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We studied solid-liquid slip by a mean-field free-energy lattice Boltzmann approach recently proposed
[Phys. Rev. E69, 032602(2004)]. With a general bounce-back no-slip boundary condition applied to the
interface, liquid slip was observed because of the specific solid-fluid interactions. Our work relates interfacial
slip to a more realistic solid-fluid interaction and hence contact angle. The kinetic nature of LBM is manifested
in this interfacial study. A small negative slip length can also be produced with a stronger solid-fluid attraction.
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In fluid mechanics, the no-slip boundary condition(BC)
between a fluid and a solid surface has traditionally been an
assumption in solving the governing Navier-Stokes(NS)
equations[1]. Despite macroscopic experimental supports, it
still remains an assumption without physical principles. In
fact, studies on fluid slip has long been an interesting subject
since the pioneering work by Navier[2] and Maxwell [3].
Recent measurements, however, indicate significant slip on
solid surfaces[4–8]. Due to the difficulties in direct micro-
scopic observation near the solid-fluid interface, molecular
dynamics(MD) simulations have been widely used to study
the relationship between fluid slip and the properties of fluid
and solid [9–12]. In general, both experimental and MD
simulation results show that there is a strong relationship
between the magnitude of slip and the solid-fluid interaction:
the weaker the interaction, the larger is the contact angle and
hence the slip.

Recently, a mesoscopic approach, the lattice Boltzmann
method(LBM ) has experienced tremendous development in
simulating fluid behaviors[13–16]. In bulk fluid, LBM is in
fact a NS solver; however, at the solid-fluid interface, the
kinetic nature of this method becomes manifest, because
boundary conditions(BC’s) are imposed on particle distribu-
tions rather than directly on fluid quantities such as velocity
[17]. Succi[17] recently applied the LBM to study fluid slip
on solid surfaces by employing a mix of bounce-back and
specular reflection BC’s. On a similar subject, Nieet al. [18]
and Lim et al. [19] performed simulations of microsystems
by relating the LBM relaxation time to the Knudsen number.
According to Ref.[20], slip velocity relates directly to the
relaxation time, and thus different relaxation times would
certainly produce different degrees of slipping. On a theoret-
ical ground, Ansumali and Karlin derived LBM BC’s from
the continuous kinetic theory to study the slip phenomena
[21]. However, such approaches were not related directly to
the solid-fluid interaction, which indeed plays a crucial role
in determining the slipping behavior. Interestingly, we note a
picture from MD simulations[10–12] where macroscopic
slip can occur without any microscopic slip. It was found

that molecules near the solid wall may have no relative slip-
ping movement to the surface, i.e., no molecular slip over the
surface. In the region away from the surface, the velocity
profile matches that predicted from classical fluid mechanics
with slip BC’s and changes rapidly in the wall vicinity, so as
to reach the wall velocity as the distance goes to zero. Based
on these results, we study here liquid slip near a solid-liquid
interface by employing a bounce-back no-slip BC in a LBM.
To incorporate solid-liquid interactions, we employ a mean-
field free-energy LBM model recently proposed as it has
been shown to represent a more realistic solid-fluid interac-
tion [22].

According to the mean-field version of van der Waals’
theory, the total free-energy function for a fluid system can
be expressed as[23–27]

F =E drHc„rsr d… + rsr dVsr d

+
1

2
rsr d E dr 8f f fsr 8 − r dfrsr 8d − rsr dgJ , s1d

where csrd is a local free energy with respect to the bulk
phase of densityr. The second term represents contribution
of external potential energyVsr d to the free-energyF. The
third term is a nonlocal term taking into account the free-
energy cost of variations in density;f f fsr 8−r d is the interac-
tion potential between two fluid particles locating atr 8 andr .
These integrations are taken over the entire space. With this
expression of free energy, we define[22] a nonlocal pressure
as

Psr d = rsr dc8„rsr d… − c„rsr d…

+
1

2
rsr d E dr 8f f fsr 8 − r dfrsr 8d − rsr dg. s2d

For a bulk fluid with uniform density, the nonlocal integral
term disappears and Eq.(2) reverts to the equation of state of
the fluid.

Here, we describe the implementation of these results into
a LBM algorithm. In general, after discretization in time and
space, the lattice Boltzmann equation(LBE) with BGK col-
lision term can be written as
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f isx + ei, t + 1d − f isx,td = −
1

t
ff isx,td − f i

eqsx,tdg, s3d

where the distribution functionf isx ,td denotes particle popu-
lation moving in the direction ofei at a lattice sitex and at a
time stept; t is the relaxation time, andf i

eqsx ,td is a pre-
scribed equilibrium distribution function of the local fluid
densityr and velocityu given byr=oi f i andru=oi f iei [28].
However, if an external forceFsx ,td exists, we can modify
the above relation to reflect the momentum change asru
=oi f iei +tF and employ theu produced here to calculate the
equilibrium distribution functionf i

eq [22]. Redefining the
fluid momentumrv to be an average of the momentum be-
fore collisionoi f iei and that after collision and following the
Chapman-Enskog procedure, a NS equation with the equa-
tion of state

P =
c2s1 − d0d

D
r + F s4d

can be obtained, whereF is the potential energy field related
to F by Fsx ,td=−=Fsx ,td. In order to obtain the NS equa-
tion with a pressure term similar to that given by Eq.(2), we
set an artificialF as follows:

Fsx,td = rsxdc8„rsxd… − c„rsxd… −
c2s1 − d0d

D
rsxd

+
1

2
rsxd E dx8f f fsx8 − xdfrsx8d − rsxdg. s5d

The above equations set up a complete LBM scheme with
the mean-field free-energy function implemented. Unlike
some other mean-field LBM approaches[29–31], the nonlo-
cal free-energy term here is expressed as an integration
rather than a density gradient through a square-gradient ap-
proximation; such a square-gradient approach is inadequate
for the description of solid-fluid interfaces. The integration
term employed here is more general and can be reduced to
that of the square-gradient approximation when the local
density varies slowly[23,24].

Following Refs.[22,31], we adopt a van der Waals fluid
model to express the free-energy of bulk fluid as

csrd = rkT ln
r

1 − br
− ar2, s6d

where a and b are the van der Waals constants,k is the
Boltzmann constant, andT is the absolute temperature. In a
lattice grid, the interaction potentialf f f can be reduced to a
single numberK [28],

f f fsx8 − xd = HK, ux8 − xu = 1

0, ux8 − xu Þ 1
J , s7d

which measures the interaction strength among the nearest
neighboring particles. Thus the nonlocal integral term can be
replaced by a summation over the neighbors of a sitex. The
solid-fluid interaction is modeled as an exponentially decay-
ing attractive force[23],

Fwsxd = rsxdKwe−h/a, s8d

where Kw is the interaction strength,h is a distance from
point x to the solid surface in lattice units, anda is a param-
eter controlling the decaying behavior. In our simulations,
we selecteda=9/49,b=2/21, andkT=0.55. A 403100
D2Q7 lattice domain for the slip simulations and a 128
3256 D2Q7 domain for the contact angle simulations were
employed with a relaxation timet=1. The BC’s applied to
the top and bottom layer nodes are the general mid-grid
bounce-back BC to simulate no-slip solid-fluid interfaces;
periodic BC’s were applied to the other two sides[14]. The
fluid density in the slip simulations was set to be that of the
liquid phase at equilibriumsrbulk=4.895d.

Typical density and velocity profiles of pressure-driven
Poiseuille flows are displayed in Fig. 1. The filled circles are
simulation results from our mean-field LBM scheme with
Kw=0; for comparison purposes, we also illustrate the results
from our mean-field model in the limit of a standard no-slip
Poiseuille flow(i.e., F=0) as open circles. All other param-
eters in these two simulations remain the same. Because of
symmetry, only half of the profiles are shown. As the wall is
located atx=0.5, the right boundary(at x=19.5) corresponds
to the channel center line. Unlike the constant density distri-
bution (open circles) from the general LBM, there is a dry
(low-density) layer between the bulk liquid and the wall(at
x=0.5) from our mean-field model(filled circles). Such a dry
layer reflects the specific solid-fluid interactions in the vicin-
ity of the wall. This result is similar to those obtained from
thermodynamics[25] and observed in MD simulations[32].
However, because short-range interactions are neglected in
this approximation, the density profile shows no oscillatory

FIG. 1. (a) Density and(b) velocity profiles (half) calculated
from a mean-field LBM(filled circles) and that in the limit of a
standard no-slip Poiseuille flow(open circles). Solid lines in(b) are
parabolic fittings using only the data points(for xù10) away from
the solid wall; the solid wall is represented by a dashed line atx
=0.5.
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behavior near the wall as found from other MD studies
[23,25].

In Fig. 1(b), the fluid velocity at the solid-fluid interface
(at x=0.5) is not directly available. Extrapolating the veloc-
ity data to this interface position results in a more or less zero
velocity for both the mean-field LBM simulations and that in
the limit of a standard no-slip Poiseuille flow. This demon-
strates that the no-slip BC is satisfied and there is no micro-
scopic slip at the solid-fluid interface. Thus the slip phenom-
enon discussed below does not appear to be a numerical
artifact described elsewhere[20,33,34]. Comparing the two
velocity profiles in Fig. 1(b), we found that the velocity from
the mean-field LBM(solid circles) increases much faster in
the dry layers1øxø6d; in the inner region(for xù7), how-
ever, the variation of the two velocity profiles becomes simi-
lar. Through a parabolic fitting for the data points(for x
ù10) in Fig. 1(b), we found that the velocity data from a
general LBM follow the curve exactly; whereas, those from
the mean-field LBM show good agreement only forxù6
where the density is approximately constant. Extrapolating
these fitted profiles to zero velocity yields a slip lengthd, i.e.,
the distance between this zero velocity point and the wall;d
is positive if this zero-velocity point is outside the channel
and negative if inside[10]. The slip lengths found in this
specific example are 2.78 and 0 for the mean-field and gen-
eral LBM, respectively. Overall, the velocity profile from the
mean-field LBM model employed here is qualitatively simi-
lar to those obtained from MD simulations[10,11].

As a matter of fact, experimental and MD studies have
shown that slip usually occurs on a hydrophobic surface. The
origin of wettability and contact angle phenomena is, of
course, from intermolecular interactions: the weaker the
solid-fluid interaction, the more hydrophobic is the surface
and hence the larger is the contact angle. For example, the
choice ofKw=0 in Fig. 1 should represent a low-energy(hy-
drophobic) surface. In Fig. 2, we plotted the contact angleu
and slip lengthd values against the solid-fluid interaction

strengthKw with a=Î3/2. The contact angle is found to be
nearly a linear function ofKw betweenu=0 and 180° and is
in agreement with those from other studies[32,35]. We point
out that, unlike other multiphase LBM models, a contact
angle value between 0 and 180° can be generated here with-
out using a less realistic repulsive solid-fluid interaction.
This is also consistent with physical reality and those ob-
served in MD simulations[32].

In Fig. 2, as solid-fluid interaction increases, the slip
length decreases quickly and becomes negative when
Kw.0.06. Beyond this value, the decrease in slip length be-
comes slower. Similar negative and small slip lengths had
also been observed in MD simulations[10]. In fact, a posi-
tive slip length will produce a larger flow rate and can be
considered as a wider channel[cf. Fig. 1(b)]; a negative slip
length implies a smaller flow rate which corresponds to a
narrower channel. The latter case appears to be possible
when the solid-fluid interaction(adhesion) is very strong and
molecules near the solid wall would have less mobility; the
wall can then be thought of having an extra covered layer,
resulting in a narrower channel. Focusing on the contact
angle and slip length behaviors, we see that they follow simi-
lar decreasing trends as the solid-fluid attraction increases.

Another interesting factor that may influence the apparent
slip length is the decaying behavior of the solid-fluid inter-
action in Eq.(8). Thus we plot in Fig. 3 the contact angle and
slip length versus the variation ofa, wherea=nÎ3/2 for n
=0.25−2.75. In this result, asa changes, the interaction
strengthKw was adjusted to maintain the same value ofFw/r
at x=1; i.e., the first-layer fluid particles are set to experience
the same body force from the wall. Asa increases, the at-
tractive forceFw in Eq. (8) will decay more slowly and thus
can attract more fluid particles further away from the wall,
resulting in a smaller contact angle and slip length. The phe-
nomenon is similar to that shown in Fig. 2 and a small nega-

FIG. 2. Variation of(a) contact angleu and(b) slip lengthd with
the solid-fluid interaction strengthKw.

FIG. 3. Variation of(a) contact angleu and(b) slip lengthd with
the solid-fluid interaction decaying factora where a=nÎ3/2 for
n=0.25–2.75.

APPARENT SLIP OVER A SOLID-LIQUID INTERFACE… PHYSICAL REVIEW E 70, 056701(2004)

056701-3



tive slip length is also observed. We have also studied the
effects of the externally applied pressure ond. However,
unlike those from Refs.[12,17], our results suggest that slip
length is independent of the magnitude of the driving force.

In summary, we have studied liquid slip over a solid sur-
face with a no-slip boundary condition through a mean-field
LBM. The resulting slip does not appear to be a numerical
artifact. Our work relates interfacial slip to a more realistic
solid-fluid interaction(and hence contact angle) directly. Re-
sults show that apparent macroscopic slip can occur even
when there is no microscopic slip over the solid-fluid inter-
face; its magnitude relates directly to the interaction strength
between the fluid and solid particles. The results are in quali-

tative agreement with those found from MD simulations.
This study also demonstrates the kinetic nature of LBM
when a more realistic solid-liquid interaction is considered.
Obviously, liquid slip over a solid-fluid interface is a com-
plex phenomenon where its physical principle remains un-
clear. With a better understanding of slip mechanism in the
future, we believe that LBM could become a powerful alter-
native in these studies.
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