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Anomalous reaction rates have been found in the hydrogen desorption of H-terminated surfaces in semicon-
ductor epitaxy, with a reaction order shifting from two to one, or even taking fractional values. We analyze the

issue in terms of a cooperative full desorption(CFD) reactionA+A ——→
k3

S+S, coupled to an adsorption

reactionS——→
k1

A and an alternative desorption routeA ——→
k2

S. Steady state properties of the three-step
reactive scheme are analyzed in a one-dimensional lattice in the absence of diffusion. Microscopic Monte
Carlo simulations show anomalous spatial distributions of reactants in the stationary state: depending on the
reaction rate constants of the overall scheme, either a local “aggregation” or a local “dispersion” ofA-particles
is observed. The CFD reaction itself is well described by a fractional order kinetics that takes into account
these anomalies and that depends on the kinetic rate constants of the overall adsorption-desorption reaction
mechanism. The problem is addressed with an analytical approach for theactive neighborhoodof a reactant,
which provides a closed expression of the reaction order as a function of the kinetic parameters. This approach
is in excellent agreement with numerical simulations. Spatial correlations, as well as fluctuation correlations,
are also formalized in terms of the kinetic constants. We discuss the results in the context of the hydrogen
evolution reaction on silicon surfaces.
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I. INTRODUCTION

Identification of mechanisms for surface reactions and
knowledge of their corresponding rates has become a topic
of considerable interest because of its technological implica-
tions. One of such reactions, to which much attention has
been devoted in the literature, is the one-species annihilation
reactionA+A→0, also known as cooperative full desorption
(CFD) when it happens between adsorbed particles. This re-
action is of particular importance within the context of hy-
drogen chemistry on semiconductor surfaces[1] because of
its key role in pregrowth, growth, and postgrowth treatment,
though fundamental aspects of H-terminated surfaces are far
from being understood[2–4] despite two decades of exten-
sive experimental and theoretical work. In gas source chemi-
cal vapor deposition(GS-CVD) epitaxy, for example, the use
of silanesSiH4d or disilanesSi2H6d as precursors has proved
to yield a very selective low-temperature epitaxy[5–8].
Upon adsorption, a Si2H6 molecule undergoes a series of
reactions leading to a surface coverage by a mixture of Si-
hydrides, the composition of which is dependent on experi-
mental conditions[6,7]. Hydrogen finally desorbs via differ-
ent surface reactions. For example, in ultrahigh vacuum
CVD for the case of Si(100), molecular hydrogen forms by
recombination at localized monohydride dimerssH-Si-Si
-Hd [6,9,10]. Wetteraueret al. [11] found that this pathway is
supplemented by single atom photodesorption from a hydro-

genated Si(111) surface. In plasma-enhanced CVD growth of
hydrogenated amorphous and microcrystalline silicon, which
are emergent alternatives to crystalline Si in many electronic
devices, impinging hydrogen gas atoms recombine with Si-
hydrides but also with bonded hydrogen surface atoms to
form H2.

For obvious reasons, knowledge of the reaction rate of the
hydrogen CFD is crucial[2]. In some instances it does not
necessarily obey the second-order kinetics that one would
expect from the traditional model of encounters between
hoping hydrogen atoms. Early experimental studies[12] al-
ready concluded on a first order reaction for molecular hy-
drogen desorption from the monohydride phase on Si(100),
though more recent work by Nakazawa and coworkers[9,10]
points at fractional reaction orders between 1 and 2 depend-
ing on the hydrogenating gas and thermal history. A shift
from second order at low H coverage to first order at high H
coverage has also been reported[4]. Several explanations
have been provided for this unsuspected behavior. Substrate
dimers have two unsaturated dangling bonds that can be ter-
minated by hydrogen. An early model[12] invoked the in-
teraction of an excited H atom with a localized, chemisorbed
hydrogen. The overall process is limited by the excitation
reaction and consequently the desorption is first order. Later,
the idea of “prepairing” of H atoms to form a doubly occu-
pied dimer [13] gained momentum and most models con-
form now to it. There is a suspicion for adsorption-
desorption occurring from a combination of two different
pathways involving intra-(H4) and interdimer(H2) configu-
rations[2,4], with a reaction order dependent on which con-
figuration dominates, although much work remains to be
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done to unravel the actual mechanism. Nakazawaet al. [10]
examined separately prepairing and desorption. Starting from
standard, mean field rate equations the authors argued that
the coverage fraction of isolated hydrogen atoms is a repre-
sentation of the fractional reaction order. However, this frac-
tional reaction order is not explicitly taken into account in
their formulation. An intermediate reaction order has been
also found for the Si(111) surface following chemisorption of
disilane[14].

We shall presently invoke the simplest scenario, which
involves the prepairing of two single occupied monohydride
dimerssH-Si-Si-d forming a doubly occupied monohydride
dimer sH-Si-Si-Hd, the hydrogens of which recombine lib-
erating H2. The hydrogen evolution on the surface can thus
be represented in terms of a very simple, lumped model
mechanism involving single occupied monohydride dimers
(SOD) as fundamental units:

S ——→
k1

A, s1d

A ——→
k2

S, s2d

A + A ——→
k38

DOD + S, s3d

DOD ——→
k48

S, s4d
whereS and A mean a clean substrate dimer and an SOD,
respectively. Decomposition of high order hydrides yields H
atoms that can attach themselves to clean substrate dimers
yielding SOD—reaction(1). Also, hydrogen from a SOD can
hop to an neighboring unsaturated dangling bond leaving a
substrate dimer[6]—reaction(2). Finally, interdimer transfer
of a hydrogen atom between two adjacent SOD give a dou-
bly occupied monohydride dimer(DOD) and a clean sub-
strate dimer—reaction(3). Molecular hydrogen desorbs from
the DOD—reaction (4). Desorbing molecules have low
translational energy, showing no sign of having traversed an
energy barrier. We can thus assume hydrogen desorption
from a DOD to be very fast such thatk48@k38, i.e., the pre-
pairing reaction(3) is rate limiting. As a matter of fact, Step
(4) will be disregarded in simulations and a successful pre-
pairing will be considered as liberating two contiguous sub-
strate dimers. Reaction(3) takes then the CFD definitive
form:

A + A ——→
k3

S+ S. s5d
Inconsistencies in the kinetics behavior of the CFD reac-

tion with respect to the classical chemical rate equations—
based on the mean field approach(MFA)—are well known
when the dimensionality of the support in which the reaction
takes place is below some critical dimension. This “anoma-
lous” kinetics has been found to be closely connected to
many-particle effects[15,16]. Spatial fluctuations of particle
density in certain volumes lead to correlated spatial distribu-

tion of reactants and a tendency to local ordering of the sur-
viving particles [17,18]. This chemical self-organization
arises as a consequence of the interplay between the CFD
mechanism itself, which introduces ordering in the system by
generating depletion zones around particles that slow down
the reaction with respect to the MFA, and homogenizing
mechanisms such as diffusion or random input of particles.
The ability of the system to offset correlations introduced by
the reaction determines the kinetics of the process.

Most of the work on anomalous kinetics has been devoted
to study the influence on the development of fluctuations of
such items as the topological characteristics of the substrate
where the reaction takes place, the diffusion properties of the
reactants, the mechanism of reaction, or the input of par-
ticles. When the process is diffusion-controlled, both in tran-
sient [19–25] and steady-sate[26–28] reactions, self-
ordering is observed in low dimensionssd,2d because the
mixing effect of diffusion is not as effective as it is in higher
dimensions. Correlation length scales and characteristic time
scales depend on the external source rate and on the diffu-
sivity. The CFD reaction rate is described in both cases with
the same reaction order[29], which in turn depends on the
dimensionality of the support, on the characteristics of diffu-
sion [30], and on the mode of reactant input[28]. It does not
depend, however, on the input rate and on the reaction prob-
ability. For one-dimensional systems, when Brownian diffu-
sion and random input of particles are considered, the reac-
tion order is found to be 3[28,29,31], different from the
classical MFA value of 2.

The role of fluctuations for immobile reactants is even
more essential because the smoothing influence of diffusion
is absent. The situation in which long-range reactions are
allowed has attracted particular interest[32–34]. In the tran-
sient regime case, correlations between surviving particles
increase as reaction proceeds, showing a spatial self-ordering
(depletion zone) qualitatively similar to that obtained in dif-
fusion limited circumstances[34]. The asymptotic behavior
of fluctuations and reactant self-ordering depend on the spa-
tial dimensionality and on the transfer rate type, leading
again to a nonclassical decay of the density of particles. The
effect of local fluctuations is naturally enhanced for short-
range interactions, especially when reactions occur between
nearest neighbors in low dimensions[35–39]. The results
exhibit an explicitly nonuniversal, initial condition depen-
dent behavior, persistent at all times and, again, not consis-
tent with the mean-field rate. Steady-state behavior has also
been examined, showing also an anomalous dependence of
the steady-state particle density on the input rate both for
long-range[32,40] and short-range[41] reactions. The effec-
tive reaction order depends again on the spatial dimension-
ality and on the transfer rate type[40].

Presently, the influence of the support on the kinetics be-
havior of the one-species annihilation reaction is still a topic
of concern in the literature[42–44], in catalytic activated
reactions[45,46] or in reaction-diffusion processes taking
place on scale-free networks[47], for example. However, the
effect of the reaction kinetics itself has not been dealt with in
depth. A few results concern diffusion-controlled transient
reactions, for which it has been proven that the influence of
the probability of reaction on kinetics may be negligible at
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sufficiently long times[48–50]. The conclusion was con-
firmed when Mártinet al. [51] found the steady-state density
of particles as a function of the reaction probability and the
input rate in the one-dimension steady state. A study on the
explicit dependence of fluctuations on reaction kinetics be-
comes necessary, especially when the CFD reaction is em-
bedded within a complex reaction scheme, as it happens in
the model defined by Eqs.(1), (2), and (5), or in other sur-
face processes on heterogeneous catalysts[52,53], for ex-
ample. Successful encounters between active particles and,
consequently, the reaction rate of the annihilation reaction,
do depend on how those same particles are affected by other
coupled reactions, i.e., by their reaction rates.

We analyze here the reactant self-ordering and the rate
law of the CFD reaction when it is coupled to an adsorption
reaction(1) and competes with a monomolecular desorption
reaction(2). This problem is particularly relevant in order to
understand anomalies in the reaction order of the CFD, as
assessed in the hydrogen desoprtion reaction from
H-terminated silicon surfaces. As we are strictly interested in
the influence of the overall reactive kinetics on fluctuations,
we shall avoid the shadowing effect of diffusion by assuming
a temperature below that required for surface diffusion andA
particles are accordingly immobile. We shall show that the
reaction schemes(1), (2), and (5), defined on a one-
dimensional support, generate local spatial fluctuations of the
particle density that ultimately determine a fractional reac-
tion order for the CFD reaction under the steady-state con-
ditions. These fluctuations result in a nonequilibrium steady-
state heterogeneous spatial distribution of particles,
involving either a local enhancement in the occupancy of
vacant sites around the particles—reaction is then faster than
predicted by the MFA—or, alternatively, a local depletion—
reaction slows down with respect to the MFA—depending on
the reactive parameters of the model. This is a surprising
result inasmuch as a spontaneous aggregation of particles, as
a result of the local enrichment inA particles, is not expected
in the case of theA+A→0 reaction, although it has been
observed in reaction-diffusion processes on scale-free net-
works [47]. Our aim is to explore quantitatively the nature of
such correlations and to show that, although they are induced
by the CFD reaction, they indeed depend on the overall re-
action kinetics. In a previous publication[54], we investi-
gated qualitatively the limits of validity of the MFA in the
context of electrochemistry under conditions of hindered sur-
face mobility of adsorbates. Simulations showed that the
CFD reaction obeys a fractional order kinetics. The system
approached monotonously the MFA dynamics as the number
of interacting neighbors was increased. This was achieved by
increasing the coordination number or by raising the dimen-
sionality.

The paper is structured as follows. We shall start by show-
ing results of microscopic Monte Carlo simulations that sup-
port a steady-state anomalous order kinetics in the CFD re-
action (Sec. II). In Sec. III the dynamics of the next
neighborssnnd correlations will be analyzed and a closed-
analytical expression for the reaction order will be obtained
as function of the kinetic parameters of the model, fitting
with great accuracy the results of numerical microscopic
simulations. Three different regimes are observed, leading to

values of the reactive order that are higher, equal, and lower
than the MFA standard value of 2. Steady-state correlations
will be studied in Sec. IV. The spatial decay of correlations is
found to be short ranged, which is in turn a consequence of
the short-range nature of the reaction dynamics. By means of
the g-approximation[55] we find the explicit dependence of
spatial correlations on the kinetic constants. The analytic ap-
proach shows an excellent agreement with simulation results.
We conclude in Sec. V.

II. MICROSCOPIC SIMULATION AND RESULTS

The scheme given by reactions(1), (2), and(5) is micro-
scopically studied by Monte Carlo simulations on a one-
dimensional(1D) lattice of L sites with periodic boundary
conditions. Each lattice site may be either empty(stateS) or
occupied by a single particleA (stateA). Starting from a
uniform configuration in which all sites of the lattice are
empty, the simulation proceeds at each Monte Carlo step by
randomly selecting a lattice site. Then a random number,
rndP f0,1g, is generated and the state of the cell is computed
according to the following rules.

(1) If the chosen lattice site is empty, then adsorption
reaction (1) occurs if rndP f0,k1f . The site is then filled
with an A particle.

(2) If, on the contrary, the site is already in stateA, two
transitions for the state of the cell are possible:

(2a) If rndP f0,k2f the particleA desorbs through reac-
tion (2) and the state of the site changes fromA to S.

(2b) If rndP fk2,k2+k3f , one of the two nearest neigh-
bors of the site is then randomly chosen and checked. If it is
occupied by another particleA, then cooperative reaction(5)
proceeds and the twoA particles desorb leaving their sites
empty in stateS.

(3) If no reaction occurs, the site remains unchanged.
At the end of each Monte Carlo step, discrete timet is

increased byDt. By taking the time step lengthDt=1/L, we
ensure that all lattice sites are likely to be visited on average
once per unit time,t=1.

After a given timet, the system reaches a steady state

characterized by a steady-state particle coverage fractionq̄
that depends on the reaction parameters of the modelhkij
though not on the initial state. Simulations show that steady-
state values and correlations are invariant under isotropic
scale transformations of the set of kinetic constants
hk1,k2,k3j→ hbk1,bk2,bk3j. This will be supported by the
theoretical analysis developed in the next section. The num-
ber of independent parameters of the model can accordingly
be cut to two:hK1,K2,1j, whereK1=k1/k3 and K2=k2/k3.
ParameterK1 typifies the adsorption-desorption route con-
sisting of the monomolecular adsorption and the CFD—steps
(1) and (5)—while K2 quantifies the relative importance of
the two competing desorption steps,(2) and (5).

Monte Carlo simulations supply a value forq̄ and the

steady-state CFD reaction rateR̄CFD, defined as the average
number of particles that desorb through the CFD reaction per
units of length and time under steady-state conditions. The
effective reaction order of the CFD,a, is then obtained by
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fitting simulation data to the expressionR̄CFD~q̄a. In the
case of the classical chemical kinetics, the order 2 is ex-
pected. Figure 1 displays the results for this relationship as
obtained from simulations(symbols) of a L=105 lattice.
Each curve corresponds to a fixed value ofK2 and has been
obtained by varyingK1—this particular parameter choice
will become apparent in the theoretical analysis of Sec. III.
Actual values ofhk1,k2,k3j have been chosen arbitrarily in
order to sample the entire parameter space. Departure from
second order kinetics(dotted line) is especially significant in
the smallK2 range and the MFA limit is approached every-
where by raisingK2. Understandably, a dominating mono-
molecular desorption(high K2) shadows the effects of an
anomalous CFD kinetics. On the other hand, whenK2 is
small deviations from second-order kinetics are more pro-
nounced in the low coverage range(attained forK1!1),
reaching effective reaction orders much larger than 2. As
coverage increases(larger K1) figures display an effective
reaction order slightly smaller than two(see enlargement in
box) and all curves seem to collapse into a single limiting
behavior as we approach full adsorbate coverage. We shall

show in Sec. III that there is no universal behavior here: an
actual dependence of the effective reaction order onK2 does

exist in the limitq̄→1, though it induced differences that are
hardly noticeable in Fig. 1. We shall prove in Sec. III that
Fig. 1 is universal for this model, i.e., it does not depend on

the particular values ofhkij used in simulations, onceR̄CFD is
appropriately rescaled withk3.

The anomalous reaction order can be better assessed by
invoking the following correction to the standard, macro-
scopic rate equation:

dq

dt
= k1s1 − qd − k2q − 2k3qP, s6d

with qs0d=q0 as initial conditions(q0=0 in our simula-
tions). The first two contributions to Eq.(6) are usual for
steps(1) and (2), respectively. The functionPstd represents
the average fraction of reactants around anA particle, that is,
its active neighborhood(AN). The MFA extends the AN to
the whole lattice:Pstd=qstd, thus justifying a second order
term. Here, the low-dimensionality of the lattice, combined
with the absence of diffusion and short-range interactions,
generates fluctuations of the particle density in the AN that
lead to deviations from the MFA:PstdÞqstd. Such devia-
tions will be characterized by the parameterg, defined as

gstd =
ln Pstd
ln qstd

. s7d

The CFD rate then takes the form

RCFDstd = 2k3qgstd+1std. s8d

The exponentgstd amounts to a reaction order containing all
the information about the density fluctuations in the AN. Any
deviation ofg from 1 implies an inhomogeneous distribution
of A particles on the lattice. The rangeg.1 represents a
local density aroundA particles smaller than that indicated
by the homogeneous coverage fraction value,q. We shall
refer to it as “local dispersion.” On the contrary, ifg,1, the
density of occupied sites aroundA particles is larger than
that expected from the homogeneous coverage fraction value
q, and we have “local aggregation.”

We plot in Fig. 2 the steady-state values forg for different
values of the normalized constants,K1 and K2. Symbols
identify results from simulations. The reaction orderḡ is
obtained by averaging from Eq.(7) the local density around
each particle under steady-state conditions. Results illustrate
the fact that the exact MFA value,ḡ=1, is the exception.

Three different ranges can be inferred from Fig. 2:

ḡ 5.1 if sK1 − K2d , 1,

=1 if sK1 − K2d = 1,

,1 if sK1 − K2d . 1,

h s9d

which correspond, according to simulations, to the following
coverage values:

FIG. 1. (a) In logarithmic scale, the steady state, rescaled CFD

reaction rate,R̄CFD/k3 vs steady-state coverage of particles,q̄, ob-
tained varyingK1 for different values ofK2. Symbols correspond to
results obtained from simulations while continuous lines stand for
the analytical approach(21). The dotted line with slope 2 indicates
the second order reaction kinetics predicted by the mean field ap-
proach.(b) Zoom at high coverage values.
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ḡ 5.1 if q̄ , 0.5,

=1 if q̄ = 0.5,

,1 if q̄ . 0.5.

h s10d

If ḡ.1, the active neighborhood,P̄<fq̄gḡ, is smaller than

the average coverage fraction,q̄, which is to be interpreted
in terms of a smaller probability of occurrence of pairs of
adjacentA particles than under a randomly covered lattice.
The contrary occurs whenḡ,1 and we shall understand that
we shall find, on average, more pairs ofA particles than
expected under an homogeneous distribution of the cover-
age. Attraction or repulsion forces between adsorbed par-
ticles and surface mobility cannot be responsible for any ag-
gregation or dispersion because we have precluded any
explicit interaction. They can be only understood as an indi-
rect effect of the kinetics of our model reaction. Caseḡ.1 is
obtained whenK1−K2,1 sk1,k2+k3d. For this relation be-

tween the kinetic constants we haveq̄,0.5. If by chance
any particle aggregate is formed, it disintegrates under the
action of a fast CFD reaction, with an ensuing little chance
of being reconstituted by the slow and spatially random ad-
sorption (1). This leads to an effective “dispersion” of ad-
sorbed particles for which the likelihood for CFD reaction is
severely reduced, yielding a smaller rate than that predicted

by the MF approach:q̄ḡ+1,q̄2. On the contrary, whenK1
−K2.1 sk1.k2+k3d, ḡ,1 and a few vacant sites appear on

the surfacesq̄.0.5d. These vacant sites will be filled under
the action of the adsorption reaction(1). On the other hand,
each occasional successful CFD transition will create two
contiguous vacant sites leading to an “aggregation” of vacant
sites, which entails, correspondingly, that ofA particles. This

aggregation effect “favors” the CFD reactionq̄ḡ+1.q̄2. In
both cases, the effects are smoothed out whenK2 increases.
The monomolecular desorption(2) tends to thwart the estab-
lishment of correlations, thus making the particle distribution

homogeneous. This is observed in Fig. 2: asK2 increases,
ḡ→1 for all K1. Finally, the valueḡ=1 is also trivially re-
covered when inhibiting the CFD reaction, i.e., whenk3=0.

III. THEORETICAL ANALYSIS

Our aim in this section is to develop a model that predicts
the dependence of the reaction order on the kinetics param-
eters as shown in Fig. 2. By doing this, we shall also obtain
the stationary value of other observables, such as the par-
ticles density or the reaction rates. We start by studying the
dynamics of the active neighborhoodPstd. We introduce a
Heaviside indicator function for the occupation of a cell:

si = H1, if site i is occupied by anA particle

0, otherwise.
h

For a given configurationhsj=ss1¯sLd at time t, the
density of particlesqshsj ; td is

qshsj;td = L−1o
i=1

L

si , s11d

and the AN,Pshsj ; td, is given by

Pshsj;td = So
i=1

L

siD−1

o
i=1

L S1

2
sissi+1 + si−1dD . s12d

We can average Eqs.(11) and (12) over all configurations
hsj and assume translational invariance from here on, i.e., in
the limit L→` there are no privileged sites in the lattice.
Then we haveksil=ks jl=qstd and ksisi+1l=ks js j+1l=C2std
for all i, j , whereC2std is the two-particle correlation. Thus
we can write from Eq.(12)

C2std = qstdPstd. s13d

Let us introduce now then-particle correlationCnstd
=ksisi+1¯si+n−1l, which stands for the probability to find at
time t a chain ofn adjacentA-particles. Its time evolution is
determined exactly by the following differential equation:

dCn

dt
= k1 o

j=i

i+n−1

ksi ¯ s j−1s1 − s jds j+1¯ si+n−1l − nk2Cn

− k3sn − 1dCn − 2k3Cn+1. s14d

The first term in Eq.(14) is the probability of formation of a
chain from an incomplete chain ofn sites with an empty
site—adsorption reaction(1). The second term gives the
probability of breaking the chain ofn particles with the de-
sorption of one of them via reaction(2). The third term
stands for the probability of reaction of one of thesn−1d A
-A pairs of then-chain through the CFD reaction. The fourth
considers the possibility of the CFD reaction between the
particles at the ends of the chain and an adjacent site.

For n=1, C1std gives the averaged occupation probability
per lattice site, i.e., the global density of particles, and Eq.
(6) is recovered from Eq.(14). For n=2 we obtain

dC2

dt
= 2k1qs1 − Pd − s2k2 + k3dqP − 2k3C3. s15d

FIG. 2. Steady-state reaction order,ḡ, vs K1−K2 for different
values ofK2. Scattered points correspond to results from simula-
tions while continuous lines stand for the analytical approach given
in Eqs.(18)–(20).
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We can break down nowC3std by assuming spatial Mark-
ovianity [56]

Probssi,si+1,si+2d = Probssi,si+1dProbcssi+2usi+1d,

s16d

i.e., we have considered that the probability forsi+2std de-
pends only on the valuesi+1std in the nearest cell and not on
that in other cells further away. This assumption is a direct
consequence of precluding interactions beyond first neigh-
bors, which is the case in the present model. It has been
proved to be valid in the problem of immobile annihilating
reactants without input of particles[36–39]. There, it was
shown that the ansatzCnstd=qstdPn−1std helps in solving the
coupled hierarchy of equations for the dynamics of clusters
containing contiguousA-particles, and thereby obtaining the
exact solution found in[35].

Following this assumption, the three-particle correlation
takes the form

C3std = o
si

o
si+1

o
si+2

ssisi+1si+2dProbssi,si+1,si+2d = qstdP2std,

s17d

where we have made use of the fact that Probssi =1d is sim-
ply qstd and Probcss j+1=1us j =1d=Pstd ∀ j . Equation(17)
retrieves the generic ansatz proposed in Ref.[36] for n=3,
consistently with the reaction model that precludes long-
range interactions.

By replacing C3std in Eq. (15) with the approximation
obtained in Eq.(17), and considering steady-state conditions,

we obtain the kinetic parameters dependence of the station-
ary value ofPstd

P̄ =
1

4
s− 1 − 2K1 − 2K2 + hs2K1 + 2K2 + 1d2 + 16K1j1/2d.

s18d

The steady-state particle coverage obtained from Eq.(6)
takes the following form:

q̄ =
2K1

hs2K1 + 2K2 + 1d2 + 16K1j1/2 − 1
. s19d

In the limit of small input of particlessK1→0d, and forK2

=0, Eq. (19) yields the same asymptotic steady-state cover-

age,q̄=0.2, of Ref.[41].
By recalling definition(7), the parameter dependence of

the reaction order under steady-state conditions is immedi-
ately obtained by substituting Eqs.(18) and (19) into

ḡ <
log P̄

log q̄
. s20d

Both the reaction order(20) and the steady-state coverage
value(19) do only depend on rescaled parametersK1 andK2,
hence substantiating the prior claim made in Sec. II. We

finally recover the dependence ofR̄CFD on q̄. We first pro-

duce, from Eq.(19), K1 as a function ofq̄ andK2, and then

make use of the expressionR̄CFD<2k3q̄ ·P̄, together with

Eqs.(18) and(19), in order to getR̄CFD/k3 in terms ofq̄ and
K2

R̄CFD

k3
< fsq̄,K2d =

q̄„− 1 − 2K2 + 5q̄ + h4K2
2 + s1 − 5q̄d2 + 4K2s1 − q̄ + 4q̄2dj1/2

…

2s1 + q̄d
. s21d

Notice thatR̄CFD has been rescaled in Eq.(21). In a log-log
scale this amounts to an additive constant which moves fig-
ures up or down. For a negligible CFD rate compared to the
monomolecular desorption rate, Eq.(21) behaves as

fsq̄,K2d , q̄2, K2 @ 1, s22d

and we retrieve the MFA value. On the other hand,

fsq̄,K2d , q̄fs4K2+7d/s2K2+2dg, q̄ → 1, s23d

with an exponent valuing 1.75 forK2=0 and saturating at 2
for relatively largeK2. No universal scaling can be thus as-
sociated to curves on Fig. 1. On the basis of Eqs.(22) and
(23) we expect at low coverage values a scaling behavior for
eachK2, crossing over into a uniform scaling behavior only
for large coverage and largeK2.

Predictions from Eqs.(21) and(18)–(20) are drawn with a
solid line in Figs. 1 and 2, respectively. Agreement between
simulations and analytical calculations is perfect except for
the CFD rate at valueK2=0 in the limit of a very small input

of particles:K1→0 andq̄!1, see Fig. 1.

IV. SPATIAL CORRELATIONS IN THE STEADY STATE

Up to now, we have limited the study to first neighbors
snnd correlations because they are responsible for the failure
of the MF approach. These local correlations have been cap-
tured in the fractional reaction order 1+ḡ. Our purpose now
is to study the spatial decay of particle correlations as well as
its dependence on the model parametersK1 andK2.

Due to translational invariance correlations depend only
on the distance between sites. The time evolution of the pair-
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correlation functionGnstd=ksis jl, where n= u j − i u, is given
for n.1 by

d

dt
Gn = k1fks1 − siIds jl + ksis1 − sjI

dlg − k2fksiIs jl + ksisjI
lg

−
1

2
k3fksi − 1I

sis jl + ksi−1siIs jl + ksiIsi+1s jl

+ ksisi + 1Is jl + ksisj − 1I
s jl + ksis j−1sjI

l + ksisjI
s j+1l

+ ksis jsj + 1I
lg, s24d

where sites chosen for reaction are indicated with a bold,
underlined subscript. The term in Eq.(24) multiplied by k1
stands for the probability of creation of correlation between
position i and j with the occupation of an empty site via
adsorption(1); the term multiplied byk2 gives the probabil-
ity of destruction of the correlation with the desorption of
one of the two particles—reaction(2)—while the term mul-
tiplying k3 stands for the destruction of correlations through
the CFD reaction between one of the particles at positioni or
j and any of their first neighbors.

According to the occupation functionsi defined in Sec.
III, the trivial casei = j givesG0std=qstd. Casen=1 deserves
special attention because ifj = i +1, both termsksiIsi+1si+1l
and ksisiIsi+1l in Eq. (24) represent the same transition be-
tween selected sitei and its neighbori +1. The same holds
for ksisi +1Isi+1l andksisisi +1Il. By suppressing one of them
in Eq. (24), we get

d

dt
G1 = k1fks1 − siIdsi+1l + ksis1 − si + 1Idlg − k2fksiIsi+1l

+ ksisi + 1Ilg −
1

2
k3fksi − 1I

sisi+1l + ksi−1siIsi+1l

+ ksiIsi+1si+1l + ksisi − 1I
si+1l + ksisi + 1Isi+2l

+ ksisi+1si + 2Ilg. s25d

In the thermodynamic limitL→`, G1std=C2std and Eq.(15)
is recovered from Eq.(25). By introducing the three-particle
correlation function Hi,j ,kstd=ksis jskl, we can write for Eq.
(24)

d

dt
Gn = 2k1q − 2k1Gn − 2k2Gn − k3sHi−1,i,i+n + Hi,i+1,i+n

+ Hi,i+n−1,i+n + Hi,i+n,i+n+1d, s26d

with n.1. At the steady state, we have

2K1sq̄ − Ḡnd − 2K2Ḡn = H̄i−1,i,i+n + H̄i,i+1,i+n + H̄i,i+n−1,i+n

+ H̄i,i+n,i+n+1. s27d

In order to study the spatial decay of the two-particle

correlations at steady state, i.e., the dependence ofḠn on n,
we introduce the fluctuation correlation function

fnstd = kdsids jl, s28d

with dsi =si −ksl and ksl=qstd. Thus

Gnstd = q2std + gnstdfqstd − q2stdg, s29d

with gnstd= fnstd / ksdsd2l.
To break down the three-particle correlation functions ap-

pearing in Eq.(27) we shall make use of two approxima-
tions. First, the so-called “g-approximation”[55], which pre-
dicts the following for the conditional average:

ks jusil = o
s j

s j Probssi,s jd = fksl + gnssi − ksldgProbssid.

s30d

It can be interpreted as a linearization of correlations about
the zeroth-order(MF) approximation, which neglects any
correlation: ks j usil=kslProbssid. This approach has been
used in previous works on trimolecular reactive systems to
calculate analytically the values of the fluctuation correla-
tions, yielding a very good agreement with simulations[57].
From the following definition ofksis jl:

ksis jl = o
si

o
s j

sis j Probssi,s jd = o
si

siks jusil, s31d

Eq. (29) is easily recovered by using Eq.(30).
The second approximation is to assume again spatial

Markovianity in order to decouple three-point probabilities,

as in Eq.(16). Then, we can write for H̄i−1,i,i+n

H̄i−1,i,i+n = o
si−1

o
si

o
si+n

si−1sisi+n Probssi−1sisi+nd

= o
si−1

o
si

o
si+n

si−1sisi+n Probssi−1sid
Probssisi+nd

Probssid

= o
si−1

o
si

si−1si Probssi−1sidfksl + ḡnssi − ksldg

= Ḡ1q̄ + ḡno
si

si
2ksi−1usil − ḡnḠ1q̄

= Ḡ1q̄ + ḡnsq̄2 + ḡ1q̄ − ḡ1q̄2d − ḡnḠ1q̄. s32d

First neighbor correlation in the steady state,Ḡ1, is obtained

from the steady-state condition of Eq.(6), providedḠ1=C̄2

=q̄ ·P̄,

Ḡ1 =
K1s1 − q̄d − K2q̄

2
. s33d

Substituting Eqs.(33) and (29) in Eq. (32) we get

H̄i−1,i,i+n = Ḡn
K1 − q̄sK1 + K2d

2q̄
. s34d

By doing the same with the other three H¯ terms in Eq.(27)
we get H̄i,i+n,i+n+1=H̄i−1,i,i+n and

H̄i,i+1,i+n = H̄i,i+n−1,i+n = Ḡn−1
K1 − q̄sK1 + K2d

2q̄
. s35d

Finally, by substituting Eqs.(34) and (35) in Eq. (27) we
obtain the following recursive relation:
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Ḡn = Ḡn−1S− K1 + q̄sK1 + K2d

K1 + q̄sK1 + K2d
D +

2K1q̄2

K1 + q̄sK1 + K2d
s36d

for n.1. By using Eq.(19) in Eq. (33), explicit dependence

of Ḡ1 on K1 andK2 is obtained. Thus spatial decay of corre-
lations at steady state is perfectly determined from Eq.(36)
without resorting to simulations.

We show in Fig. 3 an example of the spatial decay of the

normalized pair correlation function at steady state,Ḡn/ q̄2,
for each kinetic regime(9). Points represent results from

simulations and continuous lines the dependence ofḠn on n
from Eq. (36). Figure 3(a) illustrates the “local dispersion”
regime, in which particles show a tendency to occupy every

other site: first neighbor correlation is smaller than 1

(Ḡ1,q̄2), indicating that the probability to have two neigh-
boring particles is smaller than that predicted by the MF
approach. Figure 3(b) is an example of the MF regime in
which kinetics lead to an uncorrelated distribution of par-

ticles: Ḡn=q̄2 for all n. Finally, Fig. 3(c) illustrates the “local
aggregation” regime that also shows an alternating distribu-

tion of particles: nowḠ1.q̄2 and particles have a higher
probability of having neighbor sites occupied. The agreement
between simulations and the analytical approach given in Eq.
(36) is very good.

It can also be easily proved from Eqs.(36) and (29) that

ḡn = ḡn−1S− K1 + q̄sK1 + K2d

K1 + q̄sK1 + K2d
D . s37d

As the fluctuation correlation function is directly related to

ḡn by means off̄ n= ḡnsq̄−q̄2d, the independence fromn of
the factor that multipliesḡn−1 in Eq. (37) predicts an expo-
nential decay of the fluctuations correlations withn and, con-
sequently, short-ranged correlations, as obtained in simula-

tions. A similar exponential decay off̄ n was obtained in the
trimolecular case studied in[57].

V. DISCUSSION

In some circumstances the cooperative full desorption re-
action is coupled to other reactions involvingA particles. We
have thus considered the combination of the CFD with a
random decomposition, on a one-dimensional regular lattice.
Adsorbed particles are immobile until they react and desorb.
The lattice is in contact with a reservoir of particles thus
making possible the establishment of steady-state conditions.
This is a lumped model covering the final steps leading to
desorption of molecular hydrogen on H-terminated silicon
surfaces. Active particles are single occupied dimers(SOD)
that prepair to form double occupied dimers. Empty sites are
clean substrate dimers.

In the absence of the competitor random H atom transfer
reaction, next neighbors pairings of immobile particles in the
CFD reaction introduce correlations, which in turn convey
anomalies in its reaction order in terms of a significant de-
parture from the MFA value of 2. Underneath these attributes
we discover that particles can be found in the form of aggre-
gates or, alternatively, be evenly distributed along the lattice.
This interesting feature has already been reported for trimo-
lecular reactions[57], with correlations dependent exclu-
sively on initial conditions. Here, we show that this self-
ordering can be extended to bimolecular reactions, although
here correlations are instead dependent on kinetic param-
eters. Particles are dispersed in the regime limited by SOD
formation because the eventual creation of pairs of active
neighbors is offset by the CFD reaction. Lattice coverage is
low and the CFD reaction is slowed down by a reaction order
larger than two. At the other end, in the CFD-limited mecha-
nism the probability for a particle of having first neighbors is
high. Consequently, lattice coverage is also high and occa-
sional CFD desorptions create pairs of contiguous vacancies

FIG. 3. Spatial decay of the normalized pair-correlation function

at the steady state,Ḡn/ q̄2, for three different set of kinetic con-
stants:(a) K1=0.01,K2=0; (b) K1=2,K2=1; and(c) K1=3,K2=0.
Solid points correspond to results from simulations while continu-

ous lines stand for the approach given in Eq.(36), with Ḡ1 obtained
from Eq. (33) using Eq.(19).
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that indirectly contribute to pack together occupied sites. The
phenomenon is therefore characterized by a low reaction or-
der and, consequently, a faster CFD rate than that predicted
by the MFA. It is not surprising to find these effects miti-
gated by the inclusion of an alternative SOD sink route in-
volving single particle events. The processA→S competes
with the CFD and, in becoming dominant, can eventually
overshadow CFD anomalies and drive the system close to
the MFA predictions.

Interestingly, some of the present theoretical results en-
compass some experimental findings in the hydrogen evolu-
tion reaction on silicon. Near first order kinetics is found at
moderate to high coverage[4,12,13] modified to near second
order for low coverage[4]. This is the trend observed in Fig.
2 for the rangeK1.K2, that is step(1) dominating over step
(2). The behavior is especially noticeable for
K2=0—negligible hydrogen mobility, for example—where
the system displays near first order kinetics at high coverage
(largeK1), approaching second order as coverage is reduced
to more moderate values(decreasingK1). The transition is
curbed for largerK2 values. A shift toward a reaction order

slightly larger than two is predicted here for further coverage
dwindling. Except for the case of lowK2 these deviations
may well fall within experimental errors. Alternatively, the
range of small values ofK1 can be attained with a fast pre-
pairing, i.e., largek3, that is a fast overall desorption rate,
which is achieved for temperatures over theb2 desorption
peak [4]. Here, hydrogen mobility is enhanced and conse-
quently we may well be confronted with a situation wherek2

moves towardk3: we get a rising value forK2 and thus a
reaction order close to two.

It is noteworthy that we find shifting reaction order in the
static bimolecular annihilation reaction. The model is a very
simplistic view of what is under consideration in the case of
hydrogen evolution on H-terminated silicon. Important fea-
tures such as the thermal surface diffusion, alternative dimer
recombination routes for desorption or a rate-limiting de-
sorption from DOD, and hydrogen passivation(low tempera-
tures) have been disregarded. Nevertheless, it points at the
fact that the CFD reaction may well account itself for the
desorption rate anomalies reported in the literature.
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