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We investigate the phase-space structure displayed by a system of four waves interacting by means of
nonlinear coupling between two wave triplets, which results in a dissipative high-dimensional vector field
presenting an invariant manifold, wherein the dynamics is essentially conservative. The focus is on the coex-
istence of a large number of periodic attractors in the phase space, with an interwoven structure of the basins
of attraction, where low-period attractors have predominance. The time behavior of nearly conserved quantities
and the properties of the Lyapunov spectra are used to imply the existence of a lower-dimensional invariant
manifold where the dynamics is nearly conservative. A three-dimensional map is used to illustrate these
findings.
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I. INTRODUCTION

A rather common feature of many physical systems is the
saturation of linear instabilities by nonlinear saturation[1–4].
The understanding of such saturation mechanisms represents
a fundamental physical problem. These kinds of analyses are,
in general, difficult tasks. However, the analysis can be sim-
plified in cases when linearly unstable systems consist of just
few modes as, for example, nonlinear three and four wave
interactions[5]. For problems of wave coupling displaying
quadratic nonlinearity, interactions involving three or four
modes may describe key features of turbulence in systems
close to equilibrium[6]. Nonlinear wave-wave interactions
occur in many physical examples in plasma physics and
nonlinear optics. Some of the applications of nonlinear para-
metric wave interactions are anomalous laser absorption and
laser beam filamentation in laboratory plasmas[7], auroral
radio emissions[8], and solar wind modulation in space
plasmas [9], second-harmonic production, amplification,
frequency up-conversion, and phase-conjugation of optical
signals[10], wave mixing in chiral liquids[11], generation
of soft x rays by conversion of visible laser[12] and produc-
tion of Raman waves(lasers) using dielectric microcavity
[13]. Coherent four wave interactions appears also in non-
linear atom optics(interacting Bose-Einstein condensates)
[14]. Parametric wave interaction plays an important role in
conversion of incoherent light into coherent light as well
[15,16].

Parametric wave-wave interactions of three and four wave
is among the most widely studied wave-mixing or wave in-
teraction configurations. It can be understood as a parametric
amplification process where energy is transferred from a
pump wave into two or three other waves[16]. Mathemati-
cally, such interaction processes can be described by a sys-
tem of coupled-mode nonlinear differential equations which
exhibit a wide variety of dynamical phenomena, from peri-
odic to chaotic behavior, being also one of the oldest physi-
cal applications of nonlinear dynamics and chaos[3,4,16].

The case of dissipative three-wave coupling was shown to
present transition to chaotic behavior through well-known

routes, as a cascade of period-doubling bifurcations of cycles
[17], and intermittency, where stable periodic orbits abruptly
take over chaotic attractors[18]. These analyses can be fur-
ther extended for certain classes of four-wave parametric in-
teractions, in which two waves participate simultaneously in
two resonant triplets[19,20]. The conservative case of this
problem was found to be exactly integrable, since it presents
the same number of integrals of motion as the degrees of
freedom, when the wave frequencies match exactly[21].
When there is some frequency mismatch, however, the con-
servative four-wave interaction is no longer integrable. In
this case, there has been found another scenario for transition
to chaotic motion via separatrix chaos[22,23] : a solitonlike
solution (separatrix) has been obtained for the integrable
case, i.e., with perfect frequency matching. This solitonic
solution becomes irregular with small frequency mismatch
and, as the latter is increased the separatrix chaotic layer
spreads along the phase space, eventually engrossing most of
it [23].

Most analytical and numerical results on four-wave para-
metric interactions have focused on the conservative case.
The dissipative case, however, when there is a frequency
mismatch, still presents many hitherto unexplored features.
For example, what is the fate of the periodic(Poincaré-
Birkhoff) islands, and which represent resonances of the con-
servative system[24], when a small dissipation is intro-
duced? Can those solitonlike solutions, found the integrable
case, survive to dissipation, i.e., are they robust features of
the theoretical model? Do chaotic orbits persist in presence
of dissipation, and in what measure? Another important topic
to mention is the fact that how a linearly unstable system can
be stabilized(presenting saturated states) by nonlinear cou-
pling [6]. In plasma physics, for example, many works have
been done on wave interactions handling just linear growth
rates. In spite of those works being useful, many of such
results can be explained in more detail when the nonlinear
case is studied. In fact many new results on nonlinear dy-
namics have brought better explanations about some physical
systems(see[16] and references therein). These are some of
the questions we address in this paper, which presents the
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dissipative version of the four-wave parametric interaction
model, with an invariant manifold, where the dynamics is
conservative.

The results we show in this paper are consistent with gen-
eral features expected for damped near-integrable Hamil-
tonian systems, for which the absence of an energy surface
foliated in invariant tori leads to qualitatively different dy-
namics. In particular, those linear centers related to Poincaré-
Birkhoff islands become multiple coexisting attractors with
an involved basin structure due to the fractal nature of the
basin boundaries[25]. The latter, on their hand, are respon-
sible for the appearance of transient chaos, which represents
most of the irregular dynamics, since the presence of chaotic
attractors(and the corresponding basins of attraction) is rare
in comparison with periodic attractors[26].

A key result of our analysis is the existence of an invari-
ant manifold, embedded in the phase space of the system, to
which the phase trajectories are attracted for large times. The
dynamics on this manifold is conservative, since it preserves
an energylike constant as time evolves; and the dissipative
effects are found in the directions transversal to this invariant
manifold. Since the full phase space of the wave-wave inter-
action problem is high-dimensional, these features can be
better observed in a lower-dimensional mapping which pos-
sesses such an invariant manifold, and which retains many of
the dynamical features of the physical system we are inves-
tigating.

The rest of the paper is organized as follows: in Sec. II we
present the basic equations of the four-wave interaction
model, together with a discussion of the phase space struc-
ture. Section III presents numerical evidences of the exis-
tence of an invariant manifold, as a subset of the phase space
to which trajectories asymptote, and on which the dynamics
is nearly conservative. Section IV treats the observed multi-
stability, or the coexistence of a large number of periodic
attractors, with an involved basin structure. These facts are
best illustrated in Sec. V with the help of a low-dimensional
mapping, which preserves some of the essential dynamical
features found in the four-wave interaction problem. Our
conclusions are left to the final section.

II. PHASE SPACE STRUCTURE

The resonant four-wave parametric interaction is com-
prised by the coupling of two three-wave sets, with the fol-
lowing phase-matching conditions(a schematic representa-
tion of this coupling being depicted in Fig. 1):

v3 = v1 − v2 − d38, s1d

v4 = v1 + v2 − d48, s2d

k3 = k1 − k2, s3d

k4 = k1 + k2, s4d

where d3,48 are the frequency mismatches for each of the
wave triplets. We use the modulational notation for the wave
fields

Easx,td =
1

2
Eastdeiska·x−vatd + c.c. sa = 1,2,3,4d, s5d

whereEastd is a slowly varying complex envelope.
Not far from the threshold of the linear instability, or in

other words, when the energy level of saturated states is
sufficiently low [27] dynamical behavior of the four wave
coupling in a quadratic nonlinear dissipative system can be
described combining Maxwell’s equations with the fluid
equations and the linear dispersion relationvaskad of each
interacting wave. Doing that we are able to derive normal-
ized complex amplitudes for the envelopes:

Aastd = faEastd = ResAad + i ImsAad = uAaueifa

s6d
sa = 1,2,3,4d,

where fa are functions of the frequencies and dispersion op-
erators (see [23] for explicit expressions for a particular
case). In terms of these normalized complex amplitudes, the
equations of the resonant parametric four-wave coupling are

dA1

dt
= A2A3 − rA2

*A4 + n1A1, s7d

dA2

dt
= − A1A3

* − rA1
*A4 + n2A2, s8d

dA3

dt
= − A1A2

* + id3A3 + n3A3, s9d

dA4

dt
= rA1A2 − id4A4 + n4A4, s10d

whered3.0 andd4.0 are the normalized linear frequency
mismatches,r .0 is the coupling parameter between triplets,
n1.0 is the linear energy injection coefficient, andn2,0,
n3,0, andn4,0 are dissipation parameters. Here we are
assuming nonlinear coefficients equal to the unity since we
have also normalized the wave amplitudes. In fact in many
physically interesting cases, such coefficients will be com-
plex, but the use of renormalized variables can make these
coefficients real and limited[6] such that without loss of
generality we are assuming them equal to the unity.

Since each wave field is characterized by two real param-
eters (amplitude uAiu and phasefi), they are out of eight
variables in this system, such that its phase space is
8-dimensional. Let us first consider the conservative case
sn1=n2=n3=n4=0d. In this case, the phase-space dimension
can be substantially reduced thanks to conserved quantities

FIG. 1. Scheme of the four-wave interaction.
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of the physical system which lead to integrals of motion,
from the dynamical point of view. The first of these is the
Hamiltonian, or energy function

HsAid = A1A2
*A3

* − A2A3A1
* + rsA1

*A2
*A4 − A1A2A4

*d

+ isd4uA4u2 − d3uA3u2d, s11d

from which there results the following canonical equations
for the wave amplitudes and their conjugate variables:

dAi

dt
= −

] H

] Ai
* , s12d

dAi
*

dt
=

] H

] Ai
. s13d

Other conserved quantities, calledc1 andc2, are given by
the so-called Manley-Rowe relations:

c1sAid = uA1u2 + uA3u2 + uA4u2, s14d

c2sAid = uA1u2 − uA3u2 + uA4u2. s15d

These three integrals of motion reduce the phase space di-
mension from eight to five. This number can be further de-
creased, by two units, by using the phase conjugacies given
by the Stokes and anti-Stokes modes

f+ = f1 + f2 − f4, s16d

f− = f1 − f2 − f3 s17d

and we have just three phase space dimensions, which can be
readily studied by using a 2-dimensional Poincaré surface of
section map. The structure of the phase space, in this case,
has been investigated already[23].

Now if we let the dissipation coefficientsni have nonzero
values, the former integrals of motion will be, in general, no
longer conserved with time. The time rate of change of the
phase space volume, which is the divergence of the vector
field (7)–(10), which is given by

J = o
i=1

4
] Ȧi

] Ai
= 2o

i=1

4

ni , s18d

is a constant value, indicating that the system is globally
dissipative (antidissipative), i.e., the volumes shrink(ex-
pand) with time at the same rate everywhere in the available
regions of the phase space. Since there are no longer con-
served quantities, the only dimensional reduction we can
make, in the dissipative case, is to use the phase conjugacies
(16) and(17), which reduce the phase space dimension from
eight to six. In the following, we will setn1=1.0, n2=n3
=n4=−0.8, andr =1.0; such thatJ,0. We also define a
symmetry-breaking parameter

D = d3 − d4, s19d

which measures the total mismatch between triplets. In other
words, the value taken on byD gives us a measure of how
efficient is the energy transport from one wave to another,
interacting in each wave triplet.

As we shall see, whenD=0 (symmetric case), the dynam-
ics is strongly dissipative along four out of the six phase-
space dimensions, which directs trajectories asymptotically
to a two-dimensional manifoldM. The dynamics in this
manifold can be parametrized by any set of suitable coordi-
nates. We choose to work with the field amplitudesuAiu and
ResAid. Figure 2(a) shows a projection of the phase space
trajectories on theuA1u - uA3u plane, in which a variety of dif-
ferent attracting closed orbits are shown(the apparent cross-
ing of the trajectories is due to the projection we made),
corresponding to different initial conditions.

The perspective view shown in Fig. 2(a) suggests a “fun-
nel” with its vertex at the originuA1u = uA3u =0 and projecting
out along the remaining phase space dimensions(mainly two
of them, due to the existence of the manifoldM), the closed
orbits being cross sections of it. Moreover, the fact that the
system dynamics is effectively two-dimensional rules out the
possibility of chaotic motion. These closed orbits have a
complicated structure for their basins of attraction. In order
to label the different attractors we can define a “mean radius”
of such curves,rsA1d, as illustrated by Fig. 2(b). If D=0, it is
possible to find cycles with any value of the mean radius.

FIG. 2. (a) Multiple coexisting period-1 attractors in theuA3u
versusuA1u projection of the phase space;(b) definition of a mean
radius for a limit-cycle attractor.
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These limit cycles are thought to belong to a dense set of
closed orbits.

III. CONSERVATIVE INVARIANT MANIFOLD

The large phase space dimension(six, effectively out of
eight) of our four-wave system seems to hamper a more pro-
found dynamical analysis. High-dimensional conservative
dynamics in the energy surface can be extremely compli-
cated due to factors as Arnold diffusion and stochastic pump-
ing [28]. Nevertheless, the dissipative case can be simpler in
the sense that the number of possible stationary states will
decrease, as the dissipation builds up. Moreover, chaotic dy-
namics is mainly of a transient nature, since chaotic attrac-
tors would have attraction basins comparatively smaller than
periodic attractors, and the latter dominate the dynamics
[25].

The shrinking of phase space volume caused by dissipa-
tion helps us to simplify the system dynamics in another
perspective. Globally dissipative systems have the property
that a sphere of finite volume located in any point of the
phase space will shrink into a zero-volume region. In the
four-wave case, global dissipation leads phase-space vol-
umes to a low-dimensional manifold on which the dynamics
is almost conservative for the symmetric casesD=0d.

A numerical evidence for this assertion is depicted in Fig.
3(a), where we plot the time variation of the numerical value
of the quantityH given by Eq.(11) for the dissipative case.
We remark thatH is no longer the Hamiltonian but, as soon
as we reach the conservative manifold,H becomes constant
(for D=0). Such a fact enables us to defineH for the dissi-
pative case as an energy function which is conserved as the
dynamics is restricted to the conservative manifold. In the
conservative casesni =0d the energy function is rigorously
conserved. On the other hand, in the dissipative case, and
when the mismatchD is different from zero, the temporal
evolution ofH displays, after a transient time, small oscilla-
tions which indicate that the energy function is not con-
served. In other words, the conservative invariant manifold
ceases to exist in the latter situation.

Further evidence is given by Figs. 3(b) and 3(c), where
we plot the time variation of the quantitiesc1 andc2 which,
in the conservative case, are strictly constant, thanks to the
Manley-Rowe relations(14) and(15). Note that, whileH and
c2 are constant forD=0, the quantityc1 presents a bounded
and regular oscillation about a fixed value. Such results show
us that the dynamics in the invariant manifold preserved just
the quantitiesH andc2. In particular the former is conserved
outside the manifoldM.

The dynamics in this manifoldM is conservative thanks
to the asymptotic convergence of the former integral of mo-
tion H into a constant value. Since these quantities(H and
c2) do not alter their value as time increases, we can imagine
that this is an invariant manifold, since a trajectory that once
reaches M will remain there for all time. The two-
dimensional character ofM is inferred from the Lyapunov
spectrum of this model, shown in Fig. 4, where all the six
Lyapunov exponents are depicted as a function of time. They
are all strictly nonpositive, indicating absence of chaotic be-

havior. While four exponents are negative, we have two ex-
ponents equal to zero(in the symmetric caseD=0), indicat-
ing that the trajectories are pushed to this manifold along the
remaining four directions in phase space(due to the corre-
spondingly negative exponents).

For theDÞ0 case, such conservative invariant manifold
does not exist at all, as we can see from the variation of the
energy functionHstd [Fig. 3(a)] and the Lyapunov spectrum

FIG. 3. Time evolution of the(a) energy functionH; and the
Manley-Rowe functions:(b) c1 and (c) c2, for D=0 andD=0.01.
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[Fig. 4(c)], that presents only one vanishing exponent
(namely, that related to the direction along the trajectory)
[29]. The initial behavior of theHstd time series can be un-
derstood due to the transient time elapsed until the system
trajectory settles down on the manifoldM. Moreover, two
vanishing Lyapunov exponents are related to the phase con-
jugacies in Eqs.(16) and (17) and are not plotted[23].

IV. MULTISTABILITY

The presence of multiple coexisting attractors, or multi-
stability, is expected in Hamiltonian systems with weak dis-
sipation. In this case, numerical and rigorous analyses point
out that there is a large number of coexisting periodic attrac-
tors [25]. In the past section we have seen that there is an
essentially conservative manifold embedded in the phase

space of the system. In the directions transversal to this
manifold the dynamics is strongly dissipative, and the trajec-
tories converge fast to this manifold as time goes to infinity.
These multiple attractors are limit cycles forD=0 and lie on
this manifold, their basins extending over the corresponding
transversal directions. IfDÞ0, these multiple attractors bi-
furcate into tori, since the conservative manifoldM no
longer exists.

If a trajectory were initialized exactly on this invariant
manifold it would remain there for all times, without con-
verging to any attractor. With respect to the transversal dis-
sipative direction these curves can be regarded as limit
cycles of the system as a whole. Returning to Fig. 2(a), the
funnel aspect of the curves is turned into a series of concen-
tric curves if a suitable projection direction is used. In this
case the orbits resemble the phase space structure near an
elliptic fixed point of a two-dimensional area-preserving sys-
tem.

For example, a center fixed point of the conservative sys-
tem (neutrally stable) becomes, with a small amount of
dissipation, a stable focus. If this point is in a chain ofm
periodic islands, it becomes a period-m focus [25,26]. As a
general rule, the number of attractors tends to infinity as the
dissipation vanishes. For small yet nonzero damping we ex-
pect only a finite number of coexisting attractors. This occurs
because many periodic orbits(particularly those with high
periods) lose their stability in a very rapid way as damping
grows up[30].

The fast increase of the number of multiple coexisting
attractors of integer periods(in terms of Poincaré maps) is
also present when other parameters of the system are varied.
For example, keeping the damping fixed in the periodically
kicked double rotor[31], there has been found a steep in-
crease in the number of periodic attractors as the forcing
decreases to zero[26]. Figure 5 shows the number of peri-
odic attractors we found numerically, withD varying eight
orders of magnitude. Here the stability of the cycles was
obtained numerically: once the numerical integration is
started, we wait for the asymptotic state. If this state does not
change after a given time interval(circa 50 pseudoperiods)
we consider that the asymptotic state the system reaches is
stable.

As a general trend, the number of coexisting attractors
increases exponentially with diminishingD, just as expected.
The number of attractorsNT, for a givenD was computed by
randomly choosing a large numberJ of initial conditions in
the phase space and following the resulting trajectory a large
time, until it closes down on itself(up to a specified small
tolerance«) after m crossings of the Poincaré section. Since
the conservative invariant manifold, which exists forD=0, is
two-dimensional, only periodic orbits withm=1 are allowed.
Orbits with mù2 exist only whenDÞ0, and do not belong
to such conservative invariant manifold. If the orbit fails to
close down on itself, we did not consider this trajectory as
leading to a periodic orbit. In this case we found an approxi-
mation of a period-m attractive orbit, and the number of at-
tractors was computed by summing up all period-m orbits:
NT=om Nm. For relatively largeD (higher than 10−5) we
found a power law decreaseNT,D−g indicated in Fig. 5(a)
by the dotted lines. ForD&10−5 there appears to be a satu-

FIG. 4. Time evolution of the Lyapunov exponents for the reso-
nant four-wave parametric interaction for(a) D=0 and (c) D
=0.01; (b) and (d): magnification of the figures(a) and (b),
respectively.
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ration of the number of attractors, the error bars being too
wide to allow for a reliable fit.

It must be stressed that the numerically determined value
of NT is to be considered actually a lower bound on the total
number of periodic attractors, since many orbits have basins
of attraction so tiny that their presence cannot be detected
unless we use a very fine resolution. This also explains why
there is apparent saturation ofNT for very smallD, since the
number of attractors may increase, but at the same time their
basins become so small that they cannot be detected. In fact,
Fig. 5(a) shows that, while the total number of attractors
increases with the number of initial conditions chosen(a
consequence of the better resolution achieved with more
points to explore), the slopesg of the power-law fits con-
verge to a value 0.547±0.003[see Fig. 5(b)].

The basin structure of a weakly dissipative system is thus
very complicated, since there is a large number of coexisting
stable attractors, each one with its own basin of attraction in
a limited phase space region. Even though the phase space
dimension can be large, as in this case, there is numerical

evidence that the basins of attraction are complexly interwo-
ven [25].

Due to the presence of the conservative manifold in the
phase space forD=0, with strongly dissipative transversal
dynamics, virtually every invariant curve of the conservative
manifold is an attractor with respect to the transversal direc-
tions, and we label them according to their mean radius
rsA1d. Since the number of coexisting attractors is typically
too large(of the order of hundreds of thousands), it is nearly
impossible to get a reasonable plot of individual basins of
attraction. However, a glimpse of this structure can be ob-
tained by means of Fig. 6(a), where the union of the basins
of various attractors are indicated in the ResA1d–ResA3d pro-
jection of the phase space, and corresponding to intervals of
the mean radiusrsA1d. For example, one of the dark strips in
Fig. 6(a) refers to the union of the basins for cycles with
mean radii within the interval 0,rsA1d,5, the contiguous
white strip to basins for which 5,rsA1d,10, and so on.

The convoluted nature of the corresponding basin bound-
aries stripes for small values of ResA1d and ResA3d indicates
in fact a highly interwoven basin structure in these regions,

FIG. 5. (a) Number of attractors as a function of the symmetry
parameter for a different number of initial conditions. The dashed
lines are power-law fits.(b) Variation of the slopes of the power-law
fits with the number of initial conditions used.

FIG. 6. (a) Basins of coexisting attractors, in the ResA3d–ResA4d
projection of the phase space forD=0; (b) magnification of the
basin structure for small ResA3d.

CONINCK, LOPES, AND VIANA PHYSICAL REVIEW E70, 056403(2004)

056403-6



which holds also for the individual basins themselves. In
fact, Fig. 6(b) shows a magnification of such a region, indi-
cating a logarithmic accumulation of the basin stripes to-
wards a vertical line parallel to the axis ResA1d=0.

As a consequence of the above reasoning, chaotic attrac-
tors are likely to be seldom found in such weakly dissipative
systems, for their basins would be too tiny to be detected, in
comparison with low-period attractors. However, there are
chaotic transients in such systems, present in the basin
boundaries, and which are remnants of the homoclinic
tangle existing in the conservative case. These chaotic tran-
sients, however, do not influence the counting of coexisting
attractors.

From Fig. 6 is apparent that the relative areas of the at-
traction basins are rather different, being distributed in a way
numerically shown by Fig. 7, where we have used as an
indication of the attractor not its period, but instead the maxi-
mum value,(rsA1d), of the corresponding periodic orbit. The
corresponding probability distributionPsrd was computed
by distributing a large number of randomly chosen initial
conditions in the phase space and determining in what attrac-
tor the trajectory settles down. The distribution shows a peak
arounduA1u =20, indicating the “most probable” periodic or-
bit in phase space which would contain this value. Such a
fact can be observed in Fig. 6(a), where the pieces of pro-
jected basins have different areas for different orbits.

At this point, one could argue that, due to the extremely
interwoven structure of the attraction basins, very small de-
viations of a trajectory(particularly if it stays near the basin
boundary) would kick us to another basin. This could be a
serious drawback of our numerical method to determine a
periodic attractor, since it uses a small tolerancee to assess
whether or not a given trajectory has closed on itself. In
order to give confidence to our method, Fig. 8 shows the
variation of the total number of attractors with the total num-
ber of initial conditions, for two different tolerances. The
number of attractors increases exponentially with initial con-
ditions, which is a simple consequence of the better resolu-
tion obtained with more points, permitting us to explore
more and more basins of attractions. The slope of this in-
crease is the same for two widely different tolerances. Were
the final-state sensitivity so drastic that we would expect
dramatic changes by considering small deviations of a trajec-
tory from a tolerancee, the results would not converge as
shown by Fig. 8.

V. A LOW-DIMENSIONAL MAPPING

The existence of an invariant manifoldM where the dy-
namics is nearly conservative, embedded in the phase space
of a globally dissipative system, has been suggested for the
resonant four-wave interaction. However, the high dimension
of the corresponding phase space is an obstacle to a more
detailed analysis. For example, one would like to write down
an equation for the two-dimensional surface corresponding
to M. This is feasible in simpler dynamical systems, where
the phase space dimension is small enough to allow the ob-
tention of analytical results.

Since the lowest-dimensional phase space for near-
conservative motion is two, the simplest system which ex-
hibits an asymptotically near-conservative dynamics is a
two-dimensional weakly dissipative map with a transversal
direction with strong dissipation. Furthermore, in order that
this area-preserving map is defined on a two-dimensional
invariant manifold, the transversal dynamics cannot influ-
ence the trajectory in the manifold. We will take, as a repre-
sentative example of a weakly dissipative map, the Chirikov-
Taylor map with a Jacobian slightly smaller than unity
[24,28] :

xn+1 = xn + yn + zn smod 2pd, s20d

yn+1 = yn + K sinf2psxn + zndg, s21d

zn+1 = s1 − bdzn, s22d

where the standard map is defined thesx−yd plane, andz is
the corresponding transversal direction. The dynamics along
z is independent fromx andy, as required by the requirement
that thez=0 plane is an invariant manifold. In fact, if we
makezn=0 in the above equations, it follows thatzn+1=0 for
all later times.b*0 is the dissipation coefficient along the
transversal direction. The Jacobian derivative of this model
is J=1−b, indicating that, for smallb values, this is a glo-
bally dissipative map.

If a trajectory starts from an initial condition with nonzero
z, i.e., out of the invariant manifoldz=0, it is typically at-
tracted to thez=0 plane, with a constant rate 1−b,0. An
example is depicted in Fig. 9(a), where anx−y projection of
the three-dimensional phase space shows closed orbits com-
ing from initial conditions with different values ofz. This

FIG. 7. Probability of reaching a basin of an attractor with a
given maximum value of the mean radiusrsA1d.

FIG. 8. Number of attractors vs number of initial conditions for
two values of the tolerance used.
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can be interpreted as a result of cross sections, forz variable,
of the invariant(KAM ) tori which exists in the conservative
systemsb=0d. Actually, in the dissipative case these tori no
longer exist, the region which they occupy being rather the
basin of attraction of a stable focus located at the former
elliptic point (see Sec. III). On the other hand, the chaotic
motion which is expected for a conservative system like the
standard map is readily identified with chaotic transients
which precede evolution towards a stable low-period attrac-
tor. Figure 9(b) shows the time evolution of the three
Lyapunov exponents. The third exponent is negative and is
related to the transversal direction, whereas the two largest
exponents, after a rapid transient, converge to values related
to the dynamics on thez=0 plane. If it were strictly conser-
vative, the two largest exponents would sum to zero, due to
the area preservation.

VI. CONCLUSIONS

The nonlinear interaction of four waves, in its conserva-
tive (Hamiltonian) version, is integrable if there is perfect

frequency matching between the waves. The introduction of
a small nonzero frequency mismatch breaks down the system
integrability and opens the possibility of chaotic dynamics.
The addition of dissipative terms to the otherwise conserva-
tive model leads to a complex phase space structure, whose
main features were the object of this paper. Our results can
be summarized as follows.

There coexists a multitude of attractors, their number in-
creasing in a power-law fashion as the symmetry-breaking
parameter goes to zero. There exist only limit-cycle attrac-
tors, since the invariant manifold is two-dimensional, and
their basins of attraction show a highly involved structure
with an incursive character, which is more evident for low
values of the wave amplitudes. The presence of chaotic at-
tractors is not possible in this case, but this does not preclude
the existence of chaotic transient dynamics.

We have numerically observed that the system trajectories
for the D=0 case, albeit belonging to a high-dimensional
phase space, are asymptotically converging to a two-
dimensional invariant manifold in which the dynamics is
conservative. This fact effectively reduces the number of de-
grees of freedom necessary to give a dynamical characteriza-
tion of the wave-interaction problem. These properties can
also be found in simpler dynamical systems, and we have
introduced a three-dimensional mapping which share many
of the properties of the physical system we are considering in
this paper. We claim that our results are thus quite general,
and are present in a wide variety of similar wave-interaction
models.
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