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We propose a path-integral Monte Carlo quantum annealing scheme for the symmetric traveling-salesman
problem, based on a highly constrained Ising-like representation, and we compare its performance against
standard thermal simulated annealing. The Monte Carlo moves implemented are standard, and consist in
restructuring a tour by exchanging two links(two-opt moves). The quantum annealing scheme, even with a
drastically simple form of kinetic energy, appears definitely superior to the classical one, when tested on a
1002-city instance of the standardTSPLIB.
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Quantum annealing(QA)—that is, using quantum me-
chanics to optimize, through annealing, hard problems of
everyday life, including those that have nothing to do with
quantum mechanics—is a relatively new and fascinating
idea, with important physical implications and potential im-
pact in a variety of areas, from technological applications to
other disciplines of science, wherever optimization of a com-
plex system is the issue.

The idea of QA is an offspring of the celebrated thermal
simulated annealing(SA) [1,2], where the problem of mini-
mizing a certain cost(or energy) function in a large space of
configurations is tackled, through a statistical mechanics
analogy, by the introduction of an artificial temperature vari-
able which is slowly reduced to zero in the course of a Monte
Carlo (MC) or molecular dynamics simulation. This device
allows the exploration of the configuration space avoiding
trapping into local minima, often providing a more effective
and less biased search for the minimum “energy” than stan-
dard gradient-based minimization methods.

Why not use quantum mechanics for the same purpose?
Quantum mechanics works with wave functions that can
sample different regions of phase space equally well. Instead
of thermal fluctuations, one exploits here thequantum fluc-
tuations provided by a suitably introduced—and equally
artificial—kinetic energy. Annealing is then performed by
slowly reducing to zero the amount of quantum fluctuations.
Quantum fluctuations have, in many respects, an effect simi-
lar to that of thermal fluctuations—they cause, for instance,
solid helium to melt even at the lowest temperatures—but
they differ considerably in other respects. In particular, quan-
tum systems cantunnel throughclassically impenetrable po-
tential barriers between energy valleys, a process that might
prove more effective than waiting for them to be overcome
thermally, as in SA.

Formulated in the mid 1990s[3], the idea of QA picked
up momentum only recently, through experimental work

such as that of Brooke and co-workers[4,5], where it
was shown that in the disordered Ising ferromagnet
LiHo0.44Y0.56F4, QA is both experimentally feasible and ap-
parently superior to thermal annealing. Stimulated by these
findings we recently carried out a benchmark comparison of
classical and path-integral MC annealings on the two-
dimensional random Ising model[6,7]. In that study, we con-
firmed the superiority of QA, and presented a simple theory,
based on Landau-Zener tunneling[6], for that. While other
theoretical efforts have also reported some success with QA
for other problems[8–11], it is nonetheless fair to say that
our overall experience with tackling hard problems by QA is
still very limited. The traveling-salesman problem(TSP), a
classic hard optimization problem, provides an ideal play-
ground for a further test of QA in comparison with SA. In
this Brief Report we report an application of QA to TSP, and
find that again it is superior to SA.

Given N cities with set intercity distancesdij , TSP con-
sists in finding the shortest route connecting them, visiting
each city once and returning to the starting point. The litera-
ture on TSP is vast, and, e.g., Ref.[12] can be consulted for
an account of the algorithms proposed. SA, although never a
winning scheme when compared to some of thead hocal-
gorithms specifically tailored to the TSP problem, is known
to be a very flexible, simple, and competitive algorithm for
the TSP as well[12]. The natural question is now: can QA do
better than SA, with a comparable computational effort? We
will now show that this is indeed the case.

The crucial point in devising a QA scheme is how to
describe the Hilbert space of the problem, and how to write
and implement a quantum HamiltonianHTSP=Hpot+Hkin.
HereHpot represents the classical potential energy of a given
configuration(in our case, the length of a tour), andHkin is a
suitable kinetic energy operator providing the necessary
quantum fluctuations, and eventually annealed to zero. The
route we followed(certainly not unique, or even the most
efficient) goes through the mapping to a highly constrained
Ising-like system, somewhat reminiscent of the Hopfield-
Tank mapping of TSP as a neural network[13] (see also Ref.
[14]). Formally, each configuration of the system(a valid

tour) is associated with aN3N matrix T̂ with 0/1 entries in
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the following way: For every directed tour(an ordered se-

quence of cities) T̂i,j =1 if the tour visits cityi immediately

after city j , andT̂i,j =0 otherwise.T̂ hasN entries equal to 1,
all other elements being 0, and obeys the typical constraints
of a permutation matrix, i.e.,(i) all diagonal elements vanish,

T̂i,i =0; (ii ) there is a single 1 in each rowi and in each
column j . For thesymmetricTSP problem we want to con-
sider(a TSP where the distance matrix is symmetricdij =dji),
a directed tour represented by aT̂, and the reversed tour,

represented by the transposed matrixT̂t, have exactly the
same length. It is convenient, as will be apparent in a mo-

ment, to introduce the symmetric matrixÛ=T̂+T̂t as repre-

sentative ofundirectedtours, the nonzero elements ofÛ be-

ing given byÛi,j =1 if i is connected toj in the tour,i being
visited before or afterj . One can readily convince onself that

there is no loss of information in working withÛ instead of

T̂. Given the matrixÛ there is no ambiguity in extracting the

directed tour, represented byT̂, which originated it. The

length of a tour can be expressed in terms of theÛi,j, as
follows:

HpotsÛd =
1

2o
si j d

dij Ûi,j = o
ki j l

dij Ûi,j , s1d

wheredij =dji is the distance between cityi and city j , and
ki j l signifies counting each link only once.Hpot is the poten-
tial energy which we are seeking to minimize.

Since there is no natural physical kinetic energy in the
problem we have to devise a suitable one. This choice is
arbitrary, and many simple forms, such as transposition of
two neighboring cities in a tour, could provide one or another
kind of quantum fluctuations. Reasonably, however, the
choice ofHkin should also encompass the important elemen-
tary “moves” of the problem, determining which configura-
tions are to become direct neighbors of a given configura-
tion, a choice which in turn influences the problem’s
effective landscape[15]. A very important move that is often
used in heuristic TSP algorithms is the so-called two-opt
move, consisting in eliminating two links in the current tour,
sc1→c2d andsc18→c28d, and rebuilding a new tour in which
the connections are given bysc1→c18d andsc2→c28d. This is
illustrated with a eight-city example in Fig. 1, where(left
part) the tour s1→2→5→8→7→6→3→4d, represented

by the matricesT̂in andÛin, is rebuilt by eliminating the two
links sc1=2→c2=5d andsc18=3→c28=4d, and forming(see
right part of Fig. 1) two new linkssc1=2→c18=3d and sc2

=5→c28=4d. The matricesT̂fin and Ûfin in the lower right
part of Fig. 1 represent the final(directed and undirected)
tour obtained after the two-opt move. A two-opt move im-
plies that a whole section of the original tour[between the
two removed linkssc1→c2d andsc18→c28d] gets reversed in
the new tour, yielding a long series of bit flips in the matrix

T̂ (dotted circles in Fig. 1). If we associate a spin variable
+1s−1d to each entry 1(0), and represent a two-opt move in

terms of spin-flip operators acting on the configurationT̂in,

we would need a whole string of spin-flip operators(a non-
local object) to enforce a trivial operation—reversing a piece
of tour—which does not affect the tour length at all. The

advantage of working withÛ is that it represents, in a sym-
metric way, the direct and the reverse tour, so that all the
entries corresponding to the section of reversed tour are com-
pletely untouched. The whole two-opt move, when working

with Û matrices, can be represented by just four spin-flip
operators:

Skc18,c1l
+ Skc28,c2l

+ Skc2,c1l
− Skc28,c18l

− ,

where, by definition, eachSki,jl
± flips an Ising spin variable

(defined asSki,jl
z =s2Ûi,j −1d= ±1) at positionsi , jd and at the

symmetric positions j , id, i.e., Ski,jl
± =Si,j

± Sj ,i
± .

The quantum Hamiltonian for the TSP which implements
the two-opt moves is

HTSP= HpotsÛd + Hkin

= o
ki j l

dij

sSki,jl
z + 1d

2
−

1

2o
ki j l

o
ki8 j8l

Gsi, j ,i8, j8;td

3fSki8,il
+

Sk j8,jl
+

Sk j ,il
− Sk j8,i8l

− + H . c .g. s2d

Here the quantum couplingG is a real positive function de-
pending, in principle, on the links, as well as, in the anneal-
ing problem, on time. The link dependence ofG can be re-
stricted to a dependence on the distances between the cities

FIG. 1. (Color online) Left: Representation of an eight-city tour,

with the corresponding matrixT̂in andÛin=T̂in+T̂in
t . Right: The final

tour obtained when a two-opt move is performed, with a whole

section reversed(dotted line). The matricesT̂fin andÛfin are shown,
the circles indicating the entries that have been switcheds0↔1d by

the two-opt move. The dotted circles inT̂fin are entries related to the
trivial reversal of a section of the tour.
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involved in the two links created by the two-opt move, in
such a way as to realize aneighborhood pruning[12], by
discouraging(or forbidding altogether) the creation of links
between distant cities. In doing so, the symmetric TSP prob-
lem is mapped onto a highly constrained Ising spin problem
with NsN−1d /2 sites—one for each pair ofsi , jd, with i . j ,
due to the symmetrysi , jd↔ s j , id, which we denote by
ki , jl—with a four-spin-flip kinetic term providing the two-
opt quantum fluctuations. The potential energyHpot appear-
ing in HTSP (tour length) represents, in the Ising language, a
(random) external magnetic field at each siteki , jl depending
on the intercity distancedij . The constraints on the Hilbert

space are such that the matrixÛi,j =sSki,jl
z +1d /2 represents a

valid tour. In particular, the system lives in a subspace with a

fixed magnetization—exactlyN spins are upsÛi,j =1d among
the NsN−1d /2—and the two-opt kinetic term conserves the
magnetization.

As in the past [6], we do not attempt an actual
Schrödinger annealing evolution of the quantum Hamil-
tonian proposed—due to the large Hilbert space. Instead, we
shall address the quantum problem by quantum Monte Carlo
(QMC), where annealing will take place in the fictitious
“time” represented by the number of MC steps. Path-integral
Monte Carlo(PIMC) provides a natural tool, due to its sim-
plicity. However, attackingHTSP by PIMC meets with a first
difficulty, namely Trotter discretization of the path integral
[16]. That requires calculation of the matrix elements of the
exponential operatorkC8uexp−eHkinuCl between arbitrary
configurationsuCl anduC8l of the system[16], a complicated
affair for the Hkin in Eq. (2). To circumvent this difficulty
without giving up the simplicity of PIMC, we introduce a
drastic simplification to our kinetic energy term, replacing it
altogether with a standard transverse Ising form:

H̃TSP= o
ki j l

dij

sSki,jl
z + 1d

2
− Gstdo

ki j l
fSk j ,il

+ + H . c .g. s3d

This form is trivially Trotter discretized, as in the standard
Ising system in transverse field[16], since the spin-flip term
acts independently on single spins at each time slice. Strictly
speaking this simplified form of the kinetic energy would no
longer fulfill the constraint to take a valid tour to another
valid tour. However, so long as we constrain the MC dynam-
ics strictly within the valid tour subspace—a restriction that
comes automatically if we use exclusively two-opt moves in
the MC algorithm, and no single spin-flip moves—that prob-
lem does not arise. It is far from obvious that this way of
bypassing the difficulty in treating the original Hamiltonian
(2) should eventually produce a working QA scheme. We
will eventually find that it indeed does. The simplified single

spin-flip kinetic termH̃kin in Eq. (3) enters only in calculat-
ing the weights of configurations of the Trotter discretized
system, and not in the actual MC dynamics, which relies on
the two-opt moves and hence conserves the constraints. The
details of the remaining implementation are identical to those
reported for the random Ising case[6,7,17].

For a direct test of our QA algorithm against SA we chose
a standard benchmark TSP problem, namely, the printed cir-

cuit board instance pr1002 of theTSPLIB [18]. It is a struc-
tured TSP problem withN=1002 cities whose optimal tour
lengthLopt is known exactly by otherad hocalgorithms[18]
to be Lopt=259 045. Our implementation of SA was a stan-
dard Metropolis MC with a temperature schedule starting
from T0 and going linearly to zero in a MC timet. We chose
an optimal initial temperatureT0 by first performing several
SA runs with different(short) cooling timest starting from
sufficiently high temperatures(the ergodic region). This
identifies an approximate “dynamical temperature”Tdyn be-
low which the cooling curves for differentt’s start to differ.
For pr1002, we obtainedTdyn,100. As it turns out, the op-
timal T0 for SA approximately coincides withTdyn, T0
,Tdyn, an implementation feature known for TSP SA ascold
starts [12]. For QA, we implemented for the Hamiltonian

H̃TSP a similar PIMC to that used previously[6,7] at a fixed
low temperatureT (we usedT=10/3, see below). The quan-
tum model is mapped onto a classical model with an extra
imaginary-time dimension, consisting ofP ferromagnetically
coupled replicas of the original spin problem, at temperature
PT [7,16] (we usedP=30). Since QA requires initial con-
figurations equilibrated at temperaturePT [7], an obvious
choice is to takePT,Tdyn, i.e.,PT=100 for the pr1002[19].
Finally, the transverse fieldG is annealed linearly in a MC
time t from an initial valueG0=300 to a final value of zero.
In both SA and QA, we used exclusively two-opt moves,
with a static neighborhood pruning[12], which restricts the
attempted two-opt moves by allowing only a fixed numberM
(we usedM =20) of nearest neighbors of cityj to be candi-
dates forj8. Our MC step consisted ofMN attempted two-
opt moves(for QA, in each of theP replicas). In both SA
and QA, we averaged the best tour length found over up to
96 independent searches.

Figure 2 shows the results obtained for the residual error
(average best-tour excess length) upon annealing for a total

MC time t , eexc=fL̄beststd−Loptg /Lopt, both with SA (filled
squares) and with QA(open circles). As a reference, the best
out of 1000 runs of the Lin-Kernighan algorithm(one of the

FIG. 2. (Color online) Average residual excess length found
after Monte Carlo annealing for a total timet (in MC steps), for the
N=1002 instance pr1002 of theTSPLIB. Notice how quantum an-
nealing(QA) provides residual excess lengths decaying faster than
classical annealing(SA).
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standard local-search algorithms for TSP[12]) gives a per-
centage excess length ofeexc

LK <1.57% [12] (dashed line in
Fig. 2). The results show that QA anneals more efficiently,
reducing the error at a much steeper rate than SA. Moreover,
even accounting for the extra factorP in the total CPU time
required by QA(rightmost open circles), QA is still more
convenient than SA at larget and small excess lengths. The
similarity with the previous results on the random 2D Ising
magnet[6] is striking. We argued in Ref.[6] that QA is faster
for the random Ising case due to the superior ability of quan-
tum physics to cross barriers through Landau-Zener tunnel-
ing, as compared to classical physics requiring for them to be
overcome thermally: such a feature, although by no means a
general property, is apparently shared by the TSP. The up-
ward curvature of the data in Fig. 2 is likely to signal a
logarithmically slow annealing for both SA and QA[6]. Also
worth mentioning is the effect of the finite value ofP, which
is likely to be responsible for a saturation effect of the QA
data, as shown in Fig. 1 of Ref.[6] for the random Ising case.

Current ad hoc TSP algorithms do better than either
annealings—SA and QA being generic tools—for the same
CPU time. Moreover, it is known that combining SA with
local search heuristics provides superior results to pure SA

for the TSP problem[20]. (A similar approach, known as
basin hopping, has proven effective in the optimization of
Lennard-Jones clusters[21].) Nevertheless, the absolute
quality of QA and its success in a fair comparison to SA
strongly encourages to further applications of QA as a gen-
eral purpose optimization technique, and to possible im-
provements of the bare QA scheme by combining it with
other local heuristics, in the spirit of Refs.[20,21]. Equally
instructive will be to experiment with other QA schemes, for
instance Green’s function QMC, which are able to cope with
the two-optHkin constructed in Eq.(2) or with other sources
of quantum fluctuations. We leave this to a future study. We
believe that gaining further experience with the effects of
artificially introduced quantum fluctuations in classical com-
plex problems represents a very promising and challenging
route, particularly in view of future developments in quan-
tum computation.
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