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Quasiperiodic localized oscillating solutions in the discrete nonlinear Schréodinger equation
with alternating on-site potential
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We present an example of an exact quasiperiodic localized stable solution with spatially symmetric large-
amplitude oscillations in a nonintegrable Hamiltonian lattice model. The model is a one-dimensional discrete
nonlinear Schrodinger equation with alternating on-site energies, modeling, e.g., an array of optical
waveguides with alternating widths. The solution bifurcates from a stationary discrete gap soliton, and in a
regime of large oscillations its intensity oscillates periodically between having one peak at the central site and
two symmetric peaks at the neighboring sites with a dip in the middle. Such solutions, termed “pulsons,” are
found to exist in continuous families ranging arbitrarily close to both the anticontinuous and continuous limits.
Furthermore, it is shown that they may be linearly stable also in a regime of large oscillations.
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The discrete nonlinear Schroding@®NLS) equation is  surate frequencies. Here the first frequency corresponds to
one of the most studied examples of a nonintegrable Hamilharmonic oscillations at constant intensity as for stationary
tonian lattice model. It is of great interest as much from asolutions, while the second frequency corresponds to time-
general nonlinear dynamics point of view, where it providesperiodic oscillations of the intensityn the frame rotating
a particularly simple system to analyze fundamental phewith the first frequency. The existence of such solutions was
nomena arising from competition of nonlinearity and dis-proposed in Ref[8], and later explicit examples were con-
creteness such as energy localization, wave instabilities, etcstructed and analyzed by continuation of multisite breathers
as from a more applied viewpoint describing, e.g., arrays ofrom the “anticontinuou$ limit of zero intersite couplind9]
nonlinear optical waveguideld] or Bose-Einstein conden- (note that similar ideas were used already in R#&€] for
sates in external periodic potenti§§. For recent reviews of finite systems A rigorous approach to the connection be-
the history, properties, and applications of DNLS-like mod-tween existence of quasiperiodic solutions and additional
els, see Refd.3,4]. conserved quantities was given in REEL]. A slightly dif-

Recent attention has been given to DNLS-like modelsferent approach was taken in R§E2] (see alsd3]), where
having, in addition to the fundamental periodicity given by the existence of exact quasiperiodic solutions bifurcating
the lattice constant, also a superlattice modulation creating flom localized eigenmodes of thinearized equations of
second period. In particular, the DNLS equation with an admotion around some particular stationary solutions was
ditional term corresponding to alternating on-site energieghown. In all cases, to guarantee localization it is necessary
has been proposed to model an optical waveguide arrajat anonresonanceondition is satisfied, so that no higher
where the individual waveguides have alternating wid8}s  harmonics enter the continuous linear spectrum.

Creating a two-branch linear dispersion relation, the super- However, all known examples of stable localized exact
periodicity thus provides the possibility for existence of aquasiperiodic solutions to the ordinary DNLS equation could
type of nonlinear localized modes calleiiscrete gap soli-  pe considered as rather special, siigethey only exist in
tons (or discrete gap breatheyswith frequencies in the gap pounded parameter intervals at weak intersite coupling, and
between the upper and lower branches. These modes appg@j the intensity oscillations are typically quite small com-
asstationarysolutions to the DNLS equatiofie., with con-  pared to their average values. Furthermore, to the best of our
stant intensity and a purely harmonic time dependence whicRnowledge no explicit example of a stable quasiperiodic
can be removed by transforming into a rotating frame preather withspatial symmetrynas been givetalthough one
and their properties were recently analyzed in detail inof the modes presented in Rgf2] possibly could yield such
Ref. [6], to which we also refer for further references on thEa SOlUtiOT). On the other hand, it was shown a|ready in Ref.
topic. Very recently, they have also been experimentally13] that for the two-dimensional DNLS model a state with
observed7]. o large-amplitude symmetric intensity oscillations, with the in-

However, it is known that as the DNLS equation in onetensity maximum periodically oscillating between the central
aspect is nongeneric among nonlinear Hamiltonian lattic&jte and four surrounding sites, was created in an intermedi-
models, with a second conserved quantity being the totate stage in the process of “quasicollapse” of a broad excita-
norm of the excitation, there exist also localizgdasiperi-  tion to a highly localized breather. This entity, termepu-
odic solutions which may have tw@enerally incommen- g typically disappeared after 3-4 oscillations,

transforming into an on-site localized stationary breather
with slowly decaying small-amplitude internal mode oscilla-

*Electronic address: mjn@ifm.liu.se tions (the decay of which can be calculated similarly as for
URL: http://www.ifm.liu.se~majoh the one-dimensional case in Rgt4)).
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example of arexactstable solution with such pulson prop-
erties, which we have found to exist in the one-dimensional
binary modulated DNLS equation. In fact, we remarked al-
ready in Ref[6] that similar arguments as in R¢fL2] prove

the existence of exact quasiperiodic solutions bifurcating
from certain internal modes of the stationary gap breathers;
here the crucial propertywhich is not satisfied, e.g., for
single-site breathers in the nonmodulated DNLS m¢#i4])

is that these internal modes have frequeneatesvethe con-
tinuous spectrum, and consequently also all higher harmon-
ics will lie outside the continuous spectrum. Referring to the

. . . 1 n =ia -y j
notation in Fig. 3 of Ref[6], we here concentrate on the % - -
spatially symmetric mode denoted as P1, which may exist z - "\
arbitrarily close to the anticontinuous as well as the continu- :ﬁ-; 05| &
ous limit, and show that the families of quasiperiodic solu- 5 !
tions bifurcating from this mode indeed exhibit pulson prop- §
erties as the oscillation amplitude increases. T 0 { .

Using for convenience a slightly different notation than in 5
Ref. [6], we consider the DNLS equation in the form 3 !
> 05} =
. . E ‘
1, — VO(_ 1)n(//n + C(’J’n+1 + l/’n—l) + |‘v//n|2¢n =0, (1) '% " .,.j
with the two conserved quantities Hamiltonian iEU 1k q'l"' ~ . st i
= — D)2 = e _ 104 -1 -0.5 0 0.5 1
H zn" [VO( D1il* = Clebnes * Yibea) = 2l ] (b) Real part of Floguet eigenvalue

and normN=X|,|>. Writing a stationary solution ag(t)
= ¢ Vet with time-independent.”, the linear dispersion
relation becomes A=+\V3+4C?co$q with gap
A e [-|Vy|,|Vo|]. Assuming V>0, a discrete gap soliton
then bifurcates from théower gap edgeA =-V,, and corre- [wn
sponds in the limitC— 0 to a single exciteedvensite with !
intensity |,|2=A+V,.
Exact quasiperiodic solutions with two independent fre-
guencieswy and w, can then be found numerically to com- © site 32 4,0
pRlétf r[gr;felgilfslgnwt;ytf;rlggofrﬁs%r:gazlalxérghrﬁ eS?c:Tt]aetirrlgef/Ci(t)f? t%sé n FIG. 1 (a) The first Fhree i)scilleltions of an exact localized pul-
frequencym, in(t)= b ()eed, yielding son sol_utlon to E_q(l) with Vo:l, C=1. The dynamical paramete_rs
are wp=3.18, wg=-3.722, '~ 1.908 67. Only the central part is
i¢n‘ [wo+ Vo(= 1)y + Clebpes + g) + |¢n|2¢n: 0, (2 shown; the. .solu‘tion decays exponentiglly outside this regibp.
Linear stability eigenvalues for the solution(#. (c) Snapshots, at
whereupon standard Newton-type schemes are used to fiisteger multiples of the original period wy, from long-time in-
time-periodic solutions to Eq2) satisfying ¢,(t+27/w,)  tegration using the solution iita), with a random perturbation
= ,(t), Wherew, is the second frequency. In addition, linear ~1073, as initial condition.
stability is simply investigated numerically by standard Flo-
guet analysis as described in REJ]. sion obtain convergence to solutions witkp,(t+ 27/ wy,)
When a stationary gap breather of frequentyhas an - ¢,(t)]| <1072 in five or fewer Newton iterations. In fact,
internal linear eigenmode of frequenay (in the frame ro-  since norm is a conserved quantity, it is generally more in-
tating with frequencyA), the family of quasiperiodic solu- structive to use\ and w, as independent parameters, and
tions bifurcating from it at this point has,=w, and wg=A practically continuations versus, at constant norm may be
- ;. Thus, by using as initial trial solution the stationary gapperformed by varyingy, to keep\ constant. It is also con-
breather perturbed with the relevant linear eigenmode, theenient to work with rescaled quantities amounting to setting
two-parameter family of solutiongor givenV, andC) can  C=1 in Egs.(1) and (2); consequently the three relevant
then be followed through parameter space by standard coimdependent parameters for the two-frequency solutions can
tinuation techniquegNote that, in contrast to Ref9], once  be chosen a¥,/C, N/C (or, alternativelywy/C), andw,/C.
the stationary gap breather is known we here obtain directly Figure 1 illustrates the dynamics of a typical exact expo-
quasiperiodic solutions at finit€, without invoking the an- nentially localized pulson solution, obtained by continuation
ticontinuous limitC—0.) For a small enough continuation (versusw,/C at constantw,/C and V,/C) of the linear P1
step (=107%), we typically with standard double-precision mode of a stationary gap breather withs—0.5V,, (i.e., with
FORTRANTroutines for numerical integration and matrix inver- stationary frequency in the middle of the lower half of the
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FIG. 3. Same as Fig. 2 but fafp=1 and with only minimum
amplitudes. The two-frequency solution family bifurcates from a
stationary gap breather with =-0.558 atw,~3.194, and is un-
stable forw,=3.21 on the lower branch.

FIG. 2. Maximum and minimum amplitudes for the central
(even site ny and its neighboringodd) sites for continuation at
constant normV/=2 of the family of two-frequency solutions bifur-
cating from a stationary gap breather with~-0.905 at w,
~4.186 (leftmost part of the figune Here Vo=2 andC=1. The

R stable pulson solution appears in this case only in a small
solution is unstable fow,=4.47. P PP y

frequency interval, since fow,=4.47 the solution is un-
stable through a symmetry-breaking instabilityith real

gap. The intensity oscillates periodically, from having a Floguet eigenvalue For larger values oWo/C, when the

minimum at the centrakeven site and two symmetric
maxima at the neighborin@dd) sites att=0, to having one 0.8
single maximum at the central site tat 7/ w,. The solution

is linearly stable, as is seen from the numerically calculated
Floquet eigenvalue$Fig. 1(b)], which are all on the unit 04|
circle. The main effect of a small but non-negligible pertur-
bation is illustrated by Fig.(t): the solution almost perfectly
retains its pulson character over very large time scales but 0r
with a slight shift in frequencya consequence of the four- o2t
fold degenerate Floquet eigenvalue at +1 corresponding to

06 F

02 r

9(0)

drifts of the two arbitrary phaseg]), making visible the 041
pulson oscillations also in the stroboscopic plot. 06 L
The results of more systematic investigations of the prop-

erties of such families of solutions are summarized in Figs. '0'82_58 2585 2_'59 2505 26 2605 261
2—4. For convenience, we now choose a “moderate” constant oy
value of the norm N/C=2, and discuss the behavior for

)

various values ofVy/C. In particular, this value is large 26
enough for the stationary gap breather frequeAcyo be 8 24}
sufficiently far away from the lower gap boundary so as to 2 22t
always have a localized P1 mode, but small enoughfon S Ll
be in the lower half of the gap, thus avoiding additional %
complications such as oscillatory instabilities and honmono- gr 187
tonic continuation which may appear for stationary breathers & 1.6 ¢
in the upper gap half6]. e 14}
Figure 2, forVo,/C=2, shows the typical behavior for 251 o T s aas aier mae 2aeo
larger values o¥,/C. The continuation of the two-frequency E‘%‘i ;
solution is monotonic, and ends in a bifurcation with another
(unstablg stationary solution with frequency =2wy,+ wy. 08 o ores 289 2595 26 2605 261
With the notation of Ref[6], this solution is denoted as (b) ' ' ' o ' ' '

010 o) . . . . .
:{( T(OO)}S’ meaning that, _|n _the antlcontlpuolus lin@t-0, FIG. 4. (a) Same as Fig. 3 but fovy=0.5. The two-frequency
it corresponds to symmetric in-phase oscillations only for the

dd si +1 with f b h i solution family bifurcates from the stationary gap breather whith
two (odd sitesnp+ 1, with frequencyabovethe upper linear ~-0.3147 at w,=2.5837, and(b) becomes unstable fotvy,

band. The pulson character of the tWO-frgquency ?’OIUt'onzz.SSGZ on the middle branch. Magnification in insef(lof illus-
appears when the absolute value of the minimuegativg  yates how the weakly unstable stationary gap breather gets stabi-
value of ¢ . (lower part of dashed curve in Fig) 8xceeds  |izeq by the intensity oscillations. I¢b), only the largest real part of
the minimum value ofp, (lower part of solid curvg which  the eigenvalue pair corresponding to the symmetry-breaking local-
for the case in Fig. 2 happens fay,=4.43. However, a ized mode is shown.
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solution becomes more discrete, the solution becomes umscillations maystabilizethe stationary solution with respect
stable before it attains its pulson character, and thus in th® its antisymmetric instability. We are not aware of any re-
strongly discrete case the stable two-frequency solutiongorted similar scenario.
only cor_res_pond _to relatively _ small oscillations of the g conclude, we have presented explicit examples of ex-
central-site intensity for the stationary gap breather. act stable quasiperiodic pulson solutions with large-

For smaller values o¥/,/C, the continuation versus, of i e intensity oscillations, in the binary modulated
the two-frequency solutions at fixed nork¥ C=2 still starts . o .

E)_NLS equation describing, e.g., coupled waveguides of al-

and ends in the same stationary solutions as before, but b ) . oo
comes nonmonotonous as shown Yo7 C=1 in Fig. 3[for ternating widths. Thus, there should be good possibilities for

clarity only minimum amplitudes,(0) are showi The so- experimental observation of such st_ates in th_is context. Al-
lution now attains its pulson character on the intermediatéhough we here focused on one particular family of symmet-
branch, where it is always stable, and becomes unstable onfi¢ solutions bifurcating from the symmetric stationary gap
on the lower branch. breather, the analysis illustrated by Fig. 3 in Hél.suggests
For even smaller values o¥,/C, the stationary gap that solutions with similar properties may bifurcate from
breathers broaden and assume a more “continuouslikedther, symmetric or antisymmetric, internal modes with fre-
Shape, which in particular Implles that the odd sites Withquencies above the continuous Spectr(m’ P3, P4, P5,
largest| ;"' will change fromngt1 to Ny 3, and further o etc), existing for the symmetric as well as the antisymmetric
”O(J—R;‘_" etc. [6]. For Vo/C=0.5 (Fig. 4), the largest "odd”  gap preathers. It seems likely that such solutions also should
|, | for the stationary breather is a§+5; however already eyist for other types of multicomponent lattices wigat
for rather small intensity oscillatior{ss, = 2.5856 on the up-  |aas) two conserved quantities; one interesting candidate be-
per branch of Fig. @)] of the corresponding P1 family of g second-harmonic-generating lattices of the type consid-
two-frequency solutions, the maximum “odd” intensity IS greq e g. in Ref{15], where also the fundamental discrete
again amny+1. The solution now attains its pulson charactergjixon was found to exhibit an internal mode with frequency
already on the upper brandlw,=2.5926, and the pulson  5p4ye the linear spectrum. A challenge for future research is
remains stable until it reaches,~2.5862 on the middle 4 gptain analytical expressions for the pulson solutions in
branch[Fig. 4b)]. _ , o the continuum limit. This is a nontrivial task, since although
~Another very interesting effect regarding stability is seenie relevant linear eigenmodes of the stationary gap breather
in Fig. 4(b). Itis known([6] that asV,/C decreases, there are gnnarently persist arbitrarily close to the continuum licoft
certain intervals of “inversion of stability” for stationary gap gjq. 3 of Ref.[6]), they cannot exist in the standard continu-
breathers, where the symmetric stationary breather discussggls twofield model for gap soliton@vhich is the same for
here becomes unstablthrough a translational “depinning” pNLS as for diatomic Klein-Gordon lattices; see, e.g., Refs.
instability), and ir!stead the_ otherwise unstaatgisymmetric [16,17), since the continuous spectrum of such models ex-
gap breather gains stability/o/C=0.5 belongs to such an tands to infinity leaving no room for localized modes above

interval for N/C=2, and thus the stationary gap breatherjt A more sophisticated continuous approximation would
from which the two-frequency family in Fig. 4 bifurcates is herefore appear necessary to this end.

itself unstable. However, as seen from the inset in Fb),4
already atw,=~ 2.5856 the unstable eigenvalue returns to the Financial support from the Swedish Research Council is
unit circle, and thus even rather small symmetric intensitygratefully acknowledged.
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