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Momentum transfer in complex plasmas(systems consisting of ions, electrons, neutrals, and charged mac-
roscopic grains) is investigated assuming an interaction potential between the charged species of the screened
Coulomb(Yukawa) type. Momentum transfer cross sections and rates are derived. Applications of the results
are discussed; in particular, we classify the possible states of complex plasmas in terms of the momentum
transfer due to grain-grain collisions and its competition with that due to interaction with the surrounding
medium. The resulting phase diagrams are presented.
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I. INTRODUCTION

Complex plasmas consist of ions, electrons, highly
charged micron-sized particles(dust grains), and neutral gas.
Depending on the strength of the interaction(coupling) be-
tween the grains(which can be easily varied experimentally
over a fairly wide range), complex plasmas can exhibit prop-
erties of crystals, liquids, and gases. In addition, the overall
dynamical time scales associated with the grain component
are relatively long and the grains can be easily visualized.
The unique feature of observing kinetic properties in real
space and time provides the opportunity to study generic
universal processes(e.g., phase transitions, crystallization,
relaxation to the final equilibrium state, self-organization and
scaling in fluid flows, transition from “matter” to particles,
etc.) in a detail not possible so far, and at a more fundamen-
tal level. For the current state of the field, see the recent
review papers[1–9].

The momentum exchange between different species plays
an exceptionally important role in complex plasmas. For ex-
ample, the momentum transfer in collisions with the neutral
gas “cool down” the system, in particular grains and ions,
introducing some damping. The forces associated with the
momentum transfer from electrons and ions to the charged
grains—i.e., the electron and ion drag forces—often deter-
mine static and dynamical properties of the grain component,
affect wave phenomena, etc. The momentum transfer in
grain-grain collisions and its competition with the momen-
tum transfer in grain-neutral gas collisions governs grain
transport properties, scalings in fluid flows, etc. While vari-
ous aspects of electron-ion interaction(collisions) as well as
electron, ion, and grain collisions with neutrals have been
well studied, comparatively little work has been done on
grain-electron, grain-ion, and grain-grain collisions.

In this paper, we report on a detailed analysis of the col-
lisions involving dust grains. Assuming a screened Coulomb
(Debye-Hückel or Yukawa) interaction potential(attractive
or repulsive), the momentum-transfer cross sections for pair
collisions of particles are calculated. We show that for typi-
cal complex plasma parameters, the theory of Coulomb scat-

tering is applicable only for electron-grain collisions, while
for ion-grain and grain-grain collisions, different approaches
should be used. Based on numerical calculations, the re-
quired approaches are developed, the role of finite grain size
is investigated, and analytical approximations for the
momentum-transfer cross sections are proposed. The latter
are used to estimate the characteristic momentum-transfer
rates in complex plasmas. This provides us with a unified
theory of momentum transfer in complex plasmas in the pair
collision approximation.

Some direct applications of the results are considered.
First, we briefly discuss calculations of the electron and ion
drag forces. Then we develop criteria to classify the possible
states of complex plasmas in terms of the momentum trans-
fer. In particular, we identify the conditions for different
states: ideal and nonideal plasma, as well as two different
types of granular medium. Finally, we investigate the hierar-
chy of the momentum transfer in grain-grain and grain-
neutral collisions and show that complex plasmas can exist
in a broad range of dynamical states: one- and two-phase
fluids and tracer particles. The obtained results can be impor-
tant for “engineering” experiments which aim to make use of
special properties of complex plasmas.

II. MOMENTUM-TRANSFER CROSS SECTION

A. Approach

We consider pair interactions and assume ballistic trajec-
tories of particles during collisions(i.e., we neglect any type
of multiple collisions). We assume a Yukawa potential for the
interaction between charged particles in complex plasmas,

Usrd = − sU0/rdexps− r/ld, s1d

whereU0.0 for attraction andU0,0 for repulsion. We also
use Maxwellian velocity distribution functions for all spe-
cies. These assumptions allow us to simplify the calculations,
but we should bear in mind that not all of them are neces-
sarily satisfied in reality. A few examples are as follows:
deviation of grain potential from the Yukawa form[1,6,8,10],
dependence of the grain charge on intergrain distance[8],
destruction of ballistic trajectories by collisions with neutrals
[11], etc. Nevertheless, in many cases this simple model does*Electronic address: skhrapak@mpe.mpg.de
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provide reasonable predictions and hence it can be consid-
ered as the basis for more sophisticated models.

We consider a collision between two particles of masses
m1 andm2 interacting via an isotropic potential of the form
of Eq. (1). This problem is equivalent to the scattering of a
single particle of reduced mass,m=m1m2/ sm1+m2d, in a
field Usrd (whose center is at the center of masses of the
colliding particles). First, we study the case of pointlike par-
ticles. The role of the finite grain size will be addressed later.
The momentum-transfer(scattering) cross section is given by
(see, e.g.,[12])

ss = 2pE
0

`

f1 − cosxsrdgrdr, s2d

wherer is the impact parameter andx is the deflection(scat-
tering) angle. The latter depends on the impact parameter in
the following way, xsrd= up−2wsrdu, where wsrd
=rer0

` drr−2f1−Ueffsr ,rdg−1/2 andUeffsr ,rd=r2/ r2+Usrd /« is
the effective potential energy(normalized by the kinetic en-
ergy «=mv2/2). The distance of closest approach,r0srd, in
the integral above is the largest root of the equation

Ueffsr,rd = 1. s3d

Using these expressions,ss can be calculated for arbitrary
potentialUsrd.

B. Scattering parameter

For the Yukawa interaction potential, the following impor-
tant dimensionless parameter can be introduced[13–16]:

bsvd = uU0u/mv2l, s4d

which is the ratio of the Coulomb radius,RC= uU0u /mv2, to
the screening lengthl. It characterizes the “scattering
range”: The scattering is “short range” when the characteris-
tic distance of interactionR0,RC, introduced through
uUsR0du=«, is shorter than the screening length, i.e., when
bsvd!1. In the opposite limit,bsvd@1, whenR0@l, the
scattering is called “long range.” Also the normalized
momentum-transfer(scattering) cross section,ss/l2, de-
pends only onb [15–17]. Hence,bsvd is aunique parameter
which describes momentum transfer for Yukawa interactions.

Note that the theory of Coulomb scattering, which as-
sumes an unscreened Coulomb potential and a cutoff at
rmax=l in the integral(2), is widely used to describe mo-
mentum transfer in collisions between charged particles(e.g.,
electron-ion collisions in plasmas). It holds for RC,R0!l
or b!1, i.e., in the limit of short-range scattering. However,
for bù1, the theory of Coulomb scattering is not applicable:
In this case, the scattering rangeR0 is larger than the screen-
ing length and a considerable fraction of the interaction oc-
curs outside the Debye sphere providing substantial contri-
bution to the momentum transfer. The use of a cutoff at
rmax=l considerably underestimates the momentum transfer
in this case[13–16].

Now let us estimate the characteristic values of the scat-
tering parameter for different types of collisions involving
dust grains. Taking into account thatuU0u,uZue2 for grain-

electron and grain-ion collisions, anduU0u,Z2e2 for grain-
grain collisions, we get the following hierarchy of character-
istic scattering parameters:(i) Electron-graincollisions,bT

ed

,zsa/ld,0.01–0.3;(ii ) ion-grain collisions, bT
id,zt sa/ld

,1–30;grain-grain collisions,bT
dd,zdsa/ld,103–33104.

Here the subscript “T” stands for the thermal velocity,vT

=ÎT/m, with T and m the temperature and the mass of the
lightest species, andZ anda are the grain charge number and
grain radius, respectively. We have used the following di-
mensionless parameters:z= uZue2/aTe, grain surface potential
in units of electron temperature;zd=Z2e2/aTd;zuZusTe/Tdd,
normalized potential energy of two dust grains which are just
touching; andt=Te/Ti, electron-to-ion temperature ratio. We
also assumedz,1, t,102, a/l,0.01–0.3,uZu,103, and
zd=zuZut=105 (for Td=Ti), which is typical for complex plas-
mas.

These estimates show that the scattering is typically short
range only for electron-grain collisions. At the same time,
scattering in ion-grain and grain-grain collisions is long
range, and the theory of Coulomb scattering fails to describe
such collisions. In connection with ion-grain collisions, this
issue was recently discussed in detail in Refs.[13–16].

C. Calculations for pointlike particles

We calculated numerically the momentum-transfer cross
sections forb in the range from 0.1 to 103, both for attractive
and repulsive Yukawa potential. First, the dependence of the
scattering angle on the impact parameter,xsrd, was obtained.
Then, Eq. (2) was numerically integrated yielding the
momentum-transfer cross sections. The results are presented
in Figs. 1 and 2.

The scattering anglexsrd decreases monotonically for re-
pulsive interactions for allb. In contrast, for attractive inter-
actions a monotonous decrease of the scattering angle is ob-
served only forb&1, while for 1&b&bcr it becomes a
nonmonotonous function ofr, and atb.bcr.13.2 the scat-
tering angle diverges at “transitional” impact parameterr*

.lsln b+1−1
2ln−1bd. The divergence of the scattering angle

for attractive interactions arises from the barrier in the effec-
tive potential energyUeff, which emerges atb.bcr. Note
also that whenb!1, the trajectories are mainly deflected
within the Debye radius(at r /l&1). In the opposite case
b@1, the scattering angle can be substantial even forr.l,
both for repulsive and attractive interaction.(This is another
demonstration of the fact that the Coulomb scattering theory
is inapplicable forb*1, as discussed above.)

The results obtained for the momentum-transfer cross sec-
tion (Fig. 2) show the following features: The cross section
for the attractive potential is always larger than that for the
repulsive potential(they converge in the limit of short-range
scatteringb!1). The cross section for the repulsive poten-
tial grows monotonically, while for the attractive potential a
local maximum and minimum appear nearb=bcr. This non-
monotonic behavior is a consequence of the bifurcation
which the scattering anglexsrd experiences in the range 1
&b&bcr. It is also clear from Fig. 2 that the Coulomb scat-
tering theory(shown by the dotted line) considerably under-
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estimates the cross section for both repulsion and attraction
whenb*1.

Now we consider different limiting cases when an analyti-
cal description for the momentum-transfer cross section is
possible.

Repulsive potential.In the limit of short-range scattering,
the Coulomb scattering theory is applicable as discussed
above. The well known expression for theCoulombscatter-
ing cross section

ss
C/pl2 = 2b2lns1 + 1/b2d s5d

is shown by the dotted line in Fig. 2. Forb*1, Eq.(5) is no
longer applicable, however an asymptotic analytical approxi-
mation for the caseb@1 can be obtained as follows: The
parameterb characterizes the “steepness’ of the Yukawa po-
tential. The relevant characteristic of the steepness is the pa-
rameterg0= ud ln Usrd /d ln r ur=R0

, which is roughly the ratio
of the interaction radiusR0 to the depth of the interaction
“shell.” Depending on a value ofg0, the potential can be
called “hard”sg0@1d or “soft” sg0!1d. Physically, the case
g0@1 corresponds to a rapidly decreasing potentialUsrd, so
that the momentum is mostly transferred in a spherical
”shell” of radiusR0 and thickness,R0/g0. Hence, the scat-
tering resembles that of a hard-sphere potential[18]. For an
arbitrary potential, the expansion of thehard-sphere
momentum-transfer cross section over the small parameter
g0

−1 yields [19]

ss
HS/pl2 . sR0/ld2f1 + g0

−1s3 − 4 ln 2d + Osg0
−2dg. s6d

For the Yukawa potential,g0=1+R0/l. Figure 3 shows the
dependence of the interaction radiusR0 on b [obtained from
Eq. (3) for r=0]. One can see thatR0@l for b@1 and
henceg0@1. We note that for the Yukawa interaction poten-
tial, a rapidly converging analytical solution forR0sbd can be
obtained. Keeping only the first two terms of the expansion,
we get

R0/l . ln 2b − ln ln 2b. s7d

For very largeb, the first term is dominant so thatR0
.l ln 2b.

Attractive potential.For short-range scatteringsb!1d,

FIG. 2. (Color online) Momentum-transfer cross section,ss,
normalized topl2 (wherel is the screening length), vs the scatter-
ing parameterb. The upper data are for attractive and the bottom
data are for repulsive screened Coulomb potentials. Crosses corre-
spond to our numerical calculation, circles are numerical results by
Hahn et al. [20], and triangles are numerical results by Lane and
Everhart[17]. Solid curves correspond to the following analytical
expressions: 1, Eq.(8); 2, Eq. (9); 3, Eq. (6). The dotted line cor-
responds to the Coulomb scattering theory[Eq. (5)]. All the results
are for pointlike particles. Vertical dashed lines conditionally divide
the b axis into three regions:b!1 is typical of electron-grain col-
lisions; 1&b&30 is typical of ion-grain collisions;b@1 is typical
of grain-grain collisions. For details, see text.

FIG. 3. The normalized interaction radiusR0/l, wherel is the
screening length, vs the scattering parameterb for the screened
Coulomb potential. The solid line corresponds to the exact solution
of Eq. (3) with r=0, the dashed line shows an approximate solution
given by Eq.(7).

FIG. 1. (Color online) Scattering anglex vs the normalized
impact parameterr /l, wherel is the screening length. The numeri-
cal calculations for a repulsive(a) and attractive(b) Yukawa inter-
action potential are plotted for three different scattering parameters
b=0.3, 3, and 30. The vertical dotted line atr.4.2l in (b) indi-
cates the transitional impact parameterr* at whichx diverges.
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the theory of Coulomb scattering is applicable. The
momentum-transfer cross section is the same as for the re-
pulsive potential and is given by Eq.(5). It was shown re-
cently by Khrapaket al. [13,14] that even for moderateb the
extension of the standard Coulomb scattering theory is pos-
sible by taking into account collisions with impact param-
eters abovel. In Refs.[13,14], the maximum impact param-
eter is determined by taking all the trajectories with a
distance of closest approach shorter thanl into account. The
definition of the maximum impact parameter(cutoff) then
becomesr0srmaxd=l instead ofrmax=l (note that both defi-
nitions are equivalent in the limitb!1). This leads to a
modification of the Coulomb logarithm. Themodified Cou-
lomb momentum-transfer cross section can be written as

ss
MC/pl2 . 4b2lns1 + 1/bd. s8d

Although the approach of[13,14] is not rigorous, Eq.(8)
shows very good agreement with numerical results[20,21]
up to b,5 (see Fig. 2) and agrees exactly, of course, with
Coulomb scattering theory forb!1.

The case of long-range scatteringsb@1d requires a new
physical approach. Such an approach was formulated in Ref.
[15]. The existence of the potential barrier inUeff at b.bcr
and the discontinuity inxsrd it causes play a crucial role for
the analysis of collisions. As shown in Fig. 1, the dependence
of the scattering angle on the impact parameter in the limit of
long-range scatteringsb=30d has the following features: For
“close” sr,r*d collisions we havex→p at r→0, andxsrd
grows monotonically untilr=r* , where it diverges; for “dis-
tant” collisions sr.r*d, the scattering angle decreases rap-
idly, due to the exponential screening of the interaction po-
tential.

It is convenient to consider the contributions from close
and distant collisions into the momentum transfer separately.
As shown in Ref.[15], the behavior ofx as a function of the
normalized impact parameterr /r* is practically independent
of b for r,r* . This self-similarity allows us to present this
contribution to the cross section(normalized topl2) as
.Asr* /ld2, where A=2e0

1f1−cosxsjdgjdj and j=r /r* .
The numerical factorA can be determined by direct numeri-
cal integration. It was found thatA=0.81±0.01 for allb in
the rangebcrøbø500 [15]. For distant collisions, the scat-
tering angle decreases rapidly in the vicinity ofr* . This
makes it possible to apply the small-angle approximation to
estimate their contribution to the cross section(normalized to
pl2) as.2.0+4.0 ln−1b [15]. Combining these contributions
and keeping terms up toOs1d, we can write the momentum-
transfer cross section in the limit oflong-rangescattering as

ss
LR/pl2 . 0.81sr* /ld2 + 2.0, s9d

where sr* /ld2. ln2b+2 ln b. Expression(9) is valid for b
ùbcr and pointlike particles. Figure 2 shows the very good
agreement between Eq.(9) and numerical calculations. A
sufficiently accurate and even simpler approximation is
ss

LR.prp
2, which will be further justified in the next section

where the finite size of the dust grain is taken into account.

D. Role of finite particle size

We consider the collision of two(spherical) particles in-
teracting via a Yukawa potential and havingfinite radii (b1
and b2). The problem is equivalent to the scattering of a
pointlike particle at the center of radiusb=b1+b2, i.e., a new
length scale enters the problem. In contrast to the case of
pointlike particles, where the scattering is described by the
single parameterb, we now have a second parameter,b/l. If
the distance of the closest approach,r0, is smaller thanb,
then the direct(touching) collision takes place.

For the repulsive interaction(electron-grain and grain-
grain collisions), the orbital motion limited(OML) approach
[22,23] is always applicable and yields for the maximum
impact parameter corresponding to touching collisions(as-
sumingb!l)

rc . bÎ1 − 2bsl/bd.

The momentum-transfer cross section in touching collisions
(assuming absorption for electrons and specular reflection for
the grains) is sc=prc

2, so that

sc . Hpb2f1 − 2bsl/bdg, b , b/2l

0, b ù b/2l.
J s10d

Obviously, we getb=a for electron-grain collisions andb
=2a for grain-grain collisions. Forb&a/l!1, the Coulomb
scattering theory can be used to estimate the contribution
from scattering. Comparing Eqs.(5) and (10) we get an ap-
proximate condition when the momentum transfer in touch-
ing collisions dominates over that due to the Coulomb scat-
tering. For both types of collisions, this condition is

b & sa/ldL−1/2, s11d

whereL. lns1/bd@1 is the Coulomb logarithm. Recalling
that bT

ed,zsa/ld and bT
dd,zdsa/ld and sincez,1, the ef-

fect of finite size can usually be neglected for electron-grain
collisions. For grain-grain collisions, it is substantial pro-
vided zd=zuZusTe/Tdd!1, i.e., for extremely high grain tem-
peraturesTd@ uZuTe.

The effect of finite size is more important for attractive
(ion-grain) interactions. As in previous consideration, ion
collection occurs if the impact parameter is smaller thanrc.
If rc,r* , then Eq.(3) has a single root and the OML theory
can be applied yielding for attraction(b=a for ion-grain col-
lisions)

rc = aÎ1 + 2bsl/ad ; rc
OML. s12d

At very largeb, however,rc
OML ~Îb exceeds the transitional

impact parameter,r* ~l ln b. That means that the OML ap-
proach is no longer applicable, because for particles having
rùr* , Eq. (3) has multiple roots. These particles experience
distant collisions, withr0 considerably larger thanl, and
therefore are not absorbed. Thus the absorption radius for
very large b equals the transitional impact parameter:rc
=r* .

The total momentum-transfer cross section for finite-size
particles consists generally of collection and scattering parts:
sS=sc+s̃s. The collection momentum-transfer cross section
is sc=prc

2. The scattering parts̃s is given by Eq.(2), with
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the lower limit of integration replaced byrc. For a repulsive
potential collection is unimportant andsS, s̃s,ss. The de-
pendencesSsbd for an attractive potential is shown in Fig. 4
for different values ofa/l. One can see from Fig. 4 that the
momentum transfer can decrease or increase(in comparison
with pointlike particles), depending on the values ofa/l and
b. For sufficiently largeb (whenrc=r*), the total cross sec-
tion is sS /pl2.sr* /ld2+2.0. Asb→`, the relative contri-
bution of distant collisions vanishes andsS tends toprp

2, the
collection cross section. At the same time, the momentum-
transfer cross section is not very sensitive to the particle
size—the deviation ofsS from ss does not exceed,50%.
Hence for practical purposes the total momentum-transfer
cross section,sS, can be approximated quite well by the
scattering cross section for pointlike particles[Eq. (8) for
b&5], or by prp

2 in the limit b@bcr.13.2 [15,16].
Concluding this section, we would like to comment on the

applicability of the OML approach to calculate the ion col-
lection by grains. As we found above, OML is applicable
whenrc

OML ør* . For a Maxwellian ion velocity distribution
there arealwayssufficiently slow ions, for which this condi-
tion is violated[24]. However, if this inequality is satisfied
for most of the ions, corrections to OML are small. This
requiresrc

OML to be considerably smaller thanr* for b=bT
id.

Using our dimensionless parameters, we can rewrite this
condition in the form

Î2ztsa/ld & lnfztsa/ldg. s13d

[Note that we consider the case whenbT
id;ztsa/ldù13.2.]

It applies when the self-consistent potential distribution
around the grain is well represented by a screened Coulomb
form [6,23]. For typical complex plasma parametersz,1
and t,100, we get that OML is applicable fora/l&0.2,
i.e., for most cases of interest. When OML fails, it overesti-
mates the ion flow on the grain and hence underestimates the
floating potential. Note that the ion-neutral collisions, which
are neglected in our consideration, can also affect the grain
charging. The collisions “eliminate” the ion angular momen-

tum, which enhances the ion current, and, thus suppress the
floating potential[23,25–27].

III. MOMENTUM-TRANSFER RATES

Momentum-transfer rates can be derived as follows: Let
us consider atestparticle(dust grain) moving with a velocity
ut through a gas offield particles (electrons, ions, or dust
grains) having an isotropic velocity distribution functionf f.
On average, collisions with the field particles do not change
the direction ofut, but cause its absolute value to decrease.
The equation of motion for the test particle is

md
dut

dt
= NmE v cosussvdvf fsuv + utuddv, s14d

where md is the mass of the dust grain,N is the number
density of field particles,s is the momentum-transfer cross
section, which is a function of the relative velocityv= uuf
−utu, andu is the angle between vectorsut andv. Assuming
a Maxwellian velocity distribution function for the field par-
ticles and slow motion of the test particle(i.e., ut!uTf

,
whereuTf

denotes thermal velocity of the field particles), we
get f fsuv+utud. f fsvdf1−svut /uTf

2 dcosug. The symmetric
component of the distributionf fsvd does not contribute to the
resistance force. Introducing the momentum transfer raten
through dut /dt=−nut, we get after integration over the
angles

n =
1

3
Î 2

p

Nm

mduTf

5 E
0

`

v5ssvdexps− v2/2uTf

2 ddv. s15d

Some special applications of this expression are given below.

A. Electron-grain collisions

For electron-grain interactions usuallybT
ed!1 and the

standard Coulomb scattering approach is applicable. This
yields

ned. s2Î2p/3dsme/mddnevTe
a2z2Led, s16d

where ne, me, and vTe
are the density, mass, and thermal

velocity of electrons, and

Led= zE
0

`

e−zxlnf1 + 4sl/ad2x2gdx− 2zE
1

`

e−zxlns2x − 1ddx

s17d

is the Coulomb logarithm for electron-grain collisions inte-
grated over the Maxwellian distribution[28]. In the typical
cases2/zdsl /ad@1, we obtainLed.2 lnfs2/zdsl /adg with
logarithmic accuracy. This result is an improvement of the
Coulomb logarithmLed,2 lnsl /ad used in the literature
(see, e.g.,[29]). The derived momentum transfer rate can be
employed to estimate the electron drag force in the subther-
mal regime for electron drift,Fe=mdnedue, whereue denotes
the electron drift velocity. Detailed investigation of the role
of the electron drag force under different plasma conditions
can be found in Ref.[28].

FIG. 4. (Color online) The total momentum-transfer cross sec-
tion, sS, normalized topl2 (wherel is the screening length), vs
the scattering parameterb for the attractive screened Coulomb po-
tential. The numerical results for different values ofa/l are shown
to illustrate the role of finite particle radiusa.
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B. Ion-grain collisions

For ion-grain interactionbT
id often exceeds unity and then

the Coulomb scattering approach is not applicable. In the
casebT

id&5, Eq. (8) can be used. This yields

nid . s2Î2p/3dsmi/mddnivTi
a2z2t2Lid, s18d

whereni , mi, andvTi
are the density, mass, and thermal ve-

locity of ions, and

Lid . 2zE
0

`

e−zxlnf1 + 2t−1sl/adxgdx s19d

is the modifiedCoulomb logarithm for ion-grain scattering
[13,14] integrated over the Maxwellian distribution[in Eq.
(19) we took into account thatt@1]. In the limit of smallbT

id

or s1/ztdsl /ad@1, the result reduces to that of the Coulomb
scattering theory. We have thenLid.2 lnfs2/ztdsl /adg,
which is considerably smaller than the value lnsl /ad used
previously[29]. In the opposite limit of very large scattering
parameters,bT

id.bcr.13.2, the total momentum-transfer
cross section can be taken assS.prp

2, with a good accuracy
as shown above, wherer* ,l ln bT

id. This yields

nid . s8Î2p/3dsmi/mddnivTi
rp

2. s20d

The momentum-transfer rates[Eqs.(18)–(20)] were recently
used to estimate the ion drag force,Fi =mdnidui, in complex
plasmas with subthermal(ui &vTi

ion drifts). The details can
be found in Refs.[13–16].

C. Grain-grain collisions

For grain-grain interactions, the standard Coulomb scat-
tering approach can be employed only for extremely small
grain charges and/or extremely high grain energies, so that
bT

dd=zdsa/ld!1. In this situation, we have

ndd . s4Î2p/3dndvTd
a2zd

2Ldd, s21d

wherend andvTd
are the density, and thermal velocity of the

dust grains, and

Ldd = zdE
0

`

e−zdxlnf1 + sl/ad2x2gdx− 2zdE
1

`

e−zdxlns2x − 1ddx

s22d

is the Coulomb logarithm for grain-grain collisions inte-
grated over the Maxwellian distribution. The form of this
expression is similar to that of Eq.(17). If s1/zddsl /ad@1,
the Coulomb scattering approach is applicable and we have
Ldd.2 lnfs1/zddsl /adg with logarithmic accuracy. However,
the limit of long-range scattering,bT

dd@1, is more typical for
complex plasmas and then the analogy with hard-sphere col-
lisions can be used. According to Eq.(6), the momentum
transfer cross sectionss

HS.pR0
2f1+0.23/s1+R0/ldg, with

R0 taken from Eq.(7). Since R0/l considerably exceeds
unity, we can approximately write

ndd . s4Î2p/3dndvTd
R0

2. s23d

Equations(21)–(23) will be used in the next section to in-
vestigate the possible states of complex plasmas.

IV. PHASE DIAGRAM OF COMPLEX PLASMAS

The grain charges in complex plasmas, as well as the
plasma screening length, are not constant. This is why the
strength of the electrostatic coupling between the grains can
be easily changed experimentally over a fairly wide range
(by varying, e.g., the discharge conditions[30]). This is a
major distinguishing feature of complex plasmas compared
to usual plasmas, where the ion charges are normally con-
stant (single). The latter implies low coupling strength in
usual plasmas(although one can, in principle, obtain fairly
strong coupling in non-neutral plasmas, e.g., ionic crystals
[31]). In complex plasmas, one can observe the transitions
from the disordered, weakly coupled to strongly coupled
states and the formation of ordered structures of grains—
plasma crystals[1–9,32–36].

Another major distinguishing feature of complex plasmas
is that the overall dynamical time scales associated with the
dust component are relatively long(dust plasma frequency
,10−100 Hz) [1,3,37]. Furthermore, the grains themselves
are large enough to be easily visualized individually. All to-
gether this makes it possible to investigate phenomena oc-
curring in different phases at the most fundamental kinetic
level [5,6,30]. Although there is always some damping intro-
duced into the complex plasma systems due to neutral gas
friction [3], the resulting damping rate is many orders of
magnitude smaller than that in colloidal suspensions, and it
can easily be made much smaller than the major eigenfre-
quencies of the dust dynamics. Hence the most interesting
dynamical phenomena have usually enough time to evolve
[5].

Let us dwell upon these features of complex plasmas in
detail.

Figure 5 represents different “phase states” of complex
plasmas as functions of the electrostatic coupling parameter
GES and the mean grain separationD, normalized either to
the grain sizea or to the screening lengthl (“finiteness
parameter”a=D /a and “lattice parameter”k=D /l, respec-
tively). The parameterGES=G exps−kd, which characterizes
the “actual” coupling ratio(potential energy/kinetic energy)
at the average intergrain distance, is expressed in terms of
the (Coulomb) coupling scaleG=e2Z2/DTd (note that in
terms of G and k, the thermal scattering parameter isbT

dd

=2Gk). The use ofGES implies that the calculations should
be representative to some extent of other types of “similar”
interaction potentials, too(viz., with “similar” long- and
short-range asymptotes). The vertical linek=1 conditionally
divides the diagram into weakly screened(Coulomb) and
strongly screened(Yukawa) parts. In Fig. 5, we have set
l /a;a /k=100, which is typical of complex plasmas stud-
ied so far, but there is in principle a wide range of variation,
depending on grain size and plasma conditions chosen.

Crystallization in complex plasmas and formation of dif-
ferent lattice types is a widely observed process
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[32–35,38–40]. From the phenomenological point of view,
the condition for crystallization is basically determined by
the well-known Lindemann criterion[41,42]. The resulting
melting lineGES

M skd.106s1+k+ 1
2k2d−1 is shown in Fig. 5 by

the upper solid line.
Further insight into the possible phase states shown in

Fig. 5 is obtained from our above results for the momentum
transfer cross section for grain-grain collisions. This ap-
proach allows us to obtain a clear physical classification of
complex plasmas. The dashed line indicates the “transition”
between “ideal” and “nonideal” plasmas. We determine this
transition from the conditionÎs /p=s4p /3d−1/3D, which im-
plies that the characteristic range of grain interaction(in
terms of the momentum transfer) is comparable to the inter-
grain distance(in terms of the Wigner-Seitz radius). Above
this line, the interaction is essentially multiparticle, whereas
below the line only pair collisions are important. This refines
the standard condition used to define a “boundary” between
ideal and nonideal plasmas,GES,1. From the thermody-
namical point of view, this line determines the limit of em-
ploying expansions of the thermodynamical functions(e.g.,
virial expansion) over the(small) coupling parameter. It is
important to note that for a Yukawa potential(as well as for
any monotonic interaction potential), thermodynamics pre-
dicts that there is no liquid-gas phase transition(i.e., the
critical point occurs atTd=0 for such systems). This is dif-
ferent if the pair potential is not monotonic, e.g., a long-
range attractive component added to a repulsive electrostatic
potential exists, as has been suggested by some authors(see,
e.g., Refs.[1,6,10]). So far, however, there are no reliable
experiments reporting on the observation of, e.g., the coex-
istence of liquid and gaseous phases, or other indications of a
first-order phase transition in gaseous complex plasmas.

The regions where the system is similar to a granular
medium are also shown in Fig. 5: Below the lower dotted

curve the electrostatic interaction is too weak and the mo-
mentum exchange occurs due to direct grain collisions, i.e.,
we have a usual granular medium where charges do not play
any noticeable role. This line corresponds tobT

dd

=sa/ldLdd
−1/2 [see Eq.(11)].

The upper dotted curve marks the transition boundary for
a very interesting state, which we have called the “Yukawa
granular medium.” Here the “mean” scattering parameter for
grain-grain collisions exceeds unitysbT

dd.1d and, hence, the
strongly screened electrostatic interaction reduces asymptoti-
cally to the hard-sphere limit with radiusR0.l lns2bT

ddd.
Next we investigate complex plasma properties in terms

of the competition between the momentum transfer in mutual
grain-grain collisions and the interaction with the surround-
ing medium.

Complex plasmas can be “engineered” as essentially a
“one-phase fluid”(when the interactions between the grains
dominate), or as a “particle laden two-phase flow”(when the
interactions with the background medium are of similar or
greater importance). We have illustrated this by plotting con-
tours of constant ratios of the grain-grain/grain-background
momentum transfer rates,ndd/nnd, in the sGES,kd diagram in
Fig. 6. The characteristic momentum-transfer rate in grain-
grain collisions is given either by Eq.(21) or Eq. (23). In
complex plasmas, the exchange of momentum with the back-
ground medium is mostly through grain-neutral gas colli-
sions,

nnd = ds8Î2p/3dsmn/mdda2nnvTn
,

where mn, nn, and vTn
are the mass, density, and thermal

velocity of neutrals, respectively[43]. The value of the nu-
merical factor d=1+p /8.1.4, corresponding to diffuse
scattering with full accommodation, is chosen in accordance
with recent experimental results[44]. For the calculations we
use the following parameters: Grains of radiusa=1 mm and
material mass density of 1 g/cm3 in argon plasma at neutral

FIG. 5. Phase diagram of complex plasmas insGES,kd param-
eter space. The vertical dashed line atk=1 conditionally divides the
system into “Coulomb” and “Yukawa” parts. Different states are
marked in the figure. Regions I(V) represent Coulomb(Yukawa)
crystals; regions II(VI ) are for Coulomb(Yukawa) nonideal plas-
mas; regions III(VII and VIII ) correspond to Coulomb(Yukawa)
ideal plasmas; note that in the region VIII, the pair Yukawa inter-
action asymptotically reduces to the hard sphere limit, forming a
“Yukawa granular medium”; in region IV, the electrostatic interac-
tion is not important and the system is like a usual granular me-
dium. For further explanations, see text.

FIG. 6. Typical contours are shown of constant ratios of the
momentum transfer rates in grain-grain collisions relative to grain-
background (neutral gas) collisions. The values ndd/nnd

=102,10,1,10−1, and 10−2 are depicted in a phase diagram for com-
plex plasmas insGES,kd parameter space. The parameters used in
the calculation are given in the text. Also shown in the figure are the
lines corresponding to crystal melting(solid line) and the boundary
between ideal and nonideal plasmas(dashed line).
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gas pressure 100 Pa, room-temperature ions and neutralsTi
,Tn,0.03 eV, anda/l=10−2. For the momentum-transfer
rate, we use Eq.(23) at bT

dd@1 (upper symbols in the figure)
and Eq.(21) at bT

dd!1 (lower symbols). In the transition
regimebT

dd,1, none of these approximations is applicable
and we have therefore simply linked the two regimes by
dotted lines.

Figure 6 shows that there is a broad range of parameters
where complex plasmas have the properties of one-phase flu-
ids sndd/nnd@1d and those of two-phase fluidsndd/nnd,1.
In the extreme limit of very smallndd/nnd, we can also, of
course, have “tracer particles” in the background medium,
which provide practically no disturbance to the background
flow. Taking into account that a number of plasma param-
eters(e.g., the neutral gas pressure, plasma screening length,
and the ratioa/l) can be varied relatively easily within ap-
proximately one order of magnitude, most of the possible
states can be investigated.

V. DISCUSSION AND CONCLUSIONS

There are a number of reasons why complex plasmas are
of great importance for fundamental physics. For instance,
one can study the kinetics of crystallization and melting in
real time. The nucleation and the subsequent growth of crys-
talline structures in complex plasmas look very similar to
usual crystallization experiments(e.g., in semiconductors). It
is reasonable, therefore, to conclude that space- and time-
resolved investigation of elementary processes accompany-
ing the nucleation and growth of plasma crystals can be very
useful for understanding some basic microscopic processes

in liquid-solid phase transitions. Plasma crystals give us an
excellent opportunity to study wave phenomena relevant to
transport in usual crystals(e.g., thermal conductivity)—
nonlinear mode interaction, umklapp processes, phonon scat-
tering on defects, etc. at the kinetic level. Also, complex
plasmas are particularly suitable for kinetic investigations of
elementary processes in fluids[45]. This suggests that we
apparently have a powerful new tool for investigating fluid
flows on(effectively) nanoscales, including the all-important
transition from collective fluid behavior to individual kinetic
behavior, as well as nonlinear processes on scales that have
not been accessible for studies so far.

In this paper, we investigated various modes of momen-
tum transfer in complex plasmas using a screened Coulomb
potential for the dust grains: electron-grain, ion-grain, and
grain-grain collisions. Electron-grain and ion-grain collisions
give rise to the so-called electron and ion drag forces, which
can influence(or even determine) grain transport in plasmas.
The consideration of momentum transfer in grain-grain col-
lisions allowed us to obtain a clear physical classification of
the possible complex plasma states. We showed that different
“phases” are possible, including crystalline, ideal, and non-
ideal plasmas, and two types of granular media. The bound-
aries between these states were defined and summarized in a
(sample) phase diagram. We also showed that complex plas-
mas can exist in a broad range of dynamical states(one- and
two-phase fluids, as well as tracer particles). This broad
range of states that is accessible for complex plasmas and the
possibility to study a variety of processes at the kinetic level
make these systems extremely attractive for further research.
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