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Mie scattering by a uniaxial anisotropic sphere

You-Lin Geng
The Institute of Antenna and Microwaves, Hangzhou Dianzi University, Xiasha, Hangzhou, Zhejiang, China 310018

Xin-Bao Wu
Shanghai Research Institute of Microwave Technology, Wuning Road 423, Shanghai, China 200063

Le-Wei Li
Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore 119260

Bo-Ran Guan
Hangzhou Dianzi University, Xiasha, Hangzhou, Zhejiang, China 310018
(Received 24 April 2004; published 17 November 2p04

The field solution to the electromagnetic scattering of a plane wave by a uniaxial anisotropic sphere is
obtained in terms of a spherical vector wave function expansion form. Using the source-free Maxwell's
equations for uniaxial anisotropic media and making the Fourier transform of the field quantities, the electro-
magnetic fields in the spectral domain in uniaxial anisotropic media are assumed to have a form similar to the
plane wave expanded also in terms of the spherical vector wave functions. Applying the continuous boundary
conditions of electromagnetic fields on the surface between the air region and uniaxial anisotropic sphere, the
coefficients of transmitted fields and the scattered fields in uniaxial anisotropic media can be obtained analyti-
cally in the expansion form of vector wave eigenfunctions. Numerical results for some special cases are
obtained and compared with those of the classical Lorenz-Mie theory and the method of moments accelerated
with the conjugate-gradient fast-Fourier-transform approach. We also present some new numerical results for
the more general uniaxial dielectric material media.
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I. INTRODUCTION [12,13, combined field(surfaceg integral equationCFIE)

Recently, there has been a growing interest in the interadormulation[14], the integral equatiofl5], the coupled di-
tion between electromagnetic waves and anisotropic medi&@ole approximation method16], the expansion of scalar
This is because there are many natural and artificial anisdields [17], and the spectrum-domain Fourier-transform ap-
tropic materials and they have a variety of applications inproach [18-20. In contradistinction to these numerical
optical signal processing, constructing signal processing, opnethods and analytical solutions, we concentrate in this pa-
tical frequency elements and devices, enhancement and rper on the analytical solution to the three-dimensional scat-
duction of radar cross sections of various scatterers, charatering of a plane wave by uniaxial anisotropic sphere.
terization of antenna radomes, optimum design of optical To obtain a solution of vector wave functions in uniaxial
fibers, synthesis of special types of radar absorbers, and fabnisotropic media, we start from the electric field vector
rication of specific substrates for microwave devigidters, wave equation. Taking the Fourier transform of the electric
dividers, and amplifiepsand microstrip antennas. field and substituting it into the vector wave equation, we

One of the basic problems to investigate waves in anisoebtain the characteristic equation. Solving this equation, we
tropic media is to characterize the scattering properties obbtain the eigenvalues and corresponding vector wave eigen-
anisotropic objects. A rigorous solution of scattered fieldsfunctions. Then, we obtain representative electromagnetic
can be obtained using the Lorenz-Mie theory of electromagfields inside and outside the uniaxial anisotropic sphere simi-
netic fields scattered by a homogeneous isotropic dielectritarly in terms of their respective spherical vector wave eigen-
spherg[1,2], originated by Lorenz in 1890 and Mie in 1908. functions with their scattering coefficients as unknowns
The Lorenz-Mie solution can be easily extended to treat raf1-5] with the expansion of the plane wave factors in terms
dially inhomogeneous isotropic spheli@s-5]. Scattering by  of spherical vector wave functions in an isotropic medium
homogeneous anisotropic objects has attracted a great deal[@fl]. Application of the continuous boundary conditions of
interest in recent years—for instan¢®,7]. Numerical meth-  the tangential electric and magnetic field components on the
ods have been employed to analyze this problem based amiaxial anisotropic spherical surface leads to the scattering
integral equation$8,9], differential equationg10], and the  unknown coefficients determined analytically where or-
analytical method using vector wave eigenfunctions expanthogonality relations of the Legendre polynomials are em-
sions[11]. Although the efforts were primarily spent in the ployed. Numerical results are obtained to gain more physical
past on two-dimensiongRD) geometries, some progressesinsight into this problem. After the results were validated by
have been made in the analysis of three-dimensi@®@) comparison with the existing data, some new results are
anisotropic scatterers using the method of momé@w#®M)  computed and discussed.
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a (5)
with
v a; = w e, (6a)
Region 1(uniaxial medium) a, = ey, (6b)
X Region O(Free space) 0= iy, (60)
FIG. 1. Geometry for electromagnetic scattering of a plane wavd-etting the E(k) have nontrivial solutions, we find that the
by an uniaxial anisotropic sphere. following characteristic equation is satisfied:
In the subsequent analysis, a time dependence of the form Def{K (k)] =0. (7)

exp(-iwt) is assumed for the electromagnetic field quantitiesn explicit form, the characteristic equation is rewritten as
but is suppressed throughout the treatment.

A6k, pK* = B(b, p)k* +C=0, 8
Il. FORMULATION OF THE SCATTERING PROBLEM where
Assume that a homogeneous, uniaxial anisotropic sphere A6, ) = a, cos 6+ uay sin® 6,
of radiusa is center located in the free space and is shown in + (ay + pay)sir? 6, co2 b, (9a)

Fig. 1 in the spherical coordinates. The permittivity and per-

meability tensors are characterized by the two matrices 2 )
B(6k, ) = (85 + uayay)Sir? 6 + 2a;8, oS 6,  (9b)

(e, 0 0
€= (kX +§9)+e22=]0 ¢ O |, (18 C=afa,, (90)
10 0 ¢ with
4 0 0 K=K+ I + k2, (109
w= (X +99) + p,22=1 0w O | (1b) 6, = tar *(VIkZ + K2k, (10b)
|10 0 w,
The E-field vector wave equation can be obtained by sub- = tar(ky/ky). (109

stituting the above constitutive relations into the source-free Equation(8) is a biquadratic algebraic equation and has
Maxwell's equationg11,18—-2@—that is, the following four roots ok, (where¢=1, 2, 3, or 4 for the
radial wave vectors:

VX[t V XE(r)]-oe’e E(r)=0. (2)
2= & 11
The solution to Eq(2) can be obtained by the Fourier trans- 137 o2 O+ St 6, (118
form
0 © © ) 2 _ ala'2
E(r)= f dk, f dk, f Ee d,  (3) Ko4™ Gy Si? G+ 02 6, (11

So the corresponding-field eigenvectors can be easily ob-
where the wave number is denoted kykX+ky+kz,  tained[18,20,22 from Eq.(5) and are given, fog=1, 2, 3,
while the space vector is identified Bsxx+yy +zz, with X, and 4, as follows:
¥, Z being the unit vectors of a Cartesian coordinate system.
By substituting Eq.(3) into Eq. (2), the wave equation is Eq = Fafq(0 d) = [Faud O X + Foy (6 4

transformed into + Fe o #1021 o 6 i) (12

where

fx dkxf dkyfc K(K)-E(k)ek"dk,=0,  (4)

e_{ -sin g, g=1,3, (134
where P WP (B)cose, q=2.4,
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. cos, q=1,3, A . _ " (n-m)!
= . 13b k'r: n S~ 7'pm

ay {vvge)(ak)smqs, q=2.4, (130 e EOI (2n+ 1)j(kr) m2=0 (n7 1 oS
L . (n=m)!
0, q=1,3, X PM(cosf)em @4 D) ———
e _ n |
qu {11 q=2,4, (13C) m=1 (n+m)-

with X PM(cos6,)Pr(cos G)e‘im(‘f’“”k)} . (18)

o .. _ Ksing.cosf o _ _
WP () = 55— 20-a' 97 2,4. (14)  After substituting Eq(18) into Eq.(17), we obtain the solu-
kg cos th—2y tion of E(r) for homogeneous uniaxial anisotropic media and
§Xxpress it in terms of the scalar spherical wave functions. In
order to have a compact and explicit solution to the boundary
value problem involving the spherical structures of aniso-
tropic materials, however, it is necessary to introduce the

2 T (2
E(r)=, f f FZ( O 1) Fol O ¢k)eikq-rk§ sin 6,d6,déy, spherical vector wave functions as follojs-5,18-21:
g=1J0 Jo

With those obtained eigenvalues and their associated form
las, theE field in Eq.(3) is then given as follows:

m,
(15) MO = 20 imP”(Cosa)b— dP'(cosé) - o
mn (kn) sin 6 do ¢ '
where (193
Kq=XKq SIN 6} COS gy + YKq SIN G Sin ¢y + 2k, cos b
. ()] Zg)(kr) m imeop 1
andf (6, ¢ denotes the unknown angular spectrum ampli- N, =n(n+ 1)————P(cos0)e™*f + —
d . . . kr kr
tude. Equation15) is also known as the eigen-plane-wave
spectrum representation of the electric field in a homoge- d(rzﬂ)(kr)) dPi(cos®) ~ . Pp(cos6) ~ imd
neous uniaxial anisotropic medium. From E®), it is also A do 0+im— ¢ e,
evident that the integration over the radial wave vector com-
ponent is reduced to a summation of four terms correspond- (19D
ing to the roots of Eq(8), which are the only permissible
Eolutlons. The symmetrlc roots—l.ek,f—kq of k=kq (q o dzﬂ)(kr) . e zﬂ)(kr)
=1, 2—are taken into account automatically é&asspans from Lyn=k) ———Pj(cosf)emf + ——
0 to 7 while ¢ spans from 0 to 2. Physically, we need to d(kr) kr
sum up for only two of the four components—namédyand dPi(cos®)~ . Pp(cos) - | .
ky. X 0+im p— ¢ €M,
It is noted that the unknown angular spectrum amplitude
fo( 6, 1) is periodic with g, and ¢, respectively. So we can (199
use surface harmonics of the first kind of expansion for the
fo(6k, P) as Wherezﬂ)(x) (wherel=1, 2, 3, or 4 denotes an appropriate
kind of spherical Bessel functions—that is, Y, h;l), or
fo( O ) = > Gm,n,qpnm,,(cosgk)eim’¢k, (16) hﬁz), respectively. _Becau'se of the complete property qf the
mn’ vector wave functions given in Eq6199—(19¢), we obtain

the expressions
where PJ'(x) denotes the associated Legendre function of
indicesn andm, andn’ is summed from O tos, whilem' is  F2(g, g)dkar = 3 [AS,  BIME(T ko) + BE o BINIAT k)
summed from A’ to n’, andk is pointing in the (6, &) mn
direction in the spherical coordinates. Substituting Edp)

e (2) —ima,
into Eq. (15), we obtain * Crnd B0 (T ko) 167, (20)

2 v 2 wheren is summed from 0 to s, while mis summed from
En)=> > Gm’n’qf f Fﬁ(ﬁk, ) -n to n, andk is pointing in the(6,, ¢,) direction, whiler
0=1 ' ! o Jo is pointing in the(#, ) direction in the spherical coordi-
, L nates. The other interparamete 6., B (6), and
X Py (cosf)e™ ¢e*a’kl sin G ddey.  (17) Crond 610 are provided in the Appeﬁ?ﬁ. md
Substituting Eq.(20) into Eg. (17), integrating with re-
This specific form of Eq(17) suggests the use of the well- spect to¢y,, and after some straightforward algebraic ma-
known identity[1,2,21] nipulations, we end up with
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2
E(r)= 2 2 2 271Gy

g=1 mn

+ Brennq(ak)N%L(r’kq) + Cﬁ"lnq(ak)l-g;(r!kq)]
X P(Cos Bk sin 6id .

a J [AS nd BOM (1 ko)
0

(21)

Equation(21) is the eigenfunction representation of electric

field in uniaxial anisotropic media. The representation of

magnetic field in uniaxial anisotropic media is very similar to
that of electric field in Eq(21) and can be easily obtained by
changingE-field eigenvectors foH-field eigenvectors fol-
lowing Egs.(15—20). The H-field eigenvectors can be de-
rived from theE-field eigenvectors shown in Eq&)—(11)

PHYSICAL REVIEW E 70, 056609(2004)

g 2N+ 1 _1
b = 2n(n+1)’ ' (243
; —i”+1—2n+l, m=-1,
2
1, s=lI,
%10, s=I (24

According to the radiation condition of an outgoing wave
and asymptotic behavior of spherical Bessel functions, only
hff) should be retained in the radial function; therefore, the

by using the source-free Maxwell’'s equations in the spectrafc@ltering fields(designated by the superscript are ex-

domain. Because the equations of Hhdield are very similar
to those of theE field, it is only given relative to théi-field
eigenvectorgi.e., Fg) and E-field eigenvectorgi.e., Fg) in
the Cartesian coordinate system

0 - COS6H sin 6, sin ¢y
Fy=| cosoy 0 - siné, cos ¢y
- usin g, sin ¢ usin 6, cos¢, 0
x K pe (22
Wt
whereq=1, 2.

From the resulting equatiog2l), it is shown that the so-
lutions to the source-free Maxwell's equations for the
uniaxial anisotropic medium are expanded in terms of th
first kind of spherical vector functions. Because spherical

Bessel functions of different kinds satisfy the same differen-

tial equation and the same recursive relations, the first kin
of vector wave functions in E¢21) can be changed easily to
the other three ones. So we can use the field expressio
given in Eq.(21) to characterize the scattering and radiation
involving the layered structures of the uniaxial anisotropic
media.

Assume that the electric field of an incident plane wave is

given by E=XE,e*e?. The incident wave fieldsdesignated
by the superscripinc) may be expanded into an infinite se-

panded as

ES= X [ASMENr ko) +BENS(r k)], (259

H= %2 (ARG ko) + B Mok(r ko)1, (25)

0 mn

where A, and B?, = (with n being from 0 to +c and m
being from 1 to n) are unknown coefficientdyl f]'q)n(r ko)
and N;L)n(r ,ko) are solenoidal spherical vector wave functions
given in Egs. (199 and (19b), respectively, andk,
= w(eouo) ™%, €, and ug denote the wave number, permittiv-
ty, and permeability in free space, respectively.

The expressions of the electromagnetic fields inside the
niaxial anisotropic sphere are given in H@1), and the
ontinuity of the tangential electric and magnetic field com-

I;i)é)nents at=a yields

2 )
2 2 27TGmn'q

d=1n'=0

f QmndPry (COS BIKS sin Gid 6
0

= [5m,1+ 5m,—l]EOa)rfn (263)

i
"(koa)?’

ries of spherical vector wave functions for an isotropic me-

dium as follows[1-5,18,19,2]

EM = By [ S + - JlaM A1 ko) + B NE(T ko),

m,n

(233
Hinc= : kO EOE [ﬁm,l"' 5m,—]]
lopy mn
X[ NI ko) + bR M ko], (23D)
where
ey 2Nt 1 _q
« 2n(n+1)’ ’
am =
" in+12n +1 -
2 1 1

2 9]
2 E 27TGmn/

‘J RendPry (COSBIKZ sin 6,
q:]_ n’:O 0

" |

™ koa)? (26b)

= [5m,l + 6m,—]JEOb
where
1 d

ey gyl (ko lin(ker) -

, 1d
X anqg—

ioug

Ko
h Jn(lﬁr)

mng |

anq: {A

[rin(kgn]+C

(1)
ar }hn (kor)}r:a,

(273
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Rmnq {

lopg Ah

K mnqko o Sk T

1001+ o ke >} -~
(27b)

[ m”qkq rdr

The scattering coefficients—i.eA;,, and B}, .—are thus ex-
pressed as

o 2
S I— 1 T
Amn_ h(nl)(koa) [zoqglz Gmnq
X JOW Asndn(kg@) P kE sin 66y
- [5m,1+ 5m,1]EOar)§nnj n(k()a):| ’ (283)
1 iou -
BS = 2 217G
mn~— h(l)(ko )|: Ko nrzzoqzzll q
X f WA?nnqj 2(kq@) Pk sin 6,d
0
_[5m1+ 5m 1]b nln(koa):| (28b)
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2
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Pl This paper E Plane 1
¢ Mie theory
-40 4
o & % 13 180
Scattering Angle(Degree)

FIG. 2. Radar cross sectioiRCS’9 versus scattering angle
(in degrees results of this papegsolid curve and of the Lorenz-
Mie theory. The electric dimension is choserkgs=0.57 while the
permittivity tensor elements are assumed toefzee, = 2¢,.

plane(xozplane as shown in Fig.)landH plane(yozplane

as shown in Fig. Llwith the Lorenz-Mie theory1,2,18,19

and the MOM conjugate-gradient fast-Fourier-transform
(CG-FFT) method[13], as shown in Figs. 2 and 3. The series
in Egs.(268 and(26b) converges rapidly, and it is sufficient
to takeN=4 as the upper limit of the summation indices
andn’. Certainly, it should be pointed out that the conver-
gence rate or the upper limit of the summation depends on
the electrical dimension of the sphewith respect to the

From the coefficients of scattered fields by the uniaxial anwavelength. In Fig. 2, the RCS’s in botE andH planes

isotropic sphere, the radar cross sectigRE€S’y can be

477‘

o
><{sin@ A€+ n(n+1)
+d_Pﬁ< ¢B_¢)
do \ I nin+1)
)n+1 <AS i _—iln —|¢>
1n® n(n+ 1)
1 s 2
+ F” (BS g4 i "‘f’) .
sin @ n(n+1)

1n
I1l. NUMERICAL RESULTS AND DISCUSSION

2|ES|2

E?

o= Ilim4ar

r—o

2

All results presented in this section are for nonmagnetic

(i.e., m=p,=po) spherical scatterers of radiwsand with
permittivity tensore. The incident field is a plane wave with

electric field amplitude equal to unity, polarized parallel to

the X direction, and that propagates in the positi/éirec-
tion.

using the formulations in this paper are compared with those
of Lorenz-Mie theory. An excellent agreement of the RCS
results is achieved between those two methods, where the
permittivity tensor elements are characterizedepye,=2¢,

and the electric size of the uniaxial anisotropic sphere is
chosen aky,a=0.57 or a=\/4. It is shown that the obtained
solution is stable even for almost isotropic scatterers, since

-10 T T T
20 4
H Plane
~ -30 .
% E Plane
N\./
< 40 E
~
©
50 K 1
— This paper
- ---MOM-CG-FFT '
-60 T T T T T
0 45 90 135 180
Scattering Angle(Degree)

FIG. 3. Radar cross sectiofiRCS’y versus scattering angie
(in degrees results of this pape(solid curvg and of the MOM
with CG-FFT fast algorithnidashed curve The electric dimension

To demonstrate the accuracy of the solutions achievablg chosen a%,a=0.37 while the permittivity tensor elements are
by using the present method, we compare bistatic RCEs in assumed to be,=3¢; and €,=2¢.
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T T ™ T 40 T T T
7 ——E Plane
20 - -=--Hplane
o~~~
% 104
a7
<
~ 04
©
-10 4
204 ——EPlane " . »
----Hplane 1 “
30 - T T T T — -30 T T v T M T T
o} 45 0 135 180 0 45 90 135 180
Scattering Angle(Degree) Scattering Angle(Degree)
FIG. 4. Radar cross sectioiRCS’9 versus scattering angle FIG. 5. Radar cross sectiofiRCS'y versus scattering angie

(in degreeyin the E plane(solid curve and in theH plane(dashed  (in degreesin the E plane(solid curve and in theH plane(dashed
curve). The electric dimension is chosen k=7 and kpa=2, curve). The electric dimension is chosen lag=4m while the per-
respectively, while the permittivity tensor elements are assumed tanittivity tensor elements are assumed todpe(2+0.1)ey and e;
be =5.349%, and €,=4.9284%,, =(4+0.2)¢.

the proposed solution is an analytical one of the uniaxiauniaxial anisotropic media. The method is developed based
anisotropic media, and the result of the Lorenz-Mie theory ion the expansion of a plane-wave factor of the field and the
a special case of the present method. In Fig. 3, the RCS dfourier transform where the unknown angular spectrum am-
the uniaxial anisotropic sphere is computed using both ouplitude is determined. The three-dimensional electromagnetic
formulation and the MOM-CG-FFT technique. Since thescattering of a plane wave by an uniaxial anisotropic sphere
MOM-CG-FFT approach is very efficient for the electrically has been theoretically formulated, physically characterized,
small size objects, the electric size of the uniaxial is chosemnd numerically discussed. Numerical results for some spe-
as theky,a=0.3m, the permittivity tensor elements are char- cial cases are also obtained and compared with those of the
acterized byg =3¢y and e,=2¢p, and the uniaxial anisotropic Lorenz-Mie theory and the method of moments accelerated
sphere is lossless. From Fig. 3, it is depicted that the RC®iith the conjugate-gradient fast-Fourier-transform approach,
results obtained using the two methods are in good agreand a very good agreement is achieved. We also present nu-
ment; thus, it partially verifies that the proposed method andnerical results in the resonance region for the lossy uniaxial
the FORTRAN code developed in this paper are correct. media.

Figure 4 presents radar cross sections for a more general
lossless uniaxial anisotropic medium. It is assumed that the
permittivity tensor elements arg=5.3495 ande,=4.9284. ACKNOWLEDGMENTS
The electrical dimension of the uniaxial sphere is chosen as ) ]
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To illustrate applicability of this analytical solution to the Grant No. 20030625 of Zhejiang Province Education Bu-
uniaxial anisotropic sphere of the electrically large gifoe ~ €au-
example, in the resonance regipthe RCS’s of a relatively
large uniaxial anisotropic sphere witha=4 under a plane-
wave incidence are given in Fig. 5. The permittivity tensor APPENDIX: SCATTERING COEFFICIENTS OF
elements are chosen as=2+0.1 ande,=4+0.4. It is seen EIGENEXPANSIONS IN Egs. (20), (27a), and (27b)
that the RCS’s vary with scattering angle. When the dimen-

) We let
sions are increased, the convergence nunibeR0 is also
increased. FE(6, )€ a" = 2 [AS { BIM (1 Kg) + B BONII(T ko)
mn
IV. CONCLUSIONS + Cond BOL (k) J&7m . (A1)

In this paper, an analytical solution to source-free Max-Because the spherical vector wave functidhg,, N, and
well’s equations in uniaxial anisotropic media has been obL .,,are orthogonal and self-contained, the plane-wave factor
tained in terms of the spherical vector wave functions forcan be expanded as follows:
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xea” = 3 [an M i kg) + Dl Nim(r kg) + ik (T k),

(A2a)

yekar =2 [alh M kg) + Bl Ni(r ko) + ChL in(r kg,

(A2b)
zeka '—E[amnM 31 k) + b2 NN k) + CE AL EN(r k).

(A2c)

The coefficients of the plane-wave factafy, bf,, andch,,
(wherep=x,y,2) are the functions o#, and ¢,. Their de-

tailed reduction and formulation have been derived in Ref.

[21], and we will provide here only the coefficients A}ﬁm
Bfing and Ch,, (where p=e,h, andq=1,2 in Egs. (20)

(273, and (27b). The coefficients are the following: when

gq=1 andm=0,
e —:n 2n+1 (n_m)! m-
mng ! Zn(n + 1) (n + m)' [(n + m)(n -m+ 1) Pn 1(C056k)
~ Py4(cos 6], (A3a)
BE 1 (n-m [(n+D(n+m)(n+m

ng = 1" 2n(n+ 1) (n+ m)!
- )P Ycoshy) + (n+ 1)PTcosh) + n(n—m+ 2)
X(n—-m+ 1)P™(cosh,) + nPI(cosb)],  (A3b)

Cemnq_ 2::;9 En + ;I [(n+m)(n+m-1) Pm_l(COSHK)
+P™l(cosf) - (n-m+2)(n—-m+ 1P (cosé,)
PIv(cos)], (A3c)
andg=1 andm>0,
e _ m(n+m)!
A_mnq_ (_ 1) (n m)' Amnqv (A4a)
B® =(- 1)m+1(n +m! B¢ (A4b)

-mnq— (n—m)! mngy

PHYSICAL REVIEW E7Q, 056609(2004)

Ce )r’ml(n+ m)

Zng= (= ) Chng (Adc)

Similarly, whenq=2 andm>0,

2n+1 (n-m)! {V\/e)(ek)

n(n+1) (n+m)!

X(n-m+1)P™Y(cosg,) + P (cosb,)]

e n+1
Amnq

[(n+m)

- mP,(cos Bk)} (A5a)

Be — n+l

mng~— [ n+1)(n+m)

1 (h-m)! { \N(e)(ak)

n(n+1) (n+m)! 2
X(n+m-1)P™}(cosd) - (n+ )P (cos6,)
+n(n-m+2)(n-m+ )P (cosb,)

-nP™(cosh)] +[n(n—-m+ 1P, (cosb,) — (n+ 1)

X (n+m)Pgly(cos 00]} , (AS5b)

[(n+m)(n+m

ce _inln=m! WP
mnq~ kq(n+m)' 2

- 1)P™

+1)PQ1(cosf) + Pii(cosay)] - (2n

Hcosh) - P lcosh) — (n—-m+2)(n-m

+1)cos6Py'(cos 6k)} ,

(A5c)
andg=2 andm>0,

(n+m)!
ASmnq 1)Wl(n m)| A?nnq’ (A6a)
e (- qpynrMpe (A6b)

-mnq— (n _ m)| mnq

(n+m)!

Cng= (= 1)m(n ey Chong (A6C)

Similar to the above, the eigenvector expansion coefficients

of the H field can be obtained.
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