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We generalize the approach first proposed by Manton[Nucl. Phys. B150, 397 (1979)] to compute solitary
wave interactions in translationally invariant, dispersive equations that support such localized solutions. The
approach is illustrated using as examples solitons in the Korteweg–de Vries equation, standing waves in the
nonlinear Schrödinger equation, and kinks as well as breathers of the sine-Gordon equation.
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INTRODUCTION

Dispersive wave nonlinear partial differential equations
(PDEs) describe a variety of physical systems in atomic, op-
tical, molecular, solid state, and wave physics as well as in
fluid dynamics, biophysics, plasma physics, high energy
physics, and astrophysics among others[1,2]. Often in these
settings it is of particular interest to examine the dynamics
and interactions of spatially localized, and possibly traveling
in time, solutions which can represent bits of information,
moving Bose-Einstein condensates(BECs), elementary par-
ticles, or water waves[3,4]. The interactions between the
solitary waves are especially important, since, e.g., in optical
communications avoiding such interactions may reduce the
bit error rate[5]; in BECs such interactions change signifi-
cantly the form of the wave function[6]; while in high en-
ergy physics models, the interactions are used to monitor the
collisions of elementary particles[7].

There is a vast amount of literature regarding the interac-
tions and collisions of these solitary waves. Many reviews of
continuum[8,9] and discrete[10] systems contain some of
this enormous volume of work. The techniques that have
been used to identify the nature of such interactions are also
rather diverse ranging from perturbation theoretic ones as,
e.g., in the work of Ref.[11], to variational ones[9,12,13], to
more rigorous ones, using the Fredholm alternative[14] or
Lin’s method as in Ref.[15]. Typically, these interactions
asymptotically follow the tails of the waves, which in most
cases are exponential. This, in turn, results in writing down
Toda lattice type equations at the “mesoscopic” level for lat-
tices of coherent nonlinear waves; see, e.g., Refs.[13,16].

While the solitary wave interactions have been exten-
sively studied in the past, in the present communication we
aim at presenting a different viewpoint on this topic. Our
aim, in particular, is to explicitly focus on calculating the
tail-tail interactions between the waves, using the method
proposed by Manton in Ref.[17], based on the earlier work
of Refs.[18–20], and systematize it as a general method that
can be straightforwardly applied to any nonlinear dispersive
wave equation that has a number of characteristics(which
will be analyzed/explained). We believe that this method pro-
vides a very simple, yet elegant and useful tool that can be
generically used in this large class of models and hence
would be of value to researchers in a variety of disciplines.

The structure of our presentation is as follows. Initially
we repeat Manton’s formulation for the kink-antikink inter-
action in the sine-Gordon equation, highlighting some key
and subtle points. We then proceed to an analogous calcula-
tion for the case of solitons in the Korteweg–de Vries(KdV)
equation. We then move to the realm of breathers starting
with the standing waves(with trivial periodicity) in the case
of the nonlinear Schrödinger(NLS) equation. Thereafter, we
study the interaction of genuinely breathing structures such
as the breathers of the sine-Gordon equation. All of our re-
sults are corroborated with numerical simulations. Finally,
we conclude our presentation with a summary of main find-
ings and some intriguing questions for future study.

MANTON’s FORMULATION FOR SINE-GORDON KINKS

At the heart of Manton’s calculation of the interaction
energy is the use of the definition of the linear momentum of
the wave equation at hand. Computing the time derivative of
the momentumP for an interval containing one solitary
wave, and deducing the contribution to it from the second
wave, we can infer the force exerted on the soliton from its
neighbor. In particular, for Lorentz-invariant equations(e.g.,
Klein-Gordon equations) of the form

utt = uxx − V8sud, s1d

the linear momentum can be written asP=−eutuxdx. The
total integral along the line is a conserved quantity(when the
model is translationally invariant, an assumption necessary
for this approach to work). Consider a soliton centered
around j=0 sus1dd, and an antisoliton centered atj
=Dj sus2dd, then using an intervalsa,bd such thata!0 and
0!b!Dj, we find that in that interval(as shown in Ref.
[17])

dP

dt
= f− ux

s1dux
s2d + uxx

s1dus2dga
b. s2d

If we then take into account the asymptotic form of the
kinklike waves, which forVsud=1−cossud are of the form
u=4 arctanse±xd, we find that us1d<4 exps−xd and us2d

<4 expf−sx−Djdg in the region between the solitons(and
hence atx=b). At x=a the contribution will be null asa→
−`. Manton’s end result is thus
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dP

dt
= 32 exps− Djd s3d

(which is independent of b), and hence the potential of inter-
action isVsDjd=−32 exps−Djd.

There are some subtleties here that we highlight.
(1) Notice thatdP/dt=]V/]Dj has been used in the deri-

vation of the potential, as opposed to the usual(2) sign on
the right hand side. This is because of the way the momen-
tum is defined:dP/dt.0 which means that the momentum
at x=b is increasing, which in turn means that the solitary
wave is approachingx=b, because of the interaction, and
henceDj is decreasing(i.e., whendP/dt.0, the resulting
force in the dynamics ofDj is negative). This sign change
accounts for the above formula used in the derivation of the
potential. This subtle point should always be taken into con-
sideration when using Manton’s method.

(2) Second, if we are to examine the dynamics ofDj, then
the corresponding Newton equation should account not only
for the potential, but also for the “mass” of the solitary wave.
In the case at hand(kinks of the sine-Gordon equation), the
massM =eux

2dx=eh 1
2ux

2+f1−cossudgjdx is 8.
(3) Finally, for the dynamical equation ofDj, we should

take into consideration that we have only computed the force
on the “left soliton” from the right one. However, there is an
equal and opposite force on the right solitary wave and hence
we should use a factor of 2 when writing the equation for the
acceleration ofDj.

Incorporating all these points in the equation for the sepa-
ration between the solitary waves we obtain that Manton’s
formulation yields in general

D̈j = −
2

M

dP

dt
, s4d

where the overdot denotes the temporal derivative. For the
specific case of sine-Gordon kink-antikink attractive interac-
tion (the kink-kink interaction is repulsive), Eq. (4) yields

D̈j=−8 exps−Djd. This result has been numerically tested to
be very accurate(however, the numerics are not shown in
this case for the sake of brevity).

SOLITON INTERACTION IN THE KdV EQUATION

Another interesting example that illustrates some addi-
tional subtleties of the Manton approach concerns the soli-
tary wave interactions in the KdV equation(most often as-
sociated with water waves[3,4]). Following the same path as
above, the definition of momentum in this case is given by
P=eu2dx; hence we computedP/dt. Given the form of the
KdV equation(in the traveling wave frame with velocityC),

ut = − uxxx− 6uux + Cux, s5d

we find thatdP/dt=2ea
buutdx=f4u3−2uuxx+ux

2+Cu2ga
b. For

a two-soliton decompositionu=us1d+us2d and neglecting(ex-
ponentially smaller) higher order terms, we obtain the ex-
pression

dP

dt
< 2ux

s1dux
s2d − 2sus1duxx

s2d + us2duxx
s1dd + 2Cus1dus2d. s6d

Finally, for the solitonu=sC/2dsech2sÎCx/2d, the expression
of Eq. (6) is evaluated as

dP

dt
= − 16C3 exps− ÎCDjd. s7d

Using the expression of Eq.(4), we would be immediately
inclined to write(with the soliton masseu dx=2ÎC)

D̈j = 16C5/2 exps− ÎCDjd. s8d

However, we argue that when following Manton’s formal-
ism, one should respect Ehrenfest’s theorem[21]. In particu-
lar, in the case of the KdV equation, it is true that

d2

dt2
E xu dx= 3

dP

dt
. s9d

The left-hand side indeed evaluates toMD̈j here(as well as
for the sine-Gordon case); however, the right hand side
should be multiplied by a factor of 3. Hence, the resulting
dynamical equation for the evolution of the soliton displace-
ment should read

D̈j = 48C5/2 exps− ÎCDjd. s10d

Notice that a similar calculation from a slightly different per-
spective is given in[22]. A numerical example of the dynam-
ics of KdV solitons is shown in Fig. 1.

FIG. 1. (Color online) The (repulsive) two-soliton interaction in
the KdV equation: the top panel shows their separation(numerically
measured via a local center of mass approach weighted on the den-
sity) as a function of time. The solid line shows the numerical
result, while the dashed one indicates the result of integrating Eq.
(10). The small jumps are due to the discretization used to emulate
the continuum equation. The two solitons are initialized at a dis-
tance ofDj=9. The bottom panel shows the space-timesx-td con-
tour plot of the fieldu.
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STANDING WAVE INTERACTION IN THE NLS
EQUATION

In the case of the NLS equation(a model relevant pre-
dominantly to nonlinear optics[5] and plasma physics, but
more recently to atomic physics as well[2]), the role of the
mass is played by the squaredL2 norm; hence mass and
momentum are defined as follows:

M =E uuu2dx, P =
i

2
E suux

! − u!uxddx, s11d

and for the dynamical equation

iut = −
1

2
uxx − uuu2u. s12d

We can then compute similarly as above(up to higher order
exponentially smaller terms)

dP

dt
=

1

4
fuuxx

! + uxxu
! − 2uuxu2ga

b. s13d

We again use the standard two-soliton decomposition
u=us1d+us2d where us1d=h sechshxdexpsih2t /2d, us2d

=h sechfhsx−Djdgexpsih2t /2dexpsifd are the standing
waves, and the relative phasef between them has been in-
corporated inu2. Then, one obtains

dP

dt
= 8h4 exps− hDjd, s14d

which results in the dynamical equation for the separation
[using Eq.(4)] of the form

D̈j = − 8h3 exps− hDjdcosf. s15d

This equation is identical to the one obtained in[23] through
variational and perturbation techniques[cf. Eq. (5) of [23]].
We have also examined numerically the validity of the re-
sults. A typical computation is summarized in Fig. 2. Notice
that in the case of solitons in phase, the interaction is attrac-
tive, while it is repulsive when the solitons arespd out of
phase. This is also observed in the numerical experiments.

BREATHER INTERACTION IN THE SINE-GORDON
EQUATION

In the above examples we established cases where the
interaction between the solitary waves was previously known
and used them to analyze some of the key technical points of
the Manton approach. We now turn to an example that, to the
best of our knowledge, has not been treated analytically be-
fore and which concerns, in particular, the breather-breather
interaction in the sine-Gordon equation. Such solutions of
Eq. (1) are given by the form

u = 4 arctanFÎ1 − v2

v
sinsvtdsechsÎ1 − v2xdG , s16d

wherev is the breather frequency. A fundamental difference
in this case is that the solutions are genuinely time depen-

dent. However, the Manton formulation can still be carried
through with the corresponding momentum derivative evalu-
ated as

dP

dt
= f− ut

s1dut
s2d − ux

s1dux
s2d + suxx

s1d − utt
s1ddus2dga

b. s17d

As a result of the decompositionu=us1d+us2d and the asymp-
totics us1d<8Î1−v2 sinsvtdexps−Î1−v2xd /v and us2d

<8Î1−v2 sinsvtdexps−Î1−v2sx−Djdd /v, we get

dP

dt
=

64s1 − v2d2

v2 S1 −
1

1 − v2 coss2vtdD
3 exps− Î1 − v2Djd. s18d

From this calculation, we infer that while the potential
of interaction between two sine-Gordon breathers is
nonautonomous, it has a well defined attractive(when the
breathers are in phase) average of V=−s64/v2ds1
−v2d3/2 exps−Î1−v2Djd. Moreover, using Eq.(4) and the
breather massM =16Î1−v2, we infer the dynamical equa-
tion governing the inter-breather separation as

D̈j = −
8s1 − v2d3/2

v2 S1 −
1

1 − v2 coss2vtdD
3 exps− Î1 − v2Djd. s19d

A numerical experiment illustrating the comparison of Eq.
(19) with the PDE result is shown in Fig. 3.

CONCLUSIONS

We reconsidered the topic of solitary wave interactions
for exponentially localized solutions(even though that is not
absolutely necessary; however, it is typically the case) of
translationally invariant, nonlinear dispersive wave equa-

FIG. 2. (Color online) Same as in Fig. 1, but for the(in-phase)
standing waves of the NLS equation. The latter were initialized at a
distance of 6. The bottom panel shows the space-time contour plots
of the square modulus of the wave functionu exhibiting attractive
interaction.
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tions. We showed how to systematically exploit the momen-
tum integral to find the force exerted on one of the waves by
the other and how to establish the dynamical equation of
motion of the inter-soliton distance, using the mass integral
and Ehrenfest’s theorem[note that due to the structure of the

energy-momentum tensor for Lorentz invariant equations,
the analog of such a theorem in the latter case is given by
sd/dtdexE dx=P, whereE is the energy density]. We dem-
onstrated the use of the approach in a number of well-
established situations, including the kink interaction in the
sine-Gordon equation, the soliton interaction in the
Korteweg–de Vries equation, and the standing wave dynam-
ics in the nonlinear Schrödinger equation. The method was
also applied to obtain an analytical expression for the
breather-breather interaction in the sine-Gordon model.

The approach has a number of limitations: for instance it
cannot be directly applied in the presence of spatially depen-
dent potentials. Similarly, it cannot be readily implemented
in cases where Ehrenfest’s theorem(or Lorentz invariance)
cannot be established. A prominent example is, for instance,
the modified Korteweg–de Vries equation wherein
sd/dtdexu dx=2eu3dx, whereas the momentum is given by
eu2dx. It is also of interest to generalize the approach to
multiple dimensions in the spirit of Ref.[12]. Finally, an
alternative method to compute the interaction energy of soli-
tary waves is through direct energy arguments: in particular,
if the corresponding soliton lattice solution exists, one can
compute the energy of such a solution, inside a period. The
leading term will then be the energy of a single soliton, while
the corrections will correspond to the soliton interaction en-
ergy. It would be interesting to compare/validate the results
of such a method with those of Manton’s formalism. These
topics will be deferred to future publications.
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FIG. 3. (Color online) Same as in Fig. 1, but for the(attractive)
interaction of in-phase breathers of the sine-Gordon equation. The
breathers are initialized at a distance of<16.45. The dashed line is
the theoretical prediction of Eq.(19). The small jumps in the nu-
merical result are an artifact of the discretization used to approxi-
mate the continuum equation. However, it can be clearly seen that
the theoretical prediction follows well the full numerical evolution
at least for timest,35, where the breathers are sufficiently well
separated(see bottom panel) that the interaction has not changed
their profile significantly(and for which they maintain their indi-
vidual character).
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