field. Thus, an inhomogeneous field acting on a
practical interest. Lue 1o the polydispersily of Terrotiul s_'macroscopic sample causes a concentration gradient with

their structure and magnetization properties may signiﬂ-hi . : s ;
. . gh concentrations at high field strengths. If a sample is
caq_t:\y differ from tr}oselo(l;.monomsfpersftla %’Stﬁ[mp b14|' di situated partially in a field and held at constant pressure, the
e structure of polydisperse ferrofiuids has been disy . icq density in the field region will increase, leading to an

cm;}s.,sre]dtr;[heftl)r%tlcally qnt thfe t\i)/as:cs OI. a bld;sperse ?odel therease of the permeability. This effect is called magneto-
whic € Tiuias consist of o Tractions of magnetic par- gy .o or, in general, a response of the solution to an inho-

ticles with significant size differenc¢s5,17. In a bidisperse mogeneous magnetic field. Magnetostriction has been exten-

ferrofluid, the smaller particles are affected by Brownian mo'sively studied—e.g., in dipolar fluid2], single crystals of

tion and are therefore more or less randomly dispersed. Thtrf.1 - ; :

L . e highT, cuprate BjSr,CaCyOg [23], polycrystalline Fe
larger magnetic dipole moment of the larger particles Ieadsfilms [924] Candpcylinclisriicazl typeL%II ngi]rcgnguc){o[rzﬂ. un-
however, to a strong interparticle force which dominates OVefortunateI’y to the best of our knowledge, so far there is

Brownian motion. Thus 'ghe_ salient structure in these SysteMgeither theory nor experiments dealing with the important
is proposed to be a chainlike aggregate formed by the larg roblem of the magnetostriction of ferrofluids. The only no-

p?rtrl]cles. Some smallbpartlcles Taﬁl be attac.held t% the en dble exception is ferroge[26] which are chemically cross-
of these aggregates, but most of them remain in the nonage, -« polymer networks swollen with a ferrofluid.
gregated stat¢l7]. These features have also been observe To model ferrofluids we use a thermodynamical method

to derive the magnetostriction-induced effective third-order
nonlinear magnetic susceptibility As a sinusoidal ac mag-
*Email address: jphuang@mpip-mainz.mpg.de netic field is applied, the magnetization will, in general, con-
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sist of ac fields at frequencies of the higher-order harmonicdield-affected volume at a constant presspre

We derive the harmonics analytically by using a perturbation In the presence of an inhomogeneous external magnetic
approach. The aim of the present paper is to exploit magnédield H, the effective linear permeability, and the effective
tostriction in ferrofluids in order to generate a nonlinear re-third-order nonlinear magnetic susceptibilgyfor the ferro-
sponse and thus a harmonic response. In experiments, mehsid inside the field-affected volume are defined as
surements of the harmonic responses of magnetization have 5

been used to obtain information of the anisotropy distribu- (Bo) = (e + 4m&H)I(H), ()

tion in a ferromagnetic amorphous allgg7]. _ where(:--) denotes the volume average. Equatignimplies
This paper is organized as follows. In Sec. Il, the nonlin-

.. that there is a nonlinear relation between the magnetization

is derived and the harmonics of the magnetization are er}yl and the magnetic fieltH). This will be explicitly shown

tracted analytically. In Sec. Ill, we numerically calculate the aterin Eq.(31) . Further, itis wo_rt.h_no.tmg that the nonllne_ar
éerm ¢ of the magnetic susceptibility is actually an effective

harmonics of the magnetization under various conditions. W . .
finish with a discussion and conclusions in Sec. IV. quantity. It appears due to ‘h’? fact _that the pa_lrtlcles can re-
ceive a translational force which drives them into the field-
affected volume in the presence of an inhomogeneous field.
Il. FORMALISM In this regard, rather thad, we should uséH) in Eq.(7) in
order to derive théeffective) nonlinear termg.
Alternatively, based on thermodynamics, the permeability
Let us assume that a ferrofluid is placed in an inhomogeuy including the incremental part due to the magnetostric-
neous magnetic field and kept at constant pressure. Then, ttien can be defined as
density of the particles in the field regions will increase due d
to the interaction between the permanent magnetic moments ,, _ (’9<BC>) - (ﬂ(BQ) +J maxf(d)(@)
of the particles and the field leading to an increase in the IHY /vp \H) 1, Jg dp(d)/ 1y

A. Nonlinear characteristic arising from magnetostriction

permeability. This effect is called magnetostriction.
The experimental situation is the following: There is a X(‘?p_(d)) dd, (8)
field-affected volume with volum¥,, in which the magnetic aHY /1 p

field and the magnetic induction are denotedrhyandB,, where p stands for the density of the part of the ferrofluid

respectively. Both of them should satisfy the usual magneto:_ . .
static equation§28] inside the field-affected volume ard},, (or dy,,) denotes

the minimum(or maximum particle diameter. Here the size

V:B.=0, 2) distribution of particlesf(d) satisfies the known log-normal
law [9,29
V X H.=0. (3 B 1 |n2(d/5)
Here Eg.(3) implies that the magnetic fielti. can be ex- fld)= V’Emdex A ©)
pressed as the gradient of a magnetic scalar potehtglch
that where o is the standard deviation of kh and 6 the median
diameter.
He=- V. @

In Eq.(8), (XBe)/ KH))r, represents the effective perme-
Under appropriate boundary conditions, the inhomogeneoudbility including all nonlinear effects at a constant density.
ferrofluid inside the field-affected volume can be representeds a matter of fact, regarding both Eqg) and(8), the total

as a region of volum#,, surrounded by a surfac®. Such  effective third-order nonlinear susceptibility generally con-

boundary conditions can be written as tains two contributions. The first is the magnetostriction-
, induced one considered in this work, and the other is the
¢=-H-XonS, 5 normal-saturation contribution. At large field intensities, the

which, if the ferrofluid withinV, were uniform, would give ~higher terms of the Langevin function should be taken into
rise to a magnetic field which is identical t8 (external —@ccount. This contribution is negative and is called normal
field) everywhere withirV,. In fact, this boundary condition saturation. In contrast, the magnetostriction has a positive

guarantees that even in an inhomogeneous ferrofluid the vofontribution. In this work, we assume that the field is mod-
ume average of the magnetic field ) within V. still equals erate such that the normal-saturation contribution is weak

enough to be neglected. It should be noted that the argument
of the Langevin function can become large for a very small
number of large particles in the tail of the size distribution.

(Ho = Vf Ho(X)d* = (H). (6)  Further, we shall also neglect the normal-saturation contribu-
¢ tion resulting from the very small amount of the large par-

In this case there is no external field outside the field-affecteticles since this contribution might be expected to have a
volume andor, in practice, the external field in other areas isvery weak effect on the total effective third-order suscepti-
weak enough to be neglectedhe ferrofluid with volumeév  bility. To summarize the above, throughout this work, only

is situated such that it has regions both inside and outside thbe magnetostriction-induced contribution is considered.

that of the external fieldiH)—namely,
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Using the above assumptiot&B)/d(H))t ,= u can be  only—i.e.,L(y)=v/3. Due to the same reason, in what fol-
given by the anisotropic Clausius-Mossotti equation—Ilows we shall omit the contribution from the nonlinear field,

namely[30], too.
p 5 Regarding the incremental permeability due to the mag-
Oulpe—pa)  _ Ai'ff maXf(d)N(d)(a’(d) . my(d) )dd netostriction, namely, the last term in E&)

Mo+ O (e — 12) SkeT d d(By) d p(d)
max c P _ 2
f(d —y | dd=12 ’
(10 fdmin ( )(&P(d))ﬂm( d{H) )T,p H2me)

Amin

where u, denotes the permeability of the carrier liquid,

my(d) [or a(d)] the permanent magnetic dipole momé¢ot  we obtain

magnetizability of a particle with diameted, N(d) is the g

number density of particles with diametdr kg the Boltz- 1277§<H>2:f maxf(d)<H>< d te ) <6’P(d)) ad
mann constant, and the temperature. Regarding Ed.0), dp(d)/ 1\ d(H)

more issues should be remarked on. It is known that the
usual(isotropig Clausius-Mossotti equation does not include

the particle-particle interaction. When Lo and M0] stud- g equation is valid for the lowest-order perturbation. The

ied the field-induced structure transformation in eleCtrorheodiﬁerential increase of the density inside the field-affected

logical solids, they succeeded in developing a generalized,ume ¢(d) corresponds to an increase in mass given by
Clausius-Mossotti equation by introducing a local-field fac-, dp(d). This increase is equal to the decrease in mass out-
tor 8" which reflects the particle-particle interaction between iije the field-affected volume given byptd)d(V-V,)

the particles in an anisotropic lattice. This generalized_ _ L i
Clausius-Mossotti approagkqg. (10)] is a self-consistent de- ;vrife(dé?qv('lszt)) ;rslat ®(d)=—{p(d)/VcldV. Thus, we may re

termination of the local field due to a lattice of dipole mo-

ments. In other words, Eq10) should be expected to in- dinax (d)( oV
clude particle-particle interactiongt least to some extent 127T§<H>2=_J f(d)(H)( e > p ( ) dd

T
(12)

Amin

and the degree of the particle-particle interactions depends duin ap(d)/ 14y Ve \d(H) /1

on how muchg, deviates from 1/3(note that hereg, (13)
=p’'13), whereg, represents the demagnetizing factor in the

longitudinal field case. In particular, the case wheg, 3 Next, we can obtailgV/ &H))r , based on the differential

(or g_.=1/3) corresponds to the isotropic case, which yieldsof the free energy F:

the well-known(isotropig Clausius-Mossotti equation. It is v

worth noting that there is a sum rulg +2g;=1 [31], where _ c

g is the dgmagnetizing factor in%e t?gnsw[ers]e field case. dF == SdT = pdv+ E<H>d<8°>’ (14

For electrorheological fluids, similar factors were measured

in simulations[32,33. where S denotes the entropy. Introducing the transformed
In Eq. (10), the termmy(d)?/3kgT results from the aver- free enthalpyg,

age contribution of the permanent magnetic dipole moment

to the average value of the work required to bring a particle — V.
with diameterd into the field(H). More precisely, the mean G=F+pV- E<H><BC>’ (15
value of the component of the dipole moment in the direction
of the field is given by we obtain the following expression for its differential:
2
mo(d)L(y) = %H, (11 dG=-SdT+Vdp - ﬁ<sc>d<H>. (16)
B 47

with y=my(d)(H)/kgT. That is, we set the Langevin function g0 this equation, we find

to L(y)=v/3. Regarding this relation, the following issues

should be noted. In the present work, we shall adopt a per- ( oV ) Vc<ﬁ<Bc>> Vc<H>(ﬁMe)
turbation approach34] [see Sec. Il ¢ which is suitable for o) T T\ T =T\ :

a weak nonlinearity. In the perturbation approach, it is well I rp AL TP S 4m 3P fr
established that the effective third-order nonlinear suscepti- (17)
bility can be calculated from the linear fie]@5], while the o o

effective higher-order nonlinearity must depend on the nonJNen. the substitution of this into E¢L3) leads to

linear field [34]. In fact, we could have adopted a self- o (H)? P P
consistent mean-field approaf36], but the perturbation ap- 1277§<H>2:f f(d)—p(d)<£> <_'“6) dd.
proach appears to be more convenient for analytic dinin 4 dp(d) /1 my\ P /1y
expression$36]. Thus, to be able to focus qmweak third- (18)
order nonlinearity, it suffices to use the Clausius-Mossotti

equation[Eq. (10)] by taking into account the linear relation ~ We now use
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() i) 20 0l )
ap Sy \apd)/ran\ P 1 dp(d)

(19)

where 8=—(1/V)(dVIdp); is the compressibility in the ab-
sence of the field. In the last term of H49) , terms depend-

ing on(H) have been neglected since they lead to terms i

powers of(H) higher than the second term in E@.8) . In
the same approximation, after substitution of EtP) into
Eq. (18) we obtain

Gmax ~(H)?

2_
127&H) —f f(d) B (d) (a (d)) dd. (20

dmln

Thus, we have

48772] o) (8 (d)) ad. 20

PHYSICAL REVIEW E70, 061404(2004

() el )
— = —_— a+_ s
ap/t Mnm 3ksT

where m,, denotes the mass of a single molecute,,

=M/N,. Here M is the molecular weight andN, the
Avogadro constant. For this case, usjpgM/pRT, Eq.(23)

rﬁ)redicts
2
p(a + Mo ) .
3kgT

HereR represents the molar gas constant.

This result[Eq. (26)] can also be achieved by using a
statistical method. Because of Boltzmann’s distribution law,
n™, the number of moles per énof the gas at a point with
field strength{H), is given by

(25

Na(H)?
2RT

Ap= (26)

nH) = n@exp(- WikgT), (27

wheren©@ is the number of moles per énof the gas at a
point with zero field andV the average value of the work

So far, the effective third-order nonlinear magnetic susceptirequired to bring a molecule into the fie(H):
bility & has been derived in terms of the compressibility, size

distribution function, and the differential of effective linear

permeability with respect to the density.

B. Comparison with a statistical method

The increase of the densityp due to magnetostriction
can be calculated frorwV/d(H))r .. Details are as follows:

max <H>
e[ 18] s
Amin p
(H)
max p(d)( ) q dd
J f 7 () ),
fmaxfm)(m” (‘”‘e) d(H)dd
dmin 4 T(H)
J e

max (Y (H) Bp(d) ( )
fmm f A 7 p(d) Td<H)dd. (22)

To obtain this equation, E¢19) has been used, which means ¢ .

that in the expression fakp terms in powers ofH) higher

than the second have been neglected. Then, the integration

can be performed, and we obtain

[ {225 )
Ap—Jd_ — Bp(d) 7 0(d) dd.

min

(23)

1 me ) )
W= 2<a BT (H)2. (28)
Thus, we have
1
(H) = n(0) - m 2
n n exp{z(cw 3kBT)<H> /kBT] (29)

Let us neglect the terms in higher than second powers of
(H), and we have

Ap=M(n" - n©) =

2 2
Na(H) P(a+ ms

2RT SkBT> - GO

For an ideal gas, Eq30) yields exactly the same result as
Eq. (26), albeit derived using a different approach. This
shows the consistency of our arguments.

C. Magnetization and high-order harmonics

The orientational magnetizatiofz axis) has the general

M =52 EAH) + &(H)?. 3D
T

Here, the higher-order terms have been omitted. We use an

inhomogeneous sinusoidal ac fieldd=(l,/L)H.{t)z

=(l,/L)HZsin(wt), where 0<I,<L, with L, being the

For comparing with a statistical method, let us apply ourjength of the field-affected volume along theis. Without

formalism to a(monodisperseideal gas[22]. For its effec-
tive permeability, in view ofy, =1/3, Eq.(10) can be rewrit-
ten as

2l
e+2 3\ T 3T/

For the ideal gasy.~

(24)

1, and hence we obtain

loss of generality, we sdt,=1 in the following. We now
obtain

Me ™ M2
8w

M=

Hadt) + gHaC(t)3. (32

In view of H,{t)=H_,sin(wt), the magnetizatioiM can be
expressed in terms of the odd-order harmonics such that

061404-4



MAGNETIZATION OF POLYDISPERSE COLLOIDAL...

PHYSICAL REVIEW E 70, 061404(2004

r ; 17 .
—— §=9.5nm
—— 8=9.5nm
0.10 [\ 8=10nm Fovereenes $=10nm B 4
£ i\~ 8=10.50m --- $<1050m .~
= :;II 12 + - ]
2PN
4] 1Y
g 005 [ % 1
) ‘.\\
(a) \\\4\.\‘
000 “Ff—v L =
0 10 20 30
d(nm)
0.10 | .
]
g 2
£
- ; ) FE
d 005 | ¥ 1 =
8 g =5
3 s
I \\
0.00 g O Rean,
o 10 20 30
d(nm) /g,

FIG. 2. Polydisperse cas&a) Fundamental an¢b) third-order
harmonics of the magnetization against the degree of anisotropy
1/g, for different median diametes. Parametero=0.45.

FIG. 1. Lognormal distribution of particles for differe(d) me-
dian diameters and (b) standard deviationr. Parameters(a) o
=0.45 and(b) 6=10 nm.

M =M, sin(wt) + M3, sin(3wt), (33) which ensures the assumption that the particle interaction in
] ) _our system is weak.
where the fundamental and third-order harmonics are given |, Fig. 1, we display the size distribution of the particles
by in the lognormal law for differenta) median diametes and
fho— iy 3¢ (b)_ standard de\(iationr. Figure 2 shows t.he fundamental
M, = 7Hae+ 3—2Hac, (34 [Fig. 2a)] and thlrd-o_rder[F|g. 20)] harmonps of the mag-
netization as a function of the degree of anisotropy, 1for
different median diameters. The size distribution of the
Ma = — éHs (35) particles is shown in Fig.(d). It is found that increasing the
307 gpilac degree of anisotropy 3{ causes both the fundamental and

third-order harmonics to increase. Also, a higher median di-
ameters leads to larger harmonics.

In Fig. 3, the fundamentdFig. 2(b)] and third-ordefFig.
2(c)] harmonics of the magnetization are plotted as a func-
Il NUMERICAL RESULTS tion of 1/g, for different standard deviations. The lognor-

: mal size distribution of the particles is shown in Figbjl

Without any loss of genera"ty, we choose the f0||owing Again, it is shown that the harmonics increase with increas-
parameters for our numerical calculations;=1 (nonmag- ing median diametes.
netic carrier fluid, density of the bulk material of the par-  Finally, to compare the above polydisperse case with the
ticles 7 g/cm, H,=20 Oe, 8=0.62x 10 %m /g, a(d) corresponding monodisperse one, we study the monodisperse
=0 (due to the small size of the particleandT=298 K. In ~ case in Fig. 4 for three Qiﬁergnt diameters which have the
addition, the volume fraction of the particles is set to be 0.08same values as the median diameters used in Fig. 2. In the
and the saturation magnetization of the bulk material of thanonodisperse case, it is also evident that increasing the de-

particles is 450 emu. Finally, settingi,,=1 nm andd,,, 9re€ of anisotropy Ig causes both the fundamental and
=30 nm ensures third-order harmonics to increase. In addition, larger diam-

eter leads to larger harmonics. It is worthing noting that both

In the above derivation, we have used the identity(git)
=(3/4)sin(wt) = (1/4)sin(3wt).

dmaxf ddd~ 1 the fundamental and third-order harmonics of the magnetiza-
. (dyad =1, tion are higher in the polydisperse system than in the mono-
m disperse one when comparing Fig. 2 with Fig. 4. In particu-

as expected. lar, the third-order harmonics of the polydisperse system can
Based on the model parameters, we calculated the dipoldse of two orders of magnitude larger than those of the mono-

coupling constant[37] (&) =my(8)?/ uokgTs® and found  disperse system. In other words, the magnetization is higher

A9.5 nm=1.16, AM(10 nm=1.35, and \(10.5 nm=1.56, in the polydisperse system than in the monodisperse one, due
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FIG. 3. Polydisperse caséa) Fundamental ancb) third-order FIG. 4. Monodisperse cas¢a) Fundamental ancb) third-order
harmonics of the magnetization against the degree of anisotropffarmonics of the magnetization against the degree of anisotropy
1/g, for different standard deviatios. Parameters=10 nm. 1/g, for different diameted.

density. In this regard, for Eq22), the linear superposition
to the fact that for this comparison the volume fraction of theshould be used naturally.
particles is fixed. This is in agreement with the findings of  Nonlinear optical materials with large values @ffec-
Ref.[19] where a Monte Carlo simulation was used to studytive) third-order nonlinear dielectric susceptibilitig38] are
the influence of polydispersity on the equilibrium propertiesin great need in industrial applications such as nonlinear op-
of ferrofluids. tical switching devices for use in photonics, and real-time
coherent optical signal processors, and so on. Due to the
similarity between magnetics and dielectrics, the pregsft
fective) third-order nonlinear magnetic susceptibilities are
Here some comments are in order. In the present papeexpected to have some potential applications in nonlinear
we have exploited magnetostriction in ferrofluids in order tomagnetic devices.
generate nonlinear responses. The proposed mechanism Throughout the paper, only odd-order harmonics are in-
should work for dc magnetic fields. It will also work for ac duced to appear. As a matter of fact, if one applies an ac
fields with frequencyw=w/(27) if the size of the sample is magnetic field superimposed onto a dc field, the even-order
not greater tha,/ v, wherec, is the sound velocity. Thus;  harmonics should appe#27]. That is due to the coupling
can be up to kHz or so. Otherwise the required mass densitgetween the two kinds of fields. On the other hand, since the
oscillations will not be able to keep up with the rapid second-order harmonics are often of several orders of mag-
changes in the magnetic field. nitude larger than the corresponding third-order harmonics,
To obtain the lowest-ordegi.e., cubig nonlinearity, we the second-order harmonics are more attractive for the ex-
have assumed that material properties such as permeabiliperimental measuremenia7].
of the polydisperse system can be calculated as a linear su- We have considered the fundamental and third-order har-
perposition of the corresponding values in the monodispersgonics. In fact, we can consider much higher-order harmon-
systems; see Eqe8), (10), and(22). For Eq.(8), the linear ics [36,39, such as fifth-order, seventh-order, etc. In doing
superposition should hold since the nonlinear térim actu-  so, we need to keep more terms in powerghbf higher than
ally an effective quantity which results from all the mono- the second in Eq¢18). Accordingly, more terms should be
disperse systems. For E(L0), we used the linear superpo- included in Eq.(31). However, such higher-order harmonics
sition again. The reason is that the right-hand side of(lHg). = are often of several orders of magnitude smaller than the
actually represents the effective contribution from two partsthird-order and, thus, less attractive.
the induced magnetizatiofvhich has been assumed to dis- In the numerical calculations, we have omitted the mag-
appear due to the small size of the particles in our numericahetizability of the particles due to the fact that the sizes of the
calculation and the permanent-moment-related magnetizaparticles are very small in ferrofluids. For these patrticles, the
tion. In addition, once the inhomogeneous field is appliedpermanent magnetic dipole moments play the main role.
the particles with different sizes are able to move into theHowever, in the case of a magnetorheological fluid, the mag-
field-affected volume, thus yielding an increasing particlenetizability of the particles should be taken into account

IV. DISCUSSION AND CONCLUSION
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since the particle sizes range from 2 to 20—about three the harmonics are sensitive to the particle distribution
orders of magnitude larger than in ferrofluids. Fortunately(namely, median diameters and standard deviatiand de-
for treating magnetorheological fluids, the present theongree of field-induced anisotropy of the system. In addition,
holds as well. we also find that the magnetization is higher in the polydis-
In this paper, we have investigated a log-normal distribuperse system than in the corresponding monodisperse one,
tion [see Eq(9)]. Our theory could be extended to treat otherwhich is in agreement with previous findings. Thus, it seems
particle distributions as well. For instance, fod'adistribu-  possible to detect the size distribution in the polydisperse
tion [40], we should replace Eq9) with ferrofluids by measuring the harmonics of the magnetization
of colloidal ferrofluids under the influence of magnetostric-
I tion. In detail, the size distribution might be achieved by
f(d) = l(ﬂ) e using Eq.(21) and choosing a suitable distribution fiqd) to
do\dy/ T(a+1)’ fit experimental data.

wheredy anda are the parameters of the distribution dnd
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