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Quantum annealing of the traveling-salesman problem
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We propose a path-integral Monte Carlo quantum annealing scheme for the symmetric traveling-salesman
problem, based on a highly constrained Ising-like representation, and we compare its performance against
standard thermal simulated annealing. The Monte Carlo moves implemented are standard, and consist in
restructuring a tour by exchanging two linksvo-opt moves The quantum annealing scheme, even with a
drastically simple form of kinetic energy, appears definitely superior to the classical one, when tested on a
1002-city instance of the standardpLig.
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Quantum annealingQA)—that is, using quantum me- such as that of Brooke and co-workef4,5, where it
chanics to optimize, through annealing, hard problems ofvas shown that in the disordered Ising ferromagnet
everyday life, including those that have nothing to do withLiHOg 44Y o.5d4, QA is both experimentally feasible and ap-
gquantum mechanics—is a relatively new and fascinatingparently superior to thermal annealing. Stimulated by these
idea, with important physical implications and potential im- findings we recently carried out a benchmark comparison of
pact in a variety of areas, from technological applications tcclassical and path-integral MC annealings on the two-
other disciplines of science, wherever optimization of a comdimensional random Ising modg,7]. In that study, we con-
plex system is the issue. firmed the superiority of QA, and presented a simple theory,

The idea of QA is an offspring of the celebrated thermalPased on Landau-Zener tunnelif@, for that. While other
simulated annealingSA) [1,2], where the problem of mini- theoretical efforts have also_ reported some success with QA
mizing a certain costor energy function in a large space of for other problemg8-11, it is nonetheless fair to say that
configurations is tackled, through a statistical mechanicQUr overall experience with tackling hard problems by QAis
analogy, by the introduction of an artificial temperature vari-Still very limited. The traveling-salesman problefsh, a
able which is slowly reduced to zero in the course of a MonteCIaSSIC hard optimization problem, provides an ideal play-

. : . : -_ground for a further test of QA in comparison with SA. In
Carlo (MC) or molepular dynamlcs.3|mu!at|on. This dey|c_:e this Brief Report we report an application of QA to TSP, and
allows the exploration of the configuration space avoidin

Co - - NYind that again it is superior to SA.
trapping into local minima, often providing a more effective Given N cities with set intercity distances;, TSP con-

and less biased search for the minimum “energy” than starjsts in finding the shortest route connecting them, visiting
dard gradient-based minimization methods. each city once and returning to the starting point. The litera-
Why not use quantum mechanics for the same purpos&gre on TSP is vast, and, e.g., REE2] can be consulted for
Quantum mechanics works with wave functions that carpn account of the algorithms proposed. SA, although never a
sample different regions of phase space equally well. Instea@inning scheme when compared to some of #ldehocal-
of thermal fluctuations, one exploits here tipgantum fluc-  gorithms specifically tailored to the TSP problem, is known
tuations provided by a suitably introduced—and equally to be a very flexible, simple, and competitive algorithm for
artificial—kinetic energy. Annealing is then performed by the TSP as well12]. The natural question is now: can QA do
slowly reducing to zero the amount of quantum fluctuationsbetter than SA, with a comparable computational effort? We
Quantum fluctuations have, in many respects, an effect simiwill now show that this is indeed the case.
lar to that of thermal fluctuations—they cause, for instance, The crucial point in devising a QA scheme is how to
solid helium to melt even at the lowest temperatures—butlescribe the Hilbert space of the problem, and how to write
they differ considerably in other respects. In particular, quanand implement a quantum Hamiltoniafrsg=H o+ Hyin-
tum systems catunnel throughclassically impenetrable po- HereH, represents the classical potential energy of a given
tential barriers between energy valleys, a process that miglonfiguration(in our case, the length of a touandH,;, is a
prove more effective than waiting for them to be overcomesuitable kinetic energy operator providing the necessary
thermally, as in SA. quantum fluctuations, and eventually annealed to zero. The
Formulated in the mid 199083], the idea of QA picked route we followed(certainly not unique, or even the most
up momentum only recently, through experimental workefficient) goes through the mapping to a highly constrained
Ising-like system, somewhat reminiscent of the Hopfield-
Tank mapping of TSP as a neural netw§t!8] (see also Ref.

*Permanent address: Department of Physics, Slovak University dft4]). Formally, each configuration of the system valid
Technology, llkovova 3, 812 19 Bratislava, Slovakia. tour) is associated with & X N matrix T with 0/1 entries in
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the following way: For every directed togan ordered se- 2 3 6 2 S
quence of citie)sﬁjzl if the tour visits cityi immediately 7 ""\07
after city]j, andi,j:O otherwiseT hasN entries equal to 1, 1 !
all other elements being 0, and obeys the typical constraints ? > . i 5‘ """""" “'8

of a permutation matrix, i.e(j) all diagonal elements vanish,
T;i=0; (i) there is a single 1 in each rowand in each

. . 00010000 00010 0
c_olumnj. For thesymme_tncTSP prob_le_m we want to con- 10000000 10000 0
sider(a TSP where the distance matrix is symmettje-d;), 00000100 0Do0o0O: 0

. ~ T={ 00100000| T=|00000 0
a directed tour represented byTa arld the reversed tour, it | §7 0168000 i | 0@0 00 i
represented by the transposed matffix have exactly the 00000010 001200 0
same length. It is convenient, as will be apparent in a mo- 00000001 0000 0:1:0:0
ment, to introduce the symmetric matiix=T+T! as repre- | 00D ikl 20 B OUER DRl |
sentative ofundirectedtours, the nonzero elements dfbe- [01010000] [01010000]
ing given byU; ;=1 if i is connected tq in the tour,i being (1) 8 8 (1) (1) (1) 8 8 (1)(%%)(33?? 8 8
visited before or aftej. One can readily convirlce onself that U=|10100000| yg=[10@0®000
there is no loss of information in working witdl instead of m | 01000001 fin | 0@0®O 001
A .~ . . 00100010 00100010
T. Given the matriXJ there is no ambiguity in extracting the 00000101 00000101
directed tour, represented bl, which originated it. The 00001010 ] 1 00001010 |

length of a tour can be expressed in terms of fhg:, as

follows: FIG. 1. (Color onling Left: Representation of an eight-city tour,

with the corresponding matrfkin andlAJin:i'mﬂA'i‘n. Right: The final
“ 1 - - tour obtained when a two-opt move is performed, with a whole
HpoU) = 520 djUj = 2 dy Uy D secti tted ling. The matricesTy, andUy, h
21 T : ion reversetlotted ling. The matricedTs, andUs, are shown,

the circles indicating the entries that have been switdBed 1) by

Wheredij=dji is the distance between cityand city j, and th_e_two-opt move. The o_Iotted circles:ﬁﬂr1 are entries related to the

(ij) signifies counting each link only oncil,, is the poten-  trivial reversal of a section of the tour.

tial energy which we are seeking to minimize.

Since there is no natural physical kinetic energy in thewe would need a whole string of spin-flip operatéasnon-
problem we have to devise a suitable one. This choice iocal objecj to enforce a trivial operation—reversing a piece
arbitrary, and many simple forms, such as transposition obf tour—which does not affect the tour length at all. The
two neighboring cities in a tour, could provide one or anotherdyantage of working withy is that it represents, in a sym-
kind of quantum fluctuations. Reasonably, however, thenetric way, the direct and the reverse tour, so that all the
choice ofHy, should also encompass the important elemenentries corresponding to the section of reversed tour are com-

tary “moves” of the problem, determining which configura- pletely untouched. The whole two-opt move, when working
tions are to become direct neighbors of a given configura-

tion, a choice which in turn influences the problem’sWith U matrices, can be represented by just four spin-flip
effective landscapgl5]. A very important move that is often operators:

used in heuristic TSP algorithms is the so-called tpo- S S S Y

move consisting in eliminating two links in the current tour,

(c;—cy) and(cys —c,r), and rebuilding a new tour in which where, by definition, eaclSZ—'i,j> flips an Ising spin variable

the connections are given bylﬂclr) and(C2—> Czr). This is (defined a§? ) =(20i ._1)= il) at pOSition(i 1]) and at the
illustrated with a eight-city example in Fig. 1, whefeft oy e T
symmetric positior(j,i), i.e., §; ,=5;S;.

pary the tour(1—-2—5—-8—-7—6—3—4), represented o o
by the matrices. and U is rebuilt by eliminating the two The quantum Hamiltonian for the TSP which implements
y n n y 9 the two-opt moves is

links (c;=2—c,=5) and(c;:=3— ¢y =4), and forming(see

right part of Fig. 3 two new links(c;=2—c¢;,=3) and(c, Hrsp= Hpot(o) + Hyin

=5—cy,=4). The matricesT;, and Ug, in the lower right (S<z” +1) 1

part of Fig. 1 represent the finadlirected and undirectgd => dijL DR K (AR IR

tour obtained after the two-opt move. A two-opt move im- (i) 2 2% @'in

plies that a whole section of the original toflretween the ..

two removed linksc,— ¢,) and(c, — C,)] gets reversed in XISy 158y ySiiySrintH-¢- 1. (2

'Ehe new tour, yielding a long series of bit flips in the matrix Here the quantum coupling is a real positive function de-
T (dotted circles in Fig. L If we associate a spin variablle pending, in principle, on the links, as well as, in the anneal-
+1(-1) to each entry 10), and represent a two-opt move in g problem, on time. The link dependenceldtan be re-

terms of spin-flip operators acting on the configurafigy  stricted to a dependence on the distances between the cities
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involved in the two links created by the two-opt move, in s 3 e

such a way as to realize meighborhood prunind12], by = o“_;aﬁ’ PT=100, P=30
discouragingor forbidding altogetherthe creation of links £ o 0-0 QA, T multiplied by P| |
between distant cities. In doing so, the symmetric TSP prob- g

lem is mapped onto a highly constrained Ising spin problem & [~ 7777 N\TTNg T TN T TTTTTTTTTTT
with N(N-1)/2 sites—one for each pair df,j), with i >], g

due to the symmetryi,j)«<(j,i), which we denote by = i
(i,j)—with a four-spin-flip kinetic term providing the two- = 09F 5
opt quantum fluctuations. The potential enetdy,; appear- %08'3: ]
ing in Hygp (tour length represents, in the Ising language, a E 0:6_ |
(random) external magnetic field at each siiej) depending 8 o5k A
on the intercity distance;. The constraints on the Hilbert < L L
space are such that the mattibgj:(sfi’jﬁ 1)/2 represents a 0“{0‘ 10° 10° 10" 10° 10°

valid tour. In particular, the system lives in a subspace with a Monte Carlo 7 (in units of MC Steps)

fixed magnetization—exactljl spins are ugU; ;=1) among FIG. 2. (Color onling Average residual excess length found
the N(N_‘ 1)_/2—and the two-opt kinetic term conserves the afier Monte Carlo annealing for a total timrgin MC steps, for the
magnetization. N=1002 instance prl1002 of thespLiB. Notice how quantum an-

As in the past[6], we do not attempt an actual nealing(QA) provides residual excess lengths decaying faster than
Schrédinger annealing evolution of the quantum Hamil-classical annealingSA).

tonian proposed—due to the large Hilbert space. Instead, we . )

shall address the quantum problem by quantum Monte Carlguit board instance prl002 of thespLig [18]. It is a struc-
(QMC), where annealing will take place in the fictitious tured TSP_probIem wittN=1002 cities whose o_ptlmal tour
“time” represented by the number of MC steps. Path-integral€NdthLopt is known exactly by othead hocalgorithms[18]
Monte Carlo(PIMC) provides a natural tool, due to its sim- {0 b&Lop=259 045. Our implementation of SA was a stan-
plicity. However, attackingdspby PIMC meets with a first dard Metropoll's M_C with a temperature §chedu|e starting
difficulty, namely Trotter discretization of the path integral f'om To and going linearly to zero in a MC time We chose
[16]. That requires calculation of the matrix elements of the@n optimal initial temperatur&, by first performing several
exponential operatoKC’|exp—eH,,|C) between arbitrary SA runs W|th_d|fferent(shorb cooling tlmesr starpng fro.m
configurationgC) and|C’) of the systenj16], a complicated §ufﬂc_u_antly high terpperat‘lljresthe_ ergodic reglo)aﬂ This
affair for the Hy;, in EqQ. (2). To circumvent this difficulty |dent|f|§s an appro'X|mate dynam|pal temperatuT@yn'be—
without giving up the simplicity of PIMC, we introduce a low which the coollng curves for dlffer_enfs start to differ.
drastic simplification to our kinetic energy term, replacing it 7O Pr1002, we obtainety,,~ 100. As it turns out, the op-

altogether with a standard transverse Ising form: timal T, for SA approximately coincides Witflgy,, To
~ Tayn @n implementation feature known for TSP SAcadd
(Sip+d

~ starts [12]. For QA, we implemented for the Hamiltonian
Hrsp= 2 dj 2 B F(t)E [S<+J,i> tH.c.]. (3 Hispa similar PIMC to that used previous|$,7] at a fixed
w W low temperaturd (we usedT=10/3, see below The quan-

This form is trivially Trotter discretized, as in the standardtum model is mapped onto a classical model with an extra
Ising system in transverse fied6], since the spin-flip term imaginary-time dimension, consisting Bfferromagnetically
acts independently on single spins at each time slice. Strictlgoupled replicas of the original spin problem, at temperature
speaking this simplified form of the kinetic energy would no PT [7,16] (we usedP=30). Since QA requires initial con-
longer fulfill the constraint to take a valid tour to another figurations equilibrated at temperatuReT [7], an obvious
valid tour. However, so long as we constrain the MC dynam-hoice is to takd® T~ Ty, i.e., PT=100 for the pr100219].
ics strictly within the valid tour subspace—a restriction thatFinally, the transverse fielll is annealed linearly in a MC
comes automatically if we use exclusively two-opt moves intime = from an initial valuel’y=300 to a final value of zero.
the MC algorithm, and no single spin-flip moves—that prob-In both SA and QA, we used exclusively two-opt moves,
lem does not arise. It is far from obvious that this way ofwith a static neighborhood prunirid2], which restricts the
bypassing the difficulty in treating the original Hamiltonian attempted two-opt moves by allowing only a fixed number
(2) should eventually produce a working QA scheme. We(we usedM =20) of nearest neighbors of cityto be candi-
will eventually find that it indeed does. The simplified single dates forj’. Our MC step consisted d¥IN attempted two-
spin-flip kinetic termH,;, in Eq. (3) enters only in calculat- 0Pt moves(for QA, in each of theP replicag. In both SA
ing the weights of configurations of the Trotter discretized@nd QA, we averaged the best tour length found over up to
system, and not in the actual MC dynamics, which relies orP6 independent searches. _ _
the two-opt moves and hence conserves the constraints. The Figure 2 shows the results obtained for the residual error
details of the remaining implementation are identical to thoséaverage best-tour excess lengtpon annealing for a total
reported for the random Ising cag&7,17. MC time 7, €qu=[Lpes{7) ~Loptl/Lope bOth with SA(filled

For a direct test of our QA algorithm against SA we chosesquaresand with QA(open circles As a reference, the best
a standard benchmark TSP problem, namely, the printed cieut of 1000 runs of the Lin-Kernighan algorithfmne of the
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standard local-search algorithms for TER2]) gives a per- for the TSP probleni20]. (A similar approach, known as
centage excess length et)'fczl.57% [12] (dashed line in  basin hopping, has proven effective in the optimization of
Fig. 2. The results show that QA anneals more efficiently,Lennard-Jones clusterf21].) Nevertheless, the absolute
reducing the error at a much steeper rate than SA. Moreoveguality of QA and its success in a fair comparison to SA
even accounting for the extra factBrin the total CPU time  strongly encourages to further applications of QA as a gen-
required by QA(rightmost open circlgs QA is still more  eral purpose optimization technique, and to possible im-
convenient than SA at largeand small excess lengths. The provements of the bare QA scheme by combining it with
similarity vyith thg previous resuI.ts on the random 2D Ising gther local heuristics, in the spirit of Refi20,21. Equally
magne{6] is striking. We argued in Ref6] that QA is faster  instryctive will be to experiment with other QA schemes, for
for the random Ising case due to the superior ability of quanjnstance Green’s function QMC, which are able to cope with
tum physics to cross barriers through Landau-Zener tunnek,e two-optH,;, constructed in Eq(2) or with other sources
ing, as compared to classical physics requiring for them to bgf quantum fluctuations. We leave this to a future study. We
overcome thermally: such a feature, although by no means jgg|ieve that gaining further experience with the effects of
general property, is apparently shared by the TSP. The URgrtificially introduced quantum fluctuations in classical com-
ward curvature of the data in Fig. 2 is likely to signal @ plex problems represents a very promising and challenging

logarithmically slow annealing for both SAand QB]. Also  qyte, particularly in view of future developments in quan-
worth mentioning is the effect of the finite value Bf which  t,yy computation.

is likely to be responsible for a saturation effect of the QA

data, as shown in Fig. 1 of R¢B] for the random Ising case. This project was sponsored by MIUR, through COFIN
Current ad hoc TSP algorithms do better than either and FIRB, and by a INFM/Supercalcolo grant. R.M. ac-

annealings—SA and QA being generic tools—for the saménowledges the hospitality provided by SISSA and ICTP.

CPU time. Moreover, it is known that combining SA with We thank D. Battaglia, C. Micheletti, B. Hetenyi, R. Car, and

local search heuristics provides superior results to pure SR. Zecchina for discussions.
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