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Structure of a sheared soft-disk fluid from a nonequilibrium potential
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The distortion of structure of a simple, inverse-12, soft-disk fluid undergoing two-dimensional plane Couette
flow was studied by nonequilibrium molecular dynamisdkEMD) simulation and by equilibrium Monte Carlo
(MC) simulation with a nonequilibrium potential, under which the equilibrium structure of the fluid is that of
the nonequilibrium fluid. Extension of the iterative predictor-corrector methgBed#ttoet alPhys. Rev. A33
3451 (1986] was used to extract the nonequilibrium potential with the structure input from the NEMD
simulation. Very good agreement for the structural properties and pressure tensor generated by the NEMD and
MC simulation methods was found, thus providing the evidence that nonequilibrium liquid structure can be
accurately reproduced via simple equilibrium simulations or theories using a properly chosen nonequilibrium
potential. The method developed in the present study and numerical results presented here can be used to guide
and test theoretical developments, providing them with the “experimental” results for the nonequilibrium
potential.
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I. INTRODUCTION culation of the nonequilibrium potential represents a crucial
step in the theory discussed above and availability of the
Shear-induced distortion of the fluid structure and its re-‘exact” results is very important, since they can be used as a
lation to the rheological properties of the fluid are of substanreference to test the theory. While formal existence of the
tial importance in a number of applications in many branchesonequilibrium potential follows from considerations of Gan
of science and engineering. However, there have been onlynd Eu[9,10], knowledge of its quantitative and even quali-
few attempts at a theoretical description of the fluid structurqative form is still lacking. Moreover, there is no evidence
undergoing shear flow. These include phenomenological agnat the nonequilibrium potential can be determined or of the
proaches based on fluctuating hydrodynanfies3) and on ¢ongitions of the density and strain rate under which it can
the Langevin model$4,5]. More recently a relatively suc- po getermined with sufficient accuracy. In the present study
cessful description of the structural changes in the hardg . propose a scheme, which gives “exact’ results for the

igg}ebrﬁ] :}IS'SOTSS:; (S)?Etﬁ; Vé?;l?(;\éegq?gtli_g;??/?/Jh\ilc\gue;vgs nonequilibrium potential in the same sense as any computer
the contact value of the hard-sphere pair distribution func—S'mUI&ltlon approach gives "exact’ results for the liquid

tion, and ideas of the generalized mean spherical approximg—FrUCtur.e' Our scheme. combm(_es NEMD anq Monte Carlo
tion approact8]. simulation methods with the iterative predictor-corrector

An interesting prospect in developing the theory, which ismethod of Reattet al. [17]. The NEMD simulation method

able to describe shear-induced distortion of the fluid struciS Used to generate the pair distribution function of the fluid
ture, is to use the well-developed machinery of the liquid-Undergoing steady shear flow, and the MC method is a “cor-
state equilibrium statistical mechanics with a nonequilibrium€ctor” step in the predictor-corrector method of Reattal.
potential under which the equilibrium structure of a fluid is [17]. In essence, the scheme represents solution of the in-
that of the nonequilibrium fluid. Such theory can be used to/erse problem for the structure generated by the NEMD
predict the structure and other properties of nonequilibriunsimulations. This method can be used to guide theoretical
fluids without utilizing computer simulation methods. This is developments providing them with the “experimental” re-
especially important for being able to predict the propertiessults for the nonequilibrium potential, which otherwise are
of the system under conditions at which they cannot be denot available.
termind by computer simulation, e.g., in the linear flow re- The paper is organized as follows. In the next section we
gime of high polymers or in uniaxial extensional flow in the present the model and details of the NEMD simulation. For
nonlinear regime. This type of approach has been taken bthe sake of simulation simplicity we consider here the
Gan and Eu[9,10; however extensive comparison of the inverse-12, soft-disk fluid undergoing two-dimensional plane
theoretical results and results of nonequilibrium molecularCouette flow. In Sec. Ill we discuss the iterative predictor-
dynamics(NEMD) simulation[11,12 reveals poor perfor- corrector method of Reattet al. [17], specialized to the
mance of the nonequilibrium potential suggested by the auproblem at hand; in Sec. IV we present our results and dis-
thors. cussion; and in Sec. V we collect our conclusions. In addi-
In this paper we continue to explore the possibilities intion, in the Appendix we propose a closed-form, analytic
suggesting the nonequilibrium potential, which can be use@&xpression for the nonequilibrium potential, extracted from
to predict shear-induced distortion of the fluid structure. Calthe NEMD simulation, and its parametrization.
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Il. NONEQUILIBRIUM MOLECULAR DYNAMICS tor” step using expressio2). On theith iteration cycle we
SIMULATIONS have
Canonical(NvT) NEMD simulations of the soft-disk fluid BVI(r) = BV (1) + tygmp(r) = t72(r)
under a planar Couette shear field have been performed using B (i-1)
the so-called Sllod equations of moti¢gh3] with a Nose- In[gnemo(r)]+ In[g" " (r)], (4)
Hoover thermostaf14-16. The interaction potential of the where the subscript NEMD denotes the quantities obtained
soft-disk fluid is given by by the NEMD simulation and correlation functiotls(r)
o\ 12 andh@(r) for i—1 iteration step follow from the equilib-
Vedr) = e(?) . 1) rium MC simulation method applied to the system with the

pair potentialvﬂ; 1)(r).

The interaction force and potential are truncatedr at The inversion scheme of this type requires a very accurate
=2.0o. In this study, we have chosen the reduced temperainitial guess for the pair potentidl.(r). In the present study
ture T;; ksT/e=1.0 and three different packing fractions we used the following initial estimate,
n=mpo-/4=0.3, 0.35, and 0.4. Three different values of the 0/
reduced shear rateg* = y\mo?/€=0.5, 0.7, and 1.0 were Vie () = tuewo(r) = In[gewo(r)] + BO(), (5)
used. All NEMD simulations have been carried with 2048\whereB?(r) is the bridge function extracted from the equi-
soft disks. The velocity Verlet algorithm was employed to|ibrium MC simulations for the original system in equilib-
integrate the equations of motion with the reduced time stepum (y*=0) with the pair potentia(1).

&t* = 8t/ \mo?/ €=0.001. A total of 10 million time stepswas  Application of the iteration schem@!) requires solution
used for every NEMD simulation, which is sufficient to re- of the OZ equation3) with respect ta(r), i.e.,

duce the statistical uncertainty. For calculatigig) during

simulations, two-dimensional space has been dividedrby _ _

=0.010 and 56=27/1000. A small grid in the angular coor- tra) ‘pf dr3[h(ry3) = t(rya)Jn(rsy). (6)
dinate was required for the inversion procedure to extract the

nonequilibrium potentials. After 2 million time steps to
achieve steady statg(r) data were collected every 10 steps.

The integral equation given b§6) involves correlation
functions, which are vector dependent and therefore difficult
to solve numerically. To overcome this difficulty we expand

these correlation functions into a set of ortogonal functions
I11. NONEQUILIBRIUM POTENTIAL AND EQUILIBRIUM (18], i.e

MONTE CARLO SIMULATIONS

L
A. Solution of the inverse problem S, 0) = E S,(rexp(imé) 7
According to liquid state integral equation theory, formal m=-L

solution of the inverse problem, i.e., deduction of the interyhich reduces the problem to numerically solving the one-
particle interaction potentia¥,((r) from the structural data, ariaple functionS,(r). HereS(r, 6) stands for eithet(r, 6)

is or h(r, #) andL — cc. Taking the Fourier transform of the OZ
BV.r) =t(r) + B(r) - In[g(r)], (20 Ea. (3) and expanding the correlation functiof&) and

where g(r)=h(r)+1, t(r)=h(r)-c(r), B(r) is the so-called <) We have

bridge function, and the totdi(r) and directc(r) correlation R Lo R .
functions are coupled by the Ornstein-Zerniki) equation tn(k) =p 2 [he(K) = To(K) Inn-p(K), (8)
p=-L
h(ryo) =c(ryp) +pf drsc(ri9h(rsy). (3)  Where the expansion coefficients in real and Fourier spaces
are linked by the relation

However, this set of equations is not closed and one has to - *
adopt some approximation for the bridge funct®(r). The Sn(k) = 27Timf drrSp(r)Jm(kr). 9)
resulting potential is very sensitive to the accuracy of the 0
approximation used, which makes solution of the inverseere J, denotes thepth order Bessel function of the first
problem highly nontrivial. One of the possibilities in resolv- kind.
ing the problem is to utilize an iterative solution method, |t is convenient to write Eq(8) in matrix form, which
correcting the initial approximation to the bridge functi@mn  then can be solved fd,(k) to yield
equivalently to the potentiaV/,(r) (2)] on each iterative L R
step. t(k) = ph(KWHK[1+ pH(K)]™ (10
In this study we utilize the iterative predictor-corrector ~ R ~ - R -
method of Reattet al.[17], which proves to be successful in Wheret(k)=(t_.(k), ...t (k)), h(k)=(h_(k), ... ,h (k)), and
a number of applications. One iterative cycle of this method L
combines a “corrector” step, represented by the full com- [ﬁ(k)]nm: > ﬁp(k)gp men- (12)
puter simulation for the pair potential obtained on a “predic- p=-L '
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FIG. 3. Location of the pair distribution function maxinieolid
lines and circlesand minima(dashed lines and squayes different
values ofn and aty*=0 (lines) and y*=0.7 (symbolg. All results
are from NEMD simulation.

FIG. 1. Pair distribution functiomg(r) of the soft-disk fluid un-
der shear flow atyp=0.3 and#=0 (solid lineg, #==/4 (dashed
lines), 6=/2 (dotted liney, and 6=37/4 (dashed-dotted lingsat
different values of the shear raj& by NEMD simulation. The thin
solid line representgy(r), which is the orientationally averaged
version of the pair distribution functiog(r).

B. Details of the equilibrium Monte Carlo simulations

Each iterative step of the method discussed above requires
full Monte Carlo simulation of the equilibrium system with
the pair potentiavﬂg(r). Temperature, density, and the equi-
librium interaction potential used in MC simulations are the
same as those in NEMD simulations. A total of 2 million

Summation in these expressions formally extends frontycles were performed for every MC simulation. After a
minus to plus infinity(L —); in most cases only a small 500 000-cycle equilibrationg(r) data were collected every
number of coefficients are needed. In the present study weo cycles. An important detail in the MC simulations is to
restrict ourselves t@ =8, which appears to be sufficient for yse a much largetshear-rate dependgntut-off distance
good representation of the structure. Because of the symmehan is used in the NEMD simulations because of the long-

try of the problem, all the expansion coefficiel8s(r) and
(é(k)) with odd m are equal zero, an®_.,(r)=[S(r)]*,

range characteristic of the nonequilibrium potential. It turns
out(see Fig. »that the range of the nonequilibrium potential

where the asterisk denotes complex conjugate. Thus, the dpecomes longer with increasing shear rate. For all packing

mensionality of the matrices involved in the Ed.0) is 9

fractions, we employed,,=6.00 in the case ofy*=0.5 and

% 9. The forward and inverse Fourier transforms, which ared-7, andr¢,=8.0c in the case ofy*=1.0. This strategy was
needed to couple the coefficients of the expansions of thBecessary in order to avoid an artificial discontinuitygin)
correlation functions, have been carried out in logarithmicat shorter . Moreover, it also turns out that more iterations
variables, using the method developed by Talrfi8j. This  are required for the higher shear rate.

method allows us to sample effectively both the rapidly vary-
ing part of the correlation functions at small distances and
the long-range, slowly decaying portion, using a small num-
ber of grid points(n=512.

IV. RESULTS AND DISCUSSION

Figures 1 and 2 show the development of anisotropic
structure g(r), for the system a=0.3 and 0.4 at shear rate
v*=0, 0.5, 0.7, and 1.0. As expected, for the equilibrium
case,y*=0, g(r) reveals no angular dependence, indicating

9(r) i
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FIG. 4. The values of the pair distribution function maxima
(solid lines and circlesand minima(dashed lines and squaye®r-
sus 6 at different values ofy and aty*=0 (lines) and y*=0.7
(symbolg. All results are from NEMD simulation.

FIG. 2. The same as in Fig. 1 foy=0.4.
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FIG. 7. The same as in Fig. 6 foj=0.4.
05|

means that the structural shape of the syster=d is not
much changed by the external shear foge, =7/2) also
shows little difference fromgy(r) except a slightly higher
value of the first maximum. In contrast to thosefatO and
ol f"/”_ | . . l’"/”_ w2, 9(r) at 6==/4 and 3r/4 show quite different results.
1 3 5 7 1 3 5 7 Relative togy(r), g(r, 8=1/4) appears to shift to largerand

) - _ 9g(r,6=3m/4) to smallerr. This indicates that particles are

FIG. 5. The difference between nonequilibrium and equilibrium distributed in space closer to each othepaBa/4, but fur-
potentialsVydr) -~Vedr) at different values ofy and y* for 6=0 o anart from each other dt /4. In a sense, we can say
(solid lines, §=m/4 (dashed lineg §=m/2 (dotted liney, and & 4t particles have stronger interactions with those located in
=3m/4 (dashed-dotted lings the direction ofd=3=/4 relative to them and weaker inter-
actions with those in the direction @& /4. In this regard,

the isotropic nature of liquid structure under the sphericallyit is to be expected from the fundamental kinetic theory that
symmetric soft interaction potential). For the nonequilib- transport coefficients, i.e., viscosity, would be different for
rium case ofy*=0.5, it is clearly seen that the applied shear different orientations in space under the shear field. It is also
field distorts the overall liquid structure. Approximately, important to note that the first maximum peakgif) at 6
g(r,6=0) is almost the same as the angle-averagg¢d, and  =3w/4 appears considerably higher than thagg(f). Com-
on the scale of the figure the difference can be seen only fdpining all the results above, we can picture the overall shape

the case of the largest shear rat#=1.0. Physically this ©Of the liquid structure as an ellipse distorted from a circle
with its major axis in the direction ob=/4. The overall

T liquid structures aty*=0.7 and 1.0 appear qualitatively
0=n/4 similar to that aty*=0.5. However, the distortion of liquid

1 structure becomes stronger with increasing shear rate. In
both casesg(r, #=0) still shows little difference frongy(r)
as in the case of*=0.5. Forg(r, 6=7/2), the maximum
value is now considerably higher than thatggfr), although
there is still no clear shift in the position of the peaks, i.e.,

0.0 fFr S

05

9fr) g=0 | 9r)

14}

0.6 |

oz rle 4 the periodicity of peaksy(r, =7/4) andg(r, 6=3m/4) also
: : : T T T show the stronger shear effect on the extent of the shift,
5 _g(r) b=n/2 _g(r) 6=31/4|  while onlyg(r,§=3x/4) shows a clear increase of the maxi-
’ mum value of peak. Thus the resulting shape of structure in
1w} 5 these cases is elliptical as in the caseydE0.5, but with a
higher degree of eccentricity. The exact quantitative picture
06 1T T of the elliptical shape liquid structure is well represented in
osk rfo rjo Fig. 3. Figure 4 shows the maximum and minimum values of

. . L L L L g(r) along the angular coordinate. One can see that the most
! 2 3 ! 2 s substantial deviation aj(r) extremum values occurs for ori-
FIG. 6. Comparison of the pair distribution functions obtained €ntations close t6=/6 and6=3x/4, while for 6=0g(r) it

by the NEMD simulation with the equilibrium pair potentid}(r) IS almost unchanged. o _
and by equilibrium MC simulation with the nonequilibrium poten- ~ Our results for the nonequilibrium potentigh,Jr) ex-
tial V,(r) at »=0.3 andy*=0.7 and different values of. tracted from the NEMD simulation results are presented in
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TABLE I. Pressure tensd?:(1/V)EiNrifi calculated using NEMD simulation for equilibrium pair poten-
tial Ve(r) and equilibrium MC simulation for nonequilibrium potentile(r).

N - PE(TEMD) PE(I\):IC) PESEMD) PQ\;C) F,isEMD) P;l\;IC)
0.5 0.4917 0.4913 -0.0798 —-0.0802 0.4828 0.4817
0.30 0.7 0.5030 0.5064 -0.1080 —-0.1080 0.4898 0.4925
1.0 0.5219 0.5235 -0.1461 -0.1458 0.5033 0.5027
0.5 0.7519 0.7513 -0.1135 -0.1121 0.7444 0.7425
0.35 0.7 0.7674 0.7685 -0.1557 -0.1552 0.7557 0.7550
1.0 0.7941 0.7913 -0.2129 -0.2106 0.7777 0.7743
0.5 1.1145 1.1139 -0.1600 -0.1589 1.1089 1.1069
0.40 0.7 1.1355 1.1341 -0.2193 -0.2176 1.1275 1.1253
1.0 1.1732 1.1739 -0.3015 -0.2967 1.1618 1.1637

Fig. 5. In order to see clearly the effect of shear on the liquidnonequilibrium potential. Similarly, good agreement between
structure, it is useful to divide nonequilibrium potential into equilibrium MC and NEMD simulation results was found for
two parts: equilibrium partVe(r), and the purely nonequi-
librium part, Vi(r) —Veq(r). Figure 5 plots the purely non-
equilibrium part of potential. It is instructive to compare the
shape of the nonequilibrium part agér) as shown in Figs.  °®f
1 and 2. In particular, the shape @t /4 looks almost op-
posite to that ap=3/4, which is consistent with the results  *®
of g(r,). Another aspect worthy of notice is that nonequilib-
rium potential is relatively long-ranged and its range be- o
comes longer as shear rate increases. Note that this feature
absent in the theory of Gan and Fy10], which predicts the  o»F
same large distance asymptotic for both equilibrium and non-
equilibrium potentials. 0.0
Figures 6 and 7 show the results of inversion calculations
of g(r) for »=0.3 and 0.4 at shear ratg*=0.7 by MC %
simulations with the nonequilibrium potentials that were ex-
tracted from the originag)(r) data from NEMD simulations.
As shown in the figures, the inversion results in all caseS.og}
converge very well to the original ones. This proves that our
nonequilibrium potentials are accurate enough to represen
the corresponding nonequilibrium liquid structures. This |
treatment has an important practical aspect since we can re
produce the structure of a nonequilibrium system via simple
equilibrium simulations or theories using a properly chosen 0®

I Ago(") I

- Dgolr)

FIG. 8. Comparison of the distortion of the fluid structure
Agoo(r) =0oo(r) —gedr) calculated using NEMD simulation with the
equilibrium pair potentialVe(r) (symbolg and equilibrium MC
simulation with the nonequilibrium potenti&,(r) (solid lineg at equilibrium pair potentialVe(r) (symbolg and equilibrium MC
different values ofy and aty=0.5 (circley, y=0.7 (squaresand  simulation with the nonequilibrium potenti&,(r) (solid lineg at

v=1.0 (diamonds$. Heregg(r) is the angular averaged version of different values ofy and 6 at y=0.5(circles, y=0.7 (squaresand
the pair distribution functiomy(r). v=1.0 (diamonds.

FIG. 9. Comparison of the distortion of the fluid structure
Ag(r)=g(r)—geqr) calculated using NEMD simulation with the
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V"(r) is purely empirical. The quality of this choice can be
judged from Fig. 10, where we compare the original non-
equilibrium potential V,J(r) with its fitted version for 7
=0.3 and 0.4 and foy*=0.7.

25 Vne (I')

05

V. CONCLUSIONS
-05 F

In this work we present and analyze the structure results
for a simple, inverse-12, soft-disk fluid undergoing two-
dimensional Couette flow generated by nonequilibrium mo-
lecular dynamic¥NEMD). The NEMD structure has been
used to extract the nonequilibrium potential, under which the
structure of the equilibrium fluid coincides with that of non-
equilibrium fluid. The asymptotic behavior of the “exact”
nonequilibrium potential obtained in this study is substan-
4 tially more long-ranged in comparison with that predicted by

FIG. 10. Comparison of the nonequilibrium potenthld(r) the theory of Gan and E{9,10). Solution of the inverse

(dashed linesand its fit(solid lineg represented by the analytical Problem is based on our extension of the iterative predictor-
expressior(Al) for different values ofy and 6. corrector method of Reattet al. [17] with the corrector rep-

resented by the equilibrium MC simulation. The inversion
¢ results for structure and the pressure tensor studied converge

of this approach is expected to provide an easy route to u ery We". to'the original ones in all cases. Thus, the noneqyi-
ibrium liquid structure can be accurately reproduced via

derstanding of nonequilibrium systems. Now we turn our; S : ) . ;
attention to the effect of the shear force on the liquid strucSMPI€ equilibrium simulations or theories using a properly
ture by comparingy(r) for each angled as well asgy(r). As chosen nonequilibrium potential. The method developed in

for the nonequilibrium potential, it seems more instructive tothe present study and numerical results presented here can be

look at the difference between the nonequilibrium and equi-usecj to guide and test theoretical developments, providing

librium  structuresAg(r)=g(r) ~geqr). First of all, from a them with the “experimental” results for the nonequilibrium
. . . : potential.
naive consideration ofjy(r) as angle-averaged, one might
think thatgy(r) would be the same regardless of shear force.
However, everyy(r) is changed under a shear field as shown ACKNOWLEDGMENTS
in Fig. 8. As the shear rate is increased, the degree of inho- _ )
mogeneity of local density in the radial direction appears This work was supported by the Materials Sciences and
higher. We point out that this result agrees with that in Ref Engineering Division of the U.S. Department of Energy
[20]. The results ofAg(r) for 6=0, 7/4, /2, and 3r/4 are (DOE) at Oak Ridge National LaboratoryORNL) and
shown in Fig. 9. From the figure, it is obvious, as mentionedhrough subcontract at the University of Tennessee. ORNL is
earlier, that while the effects of shear on the liquid structurePPerated for the DOE by UT-Battelle, LLC, under Contract
at /=0 and /2 are shown to be qualitatively similar, the No. DE-AC05000R22725.
effect at #==w/4 shows the opposite trend to that at
=3m/4. In all cases agreement between equilibrium MC re-
sults fromV,{r) and NEMD results from the original equi-
librium potentialVe(r) is very good. In this appendix we present closed-form, analytical ex-
For the sake of convenience in future applications we propressions for the coefficienksﬁse)(r) of the expansion
pose closed-form, analytical expressions for the coefficients
of the expansior(7) for V,Jr) up to|m|=4. These expres-
sions together with the numerical values of the coefficients,
which enter the expressions, are collected in the Appendix.
We note in passing that our choice of the expressions for We have

25F

Vae(r)
1.5
05
1

-05 F

the pressure tens@fable I). Therefore, further developmen

APPENDIX

4
Vodr,0) = >, VI(r)exp(imé). (A1)

m=—4

TABLE Il. Numerical values of the parameters, which enter expresgiahs{A6).

n an by, a, Bn (0 r

0 0.602 000 3.453 747 2.78 6441 1.113914

1 8.116 665 2.164 909 8.428 300 2.959 454

2 6.576 726 0.485 137 4.809 397 1.942 225

3 4.465 418 0.760 921 5.045 461 0.697 413 2.462 430 3.833 126
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TABLE Ill. Numerical values of the density and shear rate dependent parameters, which enter expressions

(AL)~(A6).
7 7* n Ay B G Dn
0.30 0.5 0 1.001 714 —-0.045 269 0.015 699
1 —149.640 854 0.367 237 0.001 221
2 —217.866 192 0.210 881 —-0.016 889
3 -3.422 655 0.027 073 —0.003 455 0.000 388
0.30 0.7 0 1.003 260 —-0.026 05 0.044 286
1 —265.889 944 0.728 840 0.012 289
2 —294.193 067 0.279 599 0.003 945
3 -6.343 483 0.051 032 —-0.006 820 —-0.004 279
0.35 0.5 0 1.000 470 -0.029 265 0.021 302
1 —105.266 736 0.298 080 -0.001171
2 —203.507 542 0.224 027 -0.031934
3 -2.893 122 0.021 914 —-0.005 876 —-0.002 419
0.35 0.7 0 1.001 231 —0.000 663 0.064 425
1 —-184.467 440 0.572 998 0.004 936
2 —-273.942 338 0.280 491 -0.030932
3 -5.620672 0.045 834 -0.008 189 —-0.001 355
0.40 0.5 0 1.000 242 0.012 905 0.024 035
1 —-62.104 042 0.211 616 -0.004 830
2 —-185.341 190 0.200 982 -0.061 937
3 -2.381 386 0.013401 -0.0051487 -0.008 116
0.40 0.7 0 1.001 740 0.086 377 0.052 047
1 0.007 489 2.959 454 8.428 300
2 -234.625 090 0.256 615 6.576 726
3 —-0.010 505 -0.015791 -4.515 815 0.0275400
(e _ <Ao)12 Bo _g(r - r@)2 REVII(r)] = Ase 3" + Bae ™3 + Gemoal - §)?
Vo = — +7+Goeﬁo(r 6 )%, 4 3 3 3
' o007 +1 + Do ha T, (A5)
(A2)
Im[V{®(1)]=0, (A6)
e\ = A o - - and V" (r)=[V\"®(r)]* with the asterisk denoting the com-
REVZ(N] =A™ +Bie™ + Gyrie ™, (A3) plex (;chnn(ju)ga[ter.n N(u)r]nerical values for the set 091]’ the param-
etersa,, b,, @y, B rﬁll) and rf) are collected in Table Il and
for the set of paramete®s,, B,,, G, andD,, are collected in
'm[V(Zne)(r)] = Age™™2 + Boe™ + Gylr - r(Zl))e_azr’ Table lll. The Igtter set op}snpar;mer}ers deF)ends on the packing
(A4) fraction » and shear rate*.
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