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Estimation of the density of states by multicanonical molecular dynamics simulation
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We formulate a procedure for calculating the density of stéES) from a multicanonical molecular
dynamics(MMD) simulation. DOS cannot be obtained directly from the result of MMD simulation, because
the Gaussian thermostat that is used in MMD simulation restricts the system to a spherical surface in momen-
tum space. We perform MMD simulation for liquid Ar with Lennard-Jones potentials and evaluate DOS. Some
physical quantities are estimated as a function of temperature from that DOS. The internal energy, entropy, and
Helmholtz free energy are in good agreement with experiment. The quantity related to the fluctuation—the
specific heat at constant volume—does not agree with experiment, which is ascribed to insufficient accuracy of
DOS.
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I. INTRODUCTION nonical method has been applied in many areas, particularly

The canonical molecular dynami¢MD) simulation has [0 the biomolecule system@ee Ref.[15] and references
been a powerful tool for molecular simulations. The MD therein. Berg and Neuhaus proposed the multicanonical al-
simulation has been applied to many systems to investigat@orithm and they implemented that algorithm in Monte Carlo
the thermodynamic equilibrium state. But physically interest-Simulation[12]. Nakajimaet al.implemented it in MD simu-
ing systems generally have considerable freedom whickation[14]. In their work, MD simulation is performed by the
causes the minimum rich structure in the potential energganonical MD simulation with a modified Hamiltonian. Also
surface. That potential energy structure makes it difficult fornote that the Gaussian thermosfal—23 is more suitable
the system to access the entire phase space during the avdhan the Nosé-Hoover thermostat in performing the multica-
able simulation time. Thus it is difficult to investigate phasenonical MD(MMD) simulation. However, the Gaussian ther-
transitions, folding of protein, and chemical reactions bymostat restricts the time development of momentum, which
computer simulation. In order to overcome this drawback ofmnakes it impossible to obtain DOS directly from the simula-
the conventional canonical MD and Monte Carlo simulation,tion result. In this paper, we formulate how to estimate DOS
many new simulation techniques have been proposed in rérom the MMD simulation result. DOS is calculated for lig-
cent years[1-14. These include the simulated annealinguid Ar with the Lennard-Jones potential. The accuracy of the
method[1], the histogram methofR,3], the umbrella sam- estimated DOS is verified by calculating the internal energy,
pling method[4], the simulated tempering meth@®,6], the  specific heat at constant volume, Helmholtz free energy, and
entropic sampling methof¥], the 1 k-sampling method8],  entropy as a function of temperature. Section Il is devoted to
the replica exchange methd®,10, Tsallis statistics[11],  the formulation of how to estimate DOS from the MMD
and the multicanonical methdd2-14. Among these meth- simulation result. In Sec. Ill, the model used in this paper is
ods, the simulated tempering, entropic samplingdescribed. The simulation results and discussions are pre-
1/k-sampling, and multicanonical methods enable the systeraented in Sec. IV.
to have access over a wide area of phase space during a
simulation time by considering a nonphysical ensemble. The
aim of these methods is to obtain the density of std&3S) Il. THEORY
or integrated DOS. It has been shown in Ré&b] that those . . . .
four methods are related to each other. Although umbrell In Sec. Il A, the MMD algorlthm is explained briefly. In
sampling, the replica exchange method, and Tsallis statistic ec. 1B, by assuming the funct_|0nal fqrm .Of the H_ar_n_ll-
also consider a nonphysical ensemble to widen the accessib[fsn'an and the .klnetlc energy, the Integration in the definition
area of phase space, these methods are not intended to p _DOS is part|_ally carried out. And in S_ec. ”.C we formu-
duce either DOS or integrated DOS. Recently, Wang an te how to estimate DOS from MMD simulation.

Landau proposed a new sampling method to enable a run-
ning estimate of DO$DOS is concurrently estimated during
Monte Carlo simulatiopand to refine the accuracy of DOS.
[16,17 This improvement has been applied to the Potts The multicanonical algorithm was originally applied to
model, the spin glass model, Lennard-Jones fluid, and ththe MD method by Nakajimat al. [14]. A brief explanation
Ising model[18—20. DOS plays an important role in statis- of the MMD method is given here. Suppose a system con-
tical physics in the estimation of entropy and free energytainsN identical particles. We may write the Hamiltonian of
Therefore, the simulation methods that enable the calculatiofhe system with a set of coordinates(ry,r,, ...,ry) and

of DOS are considered to be useful tools to investigate phas@omentap=(py,pz, ... ,pn) @sH(r,p). In MMD simulation,
transitions and other interesting phenomena. The multicathe probability density is supposed to be

A. Multicanonical molecular dynamics simulation
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p(r,p) < exd - Wr,p)], @ P(E) = n(E) exp(_g) 20

whereW(r,p) depends om andp only through Hamiltonian kg7,

H(r,p). In this ensemble, the probability distribution of en- The prefix “multi-" signifies that the MMD simulation en-

ergy is written as ables us to obtain probability distributions at any tempera-
ture.

1
P(E) = Z,J S(H(r,p) = E)p(r,p)dl’, 2 B. Density of states
The definition of DOS is

1
=ZN(E) exd-W(E)], 3) n(E) = f S(H(r,p) — E)dT, (11)

where Z is the partition functionn(E) is the DOS, and the where the integral is carried out over the entire phase space.
integral is carried out over the entire phase spac®(H) is  Suppose the Hamiltonian is separable into the kinetic energy

constant, and potential energy as

P(E) = const, (4) H(r,p) =K(p) + U(r), (12
thenW(E)=In n(E) except for the constant term —(E) Z. N
In practical simulations, Eq4) is satisfied within a certain K(p) = > &, (13
energy region. This energy region is determined according to i=1 2m

what one is interested in. The purpose of MMD simulation is

to obtainVV(E) by MD simulations. If we write Eq(3) as wherem is the particle mass anl is the number of par-

ticles. Then Eq(11) can be rewritten as

E) = 1 E H(E) . E-Upnin
PE)= @ el - ) ) =] " [ e - Bk -wdrak
0
it can be regarded as a canonical ensemble for a system with (14)

a modified Hamiltoniarf{ at a given temperatur&. kg in

Eq. (5) is the Boltzmann constant. is just a parameter to E~Upin
mimic the canonical simulation. AlthougH is required be- =f J SU(r)-[E-K(p)])
fore performing the MMD simulation, it is not knowan pri- 0
ori. So we first approximaté{ from the result of conven- X 8(K(p) - K)dT'dK, (15)
tional canonical MD simulation of the original system. DOS
is approximately obtained as whereU,, is the minimum value ofJ(r). By carrying out
the integration over momentum space, one obtains
n(E) = ZP(E) exp<£> (6) E
keT/' n(E) = Sy f (E - U)CN2R{(U)du, (16)
Taking the logarithm of Eq(6), H(E) is approximately ob- Umin
tained as
f(U) = | 8U(r) - U)dr3V, 17
H(E)=E+kgTIn P(E), (7) W) J (- 17

where the term IZ is neglected because it is independent ofwhere Sy=(2mm)3V2/T'(3N/2), U=E-K, and I'(x) is the
E. By performing the canonical MD simulation on the modi- Gamma function. In Eq.17), i(U) is the partial DOS, which
fied system, we obtain the energy probability distribution,is calculated by the integration over conformational space.
P(E). If P(E) does not satisfy Eq4) during the specified

. . C. DOS estimation from MMD simulation
energy region(E) is renewed as

As described in Ref.14], we adopt the Gaussian thermo-
HnewE) = Hoid(E) + kgT In P(E) (8)  stat[21-23 to keep the temperature constant in performing
the MMD simulation. The kinetic energy(p) is fixed at the
specific valueKy=[(3N—-1)/2]kgT, during the simulation. It
has been shown in R€i23] that the probability density of a
Gaussian thermostat becomes

and another canonical MD simulation is performed. This
procedure is iterated until Eg4) is satisfied over the speci-
fied energy region. DOS is evaluated BE) as

wo) g,

H(E)
NE=ZPE e T ) © p(r.p) = 8(K(p) - Ko) ex;;(— o

Once DOS is obtained, the canonical distribution at any temwhere the Hamiltonian is assumed to be separable into ki-
perature7 is generated by the reweighting technique as  netic energyK(p) and potential energy(r). The modified
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Hamiltonian, H(E), is also assumed to be a sum of kinetic Ill. MODEL AND METHODS

energy and potential energy such as We perform MMD simulation for liquid Ar with the

H(r,p) = K(p) + ®(r) =K(p) + U(r) + kg T In P(U). Lennard-Jones potential,
(19 NN o \12 o\
u(r) = 4 - , 26
Because of the restriction on the kinetic energy, the addi- ® zg ¢ (|ri —rj|> (|ri —rj|> (26

tional term in the Hamiltonian, the third term of H4.9), can )
be regarded as a modification of the potential energy. Thu¢here N=500 and the potential parameters asékg
the probability distribution in MMD simulation becomes ~ =120 K ando=3.4 A [24]. All particles are arranged in a
cubic box to which the periodic boundary condition is ap-
d(r) plied. The density is set to 1.33 g/énAs pointed out in
p(r.p) = 8(K(p) = Ko) exp(— kBTO). (200 gec. i C, the Gaussian thermosfail—23 is used for tem-

N o ] perature control. The integration of the equation of motion is
The energy probability distributior?(E), becomes equiva- performed by the velocity Verlef25] method with a time

lent to the probability distribution of potential energy(U). step 8t=0.1 fs. Although thisét is very short, by choosing

P(U) is obtained by substituting Eq20) into Eq.(2) and  this value, temperature is kept constant within the accuracy

carrying out the integration over the momentum space as-10°° K. In performing the MMD simulation, the force on

follows: each particle is modified according to the modification of the
D(U) potential energy, such that

PU) = 7113 ex%— kT, )'ﬁ(U), (21)
B

F = (1 + kBTiIn P(U))[— Viu()]. (27
where®(U) denotesb(r) atr=rqin which U(ry)=U, and 2 du
is determined by the normalization #{U). The condition of  According to the logarithmic derivative d?(U), the multi-

Eq. (4) is changed as plier enhances or suppresses the force. As pointed out in Ref.
[14], this multiplier is uncongenial to the temperature fluc-

P(U) = const, (22 tyation in the Nosé-Hoover thermostat. Too large a multiplier
and the procedure of MMD simulation is also changed adends to corrupt the simulation, because it is equivalent to
follows. increasing the time step. In order to avoid this kind of cor-

(i) Performing canonical MD simulation for the system of Fuption, we recommend adoption of a shétt In Eq. (27),
potential energyb(U) [at first ime®(U)=U]. the logarithmic derivative ofP(U) is requwed. in calculgtmg _
(i) Renewing®(U) as the force. Many other researchers have estimated this deriva-
tive by fitting the energy histogram to a polynomiallinand
DenU) =D y(U) + kg T In P(U), (23)  differentiating it. The fitting is performed over a selected

energy region. However, when we perform the MMD simu-
lation, we cannot neglect the possibility of an energy state
appearing which is outside that selected energy region. Such
a situation frequently occurs because the MMD simulation
() enhances the system to access an energy state that is outside
L) (24) the accessible area during the previous simulation. In this
keT paper, we use the same method described in [R6f. P(U)
Even if Eq.(22) is satisfiedn(E) is not obtained yet. The is approximated by a Lorenzian sum as follows:
Gaussian thermostat restricts the accessible momentum ny
space to a spherical surface »f p?/2m)=[(3N-1)/2]kgTo. _1 1 1
. | o= ) 21K P(U) = =2 h(U,) 5 (28)
Hence in order to get(E) from the MMD simulation,n(U) Mo U,-uU
should be substituted into E¢16) and integration carried 1 +< o )
out with U. Then we get the DOS as

and go back tai) until Eq. (22) is satisfied over the specified
energy region.
(iii) Evaluatingn(U) by

n) = ZP(U) ex;{

. where h(U,) is the energy histogram sampled df=U,
_ aN/2)-1 ®(U) +néU, rangingn=0,1, ... ny andM==,h(U,)8U. Then the
n(E) = CNJ (E-U)* eXp(:)dU’ (25 analytical functional form ofl?/dU can be obtained by dif-
ferentiating Eq(28). In Eq. (28), o is an adjustable param-
where Cy=SP(U)Z. When Eq.(22) is satisfied over the eter, which is set to be-=8U in this present work. To be
specified energy region, the value BfU) is approximately strict, the normalization factor & in Eq. (28) must be
1/AU, where AU is the width of the energy regiomU  1/[(w/2)-6,], with tanfy=(Unin—Un/o as Uy, is the
depends on how many MMD iterations are performed, but itminimum of potential energy. In this workd, is approxi-
is independent of both the kinetic energy and the potentiamated to -w/2, because we assume that the accessible range
energy.Z is also independent df because the dependence of potential energy is sufficiently larger thdsh,;,. In Refs.
of N(U) on U is completely described bp(U). Therefore, [18-2Q, the energy states that are outside the specified en-
both P(U) and Z can be taken out of the integral. ergy region are rejected in order to refine the efficiency of

Unin
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FIG. 1. The probability distribution of potential energy obtained

by the conventional canonical MD simulation Bt 140 K and the Q
MMD simulation atT=140 K (solid line), 120 K (dashed ling and El
100 K (broken ling after 16 MMD iterations. £l
. . L. ) 0.02 4
simulation and the accuracy of DOS. It is impossible to re- I 0.00

ject any state that appears during the MD simulation because 00806 04y

all states are the solution of the equation of motion. If we 10 4)'9 _0'8 _0'7 _0'6 0'5 _0'4 _0'3 o2

have enough information about the phase space or conforma- S T EBRy

tional space for the system under consideration, it is possible

to suppress the appearance of the energy state outside theFIG. 3. (a) DOS estimated from the MMD simulation results at
specified energy region by controlling the multiplier on the T=140 K (solid ling), 120 K (dashed ling and 100 K (broken
force. However, in general, we do not know details of thelin), respectively. The lower paneb) is obtained from the upper
system. We cannot eliminate the possibility that the stateBanel(® by slidingT=120 K and 100 K lines in the vertical direc-
corresponding to the specified energy region are scattered [N The inset shows the difference in DOS between 140 and
the whole phase space and energy barriers higher than tg0 K(solid line), 140 and 100 Kdashed ling and 120 and 100 K
maximum energy of the specified energy region lie betweet2/°ken ine. d'is estimated by Eq(29) by replacingn(U) with

them. Thus care must be taken to suppress the energy regionr{!z)'

In the present work, we neither control the multiplier on a5 are below the critical temperature of Ag~ 150 K.

force nor restrict the energy region. The density(1.33 g/cmd) is chosen to obtain the liquid state.
For each temperature, we first perform the conventional ca-
IV. RESULTS AND DISCUSSIONS nonical MD simulation with 4 million steps to prepare initial

n(U). After that, we iterate the MMD simulation 14 times

We perform the MMD simulation at three different tem- with 4 million steps each and in the last two iterations
peraturegT=100 K, 120 K, and 140 KK All three tempera- 20 million steps each. Consequently, we perform 16 MMD
iterations for each temperature. After 16 MMD iterations at
T=140 K, the energy region covered B(U) includes all
the energy states that appear in the conventional canonical
MD simulation atT=100 K. The energy region covered by
P(U) at T=100 and 120 K also includes the energy states
that appear in the conventional canonical MD simulation at

oot

st .- — 1 T=100, 120, and 140 K. We expect these MMD results to

ST /_,.,-—-—’;_’1'0" 1 reproduce the canonical distribution within the temperature

T / 0.05 \\\ | range 100-140 K. The equilibration of each simulation is

P § 000 [ ~7%] | checked by the velocity autocorrelation function. Figure 1
g -0.05 Wy shows the probability distribution off from the conven-
-0.10 . tional canonical MD simulation af=140 K and MMD

-1.1 -1.0 -0.9

. . . simulations after 16 iterations. This figure indicates that
12 11 -1.0 09 038 compared to the conventional canonical MD simulation, the
U [Ry] : : ;
MMD simulation enables the system to access a wide energy

FIG. 2. Infi(U) from the results of 16 MMD iterations fof ~ region during a single simulation. For each temperature,
=140 K (solid line), 120 K (dashed ling and 100 K(broken ling, ~ P(U) acquires a flat structure over the energy region
respectively. The inset shows the difference ifi(d) between 140 —-1.1<U<-0.85 forT=140 K, -1.1<U<-0.9 for 120 K,
and 120 K(solid ling), 140 and 100 K(dashed ling and 120 and and -1.:<U<-0.95 for 100 K. By carrying the MMD it-

100 K (broken ling. The definition ofs is Eq. (29). eration further, we expected that the energy range covered by
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FIG. 4. Temperature dependence@finternal energyE), (b) specific heat at constant volun@g, (c) entropyS, and(d) Helmholtz free
energyF/T. In each figure, the solid line is the MMD simulation result witk 140 K andX is the experimental data from NIS27]. For
(E), C,, andF/T, the result of MMD is equated to the experimenfTat100 K.

the simulation will be increased. While some peak structuregig. 3. As was the case in Fig. 2, no curves are coincident.
are recognized irP(U) for each temperature, they disappear This discrepancy is also ascribed to the omission of the term
with continuing MMD iteration. If the MMD iteration is car- In Cy. By sliding in the vertical direction, any curve can
ried further, an extra force originating from those peaks actsoincide with others as shown in the lower panel of Fig 3. In
on each particle through Eq(19). Figure 2 shows this figure, all three curves coincide very well between the
®(U)/kgT=InT(U). Each of the three curves corresponds toenergy region —0.9E<-0.5 Ry. The error in DOS be-
INT(U) at T=140 K, 120 K, and 100 K, respectively. The tween two different temperatures is also estimated by Eq.
curves are not coincident. But this discrepancy can be igt29) by replacingn(U) with n(E) as 6§<0.002 for (T, T’)
nored because it is ascribed to the omission of the ter& In =(140,120, <0.003 for (140, 100, and <0.006 for (120,

in every iteration process on account of its being independerit00). The denominator is evaluated durifig0.9,-0.4 for

of U. If we vertically slide a curve, any curve coincides with (T,T’)=(140,120 and[-0.9,-0.9 for (140, 100 and (120,
others during the energy range in which the flat are®(@&f) 100). Due to omission of the term I& and InCy, it is im-
overlaps. During that energy range, the difference in(l) possible to estimate the absolute value of DOS from the
between two different temperaturéaandT’ is §<0.005 for MMD simulation results. However, they are sufficient to es-
(T,T")=(140,120, <0.003 for(140, 100, and <0.004 for timate the relative value of DOS for any different energy
(120, 100Q. & is estimated by states over that energy region. By expressing the true DOS as

N(E), the present DOS)(E), can be expressed as
|n F]T(U) - |nﬁTr(U)
6= —— — -1, (29)
(INN(V) = Infip,(U)) N(E) = ¢n(E), (30

where the denominator of the first term is the average over . . "
the energy range in whicl(U) at T and T’ overlap. Note where { is a constant. The internal energy and the specific

. . i heat at constant volume can be expressed exactlp(By.
tr}athboth edg/is_l?f FﬁI(EU) alre sltralght Imeﬁ" T?'ISN'S bgcause On the other hand, Helmholtz free energy and entropy cannot
0 t.e termU Kgl I q:( 9. It megnst atif Im(U) is a be expressed in terms of uncertaintyZoés follows.
straight line with a gradient X5T during some energy area, (i) Internal energy,
the energy state within that area never appeared during the
MMD simulation. Thus in calculating DOS, both edges of
T(U) must be neglected. The important result of MMD simu-
lation is the difference of Im(U) from that straight line. The B
shape of each curve represents the density of equipotential (E)= - '
states in the conformational space. Althougtu) has many f N(E)e PEdE f n(E)e PEdE
peaks, all three curves of i{U) have a smooth shape. DOS
is evaluated from thes&U) as shown in the upper panel of  (ii) Specific heat at constant volume,

f EN(E)e PEdE f En(E)e PEdE
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~
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—=-kgIn | N(E)e P5dE <
T="ks f () =
8,1
=-kgln J n(E)e PEFdE- kg In ¢. a
2 -
(iv) Entropy, 0
E)-F
S=< ) .
T FIG. 5. The probability distribution of energy(E) for several

In these expressiong=1/ksT. These four quantities are teémperatures which_ are estimated from the result of MMD simu_la-
evaluated as a function of temperature and shown in Fig. Hon atT=_14O K_(solld line) gnd the result of conventional canoni-
by usingn(E) obtained from the result of MMD simulation ¢ MD simulation(broken lin.
at T=140 K. In those figures, the results are compared with
experimental data from NIS[R27]. The temperature range of means of the Gaussian thermostat. That thermostat restricts
Fig. 4 is chosen according to the energy range where Eghe momenta onto a spherical surface bfdmensions with
(22) is satisfied in the MMD simulation af=140 K. The radius\[(3N-1)/2]kgT. The formalism of how to calculate
discrepancy between the MMD result and experimental dat®OS by the MMD simulation is established if the Hamil-
is large below 100 K and over 150 K. The internal energytonian can be expressed as a sum of the kinetic energy and
agrees well with experiment except for the difference in enpotential energy. We estimate DOS and some physical quan-
ergy origin. The entropy and Helmholtz free energy alsotities as a function of temperature for liquid Ar. It is shown
agree with experiment except for the difference in the posithat the calculated DOS is independent of the paranigter
tion of origin and the uncertainty of. In spite of the good and the accuracy of the DOS is sufficient to estimate the
agreement of the internal energy, the specific heat at constastatistically averaged value. The internal energy, entropy, and
volume does not agree with experiment. If the probabilityHelmholtz free energy, which are calculated by the statistical
distribution of energy has a unimodal structure, the internahverage, are in good agreement with experiment. On the
energy is approximated by the peak position of the distribu-other hand, the specific heat at constant volume, which is
tion. On the other hand, the specific heat at constant volumeelated to the fluctuation of energy, is in disagreement with
depends on its variance. It is affected strongly by the shapexperiment. In the MMD simulation, the accuracy of DOS
of the probability distribution, much more than the internalcan be improved by flattening the distribution. The flat dis-
energy. The canonical distribution of energy is shown in Figtribution obtained in our simulation is not very accurate for
5 at some temperatures between 100 K and 150 K. They arstimating the fluctuation. The accuracy of the DOS can be
estimated by multiplyingi(E) and the Boltzmann factgsee checked bys. The independence @{U) from the parameter
Eqg. (10)] and normalizing it to 1. The shape of the canonicalT indicates the system accesses a sufficiently wide area in
distribution is significantly different from the result of MMD phase space during the simulation. But we did not systemati-
simulation and conventional canonical MD simulation ex-cally check the flatness of the distribution during the simu-
cept for the peak position. The reason for the disagreemertion. In MD simulation, we need to calculate the force.
of C, cannot be recognized in the canonical distribution.Hence the criterion proposed in Ref48-2( is not appli-
However, it must be ascribed to the inaccuracy of DOS. cable. In order to refine the accuracy of the DOS in the

In summary, the original MMD simulation proposed by MMD method, some criterion including how to estimate
Nakajima et al. [14] is not enough to calculate DOS by force is required.
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