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The distortion of structure of a simple, inverse-12, soft-disk fluid undergoing two-dimensional plane Couette
flow was studied by nonequilibrium molecular dynamics(NEMD) simulation and by equilibrium Monte Carlo
(MC) simulation with a nonequilibrium potential, under which the equilibrium structure of the fluid is that of
the nonequilibrium fluid. Extension of the iterative predictor-corrector method of[Reattoet al.Phys. Rev. A33
3451 (1986)] was used to extract the nonequilibrium potential with the structure input from the NEMD
simulation. Very good agreement for the structural properties and pressure tensor generated by the NEMD and
MC simulation methods was found, thus providing the evidence that nonequilibrium liquid structure can be
accurately reproduced via simple equilibrium simulations or theories using a properly chosen nonequilibrium
potential. The method developed in the present study and numerical results presented here can be used to guide
and test theoretical developments, providing them with the “experimental” results for the nonequilibrium
potential.
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I. INTRODUCTION

Shear-induced distortion of the fluid structure and its re-
lation to the rheological properties of the fluid are of substan-
tial importance in a number of applications in many branches
of science and engineering. However, there have been only
few attempts at a theoretical description of the fluid structure
undergoing shear flow. These include phenomenological ap-
proaches based on fluctuating hydrodynamics[1–3] and on
the Langevin models[4,5]. More recently a relatively suc-
cessful description of the structural changes in the hard-
sphere fluid under shear was given by Lutsko[6], where he
combines solution of the Enskog equation[7], which gives
the contact value of the hard-sphere pair distribution func-
tion, and ideas of the generalized mean spherical approxima-
tion approach[8].

An interesting prospect in developing the theory, which is
able to describe shear-induced distortion of the fluid struc-
ture, is to use the well-developed machinery of the liquid-
state equilibrium statistical mechanics with a nonequilibrium
potential under which the equilibrium structure of a fluid is
that of the nonequilibrium fluid. Such theory can be used to
predict the structure and other properties of nonequilibrium
fluids without utilizing computer simulation methods. This is
especially important for being able to predict the properties
of the system under conditions at which they cannot be de-
termind by computer simulation, e.g., in the linear flow re-
gime of high polymers or in uniaxial extensional flow in the
nonlinear regime. This type of approach has been taken by
Gan and Eu[9,10]; however extensive comparison of the
theoretical results and results of nonequilibrium molecular
dynamics(NEMD) simulation [11,12] reveals poor perfor-
mance of the nonequilibrium potential suggested by the au-
thors.

In this paper we continue to explore the possibilities in
suggesting the nonequilibrium potential, which can be used
to predict shear-induced distortion of the fluid structure. Cal-

culation of the nonequilibrium potential represents a crucial
step in the theory discussed above and availability of the
“exact” results is very important, since they can be used as a
reference to test the theory. While formal existence of the
nonequilibrium potential follows from considerations of Gan
and Eu[9,10], knowledge of its quantitative and even quali-
tative form is still lacking. Moreover, there is no evidence
that the nonequilibrium potential can be determined or of the
conditions of the density and strain rate under which it can
be determined with sufficient accuracy. In the present study
we propose a scheme, which gives “exact” results for the
nonequilibrium potential in the same sense as any computer
simulation approach gives “exact” results for the liquid
structure. Our scheme combines NEMD and Monte Carlo
simulation methods with the iterative predictor-corrector
method of Reattoet al. [17]. The NEMD simulation method
is used to generate the pair distribution function of the fluid
undergoing steady shear flow, and the MC method is a “cor-
rector” step in the predictor-corrector method of Reattoet al.
[17]. In essence, the scheme represents solution of the in-
verse problem for the structure generated by the NEMD
simulations. This method can be used to guide theoretical
developments providing them with the “experimental” re-
sults for the nonequilibrium potential, which otherwise are
not available.

The paper is organized as follows. In the next section we
present the model and details of the NEMD simulation. For
the sake of simulation simplicity we consider here the
inverse-12, soft-disk fluid undergoing two-dimensional plane
Couette flow. In Sec. III we discuss the iterative predictor-
corrector method of Reattoet al. [17], specialized to the
problem at hand; in Sec. IV we present our results and dis-
cussion; and in Sec. V we collect our conclusions. In addi-
tion, in the Appendix we propose a closed-form, analytic
expression for the nonequilibrium potential, extracted from
the NEMD simulation, and its parametrization.
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II. NONEQUILIBRIUM MOLECULAR DYNAMICS
SIMULATIONS

Canonical(NVT) NEMD simulations of the soft-disk fluid
under a planar Couette shear field have been performed using
the so-called Sllod equations of motion[13] with a Nose-
Hoover thermostat[14–16]. The interaction potential of the
soft-disk fluid is given by

Veqsrd = eSs

r
D12

. s1d

The interaction force and potential are truncated atr
=2.0s. In this study, we have chosen the reduced tempera-
ture T* = kBT/e=1.0 and three different packing fractions
h=prs2/4=0.3, 0.35, and 0.4. Three different values of the
reduced shear ratesg* = gÎms2/e=0.5, 0.7, and 1.0 were
used. All NEMD simulations have been carried with 2048
soft disks. The velocity Verlet algorithm was employed to
integrate the equations of motion with the reduced time step
dt* = dt /Îms2/e=0.001. A total of 10 million time steps was
used for every NEMD simulation, which is sufficient to re-
duce the statistical uncertainty. For calculatinggsr d during
simulations, two-dimensional space has been divided bydr
=0.01s anddu=2p /1000. A small grid in the angular coor-
dinate was required for the inversion procedure to extract the
nonequilibrium potentials. After 2 million time steps to
achieve steady state,gsr d data were collected every 10 steps.

III. NONEQUILIBRIUM POTENTIAL AND EQUILIBRIUM
MONTE CARLO SIMULATIONS

A. Solution of the inverse problem

According to liquid state integral equation theory, formal
solution of the inverse problem, i.e., deduction of the inter-
particle interaction potentialVnesr d from the structural data,
is

bVnesr d = tsr d + Bsr d − lnfgsr dg, s2d

where gsr d=hsr d+1, tsr d=hsr d−csr d, Bsr d is the so-called
bridge function, and the totalhsr d and directcsr d correlation
functions are coupled by the Ornstein-Zernike(OZ) equation

hsr 12d = csr 12d + rE dr 3csr 13dhsr 32d. s3d

However, this set of equations is not closed and one has to
adopt some approximation for the bridge functionBsr d. The
resulting potential is very sensitive to the accuracy of the
approximation used, which makes solution of the inverse
problem highly nontrivial. One of the possibilities in resolv-
ing the problem is to utilize an iterative solution method,
correcting the initial approximation to the bridge function[or
equivalently to the potentialVnesr d (2)] on each iterative
step.

In this study we utilize the iterative predictor-corrector
method of Reattoet al. [17], which proves to be successful in
a number of applications. One iterative cycle of this method
combines a “corrector” step, represented by the full com-
puter simulation for the pair potential obtained on a “predic-

tor” step using expression(2). On theith iteration cycle we
have

bVne
sidsr d = bVne

si−1dsr d + tNEMDsr d − tsi−1dsr d

− lnfgNEMDsr dg + lnfgsi−1dsr dg, s4d

where the subscript NEMD denotes the quantities obtained
by the NEMD simulation and correlation functionstsi−1dsr d
and hsi−1dsr d for i −1 iteration step follow from the equilib-
rium MC simulation method applied to the system with the
pair potentialVne

si−1dsr d.
The inversion scheme of this type requires a very accurate

initial guess for the pair potentialVnesr d. In the present study
we used the following initial estimate,

Vne
s0dsr d = tNEMDsr d − lnfgNEMDsr dg + Bs0dsr d, s5d

whereBs0dsr d is the bridge function extracted from the equi-
librium MC simulations for the original system in equilib-
rium sg* =0d with the pair potential(1).

Application of the iteration scheme(4) requires solution
of the OZ equation(3) with respect totsr d, i.e.,

tsr 12d = rE dr 3fhsr 13d − tsr 13dghsr 32d. s6d

The integral equation given by(6) involves correlation
functions, which are vector dependent and therefore difficult
to solve numerically. To overcome this difficulty we expand
these correlation functions into a set of ortogonal functions
[18], i.e.,

Ssr,ud = o
m=−L

L

Smsrdexpsimud, s7d

which reduces the problem to numerically solving the one-
variable functionSmsrd. HereSsr ,ud stands for eithertsr ,ud
or hsr ,ud andL→`. Taking the Fourier transform of the OZ
Eq. (3) and expanding the correlation functionst̂skd and

ĥskd, we have

t̂mskd = r o
p=−L

L

fĥmskd − t̂pskdgĥm−pskd, s8d

where the expansion coefficients in real and Fourier spaces
are linked by the relation

Ŝmskd = 2pimE
0

`

drrSmsrdJmskrd. s9d

Here Jp denotes thepth order Bessel function of the first
kind.

It is convenient to write Eq.(8) in matrix form, which
then can be solved fort̂mskd to yield

t̂skd = rĥskdĤskdf1 + rĤskdg−1 s10d

where t̂skd=(t̂−Lskd , . . . ,t̂Lskd), ĥskd=(ĥ−Lskd , . . . ,ĥLskd), and

fĤskdgnm= o
p=−L

L

ĥpskddp,m−n. s11d
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Summation in these expressions formally extends from
minus to plus infinitysL→`d; in most cases only a small
number of coefficients are needed. In the present study we
restrict ourselves toL=8, which appears to be sufficient for
good representation of the structure. Because of the symme-
try of the problem, all the expansion coefficientsSmsrd and

sŜskdd with odd m are equal zero, andS−msrd=fSmsrdg*,
where the asterisk denotes complex conjugate. Thus, the di-
mensionality of the matrices involved in the Eq.(10) is 9
39. The forward and inverse Fourier transforms, which are
needed to couple the coefficients of the expansions of the
correlation functions, have been carried out in logarithmic
variables, using the method developed by Talman[19]. This
method allows us to sample effectively both the rapidly vary-
ing part of the correlation functions at small distances and
the long-range, slowly decaying portion, using a small num-
ber of grid pointssn=512d.

B. Details of the equilibrium Monte Carlo simulations

Each iterative step of the method discussed above requires
full Monte Carlo simulation of the equilibrium system with
the pair potentialVne

sidsr d. Temperature, density, and the equi-
librium interaction potential used in MC simulations are the
same as those in NEMD simulations. A total of 2 million
cycles were performed for every MC simulation. After a
500 000-cycle equilibration,gsr d data were collected every
10 cycles. An important detail in the MC simulations is to
use a much larger(shear-rate dependent) cut-off distance
than is used in the NEMD simulations because of the long-
range characteristic of the nonequilibrium potential. It turns
out (see Fig. 5) that the range of the nonequilibrium potential
becomes longer with increasing shear rate. For all packing
fractions, we employedrcut=6.0s in the case ofg* =0.5 and
0.7, andrcut=8.0s in the case ofg* =1.0. This strategy was
necessary in order to avoid an artificial discontinuity ingsr d
at shorterrcut. Moreover, it also turns out that more iterations
are required for the higher shear rate.

IV. RESULTS AND DISCUSSION

Figures 1 and 2 show the development of anisotropic
structure,gsr d, for the system ath=0.3 and 0.4 at shear rate
g* =0, 0.5, 0.7, and 1.0. As expected, for the equilibrium
case,g* =0, gsr d reveals no angular dependence, indicating

FIG. 1. Pair distribution functiongsr d of the soft-disk fluid un-
der shear flow ath=0.3 andu=0 (solid lines), u=p /4 (dashed
lines), u=p /2 (dotted lines), andu=3p /4 (dashed-dotted lines) at
different values of the shear rateg* by NEMD simulation. The thin
solid line representsg0srd, which is the orientationally averaged
version of the pair distribution functiongsr d.

FIG. 2. The same as in Fig. 1 forh=0.4.

FIG. 3. Location of the pair distribution function maxima(solid
lines and circles) and minima(dashed lines and squares) at different
values ofh and atg* =0 (lines) andg* =0.7 (symbols). All results
are from NEMD simulation.

FIG. 4. The values of the pair distribution function maxima
(solid lines and circles) and minima(dashed lines and squares) ver-
sus u at different values ofh and atg* =0 (lines) and g* =0.7
(symbols). All results are from NEMD simulation.

STRUCTURE OF A SHEARED SOFT-DISK FLUID FROM… PHYSICAL REVIEW E 70, 061204(2004)

061204-3



the isotropic nature of liquid structure under the spherically
symmetric soft interaction potential(1). For the nonequilib-
rium case ofg* =0.5, it is clearly seen that the applied shear
field distorts the overall liquid structure. Approximately,
gsr ,u=0d is almost the same as the angle-averagedg0srd, and
on the scale of the figure the difference can be seen only for
the case of the largest shear rateg* =1.0. Physically this

means that the structural shape of the system atu=0 is not
much changed by the external shear force.gsr ,u=p /2d also
shows little difference fromg0srd except a slightly higher
value of the first maximum. In contrast to those atu=0 and
p /2, gsr d at u=p /4 and 3p /4 show quite different results.
Relative tog0srd, gsr ,u=p /4d appears to shift to largerr and
gsr ,u=3p /4d to smallerr. This indicates that particles are
distributed in space closer to each other atu=3p /4, but fur-
ther apart from each other atu=p /4. In a sense, we can say
that particles have stronger interactions with those located in
the direction ofu=3p /4 relative to them and weaker inter-
actions with those in the direction ofu=p /4. In this regard,
it is to be expected from the fundamental kinetic theory that
transport coefficients, i.e., viscosity, would be different for
different orientations in space under the shear field. It is also
important to note that the first maximum peak ofgsr d at u
=3p /4 appears considerably higher than that ofg0srd. Com-
bining all the results above, we can picture the overall shape
of the liquid structure as an ellipse distorted from a circle
with its major axis in the direction ofu=p /4. The overall
liquid structures atg* =0.7 and 1.0 appear qualitatively
similar to that atg* =0.5. However, the distortion of liquid
structure becomes stronger with increasing shear rate. In
both cases,gsr ,u=0d still shows little difference fromg0srd
as in the case ofg* =0.5. For gsr ,u=p /2d, the maximum
value is now considerably higher than that ofg0srd, although
there is still no clear shift in the position of the peaks, i.e.,
the periodicity of peaks.gsr ,u=p /4d andgsr ,u=3p /4d also
show the stronger shear effect on the extent of the shift,
while only gsr ,u=3p /4d shows a clear increase of the maxi-
mum value of peak. Thus the resulting shape of structure in
these cases is elliptical as in the case ofg* =0.5, but with a
higher degree of eccentricity. The exact quantitative picture
of the elliptical shape liquid structure is well represented in
Fig. 3. Figure 4 shows the maximum and minimum values of
gsr d along the angular coordinate. One can see that the most
substantial deviation ofgsr d extremum values occurs for ori-
entations close tou=p /6 andu=3p /4, while foru=0 gsr d it
is almost unchanged.

Our results for the nonequilibrium potentialVnesr d ex-
tracted from the NEMD simulation results are presented in

FIG. 5. The difference between nonequilibrium and equilibrium
potentialsVnesr d−Veqsrd at different values ofh and g* for u=0
(solid lines), u=p /4 (dashed lines), u=p /2 (dotted lines), and u
=3p /4 (dashed-dotted lines).

FIG. 6. Comparison of the pair distribution functions obtained
by the NEMD simulation with the equilibrium pair potentialVeqsrd
and by equilibrium MC simulation with the nonequilibrium poten-
tial Vnesr d at h=0.3 andg* =0.7 and different values ofu.

FIG. 7. The same as in Fig. 6 forh=0.4.
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Fig. 5. In order to see clearly the effect of shear on the liquid
structure, it is useful to divide nonequilibrium potential into
two parts: equilibrium part,Veqsrd, and the purely nonequi-
librium part, Vnesr d−Veqsrd. Figure 5 plots the purely non-
equilibrium part of potential. It is instructive to compare the
shape of the nonequilibrium part andgsr d as shown in Figs.
1 and 2. In particular, the shape atu=p /4 looks almost op-
posite to that atu=3p /4, which is consistent with the results
of gsr ,d. Another aspect worthy of notice is that nonequilib-
rium potential is relatively long-ranged and its range be-
comes longer as shear rate increases. Note that this feature is
absent in the theory of Gan and Eu[9,10], which predicts the
same large distance asymptotic for both equilibrium and non-
equilibrium potentials.

Figures 6 and 7 show the results of inversion calculations
of gsr d for h=0.3 and 0.4 at shear rateg* =0.7 by MC
simulations with the nonequilibrium potentials that were ex-
tracted from the originalgsr d data from NEMD simulations.
As shown in the figures, the inversion results in all cases
converge very well to the original ones. This proves that our
nonequilibrium potentials are accurate enough to represent
the corresponding nonequilibrium liquid structures. This
treatment has an important practical aspect since we can re-
produce the structure of a nonequilibrium system via simple
equilibrium simulations or theories using a properly chosen

nonequilibrium potential. Similarly, good agreement between
equilibrium MC and NEMD simulation results was found for

TABLE I. Pressure tensorP=s1/Vdoi
Nr if i calculated using NEMD simulation for equilibrium pair poten-

tial Veqsrd and equilibrium MC simulation for nonequilibrium potentialVnesr d.

h g* Pxx
sNEMDd Pxx

sMCd Pxy
sNEMDd Pxy

sMCd Pyy
sNEMDd Pyy

sMCd

0.5 0.4917 0.4913 −0.0798 −0.0802 0.4828 0.4817

0.30 0.7 0.5030 0.5064 −0.1080 −0.1080 0.4898 0.4925

1.0 0.5219 0.5235 −0.1461 −0.1458 0.5033 0.5027

0.5 0.7519 0.7513 −0.1135 −0.1121 0.7444 0.7425

0.35 0.7 0.7674 0.7685 −0.1557 −0.1552 0.7557 0.7550

1.0 0.7941 0.7913 −0.2129 −0.2106 0.7777 0.7743

0.5 1.1145 1.1139 −0.1600 −0.1589 1.1089 1.1069

0.40 0.7 1.1355 1.1341 −0.2193 −0.2176 1.1275 1.1253

1.0 1.1732 1.1739 −0.3015 −0.2967 1.1618 1.1637

FIG. 8. Comparison of the distortion of the fluid structure
Dg00srd=g00srd−geqsrd calculated using NEMD simulation with the
equilibrium pair potentialVeqsrd (symbols) and equilibrium MC
simulation with the nonequilibrium potentialVnesr d (solid lines) at
different values ofh and atg=0.5 (circles), g=0.7 (squares) and
g=1.0 (diamonds). Hereg00srd is the angular averaged version of
the pair distribution functiongsr d.

FIG. 9. Comparison of the distortion of the fluid structure
Dgsr d=gsr d−geqsrd calculated using NEMD simulation with the
equilibrium pair potentialVeqsrd (symbols) and equilibrium MC
simulation with the nonequilibrium potentialVnesr d (solid lines) at
different values ofh andu at g=0.5 (circles), g=0.7 (squares) and
g=1.0 (diamonds).
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the pressure tensor(Table I). Therefore, further development
of this approach is expected to provide an easy route to un-
derstanding of nonequilibrium systems. Now we turn our
attention to the effect of the shear force on the liquid struc-
ture by comparinggsr d for each angleu as well asg0srd. As
for the nonequilibrium potential, it seems more instructive to
look at the difference between the nonequilibrium and equi-
librium structuresDgsr d=gsr d−geqsrd. First of all, from a
naive consideration ofg0srd as angle-averaged, one might
think thatg0srd would be the same regardless of shear force.
However, eveng0srd is changed under a shear field as shown
in Fig. 8. As the shear rate is increased, the degree of inho-
mogeneity of local density in the radial direction appears
higher. We point out that this result agrees with that in Ref.
[20]. The results ofDgsr d for u=0, p /4, p /2, and 3p /4 are
shown in Fig. 9. From the figure, it is obvious, as mentioned
earlier, that while the effects of shear on the liquid structure
at u=0 andp /2 are shown to be qualitatively similar, the
effect at u=p /4 shows the opposite trend to that atu
=3p /4. In all cases agreement between equilibrium MC re-
sults fromVnesr d and NEMD results from the original equi-
librium potentialVeqsrd is very good.

For the sake of convenience in future applications we pro-
pose closed-form, analytical expressions for the coefficients
of the expansion(7) for Vnesr d up to umu=4. These expres-
sions together with the numerical values of the coefficients,
which enter the expressions, are collected in the Appendix.
We note in passing that our choice of the expressions for

Vm
snedsrd is purely empirical. The quality of this choice can be

judged from Fig. 10, where we compare the original non-
equilibrium potentialVnesr d with its fitted version forh
=0.3 and 0.4 and forg* =0.7.

V. CONCLUSIONS

In this work we present and analyze the structure results
for a simple, inverse-12, soft-disk fluid undergoing two-
dimensional Couette flow generated by nonequilibrium mo-
lecular dynamics(NEMD). The NEMD structure has been
used to extract the nonequilibrium potential, under which the
structure of the equilibrium fluid coincides with that of non-
equilibrium fluid. The asymptotic behavior of the “exact”
nonequilibrium potential obtained in this study is substan-
tially more long-ranged in comparison with that predicted by
the theory of Gan and Eu[9,10]. Solution of the inverse
problem is based on our extension of the iterative predictor-
corrector method of Reattoet al. [17] with the corrector rep-
resented by the equilibrium MC simulation. The inversion
results for structure and the pressure tensor studied converge
very well to the original ones in all cases. Thus, the nonequi-
librium liquid structure can be accurately reproduced via
simple equilibrium simulations or theories using a properly
chosen nonequilibrium potential. The method developed in
the present study and numerical results presented here can be
used to guide and test theoretical developments, providing
them with the “experimental” results for the nonequilibrium
potential.
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APPENDIX

In this appendix we present closed-form, analytical ex-
pressions for the coefficientsVm

snedsrd of the expansion

Vnesr,ud = o
m=−4

4

Vm
snedsrdexpsimud. sA1d

We have

TABLE II. Numerical values of the parameters, which enter expressions(A1)–(A6).

n an bn an bn rn
s1d rn

s2d

0 0.602 000 3.453 747 2.78 6441 1.113 914

1 8.116 665 2.164 909 8.428 300 2.959 454

2 6.576 726 0.485 137 4.809 397 1.942 225

3 4.465 418 0.760 921 5.045 461 0.697 413 2.462 430 3.833 126

FIG. 10. Comparison of the nonequilibrium potentialVnesr d
(dashed lines) and its fit (solid lines) represented by the analytical
expression(A1) for different values ofh andu.
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V0
snedsrd = SA0

r
D12

+
B0

ea0sr−r0
s1dd + 1

+ G0e
−b0sr − r0

s2dd2,

sA2d

RefV2
snedsrdg = A1e

−a1r + B1e
−b1r + G1r

a1e−b1r , sA3d

ImfV2
snedsrdg = A2e

−a2r + B2e
−b2r + G2sr − r2

s1dde−a2r ,

sA4d

RefV4
snedsrdg = A3e

−a3r + B3e
−b3r + G3e

−a3sr − r3
s1dd2

+ D3e
−b3sr − r3

s2dd2, sA5d

ImfV4
snedsrdg = 0, sA6d

andV−m
snedsrd=fVm

snedsrdg* with the asterisk denoting the com-
plex conjugate. Numerical values for the set of the param-
etersan, bn, an, bn, rn

s1d andrn
s2d are collected in Table II and

for the set of parametersAn, Bn, Gn andDn are collected in
Table III. The latter set of parameters depends on the packing
fraction h and shear rateg*.
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