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We investigate the phase-space structure displayed by a system of four waves interacting by means of
nonlinear coupling between two wave triplets, which results in a dissipative high-dimensional vector field
presenting an invariant manifold, wherein the dynamics is essentially conservative. The focus is on the coex-
istence of a large number of periodic attractors in the phase space, with an interwoven structure of the basins
of attraction, where low-period attractors have predominance. The time behavior of nearly conserved quantities
and the properties of the Lyapunov spectra are used to imply the existence of a lower-dimensional invariant
manifold where the dynamics is nearly conservative. A three-dimensional map is used to illustrate these
findings.
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[. INTRODUCTION routes, as a cascade of period-doubling bifurcations of cycles
[17], and intermittency, where stable periodic orbits abruptly
A rather common feature of many physical systems is theake over chaotic attractof&8]. These analyses can be fur-
saturation of linear instabilities by nonlinear saturafibn4). ther extended for certain classes of four-wave parametric in-
The understanding of such saturation mechanisms represenesactions, in which two waves participate simultaneously in
a fundamental physical problem. These kinds of analyses aréyo resonant triplet$19,20. The conservative case of this
in general, difficult tasks. However, the analysis can be simproblem was found to be exactly integrable, since it presents
plified in cases when linearly unstable systems consist of jushe same number of integrals of motion as the degrees of
few modes as, for example, nonlinear three and four wavéreedom, when the wave frequencies match exaf2lj.
interactions[5]. For problems of wave coupling displaying When there is some frequency mismatch, however, the con-
quadratic nonlinearity, interactions involving three or four servative four-wave interaction is no longer integrable. In
modes may describe key features of turbulence in systenthis case, there has been found another scenario for transition
close to equilibrium[6]. Nonlinear wave-wave interactions to chaotic motion via separatrix chaf2,23 : a solitonlike
occur in many physical examples in plasma physics andolution (separatrix has been obtained for the integrable
nonlinear optics. Some of the applications of nonlinear paraease, i.e., with perfect frequency matching. This solitonic
metric wave interactions are anomalous laser absorption argblution becomes irregular with small frequency mismatch
laser beam filamentation in laboratory plasnid@s auroral and, as the latter is increased the separatrix chaotic layer
radio emissiong8], and solar wind modulation in space spreads along the phase space, eventually engrossing most of
plasmas [9], second-harmonic production, amplification, it [23].
frequency up-conversion, and phase-conjugation of optical Most analytical and numerical results on four-wave para-
signals[10], wave mixing in chiral liquidg11], generation metric interactions have focused on the conservative case.
of soft x rays by conversion of visible lasgl2] and produc- The dissipative case, however, when there is a frequency
tion of Raman waveglaser$ using dielectric microcavity mismatch, still presents many hitherto unexplored features.
[13]. Coherent four wave interactions appears also in nonFor example, what is the fate of the periodieoincaré-
linear atom optics(interacting Bose-Einstein condensates Birkhoff) islands, and which represent resonances of the con-
[14]. Parametric wave interaction plays an important role inservative systeni24], when a small dissipation is intro-
conversion of incoherent light into coherent light as wellduced? Can those solitonlike solutions, found the integrable
[15,19. case, survive to dissipation, i.e., are they robust features of
Parametric wave-wave interactions of three and four wavéhe theoretical model? Do chaotic orbits persist in presence
is among the most widely studied wave-mixing or wave in-of dissipation, and in what measure? Another important topic
teraction configurations. It can be understood as a parametrio mention is the fact that how a linearly unstable system can
amplification process where energy is transferred from de stabilized(presenting saturated statds/ nonlinear cou-
pump wave into two or three other wavgks]. Mathemati-  pling [6]. In plasma physics, for example, many works have
cally, such interaction processes can be described by a syseen done on wave interactions handling just linear growth
tem of coupled-mode nonlinear differential equations whichrates. In spite of those works being useful, many of such
exhibit a wide variety of dynamical phenomena, from peri-results can be explained in more detail when the nonlinear
odic to chaotic behavior, being also one of the oldest physiease is studied. In fact many new results on nonlinear dy-
cal applications of nonlinear dynamics and ch§®g,1q. namics have brought better explanations about some physical
The case of dissipative three-wave coupling was shown tgystemgsee[16] and references therginThese are some of
present transition to chaotic behavior through well-knownthe questions we address in this paper, which presents the
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dissipative version of the four-wave parametric interaction ,—\1) —3
model, with an invariant manifold, where the dynamics is

conservative.

The results we show in this paper are consistent with gen- 2
eral features expected for damped near-integrable Hamil-
tonian systems, for which the absence of an energy surface 1 4
foliated in invariant tori leads to qualitatively different dy- T~ =T~
namics. In particular, those linear centers related to Poincaré-
Birkhoff islands become multiple coexisting attractors with
an involved basin structure due to the fractal nature of the
basin boundarief25]. The latter, on their hand, are respon-
sible for the appearance of transient chaos, which represents
most of the irregular dynamics, since the presence of chaotic

attractorsand the corresponding basins of attractinrare ~ Where&a(t) is a slowly varying complex envelope. _
in comparison with periodic attractofg6]. Not far from the threshold of the linear instability, or in

A key result of our analysis is the existence of an invari-Other words, when the energy level of saturated states is
ant manifold, embedded in the phase space of the system, &fficiently low [27] dynamical behavior of the four wave
which the phase trajectories are attracted for large times. THePUPling in a quadratic nonlinear dissipative system can be
dynamics on this manifold is conservative, since it preserve§escribed combining Maxwell's equations with the fluid
an energylike constant as time evolves; and the dissipativeduations and the linear dispersion relatiog(k,,) of each
effects are found in the directions transversal to this invariantteracting wave. Doing that we are able to derive normal-
manifold. Since the full phase space of the wave-wave interized complex amplitudes for the envelopes:
action problem is high-dimensional, these features can be A1) = E.(1) =ReA,) +i Im(A,) =|A,]e
better observed in a lower-dimensional mapping which pos-
sesses such an invariant manifold, and which retains many of (@=1,2,3.4
the dynamical features of the physical system we are inves- T
tigating. wheref , are functions of the frequencies and dispersion op-

The rest of the paper is organized as follows: in Sec. Il weerators (see [23] for explicit expressions for a particular
present the basic equations of the four-wave interactiomase. In terms of these normalized complex amplitudes, the
model, together with a discussion of the phase space struequations of the resonant parametric four-wave coupling are
ture. Section lll presents numerical evidences of the exis-

FIG. 1. Scheme of the four-wave interaction.

E.(x,t) = %Q(t)e‘("a'x“”a‘) +c.c. (@=1,2,3,4, (5

6

tence_of an ?nvarignt manifold, as a subset qf the phase space dA = AAs = TAA, + 1A, (7)
to which trajectories asymptote, and on which the dynamics dt
is nearly conservative. Section IV treats the observed multi-
stability, or the coexistence of a large number of periodic dA * *
attractors, with an involved basin structure. These facts are dt Arhg = 1AL+ vohg, (8)
best illustrated in Sec. V with the help of a low-dimensional
mapping, which preserves some of the essential dynamical dAg .
features found in the four-wave interaction problem. Our E:‘A1A2+'53A3+ v3As, 9)
conclusions are left to the final section.

dA, .

— =TAA —16,A4 + 1A, 10

Il. PHASE SPACE STRUCTURE dt o= 1040+ vy (10

The resonant four-wave parametric interaction is comwhered;>0 andd,>0 are the normalized linear frequency
prised by the coupling of two three-wave sets, with the fol-mismatches; > 0 is the coupling parameter between triplets,
lowing phase-matching conditiorig schematic representa- v1>0 is the linear energy injection coefficient, amg<0,
tion of this coupling being depicted in Fig):1 v3<0, andv,<0 are dissipation parameters. Here we are

, assuming nonlinear coefficients equal to the unity since we
w3= w1~ Wy~ &, (1) have also normalized the wave amplitudes. In fact in many
physically interesting cases, such coefficients will be com-
W= w1+ wy— 8y, (2) plex, but the use of renormalized variables can make these
coefficients real and limited6] such that without loss of
ks =kq =Ko, (3) generality we are assuming them equal to the unity.
Since each wave field is characterized by two real param-
K= ke + K @) ete_rs(ampl_itude_|Ai| and phases), they are out of eight
AT variables in this system, such that its phase space is
where &3 , are the frequency mismatches for each of the8-dimensional. Let us first consider the conservative case
wave triplets. We use the modulational notation for the wavev,=v,=v3=v,=0). In this case, the phase-space dimension
fields can be substantially reduced thanks to conserved quantities
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of the physical system which lead to integrals of motion, L ¢
from the dynamical point of view. The first of these is the 150 _
Hamiltonian, or energy function
H(A) = AlAA; = AAGAL + T (AAA, — AAA,) |
+i (84 Agl” = 85lAg?), (11) 100 7
from which there results the following canonical equations <
for the wave amplitudes and their conjugate variables: -
S50 .
dA dH
A__m (12 | _
dt IA %
dA’ oH T i
9 | L | s 1 ' 1 ' 1 '
A =—. (13 0 50 100 150 200
dt  JA |A I
1
Other conserved quantities, callegdandc,, are given by
the so-called Manley-Rowe relations: 3 : . : (b
CL(A) = |A? + Al + A2, (14) i T
2_ -
Co(A) = |Agf? = [Ag* + A% (15 I f
. . : 1 —
These three integrals of motion reduce the phase space di- —_
mension from eight to five. This number can be further de- <
creased, by two units, by using the phase conjugacies given ?E’ 0
by the Stokes and anti-Stokes modes — T
1+ _
b+ = D1+ o= ¢y, (16)
2+ _
b-= 1~ P2~ b3 (17)
and we have just three phase space dimensions, which can be 3 '2 5 4

readily studied by using a 2-dimensional Poincaré surface of
section map. The structure of the phase space, in this case,
has been investigated alreaf3].

0
Re(A,)

. U .- FIG. 2. (8 Multiple coexisting period-1 attractors in tHég|
Now if we let the dissipation coefficients have nonzero versus|Aq| projection of the phase spaagdm) definition of a mean

values, the former integrals of motion will be, in general, NO _ dius for a limit-cvele attractor
longer conserved with time. The time rate of change of the y '
phase space volume, which is the divergence of the vector As we shall see, wheA=0 (symmetric case the dynam-

field (7)<10), which is given by ics is strongly dissipative along four out of the six phase-
. - 4 space dimensions, which directs trajectories asymptotically

JZE 9_Ai: 22 " (19) to a two-dimensional manifold1. The dynamics in this
SoA oV manifold can be parametrized by any set of suitable coordi-

nates. We choose to work with the field amplitud@s and
is a constant value, indicating that the system is globallyRe(A;). Figure 2a) shows a projection of the phase space
dissipative (antidissipativg i.e., the volumes shrinkex-  trajectories on th¢A, |-|As| plane, in which a variety of dif-
pand with time at the same rate everywhere in the available€erent attracting closed orbits are shoytihe apparent cross-
regions of the phase space. Since there are no longer coimg of the trajectories is due to the projection we mjade
served quantities, the only dimensional reduction we carmorresponding to different initial conditions.
make, in the dissipative case, is to use the phase conjugacies The perspective view shown in Fig(a@® suggests a “fun-
(16) and(17), which reduce the phase space dimension frommel” with its vertex at the originA, | =|A;| =0 and projecting
eight to six. In the following, we will set;=1.0, »,=v3  out along the remaining phase space dimensijoranly two
=y,=-0.8, andr=1.0; such that7<0. We also define a of them, due to the existence of the manifdid), the closed
symmetry-breaking parameter orbits being cross sections of it. Moreover, the fact that the
A= Sie s (19) system dynamics is effectively two-dimensional rqles out the
s possibility of chaotic motion. These closed orbits have a
which measures the total mismatch between triplets. In othetomplicated structure for their basins of attraction. In order
words, the value taken on hy gives us a measure of how to label the different attractors we can define a “mean radius”
efficient is the energy transport from one wave to anotherpf such curvesp(A,), as illustrated by Fig.@). If A=0, itis
interacting in each wave triplet. possible to find cycles with any value of the mean radius.
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These Iimi.t cycles are thought to belong to a dense set of 25l P P '@
closed orbits.
20 RLENE
Ill. CONSERVATIVE INVARIANT MANIFOLD g
~The large phase space dimensisix, effectively out of 15 S q(iﬂg 9;95" .
eight) of our four-wave system seems to hamper a more pro- aw NG
found dynamical analysis. High-dimensional conservative 10 .
dynamics in the energy surface can be extremely compli-
cated due to factors as Arnold diffusion and stochastic pump- 5 |
ing [28]. Nevertheless, the dissipative case can be simpler in —A=00 v#00
the sense that the number of possible stationary states will — A=001 v#00
decrease, as the dissipation builds up. Moreover, chaotic dy- 0 -~ A=001 v=00]]
| T

namics is mainly of a transient nature, since chaotic attrac- '1 S 1(')0' ST
tors would have attraction basins comparatively smaller than Time
periodic attractors, and the latter dominate the dynamics
[25]. . . .
The shrinking of phase space volume caused by dissipa- a ' ' (b) 1
tion helps us to simplify the system dynamics in another —AT00 v 700
perspective. Globally dissipative systems have the property 1500 — A=00lv %00/
that a sphere of finite volume located in any point of the - A=001 v:=0.0
phase space will shrink into a zero-volume region. In the
four-wave case, global dissipation leads phase-space vol- _
umes to a low-dimensional manifold on which the dynamics Ouso
is almost conservative for the symmetric c&de=0).
A numerical evidence for this assertion is depicted in Fig.
3(a), where we plot the time variation of the numerical value
of the quantityH given by Eq.(11) for the dissipative case. 0
We remark thatl is no longer the Hamiltonian but, as soon
as we reach the conservative manifdttibecomes constant TV ST T e—TTTY
(for A=0). Such a fact enables us to defiHefor the dissi-
pative case as an energy function which is conserved as the
dynamics is restricted to the conservative manifold. In the
conservative casér;=0) the energy function is rigorously ©)
conserved. On the other hand, in the dissipative case, and 0
when the mismatch is different from zero, the temporal
evolution ofH displays, after a transient time, small oscilla- 2r- 7
tions which indicate that the energy function is not con-
served. In other words, the conservative invariant manifold w4 7
ceases to exist in the latter situation. ©
Further evidence is given by Figs(t and 3c), where 6 ——A=00 v £00] |
we plot the time variation of the quantities andc, which, —— A=001 v:#& 0.0
in the conservative case, are strictly constant, thanks to the . R O A=001v,=00[]
Manley-Rowe relationgl4) and(15). Note that, whileH and
c, are constant foa =0, the quantityc, presents a bounded
and regular oscillation about a fixed value. Such results show 19400 19500 1960019700 19800
us that the dynamics in the invariant manifold preserved just Time
the quantitiedH andc,. In particular the former is conserved
outside the manifold\1. FIG. 3. Time evolution of the€a) energy functionH; and the
The dynamics in this manifoldM is conservative thanks Manley-Rowe functions(b) c; and(c) c,, for A=0 andA=0.01.
to the asymptotic convergence of the former integral of mo-
tion H into a constant value. Since these quantitidsand  havior. While four exponents are negative, we have two ex-
C,) do not alter their value as time increases, we can imaginponents equal to zern@n the symmetric casa =0), indicat-
that this is an invariant manifold, since a trajectory that onceng that the trajectories are pushed to this manifold along the
reaches M will remain there for all time. The two- remaining four directions in phase spackie to the corre-
dimensional character oM is inferred from the Lyapunov spondingly negative exponeits
spectrum of this model, shown in Fig. 4, where all the six For theA #0 case, such conservative invariant manifold
Lyapunov exponents are depicted as a function of time. Theyoes not exist at all, as we can see from the variation of the
are all strictly nonpositive, indicating absence of chaotic be-energy functiorH(t) [Fig. 3a)] and the Lyapunov spectrum

Time

-10F 4
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)] space of the system. In the directions transversal to this
Py — manifold the dynamics is strongly dissipative, and the trajec-
— tories converge fast to this manifold as time goes to infinity.
i 1 These multiple attractors are limit cycles #=0 and lie on
QL i this manifold, their basins extending over the corresponding
A transversal directions. IA # 0, these multiple attractors bi-

furcate into tori, since the conservative manifald no
longer exists.
If a trajectory were initialized exactly on this invariant
manifold it would remain there for all times, without con-
L M verging to any attractor. With respect to the transversal dis-
1000 2000 3000 4000 sipative direction these curves can be regarded as limit
cycles of the system as a whole. Returning to Fi@),2he
T T ] funnel aspect of the curves is turned into a series of concen-
| tric curves if a suitable projection direction is used. In this
, 7 case the orbits resemble the phase space structure near an
3000 2000 teII|pt|c fixed point of a two-dimensional area-preserving sys-
em.
For example, a center fixed point of the conservative sys-
———— tem (neutrally stablg becomes, with a small amount of
(©] dissipation, a stable focus. If this point is in a chainnof
periodic islands, it becomes a periodfocus[25,2§. As a

[ general rule, the number of attractors tends to infinity as the
-rk 1 dissipation vanishes. For small yet nonzero damping we ex-
|

pect only a finite number of coexisting attractors. This occurs
because many periodic orbifparticularly those with high

- periodg lose their stability in a very rapid way as damping
grows up[30].

2 i The fast increase of the number of multiple coexisting
; Ly attractors of integer periodsn terms of Poincaré mapss
0 2000 4000 6000 8000 also present when other parameters of the system are varied.
For example, keeping the damping fixed in the periodically
0.2 IL — T T @ kicked double rotof31], there has been found a steep in-
A OLL ] crease in the number of periodic attractors as the forcing
5 decreases to zeff@6]. Figure 5 shows the number of peri-
02— 000 6000 8000 odic attractors we found numerically, with varying eight

orders of magnitude. Here the stability of the cycles was
obtained numerically: once the numerical integration is
FIG. 4. Time evolution of the Lyapunov exponents for the reso-Started, we wait for the asymptotic state. If this state does not

nant four-wave parametric interaction fée) A=0 and (c) A ~ change after a given time intervadirca 50 pseudoperiods
=0.01; (b) and (d): magnification of the figuresa) and (b), ~ We consider that the asymptotic state the system reaches is

respectively. stable.

As a general trend, the number of coexisting attractors
[Fig. 4c)], that presents only one vanishing eXponemmcreases exponentially with dlmlr]lshlmgjust as expected.
(namely, that related to the direction along the traje()toryThe number of attractory, for a givenA was computed by

[29]. The initial behavior of theH(t) time series can be un- randomly choosing a large _numb@lof initial con_ditions in
derstood due to the transient time elapsed until the systerrt}{'e phase space and following the resulting trajectory a large

trajectory settles down on the manifoldt. Moreover, two t|n|1e, until it ?Ioses dOWF‘ on |tfsehlfup toa spemﬂgd S”S“?‘”
varising Lyspunov exponrtsar et ot prase coff ) A1 OSSN o e P seclr, Snes
jugacies in Eqs(16) and(17) and are not plottef23]. two-dimensional, only periodic orbits witm=1 are allowed.
Orbits withm=2 exist only whemA # 0, and do not belong
IV. MULTISTABILITY to such conseryative invari.ant manifolq. If th_e orbjt fails to
close down on itself, we did not consider this trajectory as
The presence of multiple coexisting attractors, or multi-leading to a periodic orbit. In this case we found an approxi-
stability, is expected in Hamiltonian systems with weak dis-mation of a periodn attractive orbit, and the number of at-
sipation. In this case, numerical and rigorous analyses poirttactors was computed by summing up all periodrbits:
out that there is a large number of coexisting periodic attracN;=X,, N, For relatively largeA (higher than 10°) we
tors [25]. In the past section we have seen that there is afound a power law decreadé;~ A~ indicated in Fig. %a)

essentially conservative manifold embedded in the phasky the dotted lines. FaA <107° there appears to be a satu-

Time
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Number of initial conditions Re(A))

FIG. 5. (a) Number of attractors as a function of the symmetry FIG. 6. (a) Basins of coexisting attractors, in the (Rg)—Re(A,)

parameter for a different number of initial conditions. The daShEdprojection of the phase space far=0; (b) magnification of the
lines are power-law fitgb) Variation of the slopes of the power-law basin structure for small R&y). '

fits with the number of initial conditions used.
evidence that the basins of attraction are complexly interwo-

ration of the number of attractors, the error bars being tod/€n [25]- _ o
wide to allow for a reliable fit. Due to the presence of the conservative manifold in the

It must be stressed that the numerically determined valu@hase space foA=0, with strongly dissipative transversal
of Ny is to be considered actually a lower bound on the totadynamics, virtually every invariant curve of the conservative
number of periodic attractors, since many orbits have basing?anifold is an attractor with respect to the transversal direc-
of attraction so tiny that their presence cannot be detectetions, and we label them according to their mean radius
unless we use a very fine resolution. This also explains why(Ad)- Since the number of coexisting attractors is typically
there is apparent saturation Nf for very smallA, since the  t00 large(of the order of hundreds of thousands is nearly
number of attractors may increase, but at the same time thelfipossible to get a reasonable plot of individual basins of
basins become so small that they cannot be detected. In fa@ftraction. However, a glimpse of this structure can be ob-
Fig. 5a) shows that, while the total number of attractorst@ined by means of Fig.(6), where the union of the basins
increases with the number of initial conditions chogen ©f various attractors are indicated in the(Rg—ReA;) pro-
consequence of the better resolution achieved with moréection of the phase space, and corresponding to intervals of
points to explorg the slopesy of the power-law fits con- the mean radiug(A,). For example, one of the dark strips in
verge to a value 0.547+0.0Q8ee Fig. fb)]. Fig. 6(a) refers to the union of the basins for cycles with

The basin structure of a weakly dissipative system is thugnean radii within the interval € p(A,) <5, the contiguous
very complicated, since there is a large number of coexistingvhite strip to basins for which § p(A;) <10, and so on.
stable attractors, each one with its own basin of attraction in The convoluted nature of the corresponding basin bound-
a limited phase space region. Even though the phase spaages stripes for small values of Bg) and Ré€A;) indicates
dimension can be large, as in this case, there is numericah fact a highly interwoven basin structure in these regions,
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FIG. 8. Number of attractors vs number of initial conditions for

FIG. 7. Probability of reaching a basin of an attractor with a
two values of the tolerance used.

given maximum value of the mean radip&\,).

which holds also for the individual basins themselves. In V. A LOW-DIMENSIONAL MAPPING
fact, Fig. €b) shows a magnification of such a region, indi-
cating a logarithmic accumulation of the basin stripes to- The existence of an invariant manifofdt where the dy-
wards a vertical line parallel to the axis (Rg)=0. namics is nearly conservative, embedded in the phase space
As a consequence of the above reasoning, chaotic attraéf a globally dissipative system, has been suggested for the
tors are likely to be seldom found in such weakly dissipativeresonant four-wave interaction. However, the high dimension
systems, for their basins would be too tiny to be detected, if the corresponding phase space is an obstacle to a more
comparison with low-period attractors. However, there aredetailed analysis. For example, one would like to write down
chaotic transients in such systems, present in the basian equation for the two-dimensional surface corresponding
boundaries, and which are remnants of the homoclinidco M. This is feasible in simpler dynamical systems, where
tangle existing in the conservative case. These chaotic tranhe phase space dimension is small enough to allow the ob-
sients, however, do not influence the counting of coexistingention of analytical results.
attractors.. , , Since the lowest-dimensional phase space for near-
From Fig. 6 is apparent that the relative areas of the atzonservative motion is two, the simplest system which ex-
traction basins are rather_d|fferent, being distributed in a way,ipits an asymptotically near-conservative dynamics is a
numerically shown by Fig. 7, where we have used as aRq.gimensional weakly dissipative map with a transversal
indication of the attractor not its period, but instead the maxijrection with strong dissipation. Furthermore, in order that
mum value,(p(Al)), of t_hg Cofre?por.‘d'”g periodic orbit. The this area-preserving map is defined on a two-dimensional
corresponding probability distributiofil(p) was computed invariant manifold, the transversal dynamics cannot influ-

by distributing a large number of randomly chosen initial ence the trajectory in the manifold. We will take, as a repre-

conditions in the phase space and determining in what attrac, i+ive example of a weakly dissipative map, the Chirikov-
tor the trajectory settles down. The distribution shows a pea vilor map with a Jacobian sliahtly smaller than unit
around|A;| =20, indicating the “most probable” periodic or- y P gntly y

bit in phase space which would contain this value. Such :£24’28 :

fact can be observed in Fig(d&, where the pieces of pro- Xne1=Xn+Yn+ 2, (Mod 27), (20
jected basins have different areas for different orbits.

At this point, one could argue that, due to the extremely Yie1 = Yo+ K Sin(277(x, + Z,)] (21)
interwoven structure of the attraction basins, very small de- s " ’
viations of a trajectoryparticularly if it stays near the basin Z1=(1-b)z, (22)

boundary would kick us to another basin. This could be a

serious drawback of our numerical method to determine avhere the standard map is defined {key) plane, andz is
periodic attractor, since it uses a small toleraade assess the corresponding transversal direction. The dynamics along
whether or not a given trajectory has closed on itself. Inzis independent fronx andy, as required by the requirement
order to give confidence to our method, Fig. 8 shows thehat thez=0 plane is an invariant manifold. In fact, if we
variation of the total number of attractors with the total num-makez,=0 in the above equations, it follows thet ;=0 for

ber of initial conditions, for two different tolerances. The all later times.b=0 is the dissipation coefficient along the
number of attractors increases exponentially with initial con-transversal direction. The Jacobian derivative of this model
ditions, which is a simple consequence of the better resolus 7=1-b, indicating that, for smalb values, this is a glo-
tion obtained with more points, permitting us to explore bally dissipative map.

more and more basins of attractions. The slope of this in- If a trajectory starts from an initial condition with nonzero
crease is the same for two widely different tolerances. Were, i.e., out of the invariant manifold=0, it is typically at-

the final-state sensitivity so drastic that we would expectracted to thez=0 plane, with a constant rate b<0. An
dramatic changes by considering small deviations of a trajecexample is depicted in Fig(8), where arx-y projection of
tory from a tolerances, the results would not converge as the three-dimensional phase space shows closed orbits com-
shown by Fig. 8. ing from initial conditions with different values af. This
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" @] frequency matching between the waves. The introduction of
_: a small nonzero frequency mismatch breaks down the system
3 integrability and opens the possibility of chaotic dynamics.
3 The addition of dissipative terms to the otherwise conserva-
L s tive model leads to a complex phase space structure, whose
main features were the object of this paper. Our results can
oaf T T T )3 be summarized as follows. _ _
O'OSL 3 There coexists a multitude of attractors, their number in-

A0 creasing in a power-law fashion as the symmetry-breaking
o ' parameter goes to zero. There exist only limit-cycle attrac-

02B . o0y, tors, since the invariant manifold is two-dimensional, and
0 s '020 1500 2000 2500 3000 their basins of attraction show a highly involved structure
teractions with an incursive character, which is more evident for low
FIG. 9. (a) Projection of the phase space of the three-values of the wave amplitudes. The presence of chaotic at-
dimensional mapping showing some closed orhig;time evolu-  tractors is not possible in this case, but this does not preclude
tion of the Lyapunov exponents of the three-dimensional mappingthe existence of chaotic transient dynamics.

_ ) ) We have numerically observed that the system trajectories
can be interpreted as a result of cross sections; ¥@ariable,  for the A=0 case, albeit belonging to a high-dimensional
of the invariant(KAM ) tori which exists in the conservative phase space, are asymptotically converging to a two-
system(b=0). Actually, in the dissipative case these tori N0 gimensjonal invariant manifold in which the dynamics is
Ik;)nger iX'St' the reg|;)n Wh'%rl‘ t?ey OCICUDV téemg rr}athfer thesonservative. This fact effectively reduces the number of de-

fli.s'tr.‘ 0 atttractlonso al stg ethocutsh ocr?te d "’;Lt eh Ortr.nebrees of freedom necessary to give a dynamical characteriza-
B o o e he £h201E fon of the wave-teracton poblem, These properies car
standard map is readily identified with chaotic transientsalso be found in simpler dynamical systems, and we have

which precede evolution towards a stable low-period attrac'—mrc’duced a three-dimensional mapping which share many

tor. Figure @b) shows the time evolution of the three of the properties of the physical system we are considering in

Lyapunov exponents. The third exponent is negative and id!iS paper. We claim that our results are thus quite general,
related to the transversal direction, whereas the two large&"d are present in a wide variety of similar wave-interaction
exponents, after a rapid transient, converge to values relatdgodels.

to the dynamics on the=0 plane. If it were strictly conser-

vative, the two largest exponents would sum to zero, due to
the area preservation. ACKNOWLEDGMENTS
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