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Cartesian convection driven dynamos at low Ekman number
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The Cartesian dynamo model of Childress and SoRhys. Rev. Lett.29, 837(1972] is studied numeri-
cally in the regime of low viscosity. Dynamos with Ekman numbEri the range 10'=E=5x 10" are
discussed and compared with the corresponding nonmagnetic states and with results obtained for imposed
magnetic fields. We find that in the range of investigated Ekman numbers, a transition occurs from a flow
regime where the planform of convection is only weakly affected by the dynamo generated field to a regime
where the typical length scales of the flow are largely controlled by the Lorentz forces. The magnetic field acts
to facilitate convection and leads to an increase in both the heat transport and in the amplitude of the flow. We
demonstrate that this convection promoting effect allows for dynamo action even for Rayleigh numbers below
the critical Rayleigh number for the onset of nonmagnetic convection.
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I. INTRODUCTION regimes which probably deviate considerable from the con-

During th t decad ical modeli £fully th ditions inside the Earth’s core.
uring the past decade, numerical modeting ot fully tr€€ 0 a5 of this study is to use a fully self-consistent

dimensional dynamo processes in spherical geometry has b lodel of the plane layer dynamo originally proposed by

come an integral part of geomagnetic research. The results hildress and Sowarf¥] to investigate the system behavior

these efforts are quite encouraging. The fields predicted b¥t low Ekman number. Typically, spherical models today are

numerical models have the correct strength and their mory,, - reachE=0(10"%) if all diffusion operators are re-

Egglg?ye%tr;ge r:Eeatir(t:h dz;‘;g]acﬁoilgg\?g rﬁ:ﬁn:g\lgsrsi;:rhagzr%ined in the classical form. The simpler Cartesian geometry
been fguno[S]gand the unblérl in mec,hanisms are now ar]a_allows us to study dynamos with Ekman numbers as low as
. ; . ying E=5X10". Several groups used so-called hyperdiffusivities
lyzed in detail by using self-consistent dynamo modé|s]. . :
Eo get to comparable Ekman numbers in spherical geometry

The main problem faced today is that although the OUtpuat least for the large scales. Usually the diffusiviiiasd thus

?r]: thde rr:worgielsl |rs mirgooc?lv:;l]?rﬁerpent with itgle ?bierr\;le(?i f'ell?:E) are then assumed to be a rapidly increasing function of the

€ dynamica’ regimes which are accessible to hnumencal Iy o nymper of the solution, effectively damping out high
vestigations deviate consuderably from what is gxpe(_:ted fO\r/vave—number components. Hyperdiffusion is meant to repre-
the Earth’s core. Especially the low values of viscosity and :

of thermal and chemical diffusivities in the core pose diffi- sent transport processes a.lt the subgrid scale bl?'t Its appropri-
. : ateness has been called into quesii8s9]. For this reason
culties which have not been overcome yet.

A dimensionless parameter used to indicate the strength e do not use any form of hyperdiffusion and retain classical

. . 5 ' viscous friction.
;/rllscou? eﬁicttﬁ IS thtetI.Ekaar; numh?eq: V/I(Z(tlrll‘ );jeﬂned aI\s f The low value of the Ekman number in our calculation
1€ ratio of the rotational ime scale 1o the ime scale ol 4,5 ys to investigate effects which are absent for moder-
viscous diffusion. Herey denotes kinematic viscosity) is

angular velocity, and. denotes the core radius. A common ate E and are thus not present in most of todays spherical
/ ’ . ) e numerical dynamo solutions. Special attention is paid to the
estimate based on molecular viscosityEis O(1079) in the Y P P

Earth’ Taking i hi Il val _influence of the dynamo generated magnetic field on the
arth's core. Taking into account this very small va ue’_'tplanform and amplitude of convection. For moderate Ekman
would be highly desirable to neg_lect viscous friction at fall N umbers, dynamo solutions are strongly influenced by vis-
the bulk ?ff . c?re_ by aslflém'“%‘o’ Iperhaps reta|(1||ng cous friction. This usually prevents drastic changes of the
viscous effects only in small boundary layers. Up until nowq.,\ in response to the generated magnetic field. In the low
all attempts to numerically model such a self-consistent mage\ a0 number case considered here, the viscous force can
netostrophic dynamo failed due to numerical mstabllltlesbecome of secondary importance in comparison to the Lor-

ﬁsee €.9., Il?e[.G]).hFor thbi_sl_ r_easor;f, all S?If-_consistfe_nt_modelg entz force and the convective flow is thus strongly controlled
ave to rely on the stabilizing effect of viscous friction an by the forces exerted by the magnetic field.

the strategy is to reduce the Ekman number as far as pos-
sible. Unfortunately, the Ekman numbers achievable by nu-

merical simulation exceed the e_stlmated_ value for f[he I_Earth S Il. MODEL AND METHODS

core by many orders of magnitude. This overestimation of

viscous effects leads to force balances and thus to dynamical A. Governing equations and boundary conditions

Thermal convection and magnetic field generation is stud-
ied in a rotating plane layer. An electrically conducting
*Electronic address: stellma@earth.uni-muenster.de Boussinesq fluid confined between parallel wallg=a0 and
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z=1 is heated from below. The system rotates about the verI'j,2z)0i,j € Z, x,yeR, ze[0,1], & €{u,B, T} wherel'

tical axes with constant angular velocity. e R denotes the aspect ratio. Certainly, long wavelength
The governing equations can be written in the form structures are excluded by such a procedure and this may
E have dynamical consequences. Nevertheless, we hope that
—(gdu+u-Vu)-B-VB our solutions retain the basic characteristics of the full prob-
qPr lem.
=EV2u- VII-2 X u+qRalz, (1)

B. Useful definitions

-— . = 2 .
dB+u-VB-B-Vu=VB, (2) For future reference we define the horizontal and volume
aT+u- VT=qV2T, (3) averages
V.u=0, (4) <"'>xy::F_2f J - dxdy,
[0.1][0.1]
V- B=0. (5)
In Egs.(1)—5), the Prandtl number Pr, the Ekman numEBer -
the modified Rayleigh number Ra, and the Roberts number (=T v,
are defined by v
-V _aATglL q= K pr2? (6) where V:=[0,I']X[0,[']x[0,1] is the computational do-
2012 20k ' 7 K’ main. The time average is denoted {y). We further define

where 7 is magnetic diffusivity,Q) is angular velocityg is (8 the magnetic Reynolds number [Re (U,

gravitational acceleration, is a typical length of the system, (P the Peclet number PeRe,/q,

v is kinematic viscosity,x denotes the thermal-expansion (¢) the Reynolds number Rel?eﬂ/(qPr),
coefficient, x the thermal diffusivity, andAT the applied (d) the Elsasser numbek:=(B%),,
temperature difference which drives the flow. The equations (€) the ratio of magnetic to kinetic energy
have been nondimensionalized by usibgy » as the time

. -1
scale,L as length scaley/L as velocity scale(2Quqpn)*? EmadExin == RO A/RE,
as magnetic-field strength scale, add as temperature (f) the kinetic helicityH = \((u-V xu)?),,
scale.p denotes density angl, is the permeability of free (g) the Nusselt number Ne (q~1u,T—dT/dz),,

space. In the following, we refer to the quantity Ro h) a dimensionless measure for the deviation from a
:=E(qPn~1=7/(2QL?) as the magnetic Rossby number. To Ta3(/lgr statle I . viat
simplify the notation, we further define

1
R:= Ra—R@, 7) f 7.V X (B- VB)dz
Ra. 0
Ti= y
where Ra is the critical Rayleigh number for the onset of flﬁ- V X (B- VB)|dz
nonmagnetic convection predicted by linear stability theory 0

(see Sec. Il A. o

We assume that the horizonal boundaries are stress free, (i) and the number of free decay timgs= 7°At.
e|ectrica”y perfect'y Conducting7 and isothermaL In math_The def|n|t|0n OfT|S m0t|Vated n Sec. I” Bt77 eXpl’esseS the

ematical form, the boundary conditions are then given by length of a calculated time seriés in units of the free decay
time of the slowest decaying mode.

Iy, =u,=0 atz=1{0,1, (8) _ Spectra of the solutions will be Qiscussed in the next sec-
dz tions. We therefore expand according to
B u cognmz)
—¥=B,=0atz={0,1}, (9) Xmn
iz us= > exp2mi(x +my/T]| Uy, codnmz) |, (11)
and Lmn u, sin(nmz)
T(z=0)=1,T(z=1)=0. (10

wherel, m are the horizontal wave numbersis the vertical
The choice of stress free boundary conditions avoids the dywave number, and we defiré:=12+nm?. A similar expres-
namical effect of Ekman boundary layers, whereas the persion is used foB with fourier coefficientsB, ., .. To analyze
fectly conducting boundary condition facilitates comparisonthe horizontal structure of the solution, we further define
with theoretical studies of the plane layer dynamo.

To address the problem numerically, we restrict ourself to v2(1,m) = X, Eyinl,mn), (12
horizontally  periodic ~ solutions ®(x,y,z)=®(x+I'i,y n
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Adl,m) = 2 Emag(lamv n), (13) TABLE |. Parameter values for nonmagnetic calculations.
n

* E 1x10% 5x10° 25x10° 1x10° 5x 1076
where  Ey (I, m,n):= (1/2q2)[u|,m‘nu|’mvn(1 +8y)] and

Enadl /1) = 1[BumaBl ma(1+5)] denote the contribu- K3 22345  280.25 35203 477.12  600.0
tions of the(l,m,n) mode to the dimensionless kinetic en- P.r 1 13 13 1 1
ergy (U, and magnetic energ{B?),. Grd 64 96 96 1288 256°x128

C. Numerical method gross characteristics of nonmagnetic convection can still be

Dynamo calculations at o are numerically challeng- understood in terms of weakly nonlinear theory.
ing because of the small length scale O(EY®) that natu- The main concern of this paper is the study of dynamos at
rally arises when the magnetic field is weak and because déw E. Of particular importance in this context is to under-
the different time scales present in the dynamo problem. Ostand in which way a self-generated magnetic field influ-
the one hand, in order to get relevant statistics, the simulaences the convective flow. We therefore start by investigating
tions have to cover several magnetic decay times, on th#he nonmagnetic problem in Sec. Il A. We then examine the
other hand, the time scales of magnetohydrodynamic wavesansition of the flow regime that occurs when a magnetic
decreases rapidly with decreasiBEd6,10]. field is imposed externally on the convective flow in Sec.
Differently from the usually applied spectral methodslll B. Finally, the full dynamo problem is studied in Sec.
[11], we therefore choose a conservative second order finitdl C. The results gained for the nonmagnetic case on the one
volume discretization in space that allows for efficient paral-hand and for the case of a strong imposed field on the other
lelization using a three dimensional domain decompositiorhand serve as extreme cases against which the self-consistent
approach{12]. Details of the method are given in R¢L3],  dynamos can be compared.
so we only give a brief summary here. A similar approach
has also recently been applied to the spherical prolplieth
A primitive variable formulation is used in contrast to the
commonly employed formulation in terms of poloidal and A. Nonmagnetic convection
toroidal potentialgsee, e.g., Ref2]). To allow a straightfor- i , " ,
ward treatment of the Coriolis term, a collocated grid is used. Linear theory predicts the critical Rayleigh number.Ra
Flux vector splitting is applied to the convective terms whicharjsgwave numbek, for the onset of convection to scale as
transforms them into Elsasser spdt8]. Second order up- E  [22]. For Pr>0.68..., convection sets in as stationary
wind discretization by theuick schemg16] is then used to convection. We exclusively consider this case in the present
avoid artificial hyperbolic behavior. paper. , , _
The stiffness is dealt with by using a fully implicit second _1he results of linear theory can be illustrated by consid-
order BDF time stepping schenj&7] which is not limited ~ €7Ng thez component of the vorticity equation
by the severe restrictions of the time step length typical for
explicit methods(see, e.g., Ref18]). The time derivative is RO(G@+U- Vo-w- VUu)-EV?w=3du+qRaV X (T2),

Ill. RESULTS

approximated as (16)
— n+1 n n-1
K= apdTF ar T+ ard T (14 where w:= V X u denotes the vorticity. It follows that con-
with vection can only occufi.e., d,u,# 0) if either inertial or
11428 1 1 52 vi_scous forces balance '_[he nonconservative part of thg Cori-
ay=—————, ay=——(1+9), ap=— , (15  olis force. For the considered Prandtl numbers, the viscous
At 1+6 At Atl+6 force breaks the rotational constraint. The scalikg

— -1/ H
where At=t™1-t" 5=At/(t"-t"1) and the superscripts de- =0O(E™3) follows directly from Eq.(16) as long asd,u,

note time levels. To solve the resulting system of nonlinear” _O(l) and is t_hus expected to be a robust feature even for
equations, we basically follow the SIMPLE algorithjpg.  Migh flow amplitudes.

The pressure equation is solved by the Krylov subspace

method BICGSTAB[20]. After each time step, the magnetic 1. Choice of parameter values

field is corrected in order to fulfill the solenoidal condition 154 | shows the employed parameter values. The Ekman
®). number is varied in the range>610°<E<10% The
Prandtl number is fixed to one and we have chosen the Ray-

leigh number such th&®=(Ra-Ra)/Ra. is constant for all

The parameters have been chosen with the intention tBkman numbers considered. Since the Roberts numb&r
reduce the Ekman number as far as possible. We thus confimat a relevant control parameter in the nonmagnetic case, we
this study to Rayleigh numbers close to the critical Rayleighassumey=1 in the following. The nondimensional time scale
number Rafor the onset of nonmagnetic convection. Apartis then the thermal diffusion time and the velocity scaling is
from easing the computations, this has the advantage that thesed on the local Peclet number.

D. Modeling strategy
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The top row(a) shows the geometry of the up- and down-
streams by means of isosurfaces of the vertical velocity. The
flow has a columnar structure and the typical size of the
convection columns strongly decreases with decreaking
The kinetic helicity exhibits a strong polarization along the
axes(Ref. [21], Chap. 8.2 with positive helicity dominating
in the lower and negative helicity in the upper half of the
fluid layer. This is visualized by isosurfaces wfV X u in
the second rowb). The spatial helicity polarization is crucial
for the ability of the flow to act as a kinematic dynamo.
Isosurfaces of temperature are shown in the last row of Fig.
1. Due to the moderately supercritical value of Ra, the de-
viations of the temperature from the purely conductive gra-
dient are small and there are no thermal boundary layers as
typical for high Rayleigh nhumber convection. The tempera-
ture isosurfaces are almost flat and only slightly deformed by
the convective heat transport in the up- and downstreams.
For a more quantitative description the spectral distribu-
tion of kinetic energy has been calculated. Figure 2 shows
the time average of the quantity(l,m) defined in Sec. Il B.
The most prominent feature is pronounced maxima at wave
numbers close to the critical wave numberas obtained
from linear theory. Fol'=1, these ard.=120~4.47 forE
=10* and k,=v148~12.17 forE=5x107° [22]. There is
thus a clear preferred length scale of or&f of the flow
structures even in the finite amplitude case.

3. Ekman number scalings

The relative amount by which the Rayleigh number ex-
ceeds its critical value determines the strength of the convec-

FIG. 1. Visualizations of the flow structures for nonmagnetic tive heat transport. In the chosen case of consRnthe
convection aE=10"* (left column and atE=5x 107° (right col-  Nusselt number Nu is almost constant, independently of the
umn). The panels in the top roe) shows isosurfaces af; atu,  Ekman numbe¢see Table li. Differently, the flow amplitude
=+30 for E=10"* and atu,=+50 for E=5X 10°° (upstreams: dark  goes not remain constant, but increases with decreasing Ek-
gray; downstreams: light grayA snapshot of the spatial distribu- an number. Figure 3 shows the scaling of Re dinalith E.
tion of helicity is shown in(b) at 50%(light gray) and —50% (dark The Reynolds number scales approximately ase RE3
gray) of the maximum abs_olute value. The plots in the IowermostSince the dominating length scales aIrEO(Em), the helic-
row (¢) show temperature isosurfacesTat0.5. ity is expected to scale approximately 45/2=0(E™) and
the results indeed reveal an approximat& ktaling.

These scaling exponents are still in good agreement with
For all parameter values considered, the flow exhibits aesults from weakly nonlinear theof23]. For moderately
chaotic time dependence. To give an impression of the spaupercritical Rayleigh numbers, a statistically stationary fi-
tial structure of the flow, snapshots are shown in Fig. 1 fomite amplitude state results from the reduction of the mean
E=10* (left column and for E=5x107° (right columr).  vertical temperature gradient in the interior of the fluid by

2. Flow structure

E=10"* E=5x10"°

FIG. 2. Spectra of dimensionless kinetic en-
ergy for nonmagnetic convection @) E=10*
and(b) E=5x 1078,

log,, ( <v&l,m)>)
log,, ( <v&l,m)>)
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TABLE Il. Overview of the dynamo calculations. Rés the magnetic Reynolds number, Re is the Reynolds number, Nu is the Nusselt
number,A is the Elsasser number, akg,4/ Eyi, is the magnetic to kinetic energy ratio. The values in parenthesis correspond to nonmagnetic
convection. *Field and flow decayed after more than two mean field decay times. The values given are averages over the period of transient

dynamo action.

Run 1 2 3 4 5 6 7 8* 9 10 11
E 1x10% 5x10° 25x10° 1x10° 5x10% 5x10°% 5x10°® 5x10% 5x10% 5x10% 5x107
Ra 223.45  280.25 352.03 477.12  600.00 600.00 500.00 450.00 600.00 600.00  1200.00
Ra 189.71  237.93 298.88 405.07 509.40 509.40 509.40 509.40 509.40 509.40  1095.98
Pr 1 1 1 1 1 1 1 1 10 30 1
q 25 2.5 2.5 2.5 25 1 1 1 1 1 1
r 1 1 1 1 1 1 1 1 1 1 0.25
Grid 64 96° 96° 128 128 128 128 128 96° 80° 642 % 256
t, 12.22 5.51 4.23 2.64 2.10 2.59 7.84 2.05 4.81 4.07 1.95
Re, 110.5 141.8 170.7 198.9 215.4 136.6 102.4 82.3 127.1 118.6 221.2
(74.9 (92.8 (120.  (165.8 (2040 (81.8 (0.0 (0.0 917 (127.5
Re 44.2 56.7 68.3 79.6 86.2 136.6 102.4 82.3 12.7 4.0 221.2
(29.8 (37.1) (48.3 (66.3 (81.6 (81.6 (0.0 (0.0 9.2 (127.5
Nu 1.71 1.73 1.66 1.49 1.37 1.91 1.63 1.47 1.62 1.54 1.84
(1.32 (1.32 (1.34 (1.35 (1.33 (1.33 (1.0 (1.0 (1.39 (1.20
A 0.31 0.38 0.38 0.31 0.24 0.21 0.16 0.12 0.09 0.07 0.20
EmadExin ~ 0.62 0.97 1.37 2.07 2.86 2.33 3.06 3.60 10.57 27.71 15.54

the convective heat transport. Since the horizontal lengtipossible for order one Roberts numbers. The observed flow
scales of the flow decrease with decreasing Ekman numberegime is thus an excellent starting point for the study of
the flow velocities have to increase in order to achieve theonlinear dynamos.

necessary reduction of the vertical temperature gradient.

4. Summary of nonmagnetic results B. Magnetoconvection

In Summary, we conclude that for the chosen Parameter After describing the main features of nonmagnetic con-
ValueS, all results share the same dynamical behavior. T%Ction' in this section we Study the response of the convec-
scaling exponents found are in good agreement with thosgye flow to an externally applied magnetic field. Many ideas
predicted by weakly nonlinear theory. These scaling laws argoncerning the nonlinear dynamics governing the dynamo
likely to hold in the limitE— O providedR is chosen small case are based on magnetoconvection studies. The results of
enough to restrict the flow amplitude to values for whichthis section will thus be useful in interpreting the self-
inertial effects are of secondary importance. consistent dynamo calculations in Sec. Il C.

Furthermore, in Sec. Il C, we show that the flow ampli- Most previous studies have been performed with a con-

tudes are high enough to make kinematic dynamo actiostant imposed fieIcBL:\s’A—l% of prescribed strengti | .
The linearized stability problem has been investigated for
00— - — T 10° finite Prandtl number in the limiE— 0 [24,25 and for gen-
I 2 re | 1 eral, finite Ekman numbers in the infinite Prandtl number
0341 £ 0.007 oH | ] limit [26]. These works clearly demonstrate that for the small
Ekman number case considered in this pakeand Ra are
both O(1) independently from the Ekman number provided
the field strength\ | also exceeds an order one value.
415 = This result of linear stability theory can again be illus-
Q\\ ] trated by considering the vorticity equation
H o~ 1042001

‘B\\ ] Ro(dw+u-Vw-w- Vu)-EV?w
‘ =V x(B-VB)+au+graVv x (T2), (17

Re

~E

Re

o
whereB=B, +b denotes the magnetic field consisting of the
imposed fieldB, and of fluctuation$ induced by the con-
vective flow. Differently from the nonmagnetic case, the

FIG. 3. Scaling of the time averaged helicity and Reynolds num-nonconservative part of the Coriolis force can now be bal-
ber for constanR in the nonmagnetic case. anced by the Lorentz force provided the imposed field is

..OI5 L L L T ..OI_4 104
10~ 1
E
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strong enough. This liberates the system from the severe coB-, to be given and solve E@21) together with Eqs(1), (3),
straints imposed by rapid rotation. The dominating force baland(4), andV-b=0.

ance is now between Coriolis, pressure, buoyancy, and Lor-

entz forces while viscosity plays a minor role and the need 2. Choice of applied mean field

for the presence of a small length scale vanishes.

If the nonlinear problem is considered, complications
arise in the limitE— O because of the fact that the momen-
tum equation(1) might not have any solutions fdE=Ro
=0. A necessary condition for the existence of solutions ca
be derived by integrating thecomponent of Eq(17) from
the bottom to the top boundary overyielding

The applied mean field has been chosen to be as simple as
possible. To be physically meaningful, it must satisfy the
boundary conditiong9) and the conditionf%Bldz:O. The
simplest choiceB | =\2A | cogm2)%X, however, rapidly leads
to a strong geostrophic flowy=uy(y)X [29] which is unde-
sirable in this context. The inclusion of third order terms in
the Fourier representation &f

1 1 1
_
R &J wdz+ f UV wdz- j - Vudz - V2/2[cod w2) - cog3m2)]
BL = VAL - COS{WZ) ’ (22)
0 0 0 0

1
B 2 A eliminates this problem. The chosen field has a spiral stair-
EJ Viedz= f 2:Vx(B-VBdz (18 o0 structure, is antisymmetric with respect to the midplane

0 0 z=0.5, and thus has at least some similarities with the fields

In the magnetostrophic case RB=0 this equation reduces observed in the dynamo caggec. Ill C and Fig. 1@®)]

to the desired solvability condition
1

3. Procedure and choice of parameters

To facilitate the comparison of the relevant flow regimes
fi' V X(B-VB)dz=0 O (xy) e R% (190 with the nonmagnetic case, the Rayleigh, Ekman, and
0 Prandtl numbers are the same as for the nonmagnetic calcu-
_ o i lations(see Table )l For simplicity, we further assumg=1
which represents Taylor’s constraint in Cartesian geometnyi this section resulting in the fact that all diffusive time
The quantityr defined in Sec. Il B provides a measure of the g.g1es are the same.
degree to which Eq(19) is satisfied in a numerical simula- g sets of numerical experiments have been performed.
tion [27]. , For fixedE=5X 1075 A, has been systematically varied in
Building up on the linear resulfts, Roberts and Ste_wartsorghe range 8 A, <10 to explore the response of the system
[28,29 studied the weakly nonlinear case. Complicationsy, weak and strong imposed fields. We have further investi-
arise for strong magnetic fields and moderate Roberts NUNYated the dependence of the strong field states,at10 on
bers. In this case, there is a degeneracy in the linear stabilifye Exman number for § 106<E<10% A 643 grid has
problem and two distinct rolls are equally possible. Theirpeen used for all calculations.
nonlinear interaction leads to a violation of Taylor’s condi-
tion [29]. The resulting Lorentz force can then only be bal-
anced by inertial forces resulting in a geostrophic floy _ _
=uy(y)X which plays a crucial role in the dynamics of the F'QGUfe 4 shows the resulting flow structures &t5
system. We found that in fully nonlinear calculationg,can ~ X 10 for various values of the imposed field strengih.
become very strong if a simple, one dimensional mean field™or small values of\ |, the flow is similar to the nonmag-
B, =B, (2)X is applied externally. To avoid this kind of be- netic case described in Sec. lll A. and obeys the weak field

havior, a more complicated, two dimensional mean field isscalingL=E. The Taylor proudman theorem manifests it-
used in this study. self in the close similarity of both temperature isosurfaces

shown in Fig. 4a). With increasing field strengti |, the
1. Governing equations typical size of the flow structures increases and the Taylor

. . . . groudman effect successively loses significance. Kor
The governing equations are derived by separating the ;o the flow is dominated by large scale features of size
magnetic field into a mean pait, =(B),, and a fluctuating . 5(1). we further observe that the temperature isosur-
partb:=B-B,. The induction equation then becomes faces successively become closer to the boundary with in-
4B, ==(u-Vb=b.Vu),+V2B,, (20)  creasing field strength. This reflects the fact that thermal

boundary layer structures develop at large.

4. Flow structure

db=-u-VB,+b)+(B,+b)-Vu

2
U Vb=b- Vuy+Vb. 29 Figure 5 gives a more quantitative description of the ef-
Since at this stage we are interested only in the response fdcts of the imposed field on the convective flow. It shows
the system to an imposed mean field of given strength  the Reynolds number and the quantitgefined in Sec. Il B
we neglect the process of mean field generation here, assuras a function of the applied field strength . With increas-

5. Influence of the applied field strength
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Al =0.1

FIG. 4. Isosurfaces of temperatureTat0.3 and aff=0.7 for various values of the imposed field strength in the magnetoconvection case
(E=5x10%,Ra=600,Prg=1).

ing A |, the amplitude of the flow as measured by the Rey- 6. Ekman number scalings
nolds number strongly increases. This is to be expected on
the grounds of linear theory since far, <O(1), the system We further computed the Ekman number dependence of

gets increasingly supercritical with increasing . We fur-  he strong field states withh , =10. These might be con-
ther observe that rapidly decreases in the range &1 trasted_ with the weak field scallng_ laws discussed in Sec.
<1 and that a transition to an approximate Taylor state, char!! A- Figure 6@ shows the convective heat transpgrtea-

acterized by a value of much smaller than one, occurs.  Sured by the Nusselt numbeand the Reynolds number as a
’ function of E.

ol R , ; g 05 As compared to nonmagnetic convection, the heat trans-
* T ke 045 port across the fluid layer is much higher in the magnetocon-
w0 J04 vection case. This is caused by the fact that large scale con-
200 035 vection is much more efficient in transporting heat than the
180 03 small scale flows arising in the nonmagnetic case. In addi-

0.25

*’ tion, for fixed R the Nusselt number now increases with de-
s creasing Ekman number. This is due to the system becoming
o more and more supercritical with decreastigA power-law
oL o os fit results in the approximate scaling M5,

The amplitude of the convection as measured by the Rey-
nolds number also increases with decrea&nén this case,
a power-law fit results in ReE~%2°, Note that in the mag-

FIG. 5. Reynolds number antd as a function of the imposed netoconvection case considered here Re increases slower
field strength forE=5x 10%,Ra=600, and Prg=1). with decreasinge than for nonmagnetic convection. At first

0.2

120
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o ' T must be provided by work done against Lorentz forces. This

o Nu| 20 restriction is absent in the magnetoconvection problem
& Re | dag where the large scale field is prescribed. Nevertheless, the
150 convective flows are expected to be largely influenced by the

0.198 + 0.004 magnetic field in the dynamo case at low Ekman number.
~ 160

Nu~E

Nu

(]
140 &,

Re ~ E0289%0.004 1 C. Dynamos
In Sec. Ill A we described the character of nonmagnetic
convection. The Rayleigh numbers were chosen small

enough for scaling laws predicted by weakly nonlinear

analysis to hold. In this case, for constadthe Reynolds
o ' ) number scales according to R& Y3 while the Nusselt
number is almost constant. The convective flow is character-
ized by a preferred length scale of orde¥®,

The effect of an imposed magnetic field on the amplitude
_ and planform of convection was studied for the same set of
1 control parameters in Sec. lll B. We demonstrated that the
presence of a strong magnetic field leads to a dynamical
regime which is drastically different from the nonmagnetic
case. The presence of the imposed field leads to large scale
convection accompanied by very efficient heat transport and
a nearly magnetostrophic force balance.

In this section we study the full dynamo problem in which
the magnetic field is self-generated. According to the theo-
retical analysis of Sowardi23], we would expect a weak

ootl——— | : | initial magnetic field to be amplified by kinematic dynamo
®) 1072 E 10~ action provided the magnetic Reynolds number is high

enough. This kinematic dynamo generates an oscillatory

FIG. 6. Ekman number dependence for an imposed fieldnagnetic field by the typical two scale mechanism in which
strengthA | =10. (a) shows Nu and Re as a function Bfand (b) (1) small scale fieldb is generated from the large scale
displays the Ekman number dependence-.of mean fieldB, by the small scale motions, and

(2) the large scale fiel® , is induced by the average of
the action of the small scale convective flow on the small
scale fieldb.

Small scale motions are inefficient at generating magnetic
?field. Balancing terms in the dimensionless form of the in-
Yuction equation, where the large length scale is assumed to
be O(1) suggests that the critical magnetic Reynolds number
ffor the onset of dynamo action scalestad/’® and this is also
éevealed by Soward’'s analysis of the kinematic dynamo
problem[23]. In the nonmagnetic case we found Re /3

0.14

01

008 1t ~ g 0-349£0.003

0.06—

glance, this suggests that for fix&and decreasing Ekman
number, nonmagnetic convection ultimately becomes mor
vigorous than magnetoconvection. The corresponding Re
nolds numbers however become so large that the scali
laws discussed here are likely to lose validity.
Figure &b) shows the Ekman number dependence af

A =10. With decreasing Ekman number, the influence o
viscosity is reduced and the magnetic field satisfies Taylor’
condition increasingly well. We find that scales approxi-

mately asrocE-13, for fixed R. We therefore expect that the margiafor the
onset of kinematic dynamo action decreases with decreasing
7. Summary of magnetoconvection results E.

In summary, we conclude that the presence of a strong Soward studied the case of weak magnetic fields with

magnetic field fundamentally changes the dynamical regim_O(E) by means of.an amplitude expansion. In this case, the
from a viscously dominated to a magnetostrophic one. Thaéading order kinetic energy balance is not affected by the
influence of viscosity uniformly decreases with decreasind"2dnetic field and a dynamical equilibrium is possible pro-
Ekman number. We further find that even for weak magneti¢/ided R is small enough. In this regime, the Lorentz force
fields with an intensity too low to cause a transition to anonly controls the fine structure of the flow which still has
approximate state, both the planform and the amplitude o$mall horizontal length scale&=0O(E*3).
convection strongly depend on the applied field strength. Subsequent analysis by Fautrelle and Childi&} for

The flow regimes found for either nonmagnetic convec-intermediate field strengtih=O(E??) revealed that such
tion and for strong imposed magnetic fields provide extremdields lead to instability and rapid field growth occurs. This
cases which are helpful for the interpretation of dynamo calshowed that the weak field solutions are very special in the
culations. In the self-consistent dynamo problem, the energgense that they are unstable to finite magnetic perturbations.
necessary to prevent the magnetic field from Ohmic decayhe finding is consistent with results from magnetoconvec-
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= 160 /‘/ 1. g magnetic to kinetic energ¥mag/ Exin
=4 mi . 1107 3 for E=5x10%, Ra=600, Prg=1.
f VA 1104 £ The dynamo was started by inserting a
B 120 | magnetic_ o ','/ ] a small initial field into fully developed
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u 1106 matic growth.
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tion theory for externally applied uniform fields which are tion cells. It, however, clearly limits the size of the largest
known to reduce the critical Rayleigh number for the onsettonvection cells in the dynamo case.

of convection and thus strongly facilitate convective mo-

tions. The analysis of the last section revealed that this con- 2. Nonexponential field growth

vection promoting effect also occurs for nonuniform applied Most of the dynamos discussed in this section have been

f'el_qu] in the flllj"é’ ll‘"nonlmear"cfgslz. hd ived ab ._obtained by using the output of runs at different parameter
e so called ‘runaway” field growth described above IS, 565 as the initial condition. In some cases, the dynamos

(vere started by inserting a small magnetic perturbation into
field amplification and a dynamical balance between Corio y 9 g P

lis. L b q ; _ Anal statistically stationary nonmagnetic convection. This initial
Is, Lorentz, buoyancy, and pressure forces Is set up. Ana y.t'ﬁeld is then amplified by the convective flow through kine-

cal studies in this regime are difficult since the convection ISmatic dynamo action and initially the magnetic field grows

dominated by large scale features so that the two scal@xponentially with a well defined growth rate. As an ex-

met?\od Is no Ipngder appt))li%ablﬁ. is derived f " ample, Fig. 7 shows foE=5x 108, Ra=600, Prg=1 the

TI' N sce:arlo . es;:rl € ﬁllgl/e IS e”\ée I_ro_m Iweﬁ_ %emporal evolution ofA, Ry, and E,4 By, Eventually the
nonlinear theory in the small Ekman number limit. In this ., 54h6tic field becomes strong enough to destabilize the con-
section, we discuss results from fully nonlinear dynamo caly,gqtion which leads to increasing flow velocities. Figure 7

. ; ;
iullzaiolnos_‘labvvary“’lg values of tr;]e Ekman numltze( EIT ._shows that this in turn causes more efficient dynamo action
o - We will demonstrate that transition takes place Nresulting in very fast, nonexponential field growth until satu-

this range from a viscously controlled regime to a stat€ 4tion occurs
where the flow structure is largely influenced by the mag- e effect just described is observable in all our simula-

netic field. tions in which the dynamo grows from a small initial field. It
results from two instabilitiegmagnetic field intensification
1. Choice of parameters by induction and destabilization of the convective flow by

Table 1l shows the values of the control parameters em!.he induced fielfloccurring at the same time. This “runaway

ployed for the dynamo calculations. The parameter valuel®!d growth” is strongest at lovie and in cases where the
used in Secs. Il A and Il B have been included to allow amagnetic Reynolds number is close to the marginal value for

comparison with the nonmagnetic and magnetoconvectiomenonrietllOfngynﬁrzo acrtlotR. rTQre liznelrra\f\'/% gr:cixvthmrati 'E
results. A Roberts numbey=2.5 has been chosen to permit en smail and changes rather drastically when the magnetic

kinematic dynamo action =10 and the corresponding field starts to destabilize convection. In addition, the_ flow
calculations at loweE also use this value af. At low values velocities differ more strongly between the nonmagnetic and
of the Ekman number, the increase of the amplitude of con!he saturated dynamo branch at snitl
vection with decreasing Ekman number allows kinematic dy-
namo action at lower Roberts numbers. Most calculations at
low Ekman number thus appty=1 which prevents the mag- In the saturated regime, the influence Bfon the plan-
netic field from developing very small scales and at the samé&rm of convection successively becomes more pronounced
time reduces the numerical stiffness of the problem. with decreasing Ekman number. Figure 8 contrasts time av-
For E<5x 107 the aspect ratio was reduced %o  eraged kinetic energy spectra for the nonmagnetic and the
=0.25 to resolve the small horizontal length scale of nondynamo case at three different Ekman numbers. Eor
magnetic convection. This is no severe limitation for the=10"% the scales of the flow are nearly uninfluenced by the
nonmagnetic case since the box still contains many conveaction of the magnetic field as revealed by the similarity of

3. Flow structure in the saturated regime
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nonmagnetic
convection

logl 0 <v¥(l,m)>

FIG. 8. Kinetic energy spectra for
nonmagnetic convectior{left column
and for dynamogright columr) for dif-
ferent values ofE. The upper row(a)
corresponds toE=10"* (run 1), the
middle row (b) to E=5X 107 (run 6),
and the lowermost row(c) to E=5
X 1077 (run 11).

[\¥]

the dynamo and the nonmagnetic spectrum. Only the distri- Figure 9 shows snapshots of the flowEt5x 1077, Ar-
bution of the energy among modes wikir=k. is slightly  rows which are scaled by the local flow speed illustrate the
changed. FOE=5X107%, the spatial scales of the dynamo velocity field at the upper boundag=1. The graph in the
are already larger as compared to the nonmagnetic case amiddle shows the time history of the Elsasser number and
the sharp peaks at high wave numbers of orklealmost the dashed lines indicate the time instants at which the dif-
disappear. The kinetic energy is mainly distributed amonderent snapshots have been taken. For comparison, the non-
modes with wave numbells<9 in contrast to the nonmag- magnetic case is shown in the upper left panel.

netic case where the strongest modes have wave numbers The nonmagnetic flow has the same structure as the solu-
ll<k=14. For the lowest Ekman number consideréd, tions discussed in Sec. Il A. In the dynamo case, quite dis-
=5X 1077, the strongest modes hakeO(1) in the dynamo tinct flow patterns develop at low Ekman number. On time
case and the spectrum monotonically decreases with increagverage the flow is dominated by large scale convection. A
ing k. It has to be recalled here that in this case the compueetailed inspection of the temporal behavior reveals that
tational domain has a small aspect rdfig 0.25. The maxi- strong large scale flows develop during episodes of intense
mum size of the convection cells is thus limited. We magnetic field while smaller convection cells arise during
conclude from these results that the scale disparities betwedimes of low field intensity.

nonmagnetic and dynamo states strongly increase with de- As is to be expected from the magnetoconvection results,
creasing Ekman number. a sufficiently strong magnetic field permits vigorous large
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non—magnetic

FIG. 9. Velocity field at the upper
boundary z=1 for E=5X107, Ra
=1200, Prg=1 at different time in-
stants. The arrows are scaled by the lo-
cal flow speedu|.

scale convection which efficiently transports heat across thefficiency of the dynamo process. The interplay of both ef-
layer. The resulting flow is, however, incapable of sustainingects is likely to generate a strongly time dependent, fluctu-
the strong field over long times. In contrast to the relativelyating dynamo. Based on a magnetoconvection study, a simi-
ordered spatial structure which makes the nonmagnetic flowar scenario has been proposed by Zhang and Gubbins for the
such an efficient and simple kinematic dynamo, much lesspherical cas¢31,32. Because of the higher numerical de-
regular and strongly time dependent flow patterns arise. Thmands, the effect has not yet been observed in a self-
associated magnetic field amplitude fluctuates strongly. Dureonsistent spherical dynamo simulation.
ing times of weak field intensity, the large scale convection
may break down entirely. The magnetic field then decays
slowly while at the same time flow instabilities in the form of ~ The magnetic field exhibits a fairly regular structure for
smaller convection cells develop. This small scale convecmoderate Ekman numbers where the response of the convec-
tion is inefficient in transporting heat but its regular structuretion to the fluctuating field is weak. In the low Ekman num-
again leads to an amplification of the magnetic field, ulti-ber case, due to the intermittent flow, the field structure is
mately making the small convection cells again unstable tanuch less regular. As an example, Fig. 10 shows the field
large scale flows. structure for intermediate Ekman numbé&=5x 1076 at

This intermittent behavior is not surprising. On the oneRa=600, Prg=1. The upper left panel shows a snapshot of
hand, the magnetoconvection results show that at low Ekmathe magnetic energy at 20% of its maximum value. Typically,
number the convection responds rather sensitively to slighB is weak in the center of the layer and attains its maxima
changes of the applied field strength. On the other hand, it iabout midway between the center and the boundaries.
known from kinematic dynamo theory that often slight The distribution of magnetic energy among the horizontal
changes of the flow structure lead to strong changes in thmodes is shown in Fig. 1B). Most of the magnetic energy is

4. Magnetic field structure
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FIG. 10. Structure of the dy-
namo generated magnetic field at
E=5x10% Ra=600, Pr=1¢g=1.
An isosurface of the magnetic en-
ergy at 20% of its maximum value
is shown in (a), (b) shows the
spectral distribution of the mag-
netic energy among the horizontal
modes(see text for detai)s and
(c) is a plot of the horizontally av-
eraged magnetic field where the
arrows are scaled by the absolute
value. The time history of the
Fourier coefficients B and

B is shown in(d).

(@)

X(0,0.0

Y(0,0.0

©

contained in the mean field modes withm)=(0,0). The 5. Quantitative analysis
magnetic spectrum monotonically decreases with increasing Quantitative results of the dynamo calculations are given
k. Small scale convection feeds energy into the high wavein Table II. The values in parantheses correspond to the non-
number components of the magnetic field which then movesgnagnetic state. The length of the time span over which the
up the spectrum in an inverse cascade. statistically fluctuating values have been averaged are given
Since the magnetic field is strongly dominated by modesn units of the free magnetic decay time of the slowest de-
with k=0, which play a key role in the dynamo process, wecaying mode. Due to the high numerical cost at low Ekman
give a visualization of the mean field in Fig. (@ The ar- number, these time spans become relatively short as typical
rows shown are scaled by its absolute value. The mean fiel@r such studiegsee, e.g., Ref|34]). Still we feel that the
is nearly antisymmetric with respect to the plare0.5 and ~ obtained numbers reasonably illustrate the quantitative be-
resembles a spiral staircase twisting in the same sense as fpvior. ] . ]
velocity field. Together with the helicity, @=1/2 thesense A crucial output parameter of dynamo calculations is the
of twisting of the mean field changes sign. The appearance ¢f/Sasser numbek measuring the strength of the generated
this spiral staircase structure Bf, is predicted by the two Magnetic field. The magnetic fields produced have time av-
scale analysis of Sowarf23] and could perhaps be most €raged Elsasser numbefd) in the approximate range
vividly understood by picturing each half of the layer as al0-1.0.4. Comparison with the magnetoconvection results at
crude representation of a G. O. Roberts type dyn&Bah E=5X 1(_T6 (see Fig. Y indicates that th!s is about an order
The time evolution of the mean field is quite simple. To Of magnitude to low to cause a transition to a Taylor state.
illustrate this, the last panel of Fig. 10 shows the temporaf‘PProximate Taylor states have been foundatO(10™) in
evolution of the(0,0,) mode of the horizontal magnetic & recent study by Rotvig and Jong]. Differently from
field. The figure is typical for the strongest mean-field modeghis study, the authors apply higher valuesRoédndq, use a
which are primarily the odd modes. The mean field rotates inilted rotation axes, entirely neglect inertia, and assume rigid,
a sense opposite @ with a period of the order of the free electrically insulating boundary conditions. As our results il-
decay time of the system. This mean field rotation period idustrate, at small Ekman number magnetic fields with El-
the fundamental time scale of the dynamo cycle. sasser numbers lower than 1 can nevertheless have a pro-
The magnetic field structure is much less regular in theound effect on the amplitude and planform of convection. In
caseE=5x% 10" discussed above where the planform of con-the case ofE=5x 107, during times where the magnetic
vection is largely controlled by the Lorentz forces. field is strong and the flow is characterized by large scale
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time and was confined to a periodic box of small aspect ratio.
We thus find it worthwhile to reconsider the problem of sub-
critical dynamos here. Since an infinite time series would be
necessary to safely conclude that a specific dynamo solution
survives as a subcritical dynamo, we use the term “long liv-
ing dynamos” for solutions which survive for the entire cal-
_ culated time series which has to cover several mean field
] decay times of the system and avoid the term “stable” here.

Starting from the dynamo solution &=5x10"°, Ra
=600, Prg=1, we successively reduced the Rayleigh num-
ber. At Ra=500, which is only slightly below the critical
value, we find a long living dynamo that survived for the
entire calculated time series which covered nearly eight
02—t '18_5 : S — '1(')_4 mean field decay times. Figure (82 shows the temporal

£ evolution of the Elsasser number and of the magnetic Rey-
nolds number. By switching off the Lorentz force in the mo-
mentum equation, we observed that convection rapidly
breaks down. We therefore conclude that it is really the Lor-
entz force and not the nonlinear properties of the momentum
convection, relative low values of~0.1 are observed. Dur- equation that allow for convection and dynamo action in this
ing times of weak magnetic fields and small scale convecggse.
tion, Taylor's condition is not well satisfied and higher val-  Encouraged by this result and the promisingly high value
ues ofr occur. of the magnetic Reynolds number which fluctuates about

In all cases considered, the vigor of the flow and the heaR _~100 for Ra=500, we further reduced the Rayleigh num-
transport increases through the action of the Lorentz forceper to Ra=450. Figure 18) again shows a plot of andR,,

The effect is strongest in cases of relatively low magnetiG/ersus time. After a short transient, the dynamo settles into a
Reynolds numbers and decreases for magnetic Reynoldgate where at firsR,, fluctuates about 80 and the magnetic
number well beyond the critical value for the onset of dy-field shows no sign of decay. After more than two mean field
namo action. Again, the effect manifests itself most clearly indecay times, however, both field and flow suddenly break
the casé€E=5x 10"’ during times where the magnetic field is gown.

strong and large scale convection very efficiently carries heat This clearly illustrates the difficulties in establishing sub-
across the layer. critical dynamo action. The basin of attraction of the dynamo

The ratio of magnetic to kinetic energy as a function ofpranch is limited and sufficiently strong fluctuations may
the Ekman number fog=2.5, Pr=1 and constaR (runs  drive the dynamo into a decay state even after a long period
1-5) is shown in Fig. 11En,4 E«n increases with decreasing of apparently “stable” dynamo action. Very long time series
Ekman number approximately according tBn./Ex, are thus needed to conclude with high probability that a
«EY2 |If it is assumed that the Elsasser number is indepenpromising looking system is indeed a stable dynamo. We
dent of the Ekman number and the kinetic energy scalesonclude from these results that long living subcritical dyna-
according toE™??® as in the nonmagnetic casEn.dExn ~ MOs exist aE=5X 1075, but that this subcritical branch does
=E"XgPnA/R€ < E3 The ratio of magnetic to kinetic en- not extend very far into the low Rayleigh number parameter
ergy thus increases rather rapidly with decreadtfhgagain  space.
reflecting the fact that the convection promoting effect de-
creases at high magnetic Reynolds number. The absolute
value of Ey,ad Ein strongly depends on the value of the
Prandtl numbecsee run 6, 9, and 30For high P& 10, the In this study we aim at a better understanding of the dy-
ratio is approximately proportional to Pr. This suggests thahamo process at low Ekman number. Cartesian models are
the system becomes independent of ingid#, since in our  well suited for this purpose since the simpler geometry al-
scaling the Prandtl number only appears in the inertia termlows to reach more extreme parameter values. Furthermore,
the simplicity of the model helps us to understand the ob-
tained results.

The calculations presented above clearly show that the In order to put the interpretation of the dynamos on a firm
magnetic field acts to promote convection. This gives groundooting, nonmagnetic convection as well as magnetoconvec-
to the assumption that dynamo action might also exist fottion with an applied mean field are studied first. The choice
lower values of the Rayleigh number, perhaps even for Rayof a moderate value of the Rayleigh number guarantees that
leigh numbers below the critical value for the onset of non-the nonmagnetic problem can still be interpreted on the
magnetic convection. Indeed, indications for subcritical dy-grounds of weakly nonliner theory. The flow consists of ver-
namo action have been found in a study by St. Pierre in &ical convection columns with a characteristic horizontal
parameter regime comparable to the present sf86y His  length scaleC«EY3 For fixed (Ra-Rq)/Ra, the heat
study covered only a small fraction of a mean field decaytransport remains almost independent of the Ekman number.

-0.50 £ 0.02
Epay ! Evin ~E

E mag 1E kin

2
'S
T
|

FIG. 11. Ratio of magnetic to kinetic energy as a function of the
Ekman number for Pr=1g=2.5, and constarR.

IV. SUMMARY AND CONCLUDING REMARKS

6. Subcritical dynamo action
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magnetic Réynold's number —— ] Atlow Ekman number, the flow reacts quite sensitively to
sasser number {4 | ) changes of the fluctuating magnetic field. Both the amplitude

; and the structure of convection strongly depend on the field
0.2 strength. On time average, the flow is dominated by long
wavelength modes. This does not mean that small scales
never dominate. As the magnetic field strength fluctuates,
small convection cells develop during times of low field in-
tensity. This small scale flow again amplifies the magnetic
field by the well known two scale mechanism, and, as the
0.05 field grows again, the small convection cells in turn become

unstable to large scale flows. The dynamo oscillates between

both states, each one being unstable to the other. This kind of

behavior has been proposed to be relevant for the geody-
60 ! ! ! ! ! ! ! namo by Zhang and Gubbif81] on the basis of results

0 01 02 03 04 05 06 07 08 from kinematic dynamo theory and from magnetoconvec-
(a) time tion.

T T T For the moderate values of the Rayleigh number consid-
magnetic Reynolds number N - . .

Elsasser number ~ ered here, the magnetic field facilitates convection leading to
! 7025 phenomena like nonexponential “runaway” field growth and
subcritical dynamo action. The convection promoting effect,
i 402 however, seems to decrease with increasing magnetic Rey-
nolds number. We therefore conclude that the effect might
not be a robust feature at high Rayleigh number.

An important goal of dynamo modeling is a thorough un-
derstanding of the dynamics of the Earth’s core. Differently
from the Cartesian model studied in this paper, spherical
models provide a much more realistic geometry and allow a
4 0.05 detailed comparison of the simulations with observational
data. The more complicated spherical geometry, however,
. . . . ] permits dynamo calculations only at moderate Ekman num-

00 005 01 015 02 025 0_30 bers where viscous effects prevent drastic changes of the
() time flow in response to the generated magnetic field. The behav-
ior of spherical dynamos at low Ekman numbers is thus un-
known at present time. Results for nonmagnetic convection
and for magnetoconvection in spherical shédise, e.g., Ref.
[32]), however, suggest a scenario similar to the one dis-

In contrast, the amplitude of convection as measured by it§ussed in the present paper for the Cartesian case. We there-
Reynolds number increases with decreasing Ekman numbdere feel that our results are relevant for a better understand-

magnetic Reynolds number
Elsasser number

200 -

150
—10.15

100 |

1
I
-

magnetic Reynolds number
Elsasser number

50

AN

FIG. 12. Time history of the magnetic Reynolds number and of;
the Elsasser number f@@=5x 1075, Pr=1,q=1, and(a) Ra=500,
(b) Ra=450.

according to ReE~1/3, ing of core dynamics.
The magnetoconvection problem was addressed for the
same values of the control parameters. As indicated by linear APPENDIX: RESOLUTION

theory [24—2§, we found that a drastic transition to large
scale convection occurs when a sufficiently strong magnetic The results presented in this paper, especially the spectra
field is externally applied. This transition is accompanied byshown in Fig. 8 with high frequency components being
a strong increase of the flow amplitude and of the heat trangdresent in the calculated fields raise the question of the ac-
port. For sufficiently strong imposed fields, approximate Tay-curateness of these solutions. To address these issues, exten-
lor states are observed. As expected, Taylor’s condition isive resolution tests have been performed. For example, we
increasingly well fullfilled with decreasing Ekman number. interpolated our solutions &=5X10"%, Ra=600, Prg=1

The results gained in the nonmagnetic case and for thto a finer grid with twice the resolution in the horizontal
magnetoconvection problem provide the background for amlirection (256 256 128 grid and continued the calcula-
understanding of the dynamo case. Our dynamo simulationigon. To address the effects of fairly poor resolution, a solu-
reveal that with decreasing Ekman number, a transition takeon on a 64 grid has also been computed. Figure 13 shows
place from a viscously dominated flow regime characterizedinetic energy spectra from these calculations. Since we use
by the weak field scaling«EY3 to a regime where the time averaged spectra with,|m| <20 as an indicator for the
Lorentz forces control the flow structure to a large extend. Inowest order flow structures, we also show the corresponding
this regime, on time average the convective flow is domi-diagram here.
nated by long wavelength modes. The scale disparities be- Comparing the time averaged spectra clearly indicates
tween nonmagnetic and dynamo states strongly increase withat even the calculation on the very coarsé ¢dd reveals
decreasing Ekman number. the dominating features quite well. This is also true for the
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64x64x64—grid 256x256x128—grid

S b

logl , v{lm)
0

0 FIG. 13. Kinetic energy spec-
tra for different resolutions aE
] =5x10° Pr=1, q=1, and Ra
(a) =600. Snapshots of the spectra are
shown in(a) and(b) while (c) and
(d) show time averaged spectra.
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