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Discrete kink dynamics in hydrogen-bonded chains: The two-component model
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We study discrete topological solitary wavgsnks and antikinksin two nonlinear diatomic chain models
that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The
essential ingredients of the models &énea realisticcanharmonigion-proton interaction in the hydrogen bond,
(i) a harmonic coupling between the protons in adjacent hydrogen bondgjiignd harmonic coupling
between the nearest-neighbor heavy itarsisolated diatomic chain with the lowest acoustic hadnstead
a harmonic on-site potential for the heavy igagdiatomic chain subject to a substrate with two optical bgnds
both providing a bistability of the hydrogen-bonded proton. Exact two-compdkierkt and antikink discrete
solutions for these models are found numerically. We compare the soliton solutions and their properties in both
the one-(when the heavy ions are fixednd two-component models. The effect of stability switchings,
discovered previously for a class of one-component kink-bearing models, is shown to exist in these two-
component models as well. However, the presence of the second component, i.e., the softness of the heavy-ion
sublattice, brings principal differences, like a significant difference in the stability switchings behavior for the
kinks and the antikinks. Water-filled carbon nanotubes are briefly discussed as possible realistic systems, where
topological discretgantikink states might exist.
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[. INTRODUCTION an excess proton is transferred inside the bridge interchang-
ing the role of the covalent and hydrogen bonds with the
Hydrogen-bondedHB) crystals or chains have been the adjacent groupsX, and (ii) the propagation of a bonding
object of many scientific investigations in physics, chemistry,(Bjerrum) defect, according to which the additional degree of
and biology in the last decades. One of the important aspecfseedom allows the groui-H to rotate in such a way that
of studying these systems is the proton transport that takebe interbond proton transfer is possible along the HB chain
place through the hydrogen bonds. The proton conductivityfor more details see, e.g., Refd,18)). In this paper, we
in HB networks is remarkably high and, in fact, some offocus on the motion of the ionic defects, where oimljra-
these materials have been called protonic semiconductors beend proton transfers are involved.
cause the observed proton mobility is of a comparable order Since the proton transfer in a HB chain isaoperative
with the electronic mobility in some semiconductors. Forprocess, it is believed that the translational motion of both
extensive reviews and papers that cover the experiment@he positive and negative ionic defects along the chain is
situation and the theoretical background as well as the latesissentially facilitated. To describe this effect qualitatively, an
bibliography see, for instance, Ref§l-6]. Quantum- effective coupling between the protons in the nearest-
mechanical aspects of proton transfers in quasi-oneaeighbor HB bridges may be introduced, resulting in a soli-
dimensional HB systems have been studied in a number abn (kink) model of the proton transport in HB chains
works [7-11], to mention a few. It is also believed that the [19-23. Owing to the fact that the proton can be found in
chains of hydrogen bonds act as proton wires providing amwo degenerate equilibrium states within the HB bridge, it is
effective pathway for the rapid translocations of protonsreasonable to model the proton potential by the superposition
from a proton donor to a proton acceptor in several biologi-of the two realistic(anharmonig potentials of a standard
cal systems such as bacteriorhodopsin and ATP synthaserm (with a single-well topology, like a Morse or a
[1,12. Very recent experimental and theoretical studiesLennard-Jones potentjalplaced tail-to-tail at such a dis-
[13-17 on filling single-walled carbon nanotubes with water tance which provides a double-well form of the proton po-
open new horizons in investigating a variety of challengingtential [23-29, as illustrated by Fig. 1. In general, it is not
scientific problems at the nanoscale. necessary to construct the intrabond proton potential as a
In simple terms, a HB chain can schematically be represum of two single-well potentials because the equations of
sented as a diatomic chain-X-H---X-H---X-H---, where  motion for the chain can be written in termsanfy potential
the hydrogen atom Hor proton H) in each lattice unit is  V(u, p) given as a function of the proton displacemeritom
connected with its adjacent heavy ions or more generallfhe middle of the HB bridge and the relative displacement of
hydroxyl groupsX (or X°) via either a covalent-) or a  the ionsX* from their equilibrium position$25,3Q.
hydrogen(---) bond, forming a HB bridgeX-H---X. The The discretekink states, their stability and mobility prop-
molecular mechanism for the proton conduction along such arties have been studied previougBi] in detail, where the
HB chain comprises two complementary procesggsthe  heavy ions forming the intrabond proton potential from two
propagation of an ionic positiveor negative defect, when  Morse potentials were assumed to be fixed. In this limiting
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FIG. 1. Schematics of interactions in one unit cell of a 2C HB

chain.
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case, which can be called the “monoatomic” limit, the ionic Q. Q Q. Q,,
defects are soliton solutions to a one-compori@@) model.
However, in reality, the intrabond proton potential essentially  FIG. 2. Schematics afa) 2CO and(b) 2CA chain models.
depends on the relative distance between the adjacent heavy
ions that create this potential. Therefore the dynamics ofvhich are responsible for the shape formation of the proton
such a realistidiatomic chain must be described by a two- potential. Onlyone anharmonicity is sufficient to describe
componeni(2C) model. As a result, a number of 2C soliton properly a hydrogen-bonded chain, namely the ion-proton
models have been suggested, one part of which was studiguir potential of a realistic fornte.g., a Morse or a Lennard-
in the continuum limit[21,22,25,32—-43 while the discrete- Jones potential As regards other forces, it is sufficient to
ness effects were investigated in other 2C modelgonsider them in an harmonic approximation. This type of
[26,28,44-5R8 Even though the discreteness effects weremodeling can be used for nanofluidic devices such as a
studied for many 2C models used to describe the protomvater-filled carbon nanotube, where the on-site potential for
transport in HB chainsgsee, e.g., Ref§26,51)), such a phe- heavy iongoxygen$ is mainly formed due to the interaction
nomenon as stabilitgor symmetry switchings of the(anti-  between the water molecules inside the tube and the charged
)kink stationary states and relatéahtikink transmission at carbon atoms. Another 2C modgd1], where the discrete-
some velocities was not yet examined in detail for any of theness effects have been studied in detail by Cretegny and
2C models. As discovered numerically by Peyrard and RePeyrard[51] using a collective coordinate approach, is not
moissenef54], the switching effect occurs due to the two consistent with Fig. 1 and describes a more specific physical
factors, (i) the lattice discreteness aiil) the shape of the situation.
on-site potential in a kink-bearing model. The typical ex- It is not possible to provide @ouble-wellform of the
ample of this situation is the discrete nonlinear Klein-Gordonintrabond proton potential within a standard diatomic chain,
model with the Remoissenet-Peyrard substrate potgb&il  usingonly nearest-neighbor interactions. Therefore some ad-
This model is one component; however, switchings of thisditional interactions with appropriate parameters, which do
type should occur also in a 2C model if the ion degrees ohot allow the adjacent heavy ions to approach very close to
freedom allow the intrabond proton potential to take an ap-each other, should be involved into the model. For archetypal
propriate shape. Even though the switching effect is expectesimplicity of the 2C model, it is sufficient to impose either
to take place in the 2C case, it is not clear whether the softan external, single-well on-site potential for each heavy ion
ness of the heavy-ion sublattice does facilitate or oppose thisf the chain, periodically located at a sufficiently large dis-
effect. For instance, one would expect that dueself- tance[see Fig. 2a)] or instead(ii) a nearest-neighbor cou-
consistenformation of 2C(antikink states, instead of fixed pling between the adjacent heavy ions, with a sufficiently
switching points in the proton-proton coupling parameter,strong strength and a sufficiently large equilibrium distance
some finite intervalgwindows) resulting in stronger stabili- between thenfsee Fig. 2b)]. From a physical point of view,
zation of stability switchings could appear. both these cases are of interest. While the former case can
The present paper aims to proceed with the type of invesdescribe the dynamics of a HB chain formed in a water-filled
tigations undertaken previous[31] for the 1C kink model pore (e.g., in a carbon nanotube or bacteriorhodopstimne
for proton transport, taking into account the degrees of freelatter case belongs mostly to quasi-one-dimensional HB
dom of the heavy-ion subsystem, which are important for thesrystals or isolated macromolecules.
dynamics of the total two-sublattice system. Although sev- Since the chain is diatomic, in both the cases, the spec-
eral 2C models for proton transfers have been suggested sam of small-amplitude oscillations consists of two bands.
far, here we would like to restrict ourselves to a 2C modelln the former case, when th@ecouplegl heavy ions are
that contains aninimal number of couplingfike the con-  subject to the on-site potential, both the lower and upper
ventional models such as the monoatomic or diatofmior ~ bands are of the optical type, whereas in the latter case, when
B) Fermi-Pasta-Ulam chain, th¢* model, or the Frenkel- the coupling between the nearest-neighbor ions is included
Kontorova modg| contrary to a general model studied ear-and the whole diatomic chain is totally isolated from any
lier [26] by Savin and one of the autho(d.V.Z.) of this  external environment, the lower band is of the acoustic type.
paper, where all possible nonlineariti¢anharmonicities  Therefore we refer to these 2C models as the 2[Gée
have been involved. In the present paper we would like td=ig. 2(@)] and 2CA [see Fig. 2b)] models (or chains,
consider only thosgbasic or characteristicnonlinearities, respectively.
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The first question that arises while studying the discretamnassesm, and M being the masses of the proton and the
dynamics of a 2C HB chain is to understand how the heavyheavy ion, respectively. The ion and proton subsystems in-
ion component of the diatomic chain influences the transparteract with each other via the intrabond proton potential
ency for the propagation gantikinks with narrow profile.  formed by the neighboring ions. The assumption of fixed
Since the proton(antikink component appears to be ions can formally be reached in the linhit — o, resulting in
“dressed” by distortions of the heavy-ion sublattice, it is notthe 1C(monoatomig model, wherein only the proton part of
obvious that the kink transmission effect for narrow topo-the Hamiltonian31] has been taken into consideration. The
logical solitons in the 1C model with a double-Morse poten-total two-sublattice Hamiltonian that includes both the 2CO
tial [31] can be extended to the 2C topologi¢ahtijkinks.  and 2CA models can be written in the form
More precisely, it should be examined how the softness of L
the background sublattice affects the bifurcation structure _ Lo Moo Kp a2 K A2
and symmetry switchings of the protgantikink states. H _En [ Gt @t 2 (Grer = G)"+ 2 (Quea = Qo)

Another important specific consequence that arises owing
to the softness of the background of a HB chain is the obvi- Ko 2

. - o - o + Qn+V(un1pn):|v (1)
ous difference of the kink and antikink profiles. This “kink- 2
antikink asymmetry” originates from the dependence of the ) .
barrier height in the double-well proton potential on the dis-Where the heavy ions and protons are labeled according to
tance between the nearest-neighbor idfisthat form this the sequence
potential and the self-consistent description of the proton-ion ) ) ] ]
interaction. Indeed, under forming the X@k state, the pro- {+-+1Qn-1,8n-2 Qnv i Quve1, e - 1+
ton sublattice is localltretchedat the kink center implying  Here and in what follows we adopt the dimensionless de-
in this region a localizedtontractionof the heavy-ion sub-  g¢ription, whereg, is a dimensionless proton displacement of
lattice. As a re;ult, the barrier for proto_n transfers th_at de,'the nth proton in the hydrogen bridge from the middle of the
pends on the distance between the adjacent heavy ions ifz, and(n+1)th heavy ions, when these ions are in equilib-

creases for the kink. "rhis. is an intuitive arg'ument andim positionsQ,, is a dimensionless displacement of tita
therefore the opposite situation seems to occur in the centrg|

. o : - eavy ion from its equilibrium position; and=M/m, the
region of the 2Cantikink In fact, as shown below in this o 44iye heavy-ion mass. The displaceme@fs andq/s are

paper by using nw:neri_callyy exact me,’,thOdS' _th,e 2C antikinkcg1aq by the lattice constahtThe overdot denotes the dif-
profiles in both the “optical” 2CO and "acoustic” 2CA chains o antiation with respect to the dimensionless tivet/to,

appear to be rather sophisticated with unexpected Symm%\?heretozl\s’m, with &, being the activation energy for

Cﬁroton transfers over the barrier in the HB bridge when all
the heavy ions are fixed at a distar(éstice spacingl. The
coupling constants are given in the dimensionless f
=KpI2/ao (coupling between the protons in the adjacent HB
bridges, «;=K;|?/g, (coupling between the adjacent igns
and ko=K,l?/ gy (coupling of the ions with the on-site poten-
tial). The two-dimensional intrabond proton potenti@l, p)

is assumed to be a symmetric double-well functiovith

of forces in the 2C chains. As regards tlaatikink mobility,

it is expectedsee also Refl26]) that the mobility of the 2C
kink (negative ionic defegtshould be lower than that of the
antikink (positive ionic defegt Indeed, such a situation may
occur in realistic systems. Thus, as known from experiment
[56], the mobility of the positive ionic defects in ice exceeds
by one order the mobility of the negative ionic defects. This

phenomenon of asymmetric behavior of the 2C antlklnk%’espect to variable) of a general form with two minima at

(positive defectsand the 2C kinkgnegative defecjshas — : : :
been confirmed by molecular dynamics simulations previ-(u’p) (a,0) (more details on the topology of this potential

ously [26] using a general 2C model for proton transportg;eﬁr?é\ée{;]r'guRﬁfEeo]r)él-la-an?ttlce variables, and p, are
being a combination of the 2CO and 2CA models with addi- 9
tional nonlinearities involved.

The paper is organized as follows. In the next section, we
present the equations of motion for a general 2C chain model
that comprises both the 2CO and 2CA models and discuss Pn=Qn+1~ Qn. (2
the spectrum of small-amplitude oscillations. In Sec. Ill, we
find the discrete profiles of stationary kink and antikink so-
lutions, and analyze stability switchings for the 2CO and
2CA chains. Possible applications of the stability switching
effect are discussed in Sec. IV. Conclusions are given in
Sec. V. V(u,p) = [

Uh=0n— %(Qn + Qn+1)a

Similarly to Ref.[31], in order to have the explicit expres-
sion forV(u, p), we choose a pair of Morse potentials, placed
tail-to-tail as shown in Fig. 1, resulting in

a - coshBu)e P2 |2
: )
a-1

where the parametg8 measures the curvature along the

direction of the potential surface at0. The paramete8 is
The 2C chain model that describes the dynamics of thedjustable, while the other parametercan be computed

proton and ion interacting sublattices is a one-dimensionathrough the equilibrium distanag of a single Morse poten-

diatomic chain of coupled particles with two alternating tial [26,30Q using the relation

Il. THE TWO-COMPONENT MODEL
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a=zexp[A(; - ro)]. e I
Then the two equilibrium positionsat(at p=0) are found 15 (@) (o))
from the equationa=coshiBa). Throughout the paper we g 3%
takery=0.25 andu=17 (as an example of the hydroxide ion
OH"). The equations of motion that correspond to the Hamil- 5 10
tonian(1) take the form l —
0 0
P 0 1 k 2 3 0 1 k 2 3
qn = Kp(qn+1 =20, + qn—l) - Ev(unypn)v 5 30 20
n
) 20 © 1 ()
Qn = (Ki/M)(le - 2Qn + Qn—l) - (Ko/:Uv)Qn 3 C0 > V0 310 CO < V0
19 10
- [V(un—lupn—l) + V(Un,Pn)]- (6) 5
ndQy
Before studying the 2Qantikink states, let us consider % 1 k2 3 % 1T k2 3

the spectrum of small-amplitude oscillations. After the lin-

earization of the potentia(3) around one of the global FIG. 3. Two bands of small-amplitude oscillations fg= 10: (a)
minima (u,p)=(+a,0) and inserting this linearized expres- «p=10, x;=100, andx,=10; (b) x,=10, x;=5000, andx,=10; ()
sion into Egs.(5) and (6), we get the following dispersion #p=50, x;=100, andi,=0; (d) x,=3, x;=150, andk,=0.

law:

2 n e may be considered, depending on the ratiaqpind «;. The
wi(K) = Ak) £ A%(K) - 2B(K), (7) spectra of small-amplitude oscillations in the 2CA chain are
where depicteq in panelgc) aljd (d) of Fig. 3. FO( the acoustic
branch in the 2CA chain, the phase velocity of the small-
A= (kp+ K/ ) (1 - cosk) — C(1 + cosk)/2 amplitude waveds =w_(k)/k] attains a maximum in the
+Cla?+ (o - Dl + k2, limit k— 0. Its explicit value is
Kyt K
B=(1-cosk)[2(1 - cosk)x; + kol u+ Cla? = 1) Smax= ﬁ 9)
- : 2_1 -
X[2(1 - cosk)x; + kol + C(2a" — 1 — cosk) Note that the velocity9) coincides with the lower edge of
X (1 - cosk) p, the second band of admissible kink velocities in the con-
tinuum limit [30].
BZ
€= (az— 1),u,' ®) I1l. DISCRETE KINK STATES, THEIR STABILITY, AND

- . . . . BIFURCATIONS
Similarly to the standard case of the diatomic chain with

only a nearest-neighbor coupling involved, the dispersion re- All the possible(stable and unstablstationary profiles of
lation (7) also consists of two parts: the low-frequency the proton(antikink have been classified previouglyl] on

branchw_(k) and the high-frequency branah,(k). These
branches are depicted in Fig. 3 for both the 2G&=0 but
ko # 0) [see panelga) and(b)] and 2CA(k; # 0 but x,=0)

the basis of the 1C model. In particular, it has been shown
that besides théantikink states with a symmetric profile
centered at a heavy ion or a proton, there exist two other

[see panelgc) and (d)]. In the former case, all the oscilla- types of stationary solutiongi) (antikinks with anasym-
tions are of the optical type and therefore the 2CO chain ignetric profile and(ii) symmetric(antkinks with a zigzag-
“closer” to the 1C mode[31] than the 2CA chain. like profile. A close connection between the symmetric and

As the system parameters vary, both the branches changeymmetric solutions has been shown to exist in the region,
their shape getting more flat or steep as demonstrated by Figihere the ion-centered and proton-centef@autikink solu-
3(b), but due to “repulsion” between them, they do not inter-tions switch their stability. In the exactly solvable lim
sect. In the latter case, when the chain is isoléigg 0), the ~ —, one can write down explicitly the expression for the
upper branch describes the dispersion law of the opticalantkink profile (see also Ref{57]). The (antikink profile
small-amplitude oscillations while the lower branch is of theconsists of three distinct parts: the left and right tails, where
acoustic typgzero frequency ak=0). The 2C model given Uy attains exactly one of the two minima of the double-well
by the Hamiltonian(1) contains two characteristic velocities potential, and the core, where an arbitrary finite numiper

of small-amplitude waves in each of the sublatticeg:
EI\s"Kp/mp (in the proton sublattidgeandv,=I1VK;/M (in the

ion sublatticg. In the dimensionless description, these ve-

locities are measured in unitgty: spzcotoll=\s’;<p and s
=vote/I =Vk;/ u. In general, the two caseg> vy andcy<vy

=0,1,..) of protons can be found. The protons lie on the
barrier of the double-well proton potential, whose value is
constant in the intervdl-a,a) [see Eq(3) as— <]. In this
particular case, the stationaggntikink solutions can easily
be found from the equations of moti@h), fixing the heavy-
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ion positions withp,=0. Then the energy of th@ntikink
states in this limit can be calculated from the Hamiltorian
for any number of protons on the barriex

Em(kp) =M+ 2k,@°/(m+1), m=0,1,.... (10

Despite Eq(10) being obtained in the limit that describes ~
a mathematical idealization of the proton-ion interaction,
nevertheless, it is very instructive because it gives in very
simple terms an insight into the phenomenon of stability ,,
switchings of thgantikink stationary states. First, it is worth
to notice that Eqs(10) admit many(in fact, a countable sgt
kink solutions, each corresponding to an integeat a fixed
K- Obviously, in the limit of smalkp, the states with smaller
number of protons on the barrier have smaller energy, so
that the state witthm=0 is the most energetically favorable
one. Second, the energy dependencies of these solutions steu.

o intersect e?Ch other as Ionglqsincrease$this can easily FIG. 4. Two-component profiles of monotonic symmetaati-
be observed if the corresponding curves are plotted; see, €.Ginks in the 2CO chaifix; =0 andx,=5) with k,=20 andB=5: (a)

Fig. 4 of Ref.[31] for illustration). Therefore, the Crossing jo,_centered kink,(b) ion-centered antikink(c) proton-centered
points of the lines given by Eq¢10) with two different ik and(d) proton-centered antikink.

numbers of protons on the barrien, and m,, which take
place at certain critical values af, can be determined from profiles of the 2C kink and the 2C antikink, we study them
the equatiorEml(Kp):Emz(Kp). The most interesting case is separately.
that when the lines, which correspond to @mtkink state In general, this difference, clearly demonstrated by Fig. 4
with the lowest energy and the first state excited, intersectwe call it a “kink-antikink asymmetry); follows from the
What is happening in the vicinity of this point is a pitchfork asymmetric dependence of the double-Morse pote8)jain
bifurcation. An initially unstable symmetri@ntikink solu-  p (at the pointp=0). More precisely, due to the flatness of
tion (e.g., proton-center¢dbecomes stable, and two asym- this potential, the effect of stretching the heavy-ion sublattice
metric unstabl€antikink solutions appear. This situation ex- on increasing the barrier for proton transfers is not so crucial
ists in some small interval of the parametegy after which  as a contraction of this sublattice on lowering this barrier. As
the asymmetric(antjkinks disappear and the previously a result, the 2C kinks in the 2CO model, where the bound-
stable symmetric solutiofin this case, an ion-centered gne aries are fixed, are rather wide, whereas the 2C antikinks are
becomes unstable. If we take to be finite but large, the quite narronm(see Fig. 4. The insets show the profiles of the
above-mentioned situation will persist, at least, for the low-deformation of the heavy-ion component. Due to the fact that
energy(antkink solutions. Some of the “remnants” of the each ion is placed in the external on-site potential, the ion
lines given by Eqgs(10) will cross each othetwhile inter-  displacements tend asymptotically to z¢tioe ground stade
changing stability via pitchfork bifurcationseveral times as asnh— x«. Note also the symmetry change of the ion com-
long ask, increases, the higher-energy kink states may beonent of the antikink profile, when its center being localized
turned into zigzagantikinks or simply disappear. As long as at an ion passes to a protgcompare panelgh) and(d) of
B decreases, less and less number of the solutions with marig. 4]. Therefore the behavior of 2@ntikink profiles is
particles on the barrier survive, while only the proton- andnot so obvious and simple as in 1C kink-bearing models.
ion-centered states interchange their stability. Note that in the The (antkink profiles for the 2CA chain are shown in
limit 8— 0 the potential3) coincides with the well known Fig. 5. Here the difference between the kinks and antikinks is
¢* model. In the limit, when the paramet@iis too small, the also present, but in another context. Owing to the absence of
switchings disappear and the only “survivors” from the ex-the on-site potential for the heavy ions, the localized defor-
actly solvable limit are the twdantjkinks with different  mation of the ion sublattice has a steplike profile, similarly to
(proton- and ion-centergcsymmetries. For alk,, their en-  the proton component, but the orientation of these steps is
ergies are different, so no switching takes place. Thereforagain not obviougcompare panel&) with (b) and(c) with
we emphasize once more that the switchings, although ngtl) of Fig. 5 and note the sam@onotonically decreasing
present in the conventional models such asdhend sine- behavior of the ion-component profile©n the other hand,
Gordon ones, is a generic effect, which happens in a widsince the heavy-ion sublattice is isolated from any external
class of nonlinear Klein-Gordon models if the barrier of theforcing, the proton and ion displacements are arranged in
on-site potentialin our case, the intrabond proton potential such a self-consistent way that both the kinks and antikinks
is flat enough. appear to be rather narrow, despite lowering the barrier
Now we focus on numerical studies of kinks and anti- height for proton transfers with decreasing the ion-ion dis-
kinks in the 2C model for finite values of the curvatyBe tance. Intuitively, it seems that an opposite behavior should
We treat separately the 2CO and 2CA diatomic chains. Figeccur, but the total balance of forces in the 2C chain model
ure 4 demonstrates the symmetric stationary states for theppears to be rather complicated to draw correct qualitative
2CO model. Note that due to the difference between theonclusions. Notice also that for the heavy-ion sublattice in

o
=2}
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FIG. 6. Dependence of the energy of symmetric ion-centered

FIG. 5. Two-component profiles of monotonic symmetaati- antikink (curve 1 fand symmetric. proton-centereq antikidurves
)kinks in the 2CA chair(x; =5 andx,=0) with x,=20 andg=5: (@ ~ 2ad 9 on coupling constanky in the 2CO chair(x; =0 anduc
ion-centered kink,(b) ion-centered antikink(c) proton-centered '5)_ W'th B=5. Th_e upper_lr_ws_et shows more detal_led _behawor of the
kink, and(d) proton-centered antikink. antikink energyE in the vicinity of the stability switching, whereas

curve 3 corresponds to the antikink with asymmetric profile. The

. . . . _lower four insets show the profiles of proton-centered antikinks at
the 2CO chain, the ion positions at the boundaries are fixefyed «,=5. In all figures, solid lines correspond to stable and

(like Dirichlet boundary conditions whereas the boundary gashed lines to unstable states.
conditions for the ion sublattice in the 2CA chain are free

(like Neumann boundary conditions the upper inset of Fig. 6, where a new type of asymmetric
_ stationary solutions represented by curve 3 is shown to con-
A. The 2CO chain model nect the above-mentioned symmetric solutions via the bifur-

In this section, we deal with the stationa@ntikink so-  cation points. Therefore the bifurcation scenario in this case
lutions for the 2CO chain(k;=0 but x,+0). Using the completely coincides with that found for the 1C modste
above-mentioned numerical techniques, we compute the kinki9- 8 of Ref.[31]). o . . .
and antikink solutions from the anticontinuous limfi, ~Another (unstablg symmetric zigzaglike stationary anti-
—0). Varying the coupling constant, at a relatively weak !<|nk. solution with higher energies is represented by curve 4
interaction of the heavy ions with its substrake, we check N Fig- 6. Note that for a sufficiently sofe.g., x,~5) 2CO
how the(antikink energies change. In Figs. 6 and 7, we pIotCham! the_ proton component .Of the ant|I_<|nk solution takes a
the energy dependence on the coupling constgat differ- pecuhar Z|gzagllke shape as illustrated in the two Igft lower
ent curvaturess for the antikink, and in Fig. 8 for the kink. INS€ts of Fig. 6, contrary to the standard monotonically de-
These figures exhibit a close similarity to the results obtaine§"€asing@ntikink) shape known in the continuum limit. For
for the 1C mode[31]. Thus, in Fig. 6, curve 1 corresponds Stronger proton-proton couplinge.g., x,~20) the proton-
to the ion-centered antikink, whereas curve 2 corresponds to
the proton-centered one. We see that before the pgint 251,
=41.55, the energy of the ion-centered antikink is less than 2t
that of the proton-centered one, whereas the energies of these K15
solutions coincide, when we pass this point. At higher values
of «,, the situation becomes opposite; the energy of the
proton-centered antikink is less than the energy of the ion-
centered one. Therefore the interchanging of the antikink sta- 0 P
bility with the different symmetry after passing this point 6
takes place.

For the 1C mode]31], we have observed several switch- =
ings of stability, which take place along all the way up to the
continuum limit. Unlike the 1C limit, in the 2CO chain, the
number of switchings is determined by the interaction of the , , ,
heavy-ion sublattice with the on-site potential. More pre- 0 10 20 30 40
cisely, when this interaction is sufficiently weak, we observe
only one switching point. For stronger interaction, as we FIG. 7. Dependence of the antikink energyon the coupling
approach the 1C limit, the number of switchings increasesconstants, in the 2CO chairn(«;=0 andx,=5) with (a) 3=10 and
The region in the vicinity of the critical point is depicted in (b) 5=20. Solid lines show stable and dashed lines unstable states.

1}
0.5r
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3
(a)
M2
1 2/
A
0 53.4 536 53.8_ 54

0 20 x40 60

0 50 X 100 150

FIG. 8. Dependence of the kink enerfyon the coupling con-
stantk, in the 2CO chair{x; =0 andx,=70) with =10. Solid lines
show stable and dashed lines unstable states.

. . . 0 10 20 « 30 40 50
component tails of théproton-centeredantikink 2CO zig- p
zaglike profile become more smooth as shown in Fg).4 o _
Thus, proton-centered antikinks appear to be deformed t(gon':slghti' 3etﬂing§r:§h2§?e-a§tmk e_“(%'%m:‘ (t;‘)eﬁc_o;p("t;g
this specific(zigzaglike shape due to the deformation of the ~~ P g IR Ko™ e
intrabond proton potential3) caused by the ion displace- B—iol,)land(c) B=20. Solid lines show stable and dashed lines
ments, although at stronger proton-proton couplirgsthe unstable states.
influence of the heavy-ion sublattice on the proton profiles o
practically vanishes. sufficiently large values ok,, the switchings also occur for
In Fig. 7, we plot the dependence of the antikink energythe kink. In other words, in the limik,— o, the 2CO model
on the coupling constant, for higher values of the curva- is transformed into the _1C model, for which the switching
ture B. Here one can see that with the growth@fthe first ~ €ffect has been studied in detg1].
switching occurs earlier being more pronounced. Curves 1 in
panels(a) and (b) correspond to the ion-centered antikink
and curves 2 to the proton-centered one. They cross each
other atk,=15.97 andk,=11.24 for 3=10 andg=20, re- In this section, we discuss the switching effect that takes
spectively. One can see that for high@r the bifurcation place in the 2CA chain. Similarly to the 2CO chain, we have
scenario remains the same, wherein the asymmetric antikinddso investigated the same dependence of(@m)kink en-
solutions represented by curve 3 in Figaj7and curve 4 in  ergy on the proton-proton coupling, for different values of
Fig. 7(b) play the same role. B. In Fig. 9, we show the antikink energy as a function of the
In Fig. 7(b), one can observe the coexistence of the antiproton-proton coupling constant,. Panels(a), (b), and(c)
kink solutions of the same symmetry with the different num-correspond to the casgs=5, =10, andB=20, respectively.
ber of particles on the barrier. Curve 3 in this figure corre-In all the panels, curves 1 correspond to the ion-centered
sponds to the ion-centered antikink with two protons on theantikink, curves 2 to the proton-centered antikink, and curves
barrier. This coexistence originates from the linglt— oo. 3 to the asymmetric antikink stationary solutions. B35,
Zigzaglike antikinks also appear in these cases and they atbe first switching occurs at,=53.65. At this critical point,
represented by curves 4 and 5 in Figa)7 and curves 5 and the energies of both types of the antikink states coincide and
6 in Fig. 1b). after passing this point, the interchange of the stability of the
Figure 8 shows one switching for the kink stationaryion-centered and proton-centered antikink states takes place.
states. Here the transition of stability of the ion-centered kinkHere the bifurcation scenario is similar to that reported pre-
(curve 1) and the proton-centered kinlkcurve 23 occurs at  viously [31] for the 1C chain. At higher values @, the first
significantly stronger interaction of the ion sublattice with its switching occurs earlier; fog=10, it happens ak,=15,
substrate compared with the case of the antikink. and for8=20, it appears earlier. For such a large valugof
Thus, we have studied the dependence of (Hrgi)kink  we have observed the coexistence of the states with the same
energy on the proton-proton coupling constaptn the 2CO  symmetry, but with the different number of protons on the
model. As expected, similarly to the 1C chain for protonbarrier; in Fig. 9c), curve 4 corresponds to the ion-centered
transfers, we have observed the stabiltymmetry switch-  antikink solution with two protons on the barrier. However,
ings and the pitchfork bifurcations associated with themthis solution seems to be unstable for all valuescg# 0.
However, in the case when the heavy-ion sublattice is soft Figure 10 illustrates one switching for the kink. One can
(e.g., the constank, is not so largg this similarity takes see that the switching occurs at higher curvatyeand the
placeonly for the antikink but not for the kink state. Only for parameters of the interparticle interactions and «;. Note

B. The 2CA chain model
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3 ' ' == for interatomic forces are uncertain, except for recnini-
2= tio results obtained by Pomés and Rol2]. Besides the
2.5} L biological systems consisting of HB chains of water mol-
7 ecules, whereliscretetopological soliton solutions may play
/7 an essential role, at present carbon nanotubes filled by liquid

water are of great interefi3,14,16. These nanotubes show
great potential for use in nanodevices. Nanotubes provide

K1.5r cylindrical channels similar to pipes used in the macroscopic
/ world. Typically, the inner diameter of a carbon nanotube is
i/
412 less than 10 nm. As a consequence, due to so small cross

section, the interaction of water molecules with the nanotube
walls is conceivably strong that prevents fluidic throughflow.
This viewpoint has been supported by experiments on the
behavior of water in nanosize channgls]. In particular, it
: : : was shown that for extremely thin channels, which are com-
0 50 100 150 200 S o e :
" parable in size with interatomic distances, the continuum ap-
° proach of fluid dynamics is not valid anymore. Moreover, the
FIG. 10. Dependence of the kink ener@yon the coupling Strong interaction between the water penetrated inside the
constantk, in the 2CA chain(x;=60 andk,=0) with 4=20. Solid tube and the wall appears to be of chemical nature. As a
lines show stable and dashed lines unstable states. result, one-dimensional water wires are believed to be
formed and the kink mechanism of proton transfers should
take place in these systems. Recerjl¢,16, this experi-
mental evidence has been supportedabyinitio simulations

that even at these large values, there are no intersectidf the dynamics of a carbon nanotube placed in a water res-

points between the ion-centered soluti@urve 3 and the ervoir. As observed from these studies, the initially empty
asymmetric solutioricurve 3. central channel of the tube was rapidly filled by water from

To summarize, we have seen that for the 2CA chain, somf€_reservoir, forming a preferentially aligned water wire
properties, which are characteristic for the 2CO chain Sur\_Nlth each water dipole oriented in the same direction parallel
vive (such as stability switchings or the coexistence of t\NotO the nanotube axigsee, e.g., Fig. (t) of Ref. [14]].
solutions of the same symmejr Carbon-water interface energies have been calculated, sup-

Y y porting a strong binding of an individual water molecule

inside the nanotube to its wall. These studies have also

0.5

IV. PROTON TRANSPORT AND THE STABILITY shown the existence of stable complexes.kD;, and single
SWITCHING EFFECT IN WATER-FILLED CARBON ions OH.
NANOTUBES As follows from the above description of structure and

. ) , ) ) dynamics of water-filled carbon nanotubes, these systems

The most interesting topic, where toéscrete(antikink  can be modeled by the 2CO chain model. However, so far
states may play an essential role, is proton conduction in HByr study of both the 2C models has been performed in the
chains of water molecules. Even though t{teo-stage¢  dimensionlesslescription that involves four parameters: the
mechanism of proton conduction in these chains was formuthree stiffness constants of the ion-ion, ion-substrate, and
lated long ago[1-5 that involves the propagation of two proton-proton couplings; ,, and the curvature of the Morse
types of defectgionic and bondiny the molecular basis for potential 8. The study has been focused on the existence of
the fast proton translocation along HB chains is not yet fullyswitchings of stability, which occur at certafuritical) val-
understood. In the present paper, we restrict ourselves only toes of these parameters. In order to know whether tfdise
the study of the existence and stability properties ofitlméc ~ mensionless values have any physical sense, we need to
defects, which due to the cooperative nature of hydrogempass to the corresponding system parameters given in full
bonding appear to bextendedobjects. The dynamics of dimensions, using the relationé{ilolp:I‘Zso;q,o,p and b
these defects can be described in terms of the soliton theory,3/1 with | being the length of thé:--X bond ande, the
so that the extended positive and negative defects are nothirgarrier height in the proton potential. Thus, according to the
more than topological antikinks and kinks, respectively.estimates based upon crystallographic and spectroscopic
More precisely, theghydronium) H;O" ion can be treated as measurements for icgsee Ref[26] and references thergin
an ion-centered antikink, théhydroxide OH™ ion an ion-  1=2.76 A (the lattice constant for icg56]), £,=0.3 eV, Kp
centered kink, the Zundel iofHsO3) a proton-centered an- =22 N/m, K;=13 N/m, K,=4 N/m, andb=7.4 A" This
tikink, and so on. Furthermore, one may also say that thease corresponds to the following dimensionless valugs:
so-called Grotthuss mechanism occurs olagally, in the  =33.8,k=20.0,x,=6.2, andB=20.4. Someb initio calcu-
region where thgantikink states are formed and stabilized. lations [27] give b=2.7 A™* for water systems, while;,

For two decades, a linear HB chain of water molecules=0.3 eV. Other computation$38] have determined the
(“proton wire”) was considered as a theoretical model forproton-proton interaction K,=80 A2 kcal/mol
proton transfers across biological membrafgls particu- =56 N/m(x,=60), £5=10 kcal/mol=0.4 eV.
larly through bacteriorhodopsin or half channels in the trans- On the other hand, the critical values at which the first
membrane f portion of ATP synthase. However, exact dataswitching of stability occurs in both the 2C chains can briefly
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be rewritten as follows. In the 2CO chajr,=0 andk,=5), the external sites provides the existence of the intrabond pro-
for the antikink k,=16 if =10 and x,=11 if =20, ton potential of a double-well form. The second one is the
whereas for the kink we have,=70 andk,~ 100 if 3=10.  two-sublattice chain isolated from any external forces and
In the 2CA chain(x,=0 and «;=5), for the antikink «, therefore its lower branch of the linear spectrum icbus-
=54, 16, and 11 if3=5, 10, and 20, respectively, whereas tic type. These two chains havg been referred above as to the
for the kink we havex;=60 andx,=90 if 3=20. From the ~2CO and 2CA models, respectively.
comparison of these values with the realigtiinensionless Drawing the analogy between the 1C and 2C models, we
estimates given abovec,~6, «;~ 20, k,~30—60, andB have c_arrled out a numerical study_of stationganti)kink
~7-20 and the main result of Sec. l{according to which ~ States in both the 2CO and 2CA chains. As a result, we have
for larger ; , and B the first switching of stability occurs at found tr;at 'the ?‘ta_bmty sk\]/\.ntchlng e:]fect also oc?urs' mh'the
smallerx,), one can conclude that in realistic systems at Ieasgv?j'estlé?rﬁitrt]'gg gyael?ésltri]cittylso??r?ee,htesv;}:(r)nnbitr)r?]pz\ggﬁt'lrtlr?:
gScehS\;vt(\:/t/]iltr(]:%inmgaéeOg;usr tfgrbt:i:rndtltl?gélivi Z'Jje T%;Z% k'gsk i‘sxf_ronger is the coupling of heavy ions either between them or
lustrated b 1 and 2 of Fi 6 'd 8 i ' ith an extgrnal on-site potentlal, t'he larger is the'nu.mber. of
ustrated by curves 1 an or FIgs. and o, il stability switchings. This is the main result of our findings in
~50-100, withk,=5 and =10, the proton-centered anti- o prasent paper because it was not possible at all to draw
kink that describes the 4; ion and the ion-centered kink jnqitively any conclusion on the behavior of the transpar-
that corresponds to the OHon are stable. Moreover, the ancy regime(points or windows on the elasticity properties
antikink mobility close to the point of stability switching is of the background heavy-ion sublattice. Moreover, one could
maximal, while the Peierls-Nabar(®N) barrier for the OH  think that due to the softness of the background heavy-ion
ion is f|.n|te. This is why the molecular dynamics simulations chain, even windows of finite size might exist in ttenti-
by Savin and one of the authai.V.Z.) of the present paper kink transparency along the 2C chain used to describe the
[26] have revealed the highéoy one order mobility of the proton transport in HB chains.
positive ionic defects compared to the negative defects. Similarly to the 1C model, in the 2C chain, the asymmet-
Finally, it should be noticed that the studies in this papefic and zigzaglike 2Qantikink solutions have been shown
have been performed favide regions of the system param- o exist. The bifurcation scenario of stability switchings in
eters, whereas in nature, particularly in biology, these paramne 1C and 2C models is the same and therefore we did not
eters are fixed. These parameters might be varied under syfscus on this issue in the present paper. However, in the 2C
thesis of nanofluidic devices, e.g., varying the occupancy ofhain, we were dealing with a kink-antikink asymmetry, the
water molecules inside nanotubes and possibly the periodproperty being absent in the 1C chain. As a result of this
(and therefore the parametgy of a HB chain. asymmetry, the stability switchings for the kink and the an-
tikink occur at different values of the system parameters.
Since the PN barrier at the stability switching points practi-
V. CONCLUSIONS cally vanishes, on the basis of the results of Sec. Ill one can
conclude that the mobility of the kink is always lower than
In this paper, we have studied the solitary wave excitathe mobility of the antikink in both the 2CO and 2CA chains.
tions (2C kinks and antikinks the whole variety of their Thijs result supports the molecular dynamics simulations for
narrow stationary profilegstates, switchings of their stable the 2C model, where the proton-proton coupling was of the
states to unstable ones and vice versa, and their propagatigthylomb type[26]. The main feature of the 2C model lies in
along a diatomic(2C) chain comprising the proton and |owering the intrabond barrier in the hydrogen bond by vir-
heavy-ion sublattices. The heavy-ion component creates thge of the heavy ions. As a result of this barrier change, one
two-dimensional potentiaV/(u, p), with proton(u) and ion  can observe the lowering of the energy states and deviations
(p) displacements, that plays a key role for proton transfergf the ion- and proton-centergantikink profiles from the
within the hydrogen bond. We have considered the functiortorresponding 1C configurations. Owing to softness of the
V(u,p) as a 2C generalization of the intrabond proton potendiatomic chain, the 2C profiles appear to be rather narrow.
tial constructed earlief31] from two single Morse-type Moreover, their shape appears to be quite sophisticated and
functions placed tail-to-tail at some distance, providing anot so obvious and “monotonic” as in the corresponding 1C
double-well shape of the functioi(u, p) in the variableu at  kink-bearing models, crucially depending on the model pa-
p=0. As emphasized previouslB0,31], this potential has rametergnotice, for instance, the “anomalous” symmetry of
been found to offer the best combination of accuracy in rethe Q, profiles plotted in Figs. @), 6(b), and &d) as well as
producing quantum-mechanically computed potentialghe g, profiles shown in the insets of Fig].7
[27,29. The frequency spectrum and phase velocities of Finally, one should emphasize that the role of one-
small-amplitude oscillations have also been studied for thesdimensional chains of HB water molecules in mediating pro-
models. ton transfers through membranes is of fundamental impor-
The studies here have mainly been done for two diatomitance not only in a number of biological systems, but also in
models of archetypal simplicity that admit 2C topological nanotechnological processes. Since the discovery of carbon
soliton solutions. The first of these is a diatomic chain, wherenanotubes, which can serve as models for biological proton
each heavy ion is subject to an on-site potential of singlechannels, many interesting properties of these tubes have
minimum topology, so that its linear two-band spectrum con-been revealed. In particular, recent experiments and simula-
sists of onlyoptical linear oscillations. The distance between tions [12-16 showed that water can fill nanotubes forming
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HB chains that provide excellent conductors for proton cur-ously studied in the present paper from a general point of
rents through pores across membranes. Protons are believeiéw may be used in making various nanofluidic devices.

to be conducted along the chain of water molecules inside a
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