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We present an example of an exact quasiperiodic localized stable solution with spatially symmetric large-
amplitude oscillations in a nonintegrable Hamiltonian lattice model. The model is a one-dimensional discrete
nonlinear Schrödinger equation with alternating on-site energies, modeling, e.g., an array of optical
waveguides with alternating widths. The solution bifurcates from a stationary discrete gap soliton, and in a
regime of large oscillations its intensity oscillates periodically between having one peak at the central site and
two symmetric peaks at the neighboring sites with a dip in the middle. Such solutions, termed “pulsons,” are
found to exist in continuous families ranging arbitrarily close to both the anticontinuous and continuous limits.
Furthermore, it is shown that they may be linearly stable also in a regime of large oscillations.
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The discrete nonlinear Schrödinger(DNLS) equation is
one of the most studied examples of a nonintegrable Hamil-
tonian lattice model. It is of great interest as much from a
general nonlinear dynamics point of view, where it provides
a particularly simple system to analyze fundamental phe-
nomena arising from competition of nonlinearity and dis-
creteness such as energy localization, wave instabilities, etc.,
as from a more applied viewpoint describing, e.g., arrays of
nonlinear optical waveguides[1] or Bose-Einstein conden-
sates in external periodic potentials[2]. For recent reviews of
the history, properties, and applications of DNLS-like mod-
els, see Refs.[3,4].

Recent attention has been given to DNLS-like models
having, in addition to the fundamental periodicity given by
the lattice constant, also a superlattice modulation creating a
second period. In particular, the DNLS equation with an ad-
ditional term corresponding to alternating on-site energies
has been proposed to model an optical waveguide array
where the individual waveguides have alternating widths[5].
Creating a two-branch linear dispersion relation, the super-
periodicity thus provides the possibility for existence of a
type of nonlinear localized modes calleddiscrete gap soli-
tons (or discrete gap breathers), with frequencies in the gap
between the upper and lower branches. These modes appear
asstationarysolutions to the DNLS equation(i.e., with con-
stant intensity and a purely harmonic time dependence which
can be removed by transforming into a rotating frame),
and their properties were recently analyzed in detail in
Ref. [6], to which we also refer for further references on the
topic. Very recently, they have also been experimentally
observed[7].

However, it is known that as the DNLS equation in one
aspect is nongeneric among nonlinear Hamiltonian lattice
models, with a second conserved quantity being the total
norm of the excitation, there exist also localizedquasiperi-
odic solutions which may have two(generally) incommen-

surate frequencies. Here the first frequency corresponds to
harmonic oscillations at constant intensity as for stationary
solutions, while the second frequency corresponds to time-
periodic oscillations of the intensityin the frame rotating
with the first frequency. The existence of such solutions was
proposed in Ref.[8], and later explicit examples were con-
structed and analyzed by continuation of multisite breathers
from the “anticontinuous” limit of zero intersite coupling[9]
(note that similar ideas were used already in Ref.[10] for
finite systems). A rigorous approach to the connection be-
tween existence of quasiperiodic solutions and additional
conserved quantities was given in Ref.[11]. A slightly dif-
ferent approach was taken in Ref.[12] (see also[3]), where
the existence of exact quasiperiodic solutions bifurcating
from localized eigenmodes of thelinearized equations of
motion around some particular stationary solutions was
shown. In all cases, to guarantee localization it is necessary
that anonresonancecondition is satisfied, so that no higher
harmonics enter the continuous linear spectrum.

However, all known examples of stable localized exact
quasiperiodic solutions to the ordinary DNLS equation could
be considered as rather special, since(i) they only exist in
bounded parameter intervals at weak intersite coupling, and
(ii ) the intensity oscillations are typically quite small com-
pared to their average values. Furthermore, to the best of our
knowledge no explicit example of a stable quasiperiodic
breather withspatial symmetryhas been given(although one
of the modes presented in Ref.[12] possibly could yield such
a solution). On the other hand, it was shown already in Ref.
[13] that for the two-dimensional DNLS model a state with
large-amplitude symmetric intensity oscillations, with the in-
tensity maximum periodically oscillating between the central
site and four surrounding sites, was created in an intermedi-
ate stage in the process of “quasicollapse” of a broad excita-
tion to a highly localized breather. This entity, termed apul-
son, typically disappeared after 3–4 oscillations,
transforming into an on-site localized stationary breather
with slowly decaying small-amplitude internal mode oscilla-
tions (the decay of which can be calculated similarly as for
the one-dimensional case in Ref.[14]).

It is the purpose of the present Brief Report to provide an
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example of anexactstable solution with such pulson prop-
erties, which we have found to exist in the one-dimensional
binary modulated DNLS equation. In fact, we remarked al-
ready in Ref.[6] that similar arguments as in Ref.[12] prove
the existence of exact quasiperiodic solutions bifurcating
from certain internal modes of the stationary gap breathers;
here the crucial property(which is not satisfied, e.g., for
single-site breathers in the nonmodulated DNLS model[14])
is that these internal modes have frequenciesabovethe con-
tinuous spectrum, and consequently also all higher harmon-
ics will lie outside the continuous spectrum. Referring to the
notation in Fig. 3 of Ref.[6], we here concentrate on the
spatially symmetric mode denoted as P1, which may exist
arbitrarily close to the anticontinuous as well as the continu-
ous limit, and show that the families of quasiperiodic solu-
tions bifurcating from this mode indeed exhibit pulson prop-
erties as the oscillation amplitude increases.

Using for convenience a slightly different notation than in
Ref. [6], we consider the DNLS equation in the form

iċn − V0s− 1dncn + Cscn+1 + cn−1d + ucnu2cn = 0, s1d

with the two conserved quantities Hamiltonian

H = o
n

fV0s− 1dnucnu2 − Cscncn+1
* + cn

*cn+1d − 1
2ucnu4g

and normN=onucnu2. Writing a stationary solution ascnstd
=fn

sLdeiLt with time-independentfn
sLd, the linear dispersion

relation becomes L= ±ÎV0
2+4C2 cos2 q with gap

LP f−uV0u , uV0ug. Assuming V0.0, a discrete gap soliton
then bifurcates from thelower gap edgeL=−V0, and corre-
sponds in the limitC→0 to a single excitedevensite with
intensity ucnu2=L+V0.

Exact quasiperiodic solutions with two independent fre-
quenciesv0 andvb can then be found numerically to com-
puter precision by using essentially the same method as in
Ref. [9]. First, we transform into a frame rotating with the
frequencyv0, cnstd=fnstdeiv0t, yielding

iḟn − fv0 + V0s− 1dngfn + Csfn+1 + fn−1d + ufnu2fn = 0, s2d

whereupon standard Newton-type schemes are used to find
time-periodic solutions to Eq.(2) satisfying fnst+2p /vbd
=fnstd, wherevb is the second frequency. In addition, linear
stability is simply investigated numerically by standard Flo-
quet analysis as described in Ref.[9].

When a stationary gap breather of frequencyL has an
internal linear eigenmode of frequencyvl (in the frame ro-
tating with frequencyL), the family of quasiperiodic solu-
tions bifurcating from it at this point hasvb=vl andv0=L
−vl. Thus, by using as initial trial solution the stationary gap
breather perturbed with the relevant linear eigenmode, the
two-parameter family of solutions(for given V0 andC) can
then be followed through parameter space by standard con-
tinuation techniques.(Note that, in contrast to Ref.[9], once
the stationary gap breather is known we here obtain directly
quasiperiodic solutions at finiteC, without invoking the an-
ticontinuous limitC→0.) For a small enough continuation
step s&10−3d, we typically with standard double-precision
FORTRANroutines for numerical integration and matrix inver-

sion obtain convergence to solutions withifnst+2p /vbd
−fnstdi,10−12 in five or fewer Newton iterations. In fact,
since norm is a conserved quantity, it is generally more in-
structive to useN and vb as independent parameters, and
practically continuations versusvb at constant norm may be
performed by varyingv0 to keepN constant. It is also con-
venient to work with rescaled quantities amounting to setting
C=1 in Eqs. (1) and (2); consequently the three relevant
independent parameters for the two-frequency solutions can
be chosen asV0/C, N /C (or, alternatively,v0/C), andvb/C.

Figure 1 illustrates the dynamics of a typical exact expo-
nentially localized pulson solution, obtained by continuation
(versusvb/C at constantv0/C and V0/C) of the linear P1
mode of a stationary gap breather withL=−0.5V0 (i.e., with
stationary frequency in the middle of the lower half of the

FIG. 1. (a) The first three oscillations of an exact localized pul-
son solution to Eq.(1) with V0=1, C=1. The dynamical parameters
are vb=3.18, v0=−3.722,N<1.908 67. Only the central part is
shown; the solution decays exponentially outside this region.(b)
Linear stability eigenvalues for the solution in(a). (c) Snapshots, at
integer multiples of the original period 2p /vb, from long-time in-
tegration using the solution in(a), with a random perturbation
,10−3, as initial condition.
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gap). The intensity oscillates periodically, from having a
minimum at the central(even) site and two symmetric
maxima at the neighboring(odd) sites att=0, to having one
single maximum at the central site att=p /vb. The solution
is linearly stable, as is seen from the numerically calculated
Floquet eigenvalues[Fig. 1(b)], which are all on the unit
circle. The main effect of a small but non-negligible pertur-
bation is illustrated by Fig. 1(c): the solution almost perfectly
retains its pulson character over very large time scales but
with a slight shift in frequency(a consequence of the four-
fold degenerate Floquet eigenvalue at +1 corresponding to
drifts of the two arbitrary phases[9]), making visible the
pulson oscillations also in the stroboscopic plot.

The results of more systematic investigations of the prop-
erties of such families of solutions are summarized in Figs.
2–4. For convenience, we now choose a “moderate” constant
value of the norm,N /C=2, and discuss the behavior for
various values ofV0/C. In particular, this value is large
enough for the stationary gap breather frequencyL to be
sufficiently far away from the lower gap boundary so as to
always have a localized P1 mode, but small enough forL to
be in the lower half of the gap, thus avoiding additional
complications such as oscillatory instabilities and nonmono-
tonic continuation which may appear for stationary breathers
in the upper gap half[6].

Figure 2, for V0/C=2, shows the typical behavior for
larger values ofV0/C. The continuation of the two-frequency
solution is monotonic, and ends in a bifurcation with another
(unstable) stationary solution with frequencyL=2vb+v0.
With the notation of Ref.[6], this solution is denoted as
hO↑ sO0djS

O, meaning that, in the anticontinuous limitC→0,
it corresponds to symmetric in-phase oscillations only for the
two (odd) sitesn0±1, with frequencyabovethe upper linear
band. The pulson character of the two-frequency solution
appears when the absolute value of the minimum(negative)
value offn0±1 (lower part of dashed curve in Fig. 2) exceeds
the minimum value offn0

(lower part of solid curve), which
for the case in Fig. 2 happens forvb*4.43. However, a

stable pulson solution appears in this case only in a small
frequency interval, since forvb*4.47 the solution is un-
stable through a symmetry-breaking instability(with real
Floquet eigenvalue). For larger values ofV0/C, when the

FIG. 2. Maximum and minimum amplitudes for the central
(even) site n0 and its neighboring(odd) sites for continuation at
constant normN=2 of the family of two-frequency solutions bifur-
cating from a stationary gap breather withL<−0.905 at vb

<4.186 (leftmost part of the figure). Here V0=2 and C=1. The
solution is unstable forvb*4.47.

FIG. 3. Same as Fig. 2 but forV0=1 and with only minimum
amplitudes. The two-frequency solution family bifurcates from a
stationary gap breather withL<−0.558 atvb<3.194, and is un-
stable forvb*3.21 on the lower branch.

FIG. 4. (a) Same as Fig. 3 but forV0=0.5. The two-frequency
solution family bifurcates from the stationary gap breather withL
<−0.3147 at vb<2.5837, and (b) becomes unstable forvb

<2.5862 on the middle branch. Magnification in inset of(b) illus-
trates how the weakly unstable stationary gap breather gets stabi-
lized by the intensity oscillations. In(b), only the largest real part of
the eigenvalue pair corresponding to the symmetry-breaking local-
ized mode is shown.
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solution becomes more discrete, the solution becomes un-
stable before it attains its pulson character, and thus in the
strongly discrete case the stable two-frequency solutions
only correspond to relatively small oscillations of the
central-site intensity for the stationary gap breather.

For smaller values ofV0/C, the continuation versusvb of
the two-frequency solutions at fixed normN /C=2 still starts
and ends in the same stationary solutions as before, but be-
comes nonmonotonous as shown forV0/C=1 in Fig. 3 [for
clarity only minimum amplitudesfns0d are shown]. The so-
lution now attains its pulson character on the intermediate
branch, where it is always stable, and becomes unstable only
on the lower branch.

For even smaller values ofV0/C, the stationary gap
breathers broaden and assume a more “continuouslike”
shape, which in particular implies that the odd sites with
largestufn

sLdu will change fromn0±1 to n0±3, and further to
n0±5, etc. [6]. For V0/C=0.5 (Fig. 4), the largest “odd”
ufn

sLdu for the stationary breather is atn0±5; however already
for rather small intensity oscillations[vb*2.5856 on the up-
per branch of Fig. 4(a)] of the corresponding P1 family of
two-frequency solutions, the maximum “odd” intensity is
again atn0±1. The solution now attains its pulson character
already on the upper branchsvb*2.5926d, and the pulson
remains stable until it reachesvb<2.5862 on the middle
branch[Fig. 4(b)].

Another very interesting effect regarding stability is seen
in Fig. 4(b). It is known[6] that asV0/C decreases, there are
certain intervals of “inversion of stability” for stationary gap
breathers, where the symmetric stationary breather discussed
here becomes unstable(through a translational “depinning”
instability), and instead the otherwise unstableantisymmetric
gap breather gains stability.V0/C=0.5 belongs to such an
interval for N /C=2, and thus the stationary gap breather
from which the two-frequency family in Fig. 4 bifurcates is
itself unstable. However, as seen from the inset in Fig. 4(b),
already atvb<2.5856 the unstable eigenvalue returns to the
unit circle, and thus even rather small symmetric intensity

oscillations maystabilizethe stationary solution with respect
to its antisymmetric instability. We are not aware of any re-
ported similar scenario.

To conclude, we have presented explicit examples of ex-
act stable quasiperiodic pulson solutions with large-
amplitude intensity oscillations, in the binary modulated
DNLS equation describing, e.g., coupled waveguides of al-
ternating widths. Thus, there should be good possibilities for
experimental observation of such states in this context. Al-
though we here focused on one particular family of symmet-
ric solutions bifurcating from the symmetric stationary gap
breather, the analysis illustrated by Fig. 3 in Ref.[6] suggests
that solutions with similar properties may bifurcate from
other, symmetric or antisymmetric, internal modes with fre-
quencies above the continuous spectrum(P2, P3, P4, P5,
etc.), existing for the symmetric as well as the antisymmetric
gap breathers. It seems likely that such solutions also should
exist for other types of multicomponent lattices with(at
least) two conserved quantities; one interesting candidate be-
ing second-harmonic-generating lattices of the type consid-
ered, e.g., in Ref.[15], where also the fundamental discrete
soliton was found to exhibit an internal mode with frequency
above the linear spectrum. A challenge for future research is
to obtain analytical expressions for the pulson solutions in
the continuum limit. This is a nontrivial task, since although
the relevant linear eigenmodes of the stationary gap breather
apparently persist arbitrarily close to the continuum limit(cf.
Fig. 3 of Ref.[6]), they cannot exist in the standard continu-
ous twofield model for gap solitons(which is the same for
DNLS as for diatomic Klein-Gordon lattices; see, e.g., Refs.
[16,17]), since the continuous spectrum of such models ex-
tends to infinity leaving no room for localized modes above
it. A more sophisticated continuous approximation would
therefore appear necessary to this end.
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