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Nonlinear chirped pulse solutions are shown to exist as stable attractors for short light pulses in driven and
damped systems. The attractors are determined for systems of different complexity, from simple gain and
damping modelings up to the inclusion of higher-order dispersion, Raman processes, and delayed nonlinear
responses. The chirped attractors, their stability, as well as the attractor basins can be determined analytically.
The analytical predictions are in excellent agreement with numerical simulations.
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I. INTRODUCTION

Localized structures are important objects of nonlinear
dynamics in driven and dissipative systems far from equilib-
rium. The cubic, complex Ginzburg-Landau equation
(CGLE) is one of the most-studied nonlinear models in such
systems. It allows us to understand a vast variety of phenom-
ena, e.g., self-trapping of light, second-order phase transi-
tions, superconductivity, superfluidity, Bose-Einstein con-
densation, liquid crystals, strings in field theory, particle
acceleration in relativistic plasmas, and so on(see, e.g.,[1]
and references therein). In some areas, the CGLE appears as
a generalized or higher-order nonlinear Schrödinger equation
(HNLSE). The integrable(cubic) nonlinear Schrödinger
equation(NLSE) is the weakly nonlinear and weakly disper-
sive paradigm for envelope radiation pulses. The nonlinear
short-pulse propagation requires further generalizations of
the NLSE leading to a one-dimensional CGLE or HNLSE
[2–6] by taking into account, e.g., dispersive-type higher-
order terms[such as third-order dispersion(TOD), nonlinear
dispersion, and self-frequency shift(SFS) arising from
stimulated Raman scattering].

The models were further extended, particularly for inten-
sive and short light pulses whose widths are shorter than
100 fs. Then, in addition to the dispersive-type effects men-
tioned above, also the driven and dissipative-type effects,
such as spectral limitation due to gain bandwidth-limited am-
plification and/or spectral filtering, nonlinear gain and/or ab-
sorption with fast and/or slow delayed nonlinear response,
etc., may play important roles. With quite general arguments,
Gagnon and Bélanger[7] have derived a generalized integro-
differential equation to describe the propagation of a nonlin-
ear radiation pulse. They analyzed some of its properties by
employing adiabatic perturbation methods[7].

Many authors[8–18] have analyzed HNLSEs from differ-
ent points of view(e.g., Painlevé analysis, Hirota direct
method, inverse scattering transform, Darboux-Bäcklund
transform, etc.). They obtained solitonlike solutions under

the balance between group velocity dispersion(GVD), self-
phase modulation(SPM), TOD, and self-steepening effects,
respectively. The research results have shown the complex-
ity, multiplicity, and richness of phenomena in driven and
damped nonlinear short-pulse physics[19–26].

The unique stability of short-pulse solitons, enabled by
the capability of balancing the dispersion and nonlinearity, is
a very important phenomenon compared to linear(nonsoli-
ton) systems. A decisive point is the possibility of compen-
sating losses by amplification. In this paper, we investigate
different practical forms for gain and damping processes.
The unique results of the various investigations are that at-
tractors in forms of solitonlike pulses do exist. An important
characteristic of the attractors is the chirp. Knowing the ana-
lytical forms of attractor solutions, we are able to predict the
dynamics of the pulse parameters, such as amplitude, width,
and chirp. Motivated by numerical simulations, reduced
models of the driven and damped HNLSE are proposed by
means of Lagrangian perturbation theory. The analytically
determined solutions of these problems are shown to be at-
tractors for a variety of initial values. Stability analysis of the
attractors leads to characterizations of the basins of attrac-
tions in the cases of balanced gain and damping, and shows
new phenomena such as short-pulse generation when ampli-
fication and damping are not balanced.

In this paper, we present the exact chirped solitonlike so-
lution for a fs laser pulse, including not only dispersive-type
effects but also the driven and dissipative-type contributions.
It will have its application in ultrashort optical pulse propa-
gation in nonconservative systems. As a very important gen-
eralization compared to recent findings[27], we are able to
take into account the delayed nonlinear response which was
not considered previously. We will discuss the dependence of
the pulse widths on the parameters of the system as well as
the stability with respect to the finite amplitude perturba-
tions.

The paper is organized as follows. In the next section, we
present the general model. That model is analyzed in full
generality in Sec. III. In Appendix A, we discuss a simplified
version which has been often used in the literature. At the
simplified model, we explain what is meant by the core and
tail stability problems, respectively. There, also the main
tools, such as numerical simulation, collective coordinates,
and perturbation theory, are demonstrated for a case which is
easier to look through. Nevertheless, new results are already
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presented there, and discrepancies in the literature are clari-
fied. Solitary solutions in the general case are demonstrated
in Sec. III. Analytical predictions are compared with numeri-
cal simulations. The Lagrangian method for collective coor-
dinates turns out to be a very effective tool for quite precise
predictions. The main conclusion of this section will be that
solitary attractors with stable tails do exist. The paper is con-
cluded by a short summary(Sec. IV).

II. GENERAL MODEL

A quite general model for the propagation of femtosecond
(e.g., 100 fs) pulses is[3,7]

iqz +
1

2
qtt + uqu2q = idq − gqt + ibqtt + ixuqu2q + ilqttt

+ imsuqu2qdt + inqsuqu2dt + ikqE
−`

t

uqu2dt

+ isqtE
−`

t

uqu2dt ; iRfq,q*g. s1d

Here,qsz,td is the complex envelope of the electric field,z is
the normalized propagation distance, andt is the retarded
time. The model parametersd, g, b, andx are real constants;
l, m, n, k, ands can be complex. Anomalous dispersion is
assumed. Furthermore,d.0 s,0d is the linear excess gain
(loss) at the carrier frequencyv0; g and the imaginary partli
of l result from the difference between the pulse carrier fre-
quencyv0 and the gain-center frequencyva (and are propor-
tional todv=va−v0), b describes the effect of spectral limi-
tation due to gain bandwidth-limited amplification and/or
spectral filtering(which are inversely proportional to gain
and/or spectral filtering bandwidth, respectively); x accounts
for nonlinear gain and/or other absorption processes. The
real partlr of l represents the net TOD from material. The
real partmr of m is the nonlinear dispersion term; it is re-
sponsible for self-steepening at the pulse edge. The imagi-
nary partmi of m describes the combined effect of nonlinear
gain and/or absorption processes;n is the nonlinear gradient
term which results from the time-retarded induced Raman
process; its imaginary partni is usually responsible for the
soliton self-frequency shift[2]; k ands result from the pos-
sible slow delayed response of nonlinear gain and/or absorp-
tion effects. We would like to emphasize that mathematically
the delay terms, being proportional tok and s, change the
type of the problem to an integro-differential equation.

III. SOLITARY ATTRACTORS

In this section, we shall show that realistic chirped soliton
attractors with stable tails result from the general model(1)
provided relevant physical effects are included. This is very
important since, as we show in Appendix A,(extremely)
simplified models which have been extensively used in the
literature do not lead to soliton attractors with stable tails.
Thus, the additional effects discussed here are very important
for practical applications.

A. Analytical predictions

From the mathematical point of view, Eq.(1) is a highly
nontrivial, nonconservative partial differential equation. In
general, its solution is not known. Nevertheless, it is inter-
esting to note that for the general case, the form of the sta-
tionary soliton solutions, which act as attractors, can be de-
termined analytically. In the following, we first describe the
recipe to find analytical soliton expressions.

1. Motivation of the ansatz

We start with the analysis of Eq.(1) by separatingqsz,td
into a real amplitude envelope functionAsz,td and a phase
shift fsz,td=Vt−Kz+wsz,td according to qsz,td
=Asz,tdexpfifsz,tdg. Herewsz,td denotes a possible nonlin-
ear phase shift. Substituting the ansatz into Eq.(1), and as-
suming both the envelope functionAsz,td and the nonlinear
phasewsz,td to be even functions, we can decouple Eq.(1)
into two equations, namely,

sig0 + g6C1dA + ig2sA2t + iw2tA + i2wtAt − wt
2Ad + ignA

3

− sBsAt − iwtAd = 0, s2d

sg1 − rdsAt + iwtAd − lfA3t + i3wtA2t + 3siw2t − wt
2dAt

+ siw3t − 3wtw2t − iwt
3dAg − mA2s3At + iwtAd − n2AtA

2

+ g6AB− sC1sAt − iwtAd = 0. s3d

Here t= t−rz is the retarded time,e−`
t A2dt=e−`

t A2dt=Bstd
+C1, with C1=Bstdut→`, and the parametersgi are defined
as g0=−K+V2/2+lrV

3+ isd−gV−bV2+liV
3d, g1=−ig

+2s1/2−ibdV−3lV, g2=−s1/2−ibdV−3lV, gn=−s1
− ixd−mV, andg6=−k− isV. When setting

At/A = B/C2 = wt/C3, s4d

where the coefficientsC2 andC3 are constants(to be deter-
mined later), Eqs.(2) and (3) are compatible under the con-
ditions

fig2s1 + iC3d − sC2gSg1 − r +
g6C2

1 + iC3
− sC1D

= − ls1 + iC3dsig0 + g6C1d, s5d

and

fig2s2 + iC3d − sC2gSm +
2n

3 + iC3
D = ignls2 + iC3d. s6d

It is easy to prove that subject to zero-boundary conditions
Eq. (3) has the following localized solution:

Astd = A0sechshtd, s7d

for

sig0 + g6C1d + fig2s1 + iC3d − sC2gs1 + iC3dh2 = 0, s8d

ignA0
2 − fig2s2 + iC3d − sC2gs1 + iC3dh2 = 0. s9d

The compatibility conditions(5) and(6) can now be written
in more convenient forms,
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Sg1 − r +
g6C2

1 + iC3
− sC1D − ls1 + iC3d2h2 = 0, s10d

Sm +
2n

3 + iC3
DA0

2 − ls1 + iC3ds2 + iC3dh2 = 0. s11d

Substituting the solution(7) into e−`
t A2dt=Bstd+C1 and

making use of Eq.(4), we can determineC1=A0
2/h, C2

=AB/At=−A0
2/h2, andw=−C3 lnfcoshshtdg. The parameter

C3 will be determined by Eqs.(8)–(11). Obviously, the pa-
rameterC3 denotes the chirp strength.

Making use of all these findings, we can present the so-
lution of Eq. (1) as

qsz,td = A0hsechfhst − rzdgj1+iC3exphifVst − rzd − Kzgj.

s12d

The form (12) has been extensively used as an ansatz in
many dynamical equations, e.g., for NLSE, HNLSE, and the
CGLE, also including the nonlinear term of slow response
time [27]. Directly substituting the solution(12) into Eq. (1)
and requiring the coefficients of independent terms of hyper-
bolic secant functions to vanish separately, relations(8)–(11)
will appear. It implies that, similar to the case of NLSE,
physical effects in each equation balance each other to form
the solitonlike solution(12).

2. Evaluation of the parameters

In the following, we concentrate on the general properties
of the solitonlike solution. We first evaluate the pulse param-
eters in explicit forms.

Equations(8)–(11) are four complex equations. They can
determine eight real parameters. From the real and imaginary
parts of Eq.(11) one can find the algebraic equation for the
chirp parameterC3,

m1C3
4 + s2m3 − 3m4dC3

3 + s7m1 − 12m2dC3
2

− s22m3 + 27m4dC3 + 6s2m2 − 3m1d = 0. s13d

Here we have setm1=slimr −lrmid, m2=slrni −linrd, m3

=slrnr +linid, andm4=slrmr +limid.
Equation(13) indicates that the chirp is strongly depen-

dent on the higher-order dispersive, nonresonance, self-
steepening, and self-frequency shift effects. Only if the very
specific condition 3slimr −lrmid=2slrni −linrd is satisfied is
a proper balance available, and no chirp occurs. Thus, a
solitary-wave solution without chirp can exist in dispersive
systems(such as the NLSE and HNLSE) only under quite
restrictive conditions.

Combining the imaginary part of Eq.(9) and the real part
of Eq. (11), one can determine the frequency shift

V =
s1 + srC3 + sidn2 − 3C3b − s2 − C3

2d/2
3lrs2 − C3

2d − 9liC3 − mrn
2 , s14d

where we have definedn2;A0
2/h2=f6s1−C3

2dlr −C3s11
−C3

2dlig / s3mr +2nr −C3mid.
The imaginary part of Eq.(10) and the real part of Eq.

(11) lead to the parameter being inversely proportional to the
pulse widthh,

h = − sin
2/2m5 ± fg1i − m6 + si

2n4/4m5
2g1/2, s15d

where m5=2C3lr +lis1−C3
2d, m6=sg6i −g6rC3n

2d / s1+C3
2d.

The pulse amplitudeA0 can be derived from the imaginary
part of Eq.(11),

A0 = hÎ6s1 − C3
2dli + C3s11 −C3

2dlr

3mi + 2ni + C3mr
. s16d

The amplitude shift parameterr and the phase shift pa-
rameterK are determined by the imaginary part of Eq.(8)
and the real part of Eq.(10), respectively. Finally, the real
parts of Eq.(8) and Eq.(9) will give the constraints on the
model parameters so that the stationary soliton solution(12)
can exist.

Summarizing, narrow, chirped solitonlike pulse forms of
Eq. (1) can be calculated systematically in the form(12). The
parameters follow from algebraic equations.

3. Specific dependences

Generally, the properties of the solitonlike pulses are com-
plicated and difficult to investigate analytically because of
the complex dependences on the model parameters. Here we
present only one example to show the dependence of the
pulse widths on the parameters chirpg, frequency shiftV,
TOD lr, gain-band-limitation and/or spectral filter, SFS, and
slow delayed response to nonlinear gain and/or absorptionx
numerically. We have found that for the coefficients
d=−3.25310−3, g=1.019310−2, b=0.853, x=0.224,
lr =−5.367310−2, li =1.263310−3, mr =−2310−2, mi =
−10−2, nr =−2310−2, ni =−5310−2, kr =10−2, ki =7310−3,
sr =4310−3, andsi =−3310−3, the solitonlike solution(12)
has the parametersA0=0.58, h=0.38 , V=2310−3, C3
=0.586,r=2.823310−2, and K=−0.198. As shown in Fig.
1(a), narrower pulses will occur for the positive chirp than
for the negative chirp. Figures 1(b) and 1(c) indicate that the
larger frequency shift and the smaller absolute TOD will lead
to the narrower pulse widths. The former has been observed
in some laser systems and fiber amplifiers(see, e.g.,
[28–30]), and the latter is consistent with the well-known
experimental results from ultrashort-pulse lasers. From Figs.
1(d)–1(f), we can recognize that larger spectral filter, larger
SFS effects, and stronger slow saturable absorption will pro-
duce narrower pulses.

By numerical simulations of Eq.(1), we have proven the
stability of that solution. Note that for this solution, together
with the core, also the tails are stable.

B. Lagrangian methods

The analytical treatments suggest that the attractor of Eq.
(1) can be written in the explicit analytical form

qsz,td = Ahsechfhst − Tdgjexp„iC loghsechfhst − Tdgj…

3exphifVst − Tdg + iKj. s17d

As has been shown, in some ranges, the six parametersA, h,
C, Tszd, Kszd, andV can be calculated exactly from algebraic
relations by methods similar to[22].
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As we will show next, the Lagrange methods can be used
to predict the analytical values in accordance with numerical
simulations.

The Lagrangian method is extensively demonstrated in
the Appendix A. Thus, here we immediately go to the ex-
plicit results. Using Eq.(17), the time-integrated Lagrangian
density reads

L0 ; L0sA,A8,h,h8,C,C8,T,T8,K,K8,V,V8d

=
2A4

3h
−

1

3
h2As1 + Cd2 −

A2V2

h
−

2A2K8

h
+

2A2VT8

h

+
2A2C8

h
−

logs4dA2C8

h
+

A2Ch8

h2 . s18d

This form is a generalization of the Lagrangian shown in
Appendix A. Here we have added a time shiftT=Tszd.

1. Collective coordinates

Within this formulation, the parametersA,h ,C,T,K, and
V are the coordinatesf=̂xi , i =1,2, . . . ,6g, and the derivatives
f=̂xi8 , i =1,2, . . . ,6g correspond to velocities, being desig-
nated as primed quantities, i.e.,A8;dA/dz and so on. The
fixed points of the corresponding six modified Euler-
Lagrange equations

d

dz
S ] L0

] xi8
D −

] L0

] xi
= i«E

−`

+`

dtSR* ] q

] xi
− R

] q*

] xi
D s19d

for i =1,2, . . . ,6determine the chirped soliton dynamics in
the representation(17). In Appendix B, we present the details
of the Euler-Lagrange equations.

2. Comparison with numerical solutions

Next, we have compared the numerical solutions of Eq.
(1) with predictions by Eqs.(B2)–(B6). The stationary solu-
tions (fixed points) agree exactly. In general, we can say that
the Lagrangian perturbation theory predicts the dynamics
very well.

Without delayed responsesk=s=0d, in Fig. 2 a soliton
solution is shown for the parametersd=−0.001 51, g
=0.062 93, b=0.509 67, x=0.191 58, lr =−0.032 04, li
=0.007 72,mr =−0.041 37,ni =−0.0256, andmi =nr =0. The
soliton parameters areA=0.815 85,h=0.653 33,C=0.4182,
and V=−0.053 115. That completely stable solution is
marked as initial since we use it in the next step as an initial
pulse (which evolves inz) in Eq. (1) with lr =−0.042 and
lr =−0.02, respectively. The other parameters are unchanged.
The numerically determined asymptotic and stable solutions
are also shown in Fig. 2(with the characterization numeri-

FIG. 1. Asymptotic numerical
solutions of Eq.(1) for different
parameter values, but without de-
layed responses. The inset shows
the amplitude predictions by the
Lagrangian momentum method.
We find attractors with stable tails.
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cal). In parallel to the numerical simulations, we have solved
the Euler-Lagrange equations(B2)–(B6). The z dependence
of the amplitudeA is shown as the inset in Fig. 2 for the two
lr values, respectively. The predicted amplitudes(bars) agree
quite well with the numerics.

Next, we discuss the influence of a delayed response and
show that stable chirped attractors exist also in that situation.
In Fig. 3, we again start with an exact solution fork=s=0
by using the same parameter values as in Fig. 2. Then we put
this form as the initial pulse into Eq.(1), after changingkr
=0 into kr Þ0, leaving the other parameters unchanged. For
demonstration, we setkr =0.001. New attractors appear for
kr Þ0 which have quite different forms, depending on the
chosen values ofkr. However, they belong to the class of
exact solutions(17) mentioned above. The(first-order) La-
grangian prediction[i.e., Eq.(17) with parameter values de-
termined from Eqs.(B2)–(B6)] is also shown. Again, the
agreement is quite good.

C. Stability of the tails

So far we have considered attractors with stable tails.
However, for strong gains, the system cannot adjust itself in
stable forms. Then the tails become unstable, and new soli-
tons are generated. Figure 4 shows the evolution of an initial
pulse withA=h=1,C=T=V=K=0 when evolved according
to Eq. (1) (with the same parameters as in Fig. 2, except for
g=0.08 andg=0.06, respectively). We have varied the driv-
ing through the −gqt term on the right-hand side of Eq.(1).
In the unstable caseg=0.08, new solitons of the same form
are generated. It is noteworthy that in all cases the individual
pulses have the form(17) with parameters following from
the fixed points of Eqs.(B2)–(B6). Wheng=0.06, i.e., in the
stable situation, again a single stable soliton appears as an
attractor. For much smaller values ofg, dissipation is domi-
nant, and the initial pulse damps out.

The adjustment between(linear and nonlinear) driving
and damping processes is a complicated process which, in
general, is not easy to handle analytically. We can consider
tail perturbations of the form expsikz− ivtd and determine the
imaginary part ofk. When the first three terms on the right-
hand side of Eq.(1) dominate the energy input and damping
of the tails, we obtain

− Im k < d − bv2 + gv. s20d

Then, stable tails can be expected for

d +
g2

4b
, 0. s21d

This limit agrees with the numerical findings for long tails;
the presence of the core changes it a little bit. In addition,
when the other(nonlinear) gain and damping terms become
important, the tail stability criterion becomes modified.

IV. SUMMARY AND CONCLUSIONS

Summarizing, we have developed and applied methods
for identifying stable chirped attractors in quite general

FIG. 2. Asymptotic numerical solutions of Eq.(1) for different
parameter values, but without delayed responses. The inset shows
the amplitude predictions by the Lagrangian momentum method.
We find attractors with stable tails.

FIG. 3. Asymptotic numerical solution of Eq.(1) in the case of
a delayed response. The prediction by the Lagrangian momentum
method is shown for comparison. We find attractors(at z=4000)
with stable tails.

FIG. 4. Numerical solutions of Eq.(1). An unstable situation
sg=0.08d is compared with a stable casesg=0.06d. In the unstable
situation, pulses are generated, but in all cases the Lagrangian mo-
mentum method predicts the right core parameters(the predicted
amplitudes are shown as bars).
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short-pulse models. In Appendix A, we investigated a simple
model which has been used in the literature many times. Our
analysis shows that no stable(core and tails) attractor exists
for that simple case. More complex models, including vari-
ous other important physical effects, were discussed in the
main part of the paper. Now stable attractors could be iden-
tified.

The techniques developed here allow the fast finding of
stable attractors. One reason is that the attractors can be pre-
sented in analytical form. In addition, the excellent applica-
bility of the results of the Lagrangian perturbation theory
allows us to identify optimal conditions for narrow pulse
propagation under complex physical conditions.

ACKNOWLEDGMENTS

This work had been performed within the SFB/Transregio
TR 18. Z.L. wishes to thank the Deutsche Forschungsge-
meinschaft for support through the Graduiertenkolleg of the
Heinrich-Heine-Universität Düsseldorf.

APPENDIX A: SOLITARY SOLUTIONS FOR A
SIMPLIFIED CASE

This appendix is devoted to the frequently used simplified
model for g=x=l=m=n=k=s=0. Then we have the rela-
tively simple model

iqz +
1

2
qtt + uqu2q = idq + ibqtt, sA1d

which contains gaind and dampingb. In an earlier approach,
Hasegawa and Kodama[2] derived a reduced model for Eq.
(A1) by applying adiabatic perturbation theory on the stan-
dard soliton solution. It led to a predicted attractor without
chirp. Pereira and Stenflo[31], on the other hand, found an
exact solution of Eq.(A1),

qsz,td = AfsechsBtdg1+iCexpsiDzd, sA2d

which contains the real parameters amplitudeA, width B,
chirp C, and phaseD. Inserting Eq.(A2) into Eq. (A1), one
gets relations between the parameters and their dependences
of d andb, namely

A2 = B2s1 + 3bC − 1
2C2d , sA3d

B2 =
d

b − 1
2C

, sA4d

C = −
3

4b
±ÎS 3

4b
D2

+ 2, sA5d

D = A2 − 1
2B2 − bB2C. sA6d

As the exact solution has a nonvanishing chirp, it is surpris-
ing that the attractor presented by Hasegawa and Kodama
has no chirp.

1. Core stability

a. Numerics on a finite time domain

We first consider the problem of solitary solutions in the
simplified model and solve Eq.(A1) numerically. The nu-
merics suggests, for different initial pulses, that the final so-
lution (attractor) is given by Eq.(A2). Figure 5 shows the
shape variation of two initial pulses(a) and(b), respectively,
which approach the exact solution(normalized amplitude 1)
while traveling along thez axis. The results were obtained by
a numerical simulation of Eq.(A1) using an operator-
splitting algorithm on a finite time domain. When the exten-
sion of the time domain is not too large, that type of numer-
ics can only conclude on the core stability of the proposed
solution. We shall come back to the tail stability later.

The analytical solution only exists ford /b.0. Numerics
further shows that for stable coresd.0 is required. This
result can be understood by the arguments presented in the
following subsections.

b. Collective coordinates

We next present analytical arguments that the exact solu-
tion (A2) can be considered as the stable attractor core. First,
we use a Lagrangian momentum method which reduces the
rather complex partial differential equation to a set of ordi-
nary differential equations(ODEs). For the derivation of the
ODE model, we use a Lagrangian perturbation theory[2] for
adiabatic perturbations. The idea is the following. We first
write the basic equation in the form

iqz +
1

2
qtt + uqu2q = i«Rfq,q*g. sA7d

The right-hand side contains perturbation terms summarized
by R. The unperturbed cubic nonlinear Schrödinger equation
sR;0d has the Lagrangian density

FIG. 5. Numerical simulation of Eq.(A1) for two initial distri-
butions(a) and (b), respectively. The parameter values ared=0.01
and b=0.03. Shown is the approach to the attractor(A2) with in-
creasingz values.
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L0fq,q*g =
i

2
sq*qz − qz

*qd +
1

2
suqu4 − uqtu2d. sA8d

The basic equation of motion is then formulated in terms of
the functional derivative

dL0

dq* ;
] L0

] q* −
d

dt

] L0

] qt
* −

d

dz

] L0

] qz
* sA9d

=i«Rfq,q*g. sA10d

Next we define

L0 ª E
−`

+`

dt L0. sA11d

When we substitute the ansatz

q0sz,td = hszd sechfnszdtge„ikszdloghsechsnszdtdj+isszd…,

sA12d

with amplitudeh, width n, phases, and chirpk, into the
Lagrangian densityL0 of theunperturbedNLSE, integration
over time leads to the LagrangianL0 as a function of the
parametersh, n, k, ands and their space derivatives,

L0 =
h2knz

n2 −
2h2sz

n
− a0

h2kz

n
+

2h4

3n
−

1

3
h2ns1 + k2d.

sA13d

Here, a0=−2+2 log 2. When starting with some arbitrary
initial conditions not agreeing with the parameters of an ex-
act solution, the solutions(for R;0) of the Euler-Lagrange
equations

hz =
hkn2

3
, sA14d

nz =
2kn3

3
, sA15d

kz =
2

3
sh2 − n2 − k2n2d, sA16d

sz =
1

6
f4h2 − n2 + k2n2 − 2a0sh2 − n2 + k2n2dg sA17d

show oscillations of the parameters around the exact values.
To incorporate the influence of gain and damping, we

follow the method presented in[32] for a perturbation
«Rfq,q*g=dq+bqtt. The systematic perturbation theory leads
to equations for the parametersPi P hh ,n ,k ,sj,

dL0

dPi
;

] L0

] Pi
−

d

dz

] L0

] Pi,z

= F ]

] Pi
−

d

dz

]

] Pi,z
G

3E
−`

+`

dt L0sq,q* ,qz,qz
* ,qt,qt

*d

=E
−`

+`

dtFdL0

dq

] q

] Pi
+

dL0

dq*

] q*

] Pi
G

< E
−`

+`

dtF− i«R*fq0,q0
*g

] q0

] Pi
+ i«Rfq0,q0

*g
] q0

*

] Pi
G .

sA18d

From here the modified Euler-Lagrange equations forR
Þ0 (i.e., dÞ0 andbÞ0d follow in the form

hz = dh +
h k n2

3
−

7

9
b h n2 −

1

9
b h k2 n2, sA19d

nz =
2 k n3

3
−

8

9
b n3 +

4

9
b k2 n3, sA20d

kz =
2

3
sh2 − n2 − b k n2 − k2 n2 − b k3 n2d. sA21d

The fourth equation for the parameters decouples from the
system(A19)–(A21) and yields(for constanth, n, andk) s
as a linear function ofz,

sz = S2

3
−

1

3
a1Dh2 + S1

3
a1 −

1

6
Dn2 + S2

3
a1 +

1

2
a2 −

1

3
a3D

3bkn2 + S1

6
+

1

3
a1Dk2n2 + S2

3
a1 −

2

9
a4Dbk3n2.

sA22d

We have introduced

a1 = a0 = − 2 + 2 log 2, a2 = −
26

9
+

8

3
log 2,

sA23d

a3 = − 5 + 6 log 2, a4 = − 4 + 3 log 2. sA24d

It is noteworthy that the parameters of the exact solution
(A2) are identical with the fixed point of the system
(A19)–(A21).

Numerical simulations of the ODE model show an
asymptotic approach of the initial pulse parameters to the
stationary solution. Figure 6 displays a typical example for
an initial pulse withh.A, n.B, andk.C. Decaying os-
cillations in the pulse parameters occur; the final state corre-
sponds to the exact solution(A2). The attraction by the so-
lution (A2) is also shown in Fig. 7. The calculations agree
with the simulations of Eq.(A1).

A stability analysis of the solution(A2) can be done
within the ODE model, i.e., we investigate the stability of the
parameters(A3) and (A4). Starting from perturbed param-
eters, a linearization of Eqs.(A19)–(A22) shows that the
attractor is stable.

c. Perturbation theory

So far, we succeeded in modeling the correct behavior of
the pulse by a(simple) momentum model. Still, in the math-
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ematically strict sense, the stability of the fixed point is not
shown. To analyze the stability more exactly, a detailed in-
vestigation of Eq.(A1) itself is needed. Here, we perform the
stability investigation by a multiple scales technique, search-
ing for the first nonvanishing real part of the growth rate of a
perturbation.

After separating the phaseD, we split Eq.(A1) into the
real and imaginary parts, i.e.,

q ; sa + ibdexpfiDzg, sA25d

and obtain

az = −
1

2
btt − ba2 − b3 + Db + eda + ebatt, sA26d

bz =
1

2
att + ab2 + a3 − Da + edb + ebbtt. sA27d

Here, we have indicated the smallness ofd and b by an
additional factore to show the orders of perturbations and
the different scales.(At the end we can sete=1.)

While linearizing the equations at the fixed pointa=R and
b=J, we assume the presence of small perturbationsr and j ,

a = R+ r, b = J + j , sA28d

with a growth(damping) rate G, r , j ,expsGzd. The expan-
sions ofR, J, as well as ofr, j , andG are

R= R0 + eR1 + e2R2 + ¯ , sA29d

J = J0 + eJ1 + e2J2 + ¯ , sA30d

r = r0 + e1/2r1/2 + er1 + ¯ , sA31d

j = j0 + e1/2j1/2 + e j1 + ¯ , sA32d

G = G0 + e1/2G1/2 + eG1 + ¯ . sA33d

When we insert these expansions into Eqs.(A26) and(A27),
we get relations(characterized by the orders ine) which
successively produce solvability conditions forGi/2. Defining
the operators

H+ = −
1

2
]tt − R0

2 +
3d

2b
, sA34d

H− =
1

2
]tt − 3R0

2 +
3d

2b
sA35d

leads to straightforward eigenvalue problems. Within the
lowest order we getG0r0=H+j0 and G0j0=−H−r0, yielding
the solutionr0=0,j0=R0, and G0=0. Calculating the order
e1/2, we obtain 0=H+j1/2 and G1/2j0=−H−r1/2, with j1/2= j0
=R0 and r1/2=−H−

−1G1/2j0. We can derive an expression for
r i/2 in each stepi /2. The further calculations show thatG1/2
also vanishes. Finally,G1 is the essential rate, determining
the stability of the pulse,

G < eG1 = − e
2

3
d + ie ImsG1d. sA36d

Obviously, a stable situation exists as long asd.0.

2. Modulational instability of the tails

A stability analysis of the ODE model shows that the
attractor core is stable ford.0. However, in order to get a
stable stationary(long-living) solution in a broad time do-
main, balance between driving and damping is required in all
regions. Imagine we have very long tails. Then, ford.0, the
tail becomes unstable to long-wavelength(slow) modula-
tions. The reason is very simple. On the tail, perturbations
proportional to expsikz− ivtd will be amplified by the term
proportional togq on the right-hand side of Eq.(A1) in the
small-v limit.

FIG. 6. Solution of the Euler-Lagrange equations(A19)–(A21)
for d=0.01 andb=0.03.

FIG. 7. Trajectory to the stable attractor in reduced parameter
space ford=0.01 andb=0.03. Note that the attractor has a finite
chirp k.
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APPENDIX B: DETAILS OF THE GENERAL
EULER-LAGRANGE EQUATIONS

Starting from the Lagrangian

L =
2A4

3h
−

1

3
A2h −

1

3
A2C2h −

A2V2

h
−

2A2K8

h
+

2A2VT8

h

+
2A2C8

h
−

logf4gA2C8

h
+

A2Ch8

h2 , sB1d

the Euler-Lagrange equations are

]zA =
1

9h
„Ah9krA

2 − 9siA
2V + h3f− 7sb − 3liVd

− C2sb − 3liVd + 3Cs1 + 6lrVdg + hfA2s8x − sr

+ siC − 8miVd + 9sd − gV − bV2 + liV
3dgj…, sB2d

]zh =
1

3A
„2h− 3krA

3 + A3f3siV + hs− 2x + sr − siC

+ 2miVdg + Ahfs1 + C2dh2sb − 3liVd

+ 3s− d + gV + bV2 − liV
3dg + 3hA8j…, sB3d

]zC =
1

3Ah
„6krA

3C + 2A3h− 3siCV + hf1 + sis1 + 2C2d

+ mrV + Csx − sr − miVdgj − 6ChA8

+ Ah− 4C3h3sb − 3liVd − 2h3s1 + 6lrVd

− 2C2h2s1 + 6lrVd + Cf− 4h3sb − 3liVd

+ 6hsd − gV − bV2 + liV
3d + 3h8gj…, sB4d

]zT = − mrA
2 −

2

3
nrA

2 + gC +
1

3
miA

2C +
krA

2

h2 −
srA

2

h

+
siA

2C

h
+ lrh

2 −
2

3
liCh2 + lrC

2h2 −
2

3
liC

3h2 + V

+ 2bCV −
siA

2V

h2 + 3lrV
2 − 3liCV2, sB5d

]zV =
1

15
S10kiA

2 − 10siA
2h − 10siA

2C2h − 10gh2

− 12miA
2h2 − 8niA

2h2 + 8mrA
2Ch2 + 8nrA

2Ch2

− 10gC2h2 − 4miA
2C2h2 + 14lih

4 + 20liC
2h4

+ 6liC
4h4 −

10krA
2sCh − 3Vd

h
+ 30dV + 20xA2V

+ 20siA
2CV − 30bh2V − 30bC2h2V − 30gV2

− 20miA
2V2 −

30siA
2V2

h
+ 60lih

2V2 + 60liC
2h2V2

− 30bV3+ 30liV
4 −

30VA8

A
+

15Vh8

h
D . sB6d
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